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Recall: The Game Board

Domain set, X : This is the set of
objects that we may wish to label.

Label set, Y: The set of possible labels.

A prediction rule, h : X → Y: used to
label future examples. This function is
called a predictor, a hypothesis, or a
classifier.

Example

X = R2 representing color
and shape of papayas.

Y = {±1} representing
“tasty” or “non-tasty”.

h(x) = 1 if x is within the
inner rectangle
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Batch Learning

The learner’s input:

Training data, S = ((x1, y1) . . . (xm, ym)) ∈ (X × Y)m

The learner’s output:

A prediction rule, h : X → Y

What should be the goal of the learner?

Intuitively, h should be correct on future examples
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“Correct on future examples”

Let f be the correct classifier, then we should find h s.t. h ≈ f

One way: define the error of h w.r.t. f to be

LD,f (h) = P
x∼D

[h(x) 6= f(x)]

where D is some (unknown) probability measure over X
More formally, D is a distribution over X , that is, for a given A ⊂ X ,
the value of D(A) is the probability to see some x ∈ A. Then,

LD,f (h)
def
= P

x∼D
[h(x) 6= f(x)]

def
= D ({x ∈ X : h(x) 6= f(x)}) .

Can we find h s.t. LD,f (h) is small ?
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Data-generation Model

We must assume some relation between the training data and D, f
Simple data generation model:

Independently Identically Distributed (i.i.d.): Each xi is sampled
independently according to D
Realizability: For every i ∈ [m], yi = f(xi)
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Can only be Approximately correct

Claim: We can’t hope to find h s.t. L(D,f)(h) = 0

Proof: for every ε ∈ (0, 1) take X = {x1, x2} and D({x1}) = 1− ε,
D({x2}) = ε

The probability not to see x2 at all among m i.i.d. examples is
(1− ε)m ≈ e−εm

So, if ε� 1/m we’re likely not to see x2 at all, but then we can’t
know its label

Relaxation: We’d be happy with L(D,f)(h) ≤ ε, where ε is
user-specified
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Can only be Probably correct

Recall that the input to the learner is randomly generated

There’s always a (very small) chance to see the same example again
and again

Claim: No algorithm can guarantee L(D,f)(h) ≤ ε for sure

Relaxation: We’d allow the algorithm to fail with probability δ, where
δ ∈ (0, 1) is user-specified
Here, the probability is over the random choice of examples
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Probably Approximately Correct (PAC) learning

The learner doesn’t know D and f .

The learner receives accuracy parameter ε and confidence parameter δ

The learner can ask for training data, S, containing m(ε, δ) examples
(that is, the number of examples can depend on the value of ε and δ,
but it can’t depend on D or f)

Learner should output a hypothesis h s.t. with probability of at least
1− δ it holds that LD,f (h) ≤ ε
That is, the learner should be Probably (with probability at least
1− δ) Approximately (up to accuracy ε) Correct
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No Free Lunch

Suppose that |X | =∞
For any finite C ⊂ X take D to be uniform distribution over C

If number of training examples is m ≤ |C|/2 the learner has no
knowledge on at least half the elements in C

Formalizing the above, it can be shown that:

Theorem (No Free Lunch)

Fix δ ∈ (0, 1), ε < 1/2. For every learner A and training set size m, there
exists D, f such that with probability of at least δ over the generation of a
training data, S, of m examples, it holds that LD,f (A(S)) ≥ ε.

Remark: LD,f (random guess) = 1/2, so the theorem states that you can’t
be better than a random guess
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Prior Knowledge

Give more knowledge to the learner: the target f comes from some
hypothesis class, H ⊂ YX

The learner knows H
Is it possible to PAC learn now ?

