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Dimensionality Reduction

Dimensionality Reduction = taking data in high dimensional space
and mapping it into a low dimensional space

Why?

Reduces training (and testing) time
Reduces estimation error
Interpretability of the data, finding meaningful structure in data,
illustration

Linear dimensionality reduction: x 7→Wx where W ∈ Rn,d and n < d
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Outline

1 Principal Component Analysis (PCA)

2 Random Projections

3 Compressed Sensing
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Principal Component Analysis (PCA)

x 7→Wx

What makes W a good matrix for dimensionality reduction ?

Natural criterion: we want to be able to approximately recover x from
y =Wx

PCA:

Linear recovery: x̃ = Uy = UWx
Measures “approximate recovery” by averaged squared norm: given
examples x1, . . . ,xm, solve

argmin
W∈Rn,d,U∈Rd,n

m∑
i=1

‖xi − UWxi‖2
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Solving the PCA Problem

argmin
W∈Rn,d,U∈Rd,n

m∑
i=1

‖xi − UWxi‖2

Theorem

Let A =
∑m

i=1 xix
>
i and let u1, . . . , un be the n leading eigenvectors of

A. Then, the solution to the PCA problem is to set the columns of U to
be u1, . . . ,un and to set W = U>
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Proof main ideas

UW is of rank n, therefore its range is n dimensional subspace,
denoted S

The transformation x 7→ UWx moves x to this subspace

The point in S which is closest to x is V V >x, where columns of V
are orthonormal basis of S

Therefore, we can assume w.l.o.g. that W = U> and that columns of
U are orthonormal
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Proof main ideas

Observe:

‖x− UU>x‖2 = ‖x‖2 − 2x>UU>x+ x>UU>UU>x

= ‖x‖2 − x>UU>x

= ‖x‖2 − trace(U>xx>U) ,

Therefore, an equivalent PCA problem is

argmax
U∈Rd,n:U>U=I

trace

(
U>

(
m∑
i=1

xix
>
i

)
U

)
.

The solution is to set U to be the leading eigenvectors of A =
∑m

i=1 xix
>
i .
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Value of the objective

It is easy to see that

min
W∈Rn,d,U∈Rd,n

m∑
i=1

‖xi − UWxi‖2 =

d∑
i=n+1

λi(A)
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Centering

It is a common practice to “center” the examples before applying
PCA, namely:

First calculate µ = 1
m

∑m
i=1 xi

Then apply PCA on the vectors (x1 − µ), . . . , (xm − µ)

This is also related to the interpretation of PCA as variance
maximization (will be given in exercise)
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Efficient implementation for d� m and kernel PCA

Recall: A =
∑m

i=1 xix
>
i = X>X where X ∈ Rm,d is a matrix whose

i’th row is x>i .

Let B = XX>. That is, Bi,j = 〈xi,xj〉
If Bu = λu then

A(X>u) = X>XX>u = X>Bu = λ(X>u)

So, X>u
‖X>u‖ is an eigenvector of A with eigenvalue λ

We can therefore calculate the PCA solution by calculating the
eigenvalues of B instead of A

The complexity is O(m3 +m2d)

And, it can be computed using a kernel function
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Pseudo code

PCA

input
A matrix of m examples X ∈ Rm,d
number of components n

if (m > d)
A = X>X
Let u1, . . . ,un be the eigenvectors of A with largest eigenvalues

else
B = XX>

Let v1, . . . ,vn be the eigenvectors of B with largest eigenvalues
for i = 1, . . . , n set ui =

1
‖X>vi‖

X>vi

output: u1, . . . ,un
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Demonstration
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Demonstration

50× 50 images from Yale dataset

Before (left) and after reconstruction (right) to 10 dimensions

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 13 / 25



Demonstration

Before and after
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Demonstration

Images after dim reduction to R2

Different marks indicate different individuals

x xx x xx x

o oo o oo o

* *
*

*** *
+++ + +++
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Outline

1 Principal Component Analysis (PCA)

2 Random Projections

3 Compressed Sensing
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What is a successful dimensionality reduction?

In PCA, we measured succes as squared distance between x and a
reconstruction of x from y =Wx

