Introduction to Machine Learning (67577) Lecture 13

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Features

Feature Selection

- How to represent real-world objects (e.g. Papaya) as a feature vector ?

Feature Selection

- How to represent real-world objects (e.g. Papaya) as a feature vector ?
- Even if we have a representation as a feature vector, maybe there's a "better" representation?

Feature Selection

- How to represent real-world objects (e.g. Papaya) as a feature vector ?
- Even if we have a representation as a feature vector, maybe there's a "better" representation?
- What is "better"? depends on the hypothesis class:

Example: regression problem,

$$
x_{1} \sim U[-1,1], \quad y=x_{1}^{2}, \quad x_{2} \sim U[y-0.01, y+0.01]
$$

Which feature is better, x_{1} or x_{2} ?

Feature Selection

- How to represent real-world objects (e.g. Papaya) as a feature vector ?
- Even if we have a representation as a feature vector, maybe there's a "better" representation?
- What is "better"? depends on the hypothesis class:

Example: regression problem,

$$
x_{1} \sim U[-1,1], \quad y=x_{1}^{2}, \quad x_{2} \sim U[y-0.01, y+0.01]
$$

Which feature is better, x_{1} or x_{2} ?

- If the hypothesis class is linear regressors, we should prefer x_{2}. If the hypothesis class is quadratic regressors, we should prefer x_{1}.

Feature Selection

- How to represent real-world objects (e.g. Papaya) as a feature vector ?
- Even if we have a representation as a feature vector, maybe there's a "better" representation?
- What is "better"? depends on the hypothesis class:

Example: regression problem,

$$
x_{1} \sim U[-1,1], \quad y=x_{1}^{2}, \quad x_{2} \sim U[y-0.01, y+0.01]
$$

Which feature is better, x_{1} or x_{2} ?

- If the hypothesis class is linear regressors, we should prefer x_{2}. If the hypothesis class is quadratic regressors, we should prefer x_{1}.
- No-free-lunch ...

Outline

(1) Feature Selection

- Filters
- Greedy selection
- ℓ_{1} norm
(2) Feature Manipulation and Normalization
(3) Feature Learning

Feature Selection

- $\mathcal{X}=\mathbb{R}^{d}$
- We'd like to learn a predictor that only relies on $k \ll d$ features
- Why ?
- Can reduce estimation error
- Reduces memory and runtime (both at train and test time)
- Obtaining features may be costly (e.g. medical applications)

Feature Selection

- Optimal approach: try all subsets of k out of d features and choose the one which leads to best performing predictor

Feature Selection

- Optimal approach: try all subsets of k out of d features and choose the one which leads to best performing predictor
- Problem: runtime is $d^{k} \ldots$ can formally prove hardness in many situations

Feature Selection

- Optimal approach: try all subsets of k out of d features and choose the one which leads to best performing predictor
- Problem: runtime is $d^{k} \ldots$ can formally prove hardness in many situations
- We describe three computationally efficient heuristics (some of them come with some types of formal guarantees, but this is beyond the scope)

Outline

(1) Feature Selection

- Filters
- Greedy selection
- ℓ_{1} norm
(2) Feature Manipulation and Normalization
(3) Feature Learning

Filters

- Filter method: assess individual features, independently of other features, according to some quality measure, and select k features with highest score

Filters

- Filter method: assess individual features, independently of other features, according to some quality measure, and select k features with highest score
- Score function: Many possible score functions. E.g.:

Filters

- Filter method: assess individual features, independently of other features, according to some quality measure, and select k features with highest score
- Score function: Many possible score functions. E.g.:
- Minimize loss: Rank features according to

$$
-\min _{a, b \in \mathbb{R}} \sum_{i=1}^{m} \ell\left(a v_{i}+b, y_{i}\right)
$$

Filters

- Filter method: assess individual features, independently of other features, according to some quality measure, and select k features with highest score
- Score function: Many possible score functions. E.g.:
- Minimize loss: Rank features according to

$$
-\min _{a, b \in \mathbb{R}} \sum_{i=1}^{m} \ell\left(a v_{i}+b, y_{i}\right)
$$

- Pearson correlation coefficient: (obtained by minimizing squared loss)

$$
\frac{|\langle\mathbf{v}-\bar{v}, \mathbf{y}-\bar{y}\rangle|}{\|\mathbf{v}-\bar{v}\|\|\mathbf{y}-\bar{y}\|}
$$

Filters

- Filter method: assess individual features, independently of other features, according to some quality measure, and select k features with highest score
- Score function: Many possible score functions. E.g.:
- Minimize loss: Rank features according to

$$
-\min _{a, b \in \mathbb{R}} \sum_{i=1}^{m} \ell\left(a v_{i}+b, y_{i}\right)
$$

- Pearson correlation coefficient: (obtained by minimizing squared loss)

$$
\frac{|\langle\mathbf{v}-\bar{v}, \mathbf{y}-\bar{y}\rangle|}{\|\mathbf{v}-\bar{v}\|\|\mathbf{y}-\bar{y}\|}
$$

- Spearman's rho: Apply Pearson's coefficient on the ranking of \mathbf{v}

Filters

- Filter method: assess individual features, independently of other features, according to some quality measure, and select k features with highest score
- Score function: Many possible score functions. E.g.:
- Minimize loss: Rank features according to

$$
-\min _{a, b \in \mathbb{R}} \sum_{i=1}^{m} \ell\left(a v_{i}+b, y_{i}\right)
$$