Of course, the answer depends on H since the No Free Lunch
theorem tells us that for H = YX the problem is not solvable ...
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Learning Finite Classes

Assume that H is a finite hypothesis class

E.g.: H is all the functions from X to Y that can be implemented
using a Python program of length at most b

Use the Consistent learning rule:

Input: H and S = (x1, y1), . . . , (xm, ym)
Output: any h ∈ H s.t. ∀i, yi = h(xi)

This is also called Empirical Risk Minimization (ERM)

ERMH(S)

Input: training set S = (x1, y1), . . . , (xm, ym)

Define the empirical risk: LS(h) =
1
m |{i : h(xi) 6= yi}|

Output: any h ∈ H that minimizes LS(h)
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Learning Finite Classes

Theorem

Fix ε, δ. If m ≥ log(|H|/δ)
ε then for every D, f , with probability of at least

1− δ (over the choice of S of size m), LD,f (ERMH(S)) ≤ ε.
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Proof

Let S|x = (x1, . . . , xm) be the instances of the training set

We would like to prove:

Dm({S|x : L(D,f)(ERMH(S)) > ε}) ≤ δ

Let HB be the set of “bad” hypotheses,

HB = {h ∈ H : L(D,f)(h) > ε}

Let M be the set of “misleading” samples,

M = {S|x : ∃h ∈ HB, LS(h) = 0}

Observe:

{S|x : L(D,f)(ERMH(S)) > ε} ⊆M =
⋃

h∈HB

{S|x : LS(h) = 0}
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Proof (Cont.)

Lemma (Union bound)

For any two sets A,B and a distribution D we have

D(A ∪B) ≤ D(A) +D(B) .

We have shown:
{S|x : L(D,f)(ERMH(S)) > ε} ⊆

⋃
h∈HB

{S|x : LS(h) = 0}
Therefore, using the union bound

Dm({S|x :L(D,f)(ERMH(S)) > ε})

≤
∑
h∈HB

Dm({S|x : LS(h) = 0})

≤ |HB| max
h∈HB

Dm({S|x : LS(h) = 0})
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Illustrating the use of the union bound

Each point is a possible sample S|x. Each colored oval represents
misleading samples for some h ∈ HB. The probability mass of each
such oval is at most (1− ε)m. But, the algorithm might err if it
samples S|x from any of these ovals.
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Outline

1 The PAC Learning Framework

2 No Free Lunch and Prior Knowledge

3 PAC Learning of Finite Hypothesis Classes

4 The Fundamental Theorem of Learning Theory
The VC dimension

5 Solving ERM for Halfspaces
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PAC learning

Definition (PAC learnability)

A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm with the following property:

for every ε, δ ∈ (0, 1)

for every distribution D over X , and for every labeling function
f : X → {0, 1}

when running the learning algorithm on m ≥ mH(ε, δ) i.i.d. examples
generated by D and labeled by f , the algorithm returns a hypothesis h
such that, with probability of at least 1− δ (over the choice of the
examples), L(D,f)(h) ≤ ε.

mH is called the sample complexity of learning H
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PAC learning

Leslie Valiant, Turing award 2010

For transformative contributions to the theory of computation,
including the theory of probably approximately correct (PAC)
learning, the complexity of enumeration and of algebraic
computation, and the theory of parallel and distributed
computing.
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What is learnable and how to learn?

We have shown:

Corollary

Let H be a finite hypothesis class.

H is PAC learnable with sample complexity mH(ε, δ) ≤ log(|H|/δ)
ε

This sample complexity is obtained by using the ERMH learning rule

What about infinite hypothesis classes?

What is the sample complexity of a given class?

Is there a generic learning algorithm that achieves the optimal sample
complexity ?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 PAC learning 22 / 45



What is learnable and how to learn?

We have shown:

Corollary

Let H be a finite hypothesis class.

H is PAC learnable with sample complexity mH(ε, δ) ≤ log(|H|/δ)
ε

This sample complexity is obtained by using the ERMH learning rule

What about infinite hypothesis classes?

What is the sample complexity of a given class?

Is there a generic learning algorithm that achieves the optimal sample
complexity ?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 PAC learning 22 / 45



What is learnable and how to learn?

The fundamental theorem of statistical learning:

The sample complexity is characterized by the VC dimension
The ERM learning rule is a generic (near) optimal learner

Chervonenkis Vapnik
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The VC dimension — Motivation

if someone can explain every phenomena, her explanations are worthless.

