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@ The Online Learning Framework
@ Need Prior Knowledge
@ Hypothesis class

9 Learning Finite Hypothesis Classes
@ The Consistent learner
@ The Halving learner

© Structure over the hypothesis class
o Halfspaces
@ The Ellipsoid Learner
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Example

@ Domain set, A: This is the set of o X = R? representing color
objects that we may wish to label. and shape of papayas.

o Label set, J: The set of possible labels. ¢ 5, _ {£1} representing

@ A prediction rule, h : X — Y: used to “tasty” or “non-tasty”.
label future examples. This function is o h(z) = 1if x is within the
called a predictor, a hypothesis, or a inner rectangle
classitier.
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The Online Game

Fort=1,2,...
@ Environment presents an instance x; € X
@ Learner predicts label g, € Y
@ Environment reveals true label 4, € Y
°

Learner pays 1 if §; # y; and 0 otherwise

Shai Shalev-Shwartz (Hebrew U) IML Lecture 1

Online Learning



The Online Game

Fort=1,2,...
@ Environment presents an instance x; € X
@ Learner predicts label g, € Y
@ Environment reveals true label 4, € Y
°

Learner pays 1 if §; # y; and 0 otherwise

Goal of the learner: Make few mistakes
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Mission impossible ?
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Mission impossible ?
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@ If |X| = co and on each day environment shows a new x, then the
learner can’t know its label and might always err

o If |X| < oo, the learner can memorize all labels, but this doesn't feel
like learning ...
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Prior Knowledge

Give more knowledge to the learner:

@ The environment produces labels by applying a target f that comes
from some hypothesis class, H C Y¥.
That is, H is a pre-defined set of classifiers

E.g. H is the set of all axis-aligned rectangles over some grid

The learner knows H (but of course doesn’'t know f)

How should we learn ?
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Prior Knowledge

Give more knowledge to the learner:

@ The environment produces labels by applying a target f that comes
from some hypothesis class, H C Y¥.
That is, H is a pre-defined set of classifiers

E.g. H is the set of all axis-aligned rectangles over some grid

The learner knows H (but of course doesn’'t know f)

How should we learn ?

Remark: What if our prior knowledge is wrong ?
We'll get back to this question later
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Not always helps

o Let XY =R, and H be thresholds:
o 1 ={hg:6 € R}, where hy(z) = sign(zx — 0)
hg(x) = —1 ho(x) =1

|
T

0

@ Theorem: for every learner, exists sequence of examples which is
consistent with some f € H but on which the learner will always err

@ Proof idea: environment will follow the bisection method
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Not always helps

o Let XY =R, and H be thresholds:
o 1 ={hg:6 € R}, where hy(z) = sign(zx — 0)
hg(x) = —1 ho(x) =1
i
0

@ Theorem: for every learner, exists sequence of examples which is
consistent with some f € H but on which the learner will always err

Proof idea: environment will follow the bisection method

Exercise: show that it's impossible to learn the class of axis-aligned
rectangles over the reals
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Outline

9 Learning Finite Hypothesis Classes
@ The Consistent learner
@ The Halving learner
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Learning Finite Classes

@ Assume that H is of finite size
e E.g.. H is all the functions from X to ) that can be implemented

using a Python program of length at most b
o E.g.: H is thresholds over a grid X = {0, * o n, o1}

Shai Shalev-Shwartz (Hebrew U) IML Lecture 1 Online Learning 9 /32



Learning Finite Classes

The consistent learner

o Initialize V1 = H
@ Fort=1,2,...
o Get Tt
o Pick some h € V; and predict §; = h(z:)
o Get y; and update Vi1 = {h € V; : h(xt) = e}
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Analysis

The consistent learner will make at most |H| — 1 mistakes
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The consistent learner will make at most |H| — 1 mistakes

If we err at round ¢, then the h € V; we used for prediction will not be in
Vig1. Therefore, |Vipq| < |V4] — 1. O
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The consistent learner will make at most |H| — 1 mistakes

If we err at round ¢, then the h € V; we used for prediction will not be in
Vig1. Therefore, |Vipq| < |V4] — 1. O

Can we do better ?
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The Halving learner

The Halving learner

@ Initialize V4 = H
@ Fort=1,2,...
o Get Tt
o Predict Majority(h(z;) : h € V)
o Get y; and update Vi1 = {h € V; : h(xt) =y}
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The Halving learner will make at most log,(|H|) mistakes
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The Halving learner will make at most log,(|H|) mistakes

If we err at round ¢, then at least half of the functions in V; will not be in
Vit1. Therefore, |Vigq] < |V4]/2. O
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The Halving learner will make at most log,(|H|) mistakes

If we err at round ¢, then at least half of the functions in V; will not be in
Vit1. Therefore, |Vigq] < |V4]/2. O

The Halving learner can learn the class H of all python programs of length
< b bits while making at most b mistakes.
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Powerful, but ...