- Pearson correlation coefficient: (obtained by minimizing squared loss)

$$
\frac{|\langle\mathbf{v}-\bar{v}, \mathbf{y}-\bar{y}\rangle|}{\|\mathbf{v}-\bar{v}\|\|\mathbf{y}-\bar{y}\|}
$$

- Spearman's rho: Apply Pearson's coefficient on the ranking of \mathbf{v}
- Mutual information: $\sum p\left(v_{i}, y_{i}\right) \log \left(p\left(v_{i}, y_{i}\right) /\left(p\left(v_{i}\right) p\left(y_{i}\right)\right)\right)$

Weakness of Filters

- If Pearson's coefficient is zero then \mathbf{v} alone is useless for predicting \mathbf{y}

Weakness of Filters

- If Pearson's coefficient is zero then \mathbf{v} alone is useless for predicting \mathbf{y}
- This doesn't mean that \mathbf{v} is a bad feature - maybe with other features it is very useful

Weakness of Filters

- If Pearson's coefficient is zero then \mathbf{v} alone is useless for predicting \mathbf{y}
- This doesn't mean that \mathbf{v} is a bad feature - maybe with other features it is very useful
- Example:

$$
y=x_{1}+2 x_{2}, \quad x_{1} \sim U[\pm 1], \quad x_{2}=\left(z-x_{1}\right) / 2, \quad z \sim U[\pm 1]
$$

Then, Pearson of x_{1} is zero, but no function can predict y without x_{1}

Outline

(1) Feature Selection

- Filters
- Greedy selection
- ℓ_{1} norm
(2) Feature Manipulation and Normalization
(3) Feature Learning

Forward Greedy Selection

- Start with empty set of features $I=\emptyset$

Forward Greedy Selection

- Start with empty set of features $I=\emptyset$
- At each iteration, go over all $i \notin I$ and learn a predictor based on $I \cup i$

Forward Greedy Selection

- Start with empty set of features $I=\emptyset$
- At each iteration, go over all $i \notin I$ and learn a predictor based on $I \cup i$
- Choose the i that led to best predictor and update $I=I \cup\{i\}$

Forward Greedy Selection

- Start with empty set of features $I=\emptyset$
- At each iteration, go over all $i \notin I$ and learn a predictor based on $I \cup i$
- Choose the i that led to best predictor and update $I=I \cup\{i\}$
- Example: Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP)

- Let $X \in \mathbb{R}^{m, d}$ be a data matrix (instances in rows). Let $\mathbf{y} \in \mathbb{R}^{m}$ be the targets vector.

Orthogonal Matching Pursuit (OMP)

- Let $X \in \mathbb{R}^{m, d}$ be a data matrix (instances in rows). Let $\mathbf{y} \in \mathbb{R}^{m}$ be the targets vector.
- Let X_{i} denote the i 'th column of X and let X_{I} be the matrix whose columns are $\left\{X_{i}: i \in I\right\}$.

Orthogonal Matching Pursuit (OMP)

- Let $X \in \mathbb{R}^{m, d}$ be a data matrix (instances in rows). Let $\mathbf{y} \in \mathbb{R}^{m}$ be the targets vector.
- Let X_{i} denote the i 'th column of X and let X_{I} be the matrix whose columns are $\left\{X_{i}: i \in I\right\}$.
- At iteration t, we add the feature

$$
j_{t}=\underset{j}{\operatorname{argmin}} \min _{\mathbf{w} \in \mathbb{R}^{t}}\left\|X_{I_{t-1} \cup\{j\}} \mathbf{w}-\mathbf{y}\right\|^{2} .
$$

Orthogonal Matching Pursuit (OMP)

- Let $X \in \mathbb{R}^{m, d}$ be a data matrix (instances in rows). Let $\mathbf{y} \in \mathbb{R}^{m}$ be the targets vector.
- Let X_{i} denote the i 'th column of X and let X_{I} be the matrix whose columns are $\left\{X_{i}: i \in I\right\}$.
- At iteration t, we add the feature

$$
j_{t}=\underset{j}{\operatorname{argmin}} \min _{\mathbf{w} \in \mathbb{R}^{t}}\left\|X_{I_{t-1} \cup\{j\}} \mathbf{w}-\mathbf{y}\right\|^{2} .
$$

- An efficient implementation: let V_{t} be a matrix whose columns are orthonormal basis of the columns of $X_{I_{t}}$. Clearly,

$$
\min _{\mathbf{w}}\left\|X_{I_{t}} \mathbf{w}-\mathbf{y}\right\|^{2}=\min _{\boldsymbol{\theta} \in \mathbb{R}^{t}}\left\|V_{t} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}
$$

Orthogonal Matching Pursuit (OMP)

- Let $X \in \mathbb{R}^{m, d}$ be a data matrix (instances in rows). Let $\mathbf{y} \in \mathbb{R}^{m}$ be the targets vector.
- Let X_{i} denote the i 'th column of X and let X_{I} be the matrix whose columns are $\left\{X_{i}: i \in I\right\}$.
- At iteration t, we add the feature

$$
j_{t}=\underset{j}{\operatorname{argmin}} \min _{\mathbf{w} \in \mathbb{R}^{t}}\left\|X_{I_{t-1} \cup\{j\}} \mathbf{w}-\mathbf{y}\right\|^{2} .
$$