Example: http://www.youtube.com/watch?v=p_MzP2MZaOo

Pay attention to the retrospect explanations at 5:00
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The VC dimension — Motivation

Suppose we got a training set S = (x1, y1), . . . , (xm, ym)

We try to explain the labels using a hypothesis from H
Then, ooops, the labels we received are incorrect and we get the same
instances with different labels, S′ = (x1, y

′
1), . . . , (xm, y

′
m)

We again try to explain the labels using a hypothesis from H
If this works for us, no matter what the labels are, then something is
fishy ...

Formally, if H allows all functions over some set C of size m, then
based on the No Free Lunch, we can’t learn from, say, m/2 examples
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The VC dimension — Formal Definition

Let C = {x1, . . . , x|C|} ⊂ X

Let HC be the restriction of H to C, namely, HC = {hC : h ∈ H}
where hC : C → {0, 1} is s.t. hC(xi) = h(xi) for every xi ∈ C
Observe: we can represent each hC as the vector
(h(x1), . . . , h(x|C|)) ∈ {±1}|C|

Therefore: |HC | ≤ 2|C|

We say that H shatters C if |HC | = 2|C|

VCdim(H) = sup{|C| : H shatters C}
That is, the VC dimension is the maximal size of a set C such that H
gives no prior knowledge w.r.t. C
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VC dimension — Examples

To show that VCdim(H) = d we need to show that:

1 There exists a set C of size d which is shattered by H.

2 Every set C of size d+ 1 is not shattered by H.
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VC dimension — Examples

Threshold functions: X = R, H = {x 7→ sign(x− θ) : θ ∈ R}

Show that {0} is shattered

Show that any two points cannot be shattered
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VC dimension — Examples

Intervals: X = R, H = {ha,b : a < b ∈ R}, where ha,b(x) = 1 iff x ∈ [a, b]

Show that {0, 1} is shattered

Show that any three points cannot be shattered
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VC dimension — Examples

Axis aligned rectangles: X = R2,
H = {h(a1,a2,b1,b2) : a1 < a2 and b1 < b2}, where h(a1,a2,b1,b2)(x1, x2) = 1
iff x1 ∈ [a1, a2] and x2 ∈ [b1, b2]

Show:

Shattered Not Shattered
c1

c2

c3

c4 c5
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VC dimension — Examples

Finite classes:

Show that the VC dimension of a finite H is at most log2(|H|).

Show that there can be arbitrary gap between VCdim(H) and
log2(|H|)
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VC dimension — Examples

Halfspaces: X = Rd, H = {x 7→ sign(〈w,x〉) : w ∈ Rd}

Show that {e1, . . . , ed} is shattered

Show that any d+ 1 points cannot be shattered
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The Fundamental Theorem of Statistical Learning

Theorem (The Fundamental Theorem of Statistical Learning)

Let H be a hypothesis class of binary classifiers. Then, there are absolute
constants C1, C2 such that the sample complexity of PAC learning H is

C1
d+ log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log(1/ε) + log(1/δ)

ε

Furthermore, this sample complexity is achieved by the ERM learning rule.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 PAC learning 34 / 45



Proof of the lower bound – main ideas

Suppose VCdim(H) = d and let C = {x1, . . . , xd} be a shattered set

Consider the distribution D supported on C s.t.

D({xi}) =

{
1− 4ε if i = 1

4ε/(d− 1) if i > 1

If we see m i.i.d. examples then the expected number of examples
from C \ {x1} is 4εm

If m < d−1
8ε then 4εm < d−1

2 and therefore, we have no information
on the labels of at least half the examples in C \ {x1}
Best we can do is to guess, but then our error is ≥ 1

2 · 2ε = ε
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Proof of the upper bound – main ideas

Recall our proof for finite class:

For a single hypothesis, we’ve shown that the probability of the event:
LS(h) = 0 given that L(D,f) > ε is at most e−εm

Then we applied the union bound over all “bad” hypotheses, to obtain
the bound on ERM failure: |H| e−εm

If H is infinite, or very large, the union bound yields a meaningless
bound
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Proof of the upper bound – main ideas

The two samples trick: show that

P
S∼Dm

[∃h ∈ HB : LS(h) = 0]

≤ 2 P
S,T∼Dm

[∃h ∈ HB : LS(h) = 0 and LT (h) ≥ ε/2]