In some cases, we don’t care about reconstruction, all we care is that
y1, . . . ,ym will retain certain properties of x1, . . . ,xm

One option: do not distort distances. That is, we’d like that for all
i, j, ‖xi − xj‖ ≈ ‖yi − yj‖

Equivalently, we’d like that for all i, j,
‖Wxi−Wxj‖
‖xi−xj‖ ≈ 1

Equivalently, we’d like that for all x ∈ Q, where
Q = {xi − xj : i, j ∈ [m]}, we’ll have ‖Wx‖

‖x‖ ≈ 1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 17 / 25



What is a successful dimensionality reduction?

In PCA, we measured succes as squared distance between x and a
reconstruction of x from y =Wx

In some cases, we don’t care about reconstruction, all we care is that
y1, . . . ,ym will retain certain properties of x1, . . . ,xm

One option: do not distort distances. That is, we’d like that for all
i, j, ‖xi − xj‖ ≈ ‖yi − yj‖

Equivalently, we’d like that for all i, j,
‖Wxi−Wxj‖
‖xi−xj‖ ≈ 1

Equivalently, we’d like that for all x ∈ Q, where
Q = {xi − xj : i, j ∈ [m]}, we’ll have ‖Wx‖

‖x‖ ≈ 1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 17 / 25



What is a successful dimensionality reduction?

In PCA, we measured succes as squared distance between x and a
reconstruction of x from y =Wx

In some cases, we don’t care about reconstruction, all we care is that
y1, . . . ,ym will retain certain properties of x1, . . . ,xm

One option: do not distort distances. That is, we’d like that for all
i, j, ‖xi − xj‖ ≈ ‖yi − yj‖

Equivalently, we’d like that for all i, j,
‖Wxi−Wxj‖
‖xi−xj‖ ≈ 1

Equivalently, we’d like that for all x ∈ Q, where
Q = {xi − xj : i, j ∈ [m]}, we’ll have ‖Wx‖

‖x‖ ≈ 1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 17 / 25



What is a successful dimensionality reduction?

In PCA, we measured succes as squared distance between x and a
reconstruction of x from y =Wx

In some cases, we don’t care about reconstruction, all we care is that
y1, . . . ,ym will retain certain properties of x1, . . . ,xm

One option: do not distort distances. That is, we’d like that for all
i, j, ‖xi − xj‖ ≈ ‖yi − yj‖

Equivalently, we’d like that for all i, j,
‖Wxi−Wxj‖
‖xi−xj‖ ≈ 1

Equivalently, we’d like that for all x ∈ Q, where
Q = {xi − xj : i, j ∈ [m]}, we’ll have ‖Wx‖

‖x‖ ≈ 1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 17 / 25



What is a successful dimensionality reduction?

In PCA, we measured succes as squared distance between x and a
reconstruction of x from y =Wx

In some cases, we don’t care about reconstruction, all we care is that
y1, . . . ,ym will retain certain properties of x1, . . . ,xm

One option: do not distort distances. That is, we’d like that for all
i, j, ‖xi − xj‖ ≈ ‖yi − yj‖

Equivalently, we’d like that for all i, j,
‖Wxi−Wxj‖
‖xi−xj‖ ≈ 1

Equivalently, we’d like that for all x ∈ Q, where
Q = {xi − xj : i, j ∈ [m]}, we’ll have ‖Wx‖

‖x‖ ≈ 1

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 17 / 25



Random Projections do not distort norms

Random projection: The transformation x 7→Wx, where W is a
random matrix

We’ll analyze the distortion due to W s.t. Wi,j ∼ N(0, 1/n)

Let wi be the i’th row of W . Then:

E[‖Wx‖2] =
n∑
i=1

E[(〈wi,x〉)2] =
n∑
i=1

x> E[wiw
>
i ]x

= nx>
(
1

n
I

)
x = ‖x‖2

In fact, ‖Wx‖2 has a χ2
n distribution, and using a measure

concentration inequality it can be shown that

P

[ ∣∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣∣ > ε

]
≤ 2 e−ε

2n/6
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Random Projections do not distort norms

Applying the union bound over all vectors in Q we obtain:

Lemma (Johnson-Lindenstrauss lemma)

Let Q be a finite set of vectors in Rd. Let δ ∈ (0, 1) and n be an integer
such that

ε =

√
6 log(2|Q|/δ)

n
≤ 3 .