- An efficient implementation: let V_{t} be a matrix whose columns are orthonormal basis of the columns of $X_{I_{t}}$. Clearly,

$$
\min _{\mathbf{w}}\left\|X_{I_{t}} \mathbf{w}-\mathbf{y}\right\|^{2}=\min _{\boldsymbol{\theta} \in \mathbb{R}^{t}}\left\|V_{t} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}
$$

- Let θ_{t} be a minimizer of the right-hand side

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2}
$$

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2} \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j}, V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\rangle\right]
\end{aligned}
$$

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2} \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j}, V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j},-\mathbf{y}\right\rangle\right]
\end{aligned}
$$

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2} \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j}, V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j},-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right]
\end{aligned}
$$

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2} \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j}, V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j},-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right] \\
& =\left[\left\|V_{t-1} \boldsymbol{\theta}_{t-1}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right]
\end{aligned}
$$

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2} \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j}, V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j},-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right] \\
& =\left[\left\|V_{t-1} \boldsymbol{\theta}_{t-1}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right] \\
& =\left\|V_{t-1} \boldsymbol{\theta}_{t-1}-\mathbf{y}\right\|^{2}-\frac{\left(\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right)^{2}}{\left\|\mathbf{u}_{j}\right\|^{2}}
\end{aligned}
$$

Orthogonal Matching Pursuit (OMP)

- Given V_{t-1} and θ_{t-1}, we write for every $j, X_{j}=V_{t-1} V_{t-1}^{\top} X_{j}+\mathbf{u}_{j}$, where \mathbf{u}_{j} is orthogonal to V_{j}. Then:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \alpha}\left\|V_{t-1} \boldsymbol{\theta}+\alpha \mathbf{u}_{j}-\mathbf{y}\right\|^{2} \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j}, V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}, \alpha}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}+\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}+2 \alpha\left\langle\mathbf{u}_{j},-\mathbf{y}\right\rangle\right] \\
& =\min _{\boldsymbol{\theta}}\left[\left\|V_{t-1} \boldsymbol{\theta}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right] \\
& =\left[\left\|V_{t-1} \boldsymbol{\theta}_{t-1}-\mathbf{y}\right\|^{2}\right]+\min _{\alpha}\left[\alpha^{2}\left\|\mathbf{u}_{j}\right\|^{2}-2 \alpha\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right] \\
& =\left\|V_{t-1} \boldsymbol{\theta}_{t-1}-\mathbf{y}\right\|^{2}-\frac{\left(\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right)^{2}}{\left\|\mathbf{u}_{j}\right\|^{2}}
\end{aligned}
$$

- It follows that we should select the feature $j_{t}=\operatorname{argmax}_{j} \frac{\left(\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right)^{2}}{\left\|\mathbf{u}_{j}\right\|^{2}}$.

Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP)

input:
data matrix $X \in \mathbb{R}^{m, d}$, labels vector $\mathbf{y} \in \mathbb{R}^{m}$, budget of features T
initialize: $I_{1}=\emptyset$
for $t=1, \ldots, T$
use SVD to find an orthonormal basis $V \in \mathbb{R}^{m, t-1}$ of $X_{I_{t}}$ (for $t=1$ set V to be the all zeros matrix)
foreach $j \in[d] \backslash I_{t}$ let $\mathbf{u}_{j}=X_{j}-V V^{\top} X_{j}$
let $j_{t}=\operatorname{argmax}_{j \notin I_{t}:\left\|\mathbf{u}_{j}\right\|>0} \frac{\left(\left\langle\mathbf{u}_{j}, \mathbf{y}\right\rangle\right)^{2}}{\left\|\mathbf{u}_{j}\right\|^{2}}$
update $I_{t+1}=I_{t} \cup\left\{j_{t}\right\}$
output I_{T+1}

Gradient-based Greedy Selection

- Let $R(\mathbf{w})$ be the empirical risk as a function of \mathbf{w}

Gradient-based Greedy Selection

- Let $R(\mathbf{w})$ be the empirical risk as a function of \mathbf{w}
- For the squared loss, $R(\mathbf{w})=\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}$, we can easily solve the problem

$$
\underset{j}{\operatorname{argmin}} \min _{\mathbf{w}: \operatorname{supp}(\mathbf{w})=I \cup\{i\}} R(\mathbf{w})
$$

Gradient-based Greedy Selection

- Let $R(\mathbf{w})$ be the empirical risk as a function of \mathbf{w}
- For the squared loss, $R(\mathbf{w})=\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}$, we can easily solve the problem

$$
\underset{j}{\operatorname{argmin}} \min _{\mathbf{w}: \operatorname{supp}(\mathbf{w})=I \cup\{i\}} R(\mathbf{w})
$$

- For general R, this may be expensive. An approximation is to only optimize w over the new feature:

$$
\underset{j}{\operatorname{argmin}} \min _{\eta \in \mathbb{R}} R\left(\mathbf{w}+\eta \mathbf{e}_{j}\right)
$$