Symmetrization: Since S, T are i.i.d., we can think on first sampling
2m examples and then splitting them to S, T at random

If we fix h, and S ∪ T , the probability to have LS(h) = 0 while
LT (h) ≥ ε/2 is ≤ e−εm/4

Once we fixed S ∪ T , we can take a union bound only over HS∪T !
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Proof of the upper bound – main ideas

Lemma (Sauer-Shelah-Perles2-Vapnik-Chervonenkis)

Let H be a hypothesis class with VCdim(H) ≤ d <∞. Then, for all
C ⊂ X s.t. |C| = m > d+ 1 we have

|HC | ≤
(em
d

)d
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Outline

1 The PAC Learning Framework

2 No Free Lunch and Prior Knowledge

3 PAC Learning of Finite Hypothesis Classes

4 The Fundamental Theorem of Learning Theory
The VC dimension

5 Solving ERM for Halfspaces
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ERM for halfspaces

Recall:
H = {x 7→ sign(〈w,x〉) : w ∈ Rd}

ERM for Halfspaces:
given S = (x1, y1), . . . , (xm, ym) find w s.t. for all i,
sign(〈w,xi〉) = yi.

Cast as a Linear Program:
Find w s.t.

∀i, yi〈w,xi〉 > 0 .

Can solve efficiently using standard methods

Exercise: show how to solve the above Linear Program using the
Ellipsoid learner from the previous lecture
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ERM for halfspaces using the Perceptron Algorithm

Perceptron

initialize: w = (0, . . . , 0) ∈ Rd
while ∃i s.t. yi〈w,xi〉 ≤ 0
w← w + yixi

Dates back at least to Rosenblatt 1958.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 PAC learning 41 / 45



Analysis

Theorem (Agmon’54, Novikoff’62)

Let (x1, y1), . . . , (xm, ym) be a sequence of examples such that there
exists w∗ ∈ Rd such that for every i, yi 〈w∗,xi〉 ≥ 1. Then, the
Perceptron will make at most

‖w∗‖2 max
i
‖xi‖2

updates before breaking with an ERM halfspace.

The condition would always hold if the data is realizable by some
halfspace

However, ‖w∗‖ might be very large

In many practical cases, ‖w∗‖ would not be too large
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Proof

Let w(t) be the value of w at iteration t

Let (xt, yt) be the example used to update w at iteration t

Denote R = maxi ‖xi‖

The cosine of the angle between w∗ and w(t) is 〈w(t),w∗〉
‖w(t)‖ ‖w∗‖

By the Cauchy-Schwartz inequality, this is always ≤ 1

We will show:

1 〈w(t+1),w∗〉 ≥ t
2 ‖w(t+1)‖ ≤ R

√
t

This would yield

t

R
√
t ‖w∗‖

≤ 〈w(t),w∗〉
‖w(t)‖ ‖w∗‖

≤ 1

Rearranging the above would yield t ≤ ‖w∗‖2R2 as required.
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Proof (Cont.)

Showing 〈w(t+1),w∗〉 ≥ t
Initially, 〈w(1),w∗〉 = 0

Whenever we update, 〈w(t),w∗〉 increases by at least 1:

〈w(t+1),w∗〉 = 〈w(t) + ytxt,w
∗〉 = 〈w(t),w∗〉+ yt〈xt,w∗〉︸ ︷︷ ︸

≥1

Showing ‖w(t+1)‖2 ≤ R2 t

Initially, ‖w(1)‖2 = 0

Whenever we update, ‖w(t)‖2 increases by at most 1:

‖w(t+1)‖2 = ‖w(t) + ytxt‖2 = ‖w(t)‖2 + 2yt〈w(t),xt〉︸ ︷︷ ︸
≤0

+y2t ‖xt‖2

≤ ‖w(t)‖2 +R2 .
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Summary

The PAC Learning model

What is PAC learnable?

PAC learning of finite classes using ERM

The VC dimension and the fundmental theorem of learning

Classes of finite VC dimension

How to PAC learn?

Using ERM

Learning halfspaces using: Linear programming, Ellipsoid, Perceptron
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