@ What if the environment is not consistent with any f € H 7
o We'll deal with this later
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Powerful, but ...

@ What if the environment is not consistent with any f € H 7
o We'll deal with this later
@ While the mistake bound of Halving grows with log,(|#|), the
runtime of Halving grows with ||

e This is the main reason why the course doesn’t end now ...
o Learning must take computational considerations into account
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© Structure over the hypothesis class
o Halfspaces
@ The Ellipsoid Learner
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Efficient learning with structured H

Example:

@ Recall again the class H of thresholds over a grid X = {0, %, o1}
for some integer n > 1

@ Halving mistake bound is log(n + 1)
@ A naive implementation of Halving takes 2(n) time

@ How to implement Halving efficiently?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 1 Online Learning 16 / 32



Efficient learning with structured H

Efficient Halving for discrete thresholds

e Initialize Iy = —0.5/n,7 =1+ 0.5/n
@ Fort=1,2,...
o Getxt S {0,%,,1}
o Predict sign((x; — l;) — (ry — 2¢))
o Get y; and if z; € [l;, ;] update:
o if Yt = 1 then lt+1 = lt,Tt+1 =T+ — 05/7’L
e if Yt = —1 then lt+1 =z + O.5/n,1"t+1 =T¢
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Efficient learning with structured H

Efficient Halving for discrete thresholds

e Initialize Iy = —0.5/n,7 =1+ 0.5/n
@ Fort=1,2,...
o Getxt S {O,%,,l}
o Predict sign((x; — l;) — (ry — 2¢))
o Get y; and if z; € [l;, ;] update:
o if Yt = 1 then lt+1 = lt,Tt+1 =T+ — 05/7’L
e if Yt = —1 then lt+1 =z + O.5/n,1"t+1 =T¢

v

@ Exercise: show that the above is indeed an implementation of Halving
and that the runtime of each iteration is O(log(n))
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@ The Online Learning Framework
9 Learning Finite Hypothesis Classes

© Structure over the hypothesis class
o Halfspaces

18 /
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Halfspaces

4
w + .7

v
’

+,-7 H = {x > sign({w,x) +b) : w € R: b € R}

o Inner product: (w,x) =w'x = Z?Zl Wi

@ w is called a weight vector and b a bias
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Halfspaces

’
w + .7
v
’

+,-7 H = {x > sign({w,x) +b) : w € R: b € R}

o Inner product: (w,x) =w'x = Z?Zl Wi
@ w is called a weight vector and b a bias
@ For d =1, the class of Halfspaces is the class of thresholds

e W.lo.g., assume that x4 = 1 for all examples, and then we can treat
wy as the bias and forget about b
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Using halving to learn halfspaces on a grid

@ Let us represent all numbers on the grid
G={-1,-1+1/n,...,1—1/n,1}

o Then, [H| = |G| = (2n + 1)?

@ Therefore, Halving's bound is at most dlog(2n + 1)

@ We will show an algorithm with a slightly worse mistake bound but
that can be implemented efficiently
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The Ellipsoid Learner

@ Recall that Halving maintains the “Version Space”, V;, containing all
hypotheses in H which are consistent with the examples observed so
far

e Each halfspace hypothesis corresponds to a vector in G¢

@ Instead of maintaining V4, we will maintain an ellipsoid, &, that
contains V;

@ We will show that every time we make a mistake the volume of &
shrinks by a factor of e~1/(27+2)

@ On the other hand, we will show that the volume of & cannot be
made too small (this is where we use the grid assumption)
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Background: Balls and Ellipsoids

o Let B={w cR?: |w|? <1} be the unit ball of R?

o Recall: |[w|?>=(w,w)=w'w= Z?:l w}

@ An ellipsoid is the image of a ball under an affine mapping:
given a matrix M and a vector v,

EM,v)={Mw+v: ||W||2 <1}
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The Ellipsoid Learner

o We implicitly maintain an ellipsoid: & = S(A:/z.wl)
o Start withwy; =0, A; =1

@ Fort=1,2,...
o Get Xt
o Predict §; = sign(w, x;)
o Get Yt
o If §; # y; update:
Yt AtXt
Wiyl = Wi +
d+1 VX Atxt
At+1 ( 2 Atxtxt At>
d +1 Xy Atxt