Gradient-based Greedy Selection

- Let $R(\mathbf{w})$ be the empirical risk as a function of \mathbf{w}
- For the squared loss, $R(\mathbf{w})=\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}$, we can easily solve the problem

$$
\underset{j}{\operatorname{argmin}} \min _{\mathbf{w}: \operatorname{supp}(\mathbf{w})=I \cup\{i\}} R(\mathbf{w})
$$

- For general R, this may be expensive. An approximation is to only optimize w over the new feature:

$$
\underset{j}{\operatorname{argmin}} \min _{\eta \in \mathbb{R}} R\left(\mathbf{w}+\eta \mathbf{e}_{j}\right)
$$

- An even simpler approach is to choose the feature which minimizes the above for infinitesimal η, namely,

$$
\underset{j}{\operatorname{argmin}}\left|\nabla_{j} R(\mathbf{w})\right|
$$

AdaBoost as Forward Greedy Selection

- It is possible to show (left as an exercise), that the AdaBoost algorithm is in fact Forward Greedy Selection for the objective function

$$
R(\mathbf{w})=\log \left(\sum_{i=1}^{m} \exp \left(-y_{i} \sum_{j=1}^{d} w_{j} h_{j}\left(\mathbf{x}_{j}\right)\right)\right)
$$

Outline

(1) Feature Selection

- Filters
- Greedy selection
- ℓ_{1} norm
(2) Feature Manipulation and Normalization
(3) Feature Learning

Sparsity Inducing Norms

- Minimizing the empirical risk subject to a budget of k features can be written as:

$$
\min _{\mathbf{w}} L_{S}(\mathbf{w}) \quad \text { s.t. } \quad\|\mathbf{w}\|_{0} \leq k
$$

Sparsity Inducing Norms

- Minimizing the empirical risk subject to a budget of k features can be written as:

$$
\min _{\mathbf{w}} L_{S}(\mathbf{w}) \quad \text { s.t. } \quad\|\mathbf{w}\|_{0} \leq k
$$

- Replace the non-convex constraint, $\|\mathbf{w}\|_{0} \leq k$, with a convex constraint, $\|\mathbf{w}\|_{1} \leq k_{1}$.

Sparsity Inducing Norms

- Minimizing the empirical risk subject to a budget of k features can be written as:

$$
\min _{\mathbf{w}} L_{S}(\mathbf{w}) \quad \text { s.t. } \quad\|\mathbf{w}\|_{0} \leq k
$$

- Replace the non-convex constraint, $\|\mathbf{w}\|_{0} \leq k$, with a convex constraint, $\|\mathbf{w}\|_{1} \leq k_{1}$.
- Why ℓ_{1} ?

Sparsity Inducing Norms

- Minimizing the empirical risk subject to a budget of k features can be written as:

$$
\min _{\mathbf{w}} L_{S}(\mathbf{w}) \quad \text { s.t. } \quad\|\mathbf{w}\|_{0} \leq k
$$

- Replace the non-convex constraint, $\|\mathbf{w}\|_{0} \leq k$, with a convex constraint, $\|\mathbf{w}\|_{1} \leq k_{1}$.
- Why ℓ_{1} ?
- "Closest" convex surrogate

Sparsity Inducing Norms

- Minimizing the empirical risk subject to a budget of k features can be written as:

$$
\min _{\mathbf{w}} L_{S}(\mathbf{w}) \quad \text { s.t. } \quad\|\mathbf{w}\|_{0} \leq k
$$

- Replace the non-convex constraint, $\|\mathbf{w}\|_{0} \leq k$, with a convex constraint, $\|\mathbf{w}\|_{1} \leq k_{1}$.
- Why ℓ_{1} ?
- "Closest" convex surrogate
- If $\|\mathbf{w}\|_{1}$ is small, can construct $\tilde{\mathbf{w}}$ with $\|\tilde{\mathbf{w}}\|_{0}$ small and similar value of L_{S}

Sparsity Inducing Norms

- Minimizing the empirical risk subject to a budget of k features can be written as:

$$
\min _{\mathbf{w}} L_{S}(\mathbf{w}) \quad \text { s.t. } \quad\|\mathbf{w}\|_{0} \leq k
$$

- Replace the non-convex constraint, $\|\mathbf{w}\|_{0} \leq k$, with a convex constraint, $\|\mathbf{w}\|_{1} \leq k_{1}$.
- Why ℓ_{1} ?
- "Closest" convex surrogate
- If $\|\mathbf{w}\|_{1}$ is small, can construct $\tilde{\mathbf{w}}$ with $\|\tilde{\mathbf{w}}\|_{0}$ small and similar value of L_{S}
- Often, ℓ_{1} "induces" sparse solutions