Then, with probability of at least 1− δ over a choice of a random matrix
W ∈ Rn,d with Wi,j ∼ N(0, 1/n), we have

max
x∈Q

∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣ < ε .
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Outline

1 Principal Component Analysis (PCA)

2 Random Projections

3 Compressed Sensing
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Compressed Sensing

Prior assumption: x ≈ Uα where U is orthonormal and

‖α‖0
def
= |{i : αi 6= 0}| ≤ s for some s� d

E.g.: natural images are approximately sparse in a wavelet basis

How to “store” x ?

We can find α = U>x and then save the non-zero elements of α
Requires order of s log(d) storage
Why go to so much effort to acquire all the d coordinates of x when
most of what we get will be thrown away? Can’t we just directly
measure the part that won’t end up being thrown away?
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Compressed Sensing

Informally, the main premise of compressed sensing is the following three
“surprising” results:

1 It is possible to fully reconstruct any sparse signal if it was
compressed by x 7→Wx, where W is a matrix which satisfies a
condition called Restricted Isoperimetric Property (RIP). A matrix
that satisfies this property is guaranteed to have a low distortion of
the norm of any sparse representable vector.

2 The reconstruction can be calculated in polynomial time by solving a
linear program.

3 A random n× d matrix is likely to satisfy the RIP condition provided
that n is greater than order of s log(d).
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the norm of any sparse representable vector.

2 The reconstruction can be calculated in polynomial time by solving a
linear program.

3 A random n× d matrix is likely to satisfy the RIP condition provided
that n is greater than order of s log(d).
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Restricted Isoperimetric Property (RIP)

A matrix W ∈ Rn,d is (ε, s)-RIP if for all x 6= 0 s.t. ‖x‖0 ≤ s we have∣∣∣∣‖Wx‖22
‖x‖22

− 1

∣∣∣∣ ≤ ε .
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RIP matrices yield lossless compression for sparse vectors

Theorem

Let ε < 1 and let W be a (ε, 2s)-RIP matrix. Let x be a vector s.t.
‖x‖0 ≤ s, let y =Wx and let x̃ ∈ argminv:Wv=y ‖v‖0. Then, x̃ = x.

Proof.

Assume, by way of contradiction, that x̃ 6= x.

Since x satisfies the constraints in the optimization problem that
defines x̃ we clearly have that ‖x̃‖0 ≤ ‖x‖0 ≤ s.

Therefore, ‖x− x̃‖0 ≤ 2s.

By RIP on x− x̃ we have
∣∣∣‖W (x−x̃)‖2
‖x−x̃‖2 − 1

∣∣∣ ≤ ε
But, since W (x− x̃) = 0 we get that |0− 1| ≤ ε. Contradiction.
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Efficient reconstruction

If we further assume that ε < 1
1+
√
2

then

x = argmin
v:Wv=y

‖v‖0 = argmin
v:Wv=y

‖v‖1 .

The right-hand side is a linear programming problem

Summary: we can reconstruct all sparse vector efficiently based on
O(s log(d)) measurements
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PCA vs. Random Projections

Random projections guarantee perfect recovery for all
O(n/ log(d))-sparse vectors

PCA guarantee perfect recovery if all examples are in an
n-dimensional subspace

Different prior knowledge:

If the data is e1, . . . , ed, random projections will be perfect but PCA
will fail
If d is very large and data is exactly on an n-dim subspace. Then, PCA
will be perfect but random projections might fail
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Summary

Linear dimensionality reduction x 7→Wx

PCA: optimal if reconstruction is linear and error is squared distance
Random projections: preserves disctances
Random projections: exact reconstruction for sparse vectors (but with
a non-linear reconstruction)

Not covered: non-linear dimensionality reduction
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