If §; = y; keep w1 = wy and Ay = Ay
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zeros((d,));
= eye(d);
M = 0; # counts mistakes
eta = d*d/(d*d-1.0);
for t in range(O,n):
yhat = sign(dot(w,X[:,t]));
if Y[t] !'= yhat:
M = M+1;
Ax = dot(A , X[:,t]);
xAx = dot(X[:,t] , Ax);
w=w + Y[t]/((d+1)*sqrt (xAx)) * Ax;
A = etax( A - (2.0/((d+1.0)*xAx)) * outer(Ax,Ax) );

=
]

=
|
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Intuition
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Intuition

Suppose x; = (1,0) ", y; = 1.
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Suppose x1 = (1,0) ", y; = 1. Then:

we(8) e ()
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Suppose x1 = (1,0) ", y; = 1. Then:

we(8) e ()

// \\ // //
\ / \ \
\\ / \ \\

@ & is Ellipsoid of minimum volume that contains
E NA{w : y1(w,x1) > 0}
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The Ellipsoid learner makes at most 2d(2d + 2) log(n) mistakes.
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The Ellipsoid learner makes at most 2d(2d + 2) log(n) mistakes.

Proof is based on two lemmas:

Lemma (Volume Reduction)

Whenever we make a mistake, Vol(&+1) < Vol(&;) e~

Lemma (Volume can't be too small)

For every t, Vol(&;) > Vol(B) (1/n)*

@ Therefore, after M mistakes:

Vol(B) (1/n)* < Vol(&) < Vol(B) e M zas2
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The Online Learning model
Need prior knowledge
Learning finite hypothesis classes using Halving

The runtime problem

The Ellipsoid efficiently learns halfspaces (over a grid)
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@ The Online Learning model

@ Need prior knowledge

@ Learning finite hypothesis classes using Halving
@ The runtime problem
°

The Ellipsoid efficiently learns halfspaces (over a grid)

How did we derive the update equations?
How to prove the lemmas?
You need math for this !

details in the next slides
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Background: Balls and Ellipsoids

e Recall: £(M,v) = {Mw +v:|w|? <1}
@ We deal with non-degenerative ellipsoids, i.e., M is invertible

@ SVD theorem: Every real invertible matrix M can be decomposed as
M =UDVT where U,V orthonormal and D diagonal with D;; > 0.

e Exercise: Show that £(M,v) = E(UD,v)=EUDUT,v)
o Therefore, we can assume w.l.o.g. that M = UDU " (i.e., it is
symmetric positive definite)

@ Exercise: Show that for such M
EM,v)={x:(x—v) M 2(x—v) <1}

where M~2 =UD2UT with (D72);; = D; 2

) (2%3
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Volume Calculations

e Let Vol(B) be the volume of the unit ball
e Lemma: If M =UDU is positive definite, then

m

Vol(£(M,v)) = det(M)Vol(B) = <H Di,i) Vol(B)

i=1
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Why volume shrinks

@ Suppose A; = UD?U . Define %, = DU "x;. Then:

d2 2 AtXtX;rAt
Arpr = 5—— (A — -
ds -1 d+1 x, Asxt

d? 2 X% T
- % up(r--=- D
z 1" < d+1||f<tu2> v

o By Sylvester's determinant theorem, det(/ +uv') =1+ (u,v).
Therefore,

> \* 2 %%,

= det(4y) (dzdi 1>d (1 - d—2H>
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Why volume shrinks

We obtain:

Vol(Eyr) [ d* \*? L2 1/2

Vol(&)  \d?2—1 d+1
_< 2 )d21 d -1
A\ -1 Vd—Dd+1) vVd+1

d—1
1 \2 1

:<1+d2—1> '(1‘d+1>

d—1 1 _ 1
< e2(d?-1) . g7 d+1 = ¢ 2(d+1)

where we used 1 + a < e® which holds for all a € R.
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Why volume can’t be too small

Recall, y,(w*,x;) > 0 for every t.

Since w*, x; are on the grid G, it follows that y,(w*,x;) > 1/n?.
Therefore, if |[w — w*|| < 1/n? then

Y (W, X¢) = Yo (W =W, x¢) 3 (W, x¢) > —|lw—w][||x¢][+1/n® > 0

Convince yourself (by induction) that & contains the ball of radius
1/n? centered around w*. It follows that

Vol(B) (1/n?)? = Vol(E(:&1,w*)) < Vol(&)
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