ℓ_{1} regularization

- Instead of constraining $\|\mathbf{w}\|_{1}$ we can regularize:

$$
\min _{\mathbf{w}}\left(L_{S}(\mathbf{w})+\lambda\|\mathbf{w}\|_{1}\right)
$$

ℓ_{1} regularization

- Instead of constraining $\|\mathbf{w}\|_{1}$ we can regularize:

$$
\min _{\mathbf{w}}\left(L_{S}(\mathbf{w})+\lambda\|\mathbf{w}\|_{1}\right)
$$

- For Squared-Loss this is the Lasso method

ℓ_{1} regularization

- Instead of constraining $\|\mathbf{w}\|_{1}$ we can regularize:

$$
\min _{\mathbf{w}}\left(L_{S}(\mathbf{w})+\lambda\|\mathbf{w}\|_{1}\right)
$$

- For Squared-Loss this is the Lasso method
- ℓ_{1} norm often induces sparse solutions. Example:

$$
\min _{w \in \mathbb{R}}\left(\frac{1}{2} w^{2}-x w+\lambda|w|\right)
$$

ℓ_{1} regularization

- Instead of constraining $\|\mathbf{w}\|_{1}$ we can regularize:

$$
\min _{\mathbf{w}}\left(L_{S}(\mathbf{w})+\lambda\|\mathbf{w}\|_{1}\right)
$$

- For Squared-Loss this is the Lasso method
- ℓ_{1} norm often induces sparse solutions. Example:

$$
\min _{w \in \mathbb{R}}\left(\frac{1}{2} w^{2}-x w+\lambda|w|\right)
$$

- East to verify that the solution is "soft thresholding"

$$
w=\operatorname{sign}(x)[|x|-\lambda]_{+}
$$

ℓ_{1} regularization

- Instead of constraining $\|\mathbf{w}\|_{1}$ we can regularize:

$$
\min _{\mathbf{w}}\left(L_{S}(\mathbf{w})+\lambda\|\mathbf{w}\|_{1}\right)
$$

- For Squared-Loss this is the Lasso method
- ℓ_{1} norm often induces sparse solutions. Example:

$$
\min _{w \in \mathbb{R}}\left(\frac{1}{2} w^{2}-x w+\lambda|w|\right)
$$

- East to verify that the solution is "soft thresholding"

$$
w=\operatorname{sign}(x)[|x|-\lambda]_{+}
$$

- Sparsity: $w=0$ unless $|x|>\lambda$

ℓ_{1} regularization

- One dimensional Lasso:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2 m} \sum_{i=1}^{m}\left(x_{i} w-y_{i}\right)^{2}+\lambda|w|\right) .
$$

ℓ_{1} regularization

- One dimensional Lasso:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2 m} \sum_{i=1}^{m}\left(x_{i} w-y_{i}\right)^{2}+\lambda|w|\right) .
$$

- Rewrite:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2}\left(\frac{1}{m} \sum_{i} x_{i}^{2}\right) w^{2}-\left(\frac{1}{m} \sum_{i=1}^{m} x_{i} y_{i}\right) w+\lambda|w|\right) .
$$

ℓ_{1} regularization

- One dimensional Lasso:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2 m} \sum_{i=1}^{m}\left(x_{i} w-y_{i}\right)^{2}+\lambda|w|\right) .
$$

- Rewrite:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2}\left(\frac{1}{m} \sum_{i} x_{i}^{2}\right) w^{2}-\left(\frac{1}{m} \sum_{i=1}^{m} x_{i} y_{i}\right) w+\lambda|w|\right) .
$$

- Assume $\frac{1}{m} \sum_{i} x_{i}^{2}=1$, and denote $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{m} x_{i} y_{i}$, then the optimal solution is

$$
w=\operatorname{sign}(\langle\mathbf{x}, \mathbf{y}\rangle)[|\langle\mathbf{x}, \mathbf{y}\rangle| / m-\lambda]_{+} .
$$

ℓ_{1} regularization

- One dimensional Lasso:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2 m} \sum_{i=1}^{m}\left(x_{i} w-y_{i}\right)^{2}+\lambda|w|\right) .
$$

- Rewrite:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2}\left(\frac{1}{m} \sum_{i} x_{i}^{2}\right) w^{2}-\left(\frac{1}{m} \sum_{i=1}^{m} x_{i} y_{i}\right) w+\lambda|w|\right) .
$$

- Assume $\frac{1}{m} \sum_{i} x_{i}^{2}=1$, and denote $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{m} x_{i} y_{i}$, then the optimal solution is

$$
w=\operatorname{sign}(\langle\mathbf{x}, \mathbf{y}\rangle)[|\langle\mathbf{x}, \mathbf{y}\rangle| / m-\lambda]_{+} .
$$

- Sparsity: $w=0$ unless the correlation between \mathbf{x} and \mathbf{y} is larger than λ.

ℓ_{1} regularization

- One dimensional Lasso:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2 m} \sum_{i=1}^{m}\left(x_{i} w-y_{i}\right)^{2}+\lambda|w|\right) .
$$

- Rewrite:

$$
\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(\frac{1}{2}\left(\frac{1}{m} \sum_{i} x_{i}^{2}\right) w^{2}-\left(\frac{1}{m} \sum_{i=1}^{m} x_{i} y_{i}\right) w+\lambda|w|\right) .
$$

- Assume $\frac{1}{m} \sum_{i} x_{i}^{2}=1$, and denote $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{m} x_{i} y_{i}$, then the optimal solution is

$$
w=\operatorname{sign}(\langle\mathbf{x}, \mathbf{y}\rangle)[|\langle\mathbf{x}, \mathbf{y}\rangle| / m-\lambda]_{+} .
$$

- Sparsity: $w=0$ unless the correlation between \mathbf{x} and \mathbf{y} is larger than λ.
- Exercise: Show that the ℓ_{2} norm doesn't induce a sparse solution for this case

Outline

(1) Feature Selection

- Filters
- Greedy selection
- ℓ_{1} norm
(2) Feature Manipulation and Normalization
(3) Feature Learning

Feature Manipulation and Normalization

- Simple transformations that we apply on each of our original features

Feature Manipulation and Normalization

- Simple transformations that we apply on each of our original features
- May decrease the approximation or estimation errors of our hypothesis class, or can yield a faster algorithm

Feature Manipulation and Normalization

- Simple transformations that we apply on each of our original features
- May decrease the approximation or estimation errors of our hypothesis class, or can yield a faster algorithm
- As in feature selection, there are no absolute "good" and "bad" transformations - need prior knowledge

Example: The effect of Normalization

- Consider 2-dim ridge regression problem:

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\left[\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}\right]=\left(2 \lambda m I+X^{\top} X\right)^{-1} X^{\top} \mathbf{y} .
$$

Example: The effect of Normalization

- Consider 2-dim ridge regression problem:

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\left[\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}\right]=\left(2 \lambda m I+X^{\top} X\right)^{-1} X^{\top} \mathbf{y} .
$$

- Suppose: $y \sim U(\pm 1), \alpha \sim U(\pm 1), x_{1}=y+\alpha / 2, x_{2}=0.0001 y$

Example: The effect of Normalization

- Consider 2-dim ridge regression problem:

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\left[\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}\right]=\left(2 \lambda m I+X^{\top} X\right)^{-1} X^{\top} \mathbf{y} .
$$

- Suppose: $y \sim U(\pm 1), \alpha \sim U(\pm 1), x_{1}=y+\alpha / 2, x_{2}=0.0001 y$
- Best weight vector is $\mathbf{w}^{\star}=[0 ; 10000]$, and $L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)=0$.

Example: The effect of Normalization

- Consider 2-dim ridge regression problem:

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\left[\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}\right]=\left(2 \lambda m I+X^{\top} X\right)^{-1} X^{\top} \mathbf{y} .
$$

- Suppose: $y \sim U(\pm 1), \alpha \sim U(\pm 1), x_{1}=y+\alpha / 2, x_{2}=0.0001 y$
- Best weight vector is $\mathbf{w}^{\star}=[0 ; 10000]$, and $L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)=0$.
- However, the objective of ridge regression at \mathbf{w}^{\star} is $\lambda 10^{8}$ while the objective of ridge regression at $\mathbf{w}=[1 ; 0]$ is likely to be close to $0.25+\lambda \Rightarrow$ we'll choose wrong solution if λ is not too small

Example: The effect of Normalization

- Consider 2-dim ridge regression problem:

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\left[\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}\right]=\left(2 \lambda m I+X^{\top} X\right)^{-1} X^{\top} \mathbf{y} .
$$

- Suppose: $y \sim U(\pm 1), \alpha \sim U(\pm 1), x_{1}=y+\alpha / 2, x_{2}=0.0001 y$
- Best weight vector is $\mathbf{w}^{\star}=[0 ; 10000]$, and $L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)=0$.
- However, the objective of ridge regression at \mathbf{w}^{\star} is $\lambda 10^{8}$ while the objective of ridge regression at $\mathbf{w}=[1 ; 0]$ is likely to be close to $0.25+\lambda \Rightarrow$ we'll choose wrong solution if λ is not too small
- Crux of the problem: features have completely different scale while ℓ_{2} regularization treats them equally

Example: The effect of Normalization

- Consider 2-dim ridge regression problem:

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\left[\frac{1}{m}\|X \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}\right]=\left(2 \lambda m I+X^{\top} X\right)^{-1} X^{\top} \mathbf{y}
$$

- Suppose: $y \sim U(\pm 1), \alpha \sim U(\pm 1), x_{1}=y+\alpha / 2, x_{2}=0.0001 y$
- Best weight vector is $\mathbf{w}^{\star}=[0 ; 10000]$, and $L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)=0$.
- However, the objective of ridge regression at \mathbf{w}^{\star} is $\lambda 10^{8}$ while the objective of ridge regression at $\mathbf{w}=[1 ; 0]$ is likely to be close to $0.25+\lambda \Rightarrow$ we'll choose wrong solution if λ is not too small
- Crux of the problem: features have completely different scale while ℓ_{2} regularization treats them equally
- Simple solution: normalize features to have the same range (dividing by max, or by standard deviation)

Example: The effect of Transformations

- Consider 1-dim regression problem, $y \sim U(\pm 1), a \gg 1$, and

$$
x= \begin{cases}y & \text { w.p. }(1-1 / a) \\ a y & \text { w.p. } 1 / a\end{cases}
$$

Example: The effect of Transformations

- Consider 1-dim regression problem, $y \sim U(\pm 1), a \gg 1$, and

$$
x= \begin{cases}y & \text { w.p. }(1-1 / a) \\ a y & \text { w.p. } 1 / a\end{cases}
$$

- It is easy to show that $w^{*}=\frac{2 a-1}{a^{2}+a-1}$ so $w^{*} \rightarrow 0$ as $a \rightarrow \infty$

Example: The effect of Transformations

- Consider 1-dim regression problem, $y \sim U(\pm 1), a \gg 1$, and

$$
x= \begin{cases}y & \text { w.p. }(1-1 / a) \\ a y & \text { w.p. } 1 / a\end{cases}
$$

- It is easy to show that $w^{*}=\frac{2 a-1}{a^{2}+a-1}$ so $w^{*} \rightarrow 0$ as $a \rightarrow \infty$
- It follows that $L_{\mathcal{D}}\left(w^{*}\right) \rightarrow 0.5$

Example: The effect of Transformations

- Consider 1-dim regression problem, $y \sim U(\pm 1), a \gg 1$, and

$$
x= \begin{cases}y & \text { w.p. }(1-1 / a) \\ a y & \text { w.p. } 1 / a\end{cases}
$$

- It is easy to show that $w^{*}=\frac{2 a-1}{a^{2}+a-1}$ so $w^{*} \rightarrow 0$ as $a \rightarrow \infty$
- It follows that $L_{\mathcal{D}}\left(w^{*}\right) \rightarrow 0.5$
- But, if we apply "clipping", $x \mapsto \operatorname{sign}(x) \min \{1,|x|\}$, then $L_{\mathcal{D}}(1)=0$

Example: The effect of Transformations

- Consider 1-dim regression problem, $y \sim U(\pm 1), a \gg 1$, and

$$
x= \begin{cases}y & \text { w.p. }(1-1 / a) \\ a y & \text { w.p. } 1 / a\end{cases}
$$

- It is easy to show that $w^{*}=\frac{2 a-1}{a^{2}+a-1}$ so $w^{*} \rightarrow 0$ as $a \rightarrow \infty$
- It follows that $L_{\mathcal{D}}\left(w^{*}\right) \rightarrow 0.5$
- But, if we apply "clipping", $x \mapsto \operatorname{sign}(x) \min \{1,|x|\}$, then $L_{\mathcal{D}}(1)=0$
- "Prior knowledge": features that get values larger than a predefined threshold value give us no additional useful information, and therefore we can clip them to the predefined threshold.

Example: The effect of Transformations

- Consider 1-dim regression problem, $y \sim U(\pm 1), a \gg 1$, and

$$
x= \begin{cases}y & \text { w.p. }(1-1 / a) \\ a y & \text { w.p. } 1 / a\end{cases}
$$

- It is easy to show that $w^{*}=\frac{2 a-1}{a^{2}+a-1}$ so $w^{*} \rightarrow 0$ as $a \rightarrow \infty$
- It follows that $L_{\mathcal{D}}\left(w^{*}\right) \rightarrow 0.5$
- But, if we apply "clipping", $x \mapsto \operatorname{sign}(x) \min \{1,|x|\}$, then $L_{\mathcal{D}}(1)=0$
- "Prior knowledge": features that get values larger than a predefined threshold value give us no additional useful information, and therefore we can clip them to the predefined threshold.
- Of course, this "prior knowledge" can be wrong and it is easy to construct examples for which clipping hurts performance

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.
- Unit Range: $f_{\max }=\max _{i} f_{i}, f_{\min }=\min _{i} f_{i}, f_{i} \leftarrow \frac{f_{i}-f_{\min }}{f_{\max }-f_{\min }}$.

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.
- Unit Range: $f_{\max }=\max _{i} f_{i}, f_{\min }=\min _{i} f_{i}, f_{i} \leftarrow \frac{f_{i}-f_{\min }}{f_{\max }-f_{\min }}$.
- Standardization: $\nu=\frac{1}{m} \sum_{i=1}^{m}\left(f_{i}-\bar{f}\right)^{2}, f_{i} \leftarrow \frac{f_{i}-\bar{f}}{\sqrt{\nu}}$.

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.
- Unit Range: $f_{\max }=\max _{i} f_{i}, f_{\min }=\min _{i} f_{i}, f_{i} \leftarrow \frac{f_{i}-f_{\min }}{f_{\max }-f_{\min }}$.
- Standardization: $\nu=\frac{1}{m} \sum_{i=1}^{m}\left(f_{i}-\bar{f}\right)^{2}, f_{i} \leftarrow \frac{f_{i}-\bar{f}}{\sqrt{\nu}}$.
- Clipping: $f_{i} \leftarrow \operatorname{sign}\left(f_{i}\right) \max \left\{b,\left|f_{i}\right|\right\}$

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.
- Unit Range: $f_{\max }=\max _{i} f_{i}, f_{\min }=\min _{i} f_{i}, f_{i} \leftarrow \frac{f_{i}-f_{\min }}{f_{\max }-f_{\min }}$.
- Standardization: $\nu=\frac{1}{m} \sum_{i=1}^{m}\left(f_{i}-\bar{f}\right)^{2}, f_{i} \leftarrow \frac{f_{i}-\bar{f}}{\sqrt{\nu}}$.
- Clipping: $f_{i} \leftarrow \operatorname{sign}\left(f_{i}\right) \max \left\{b,\left|f_{i}\right|\right\}$
- Sigmoidal transformation: $f_{i} \leftarrow \frac{1}{1+\exp \left(b f_{i}\right)}$

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.
- Unit Range: $f_{\max }=\max _{i} f_{i}, f_{\min }=\min _{i} f_{i}, f_{i} \leftarrow \frac{f_{i}-f_{\min }}{f_{\max }-f_{\min }}$.
- Standardization: $\nu=\frac{1}{m} \sum_{i=1}^{m}\left(f_{i}-\bar{f}\right)^{2}, f_{i} \leftarrow \frac{f_{i}-\bar{f}}{\sqrt{\nu}}$.
- Clipping: $f_{i} \leftarrow \operatorname{sign}\left(f_{i}\right) \max \left\{b,\left|f_{i}\right|\right\}$
- Sigmoidal transformation: $f_{i} \leftarrow \frac{1}{1+\exp \left(b f_{i}\right)}$
- Logarithmic transformation: $f_{i} \leftarrow \log \left(b+f_{i}\right)$

Some Examples of Feature Transformations

- Denote $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$ the values of the feature and \bar{f} the empirical mean
- Centering: $f_{i} \leftarrow f_{i}-\bar{f}$.
- Unit Range: $f_{\max }=\max _{i} f_{i}, f_{\min }=\min _{i} f_{i}, f_{i} \leftarrow \frac{f_{i}-f_{\min }}{f_{\max }-f_{\min }}$.
- Standardization: $\nu=\frac{1}{m} \sum_{i=1}^{m}\left(f_{i}-\bar{f}\right)^{2}, f_{i} \leftarrow \frac{f_{i}-\bar{f}}{\sqrt{\nu}}$.
- Clipping: $f_{i} \leftarrow \operatorname{sign}\left(f_{i}\right) \max \left\{b,\left|f_{i}\right|\right\}$
- Sigmoidal transformation: $f_{i} \leftarrow \frac{1}{1+\exp \left(b f_{i}\right)}$
- Logarithmic transformation: $f_{i} \leftarrow \log \left(b+f_{i}\right)$
- Unary representation for categorical features:
$f_{i} \mapsto\left(\mathbb{1}_{\left[f_{i}=1\right]}, \ldots, \mathbb{1}_{\left[f_{i}=k\right]}\right)$

Outline

(1) Feature Selection

- Filters
- Greedy selection
- ℓ_{1} norm
(2) Feature Manipulation and Normalization
(3) Feature Learning

Feature Learning

- Goal: learn a feature mapping, $\psi: \mathcal{X} \rightarrow \mathbb{R}^{d}$, so that a linear predictor on top of $\psi(x)$ will yield a good hypothesis class

Feature Learning

- Goal: learn a feature mapping, $\psi: \mathcal{X} \rightarrow \mathbb{R}^{d}$, so that a linear predictor on top of $\psi(x)$ will yield a good hypothesis class
- Example: we can think on the first layers of a neural network as $\psi(x)$ and the last layer as the linear predictor applied on top of it

Feature Learning

- Goal: learn a feature mapping, $\psi: \mathcal{X} \rightarrow \mathbb{R}^{d}$, so that a linear predictor on top of $\psi(x)$ will yield a good hypothesis class
- Example: we can think on the first layers of a neural network as $\psi(x)$ and the last layer as the linear predictor applied on top of it
- We will describe an unsupervised learning approach for feature learning called Dictionary learning

Dictionary Learning

- Motivation: recall the description of a document as a "bag-of-words": $\psi(x) \in\{0,1\}^{k}$ where coordinate i of $\psi(x)$ determines if word i appears in the document or not

Dictionary Learning

- Motivation: recall the description of a document as a "bag-of-words": $\psi(x) \in\{0,1\}^{k}$ where coordinate i of $\psi(x)$ determines if word i appears in the document or not
- What is the dictionary in general ? For example, what will be a good dictionary for visual data ? Can we learn $\psi: \mathcal{X} \rightarrow\{0,1\}^{k}$ that captures "visual words", e.g., $(\psi(x))_{i}$ captures something like "there is an eye in the image" ?

Dictionary Learning

- Motivation: recall the description of a document as a "bag-of-words": $\psi(x) \in\{0,1\}^{k}$ where coordinate i of $\psi(x)$ determines if word i appears in the document or not
- What is the dictionary in general ? For example, what will be a good dictionary for visual data ? Can we learn $\psi: \mathcal{X} \rightarrow\{0,1\}^{k}$ that captures "visual words", e.g., $(\psi(x))_{i}$ captures something like "there is an eye in the image" ?
- Using clustering: A clustering function $c: \mathcal{X} \rightarrow\{1, \ldots, k\}$ yields the mapping $\psi(x)_{i}=1$ iff x belongs to cluster i

Dictionary Learning

- Motivation: recall the description of a document as a "bag-of-words": $\psi(x) \in\{0,1\}^{k}$ where coordinate i of $\psi(x)$ determines if word i appears in the document or not
- What is the dictionary in general ? For example, what will be a good dictionary for visual data ? Can we learn $\psi: \mathcal{X} \rightarrow\{0,1\}^{k}$ that captures "visual words", e.g., $(\psi(x))_{i}$ captures something like "there is an eye in the image" ?
- Using clustering: A clustering function $c: \mathcal{X} \rightarrow\{1, \ldots, k\}$ yields the mapping $\psi(x)_{i}=1$ iff x belongs to cluster i
- Sparse auto-encoders: Given $\mathbf{x} \in \mathbb{R}^{d}$ and dictionary matrix $D \in \mathbb{R}^{d, k}$, let

$$
\psi(\mathbf{x})=\underset{\mathbf{v} \in \mathbb{R}^{k}}{\operatorname{argmin}}\|\mathbf{x}-D \mathbf{v}\| \text { s.t. }\|\mathbf{v}\|_{0} \leq s
$$

Summary

- Feature selection
- Feature normalization and manipulations
- Feature learning

