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Relaxing the realizability assumption – Agnostic PAC
learning

So far we assumed that labels are generated by some f ∈ H
This assumption may be too strong

Relax the realizability assumption by replacing the “target labeling
function” with a more flexible notion, a data-labels generating
distribution
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Relaxing the realizability assumption – Agnostic PAC
learning

Recall: in PAC model, D is a distribution over X

From now on, let D be a distribution over X × Y
We redefine the risk as:

LD(h)
def
= P

(x,y)∼D
[h(x) 6= y]

def
= D({(x, y) : h(x) 6= y})

We redefine the “approximately correct” notion to

LD(A(S)) ≤ min
h∈H

LD(h) + ε
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PAC vs. Agnostic PAC learning

PAC Agnostic PAC

Distribution D over X D over X × Y

Truth f ∈ H not in class or doesn’t exist

Risk LD,f (h) = LD(h) =
D({x : h(x) 6= f(x)}) D({(x, y) : h(x) 6= y})

Training set (x1, . . . , xm) ∼ Dm ((x1, y1), . . . , (xm, ym)) ∼ Dm
∀i, yi = f(xi)

Goal LD,f (A(S)) ≤ ε LD(A(S)) ≤ minh∈H LD(h) + ε
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Beyond Binary Classification

Scope of learning problems:

Multiclass categorization: Y is a finite set representing |Y| different
classes. E.g. X is documents and
Y = {News, Sports,Biology,Medicine}
Regression: Y = R. E.g. one wishes to predict a baby’s birth weight
based on ultrasound measures of his head circumference, abdominal
circumference, and femur length.
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Loss Functions

Let Z = X × Y

Given hypothesis h ∈ H, and an example, (x, y) ∈ Z, how good is h
on (x, y) ?

Loss function: ` : H× Z → R+

Examples:

0-1 loss: `(h, (x, y)) =

{
1 if h(x) 6= y

0 if h(x) = y

Squared loss: `(h, (x, y)) = (h(x)− y)2

Absolute-value loss: `(h, (x, y)) = |h(x)− y|
Cost-sensitive loss: `(h, (x, y)) = Ch(x),y where C is some |Y| × |Y|
matrix
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The General PAC Learning Problem

We wish to Probably Approximately Solve:

min
h∈H

LD(h) where LD(h)
def
= E

z∼D
[`(h, z)] .

Learner knows H, Z, and `

Learner receives accuracy parameter ε and confidence parameter δ

Learner can decide on training set size m based on ε, δ

Learner doesn’t know D but can sample S ∼ Dm

Using S the learner outputs some hypothesis A(S)

We want that with probability of at least 1− δ over the choice of S,
the following would hold: LD(A(S)) ≤ minh∈H LD(h) + ε
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Formal definition

A hypothesis class H is agnostic PAC learnable with respect to a set Z
and a loss function ` : H× Z → R+, if there exists a function
mH : (0, 1)2 → N and a learning algorithm, A, with the following property:
for every ε, δ ∈ (0, 1), m ≥ mH(ε, δ), and distribution D over Z,

Dm
({

S ∈ Zm : LD(A(S)) ≤ min
h∈H

LD(h) + ε

})
≥ 1− δ

Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 bias-complexity tradeoff 9 / 39



Outline

1 The general PAC model
Releasing the realizability assumption
beyond binary classification
The general PAC learning model

2 Learning via Uniform Convergence

3 Linear Regression and Least Squares
Polynomial Fitting

4 The Bias-Complexity Tradeoff
Error Decomposition

5 Validation and Model Selection

Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 bias-complexity tradeoff 10 / 39



Representative Sample

Definition (ε-representative sample)

A training set S is called ε-representative if

∀h ∈ H, |LS(h)− LD(h)| ≤ ε .
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Representative Sample

Lemma

Assume that a training set S is ε
2 -representative. Then, any output of

ERMH(S), namely any hS ∈ argminh∈H LS(h), satisfies

LD(hS) ≤ min
h∈H

LD(h) + ε .

Proof: For every h ∈ H,

LD(hS) ≤ LS(hS) + ε
2 ≤ LS(h) + ε

2 ≤ LD(h) + ε
2 + ε

2 = LD(h) + ε
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Uniform Convergence is Sufficient for Learnability

Definition (uniform convergence)

H has the uniform convergence property if there exists a function
mUC
H : (0, 1)2 → N such that for every ε, δ ∈ (0, 1), and every distribution
D,

Dm ({S ∈ Zm : S is ε -representative}) ≥ 1− δ

Corollary

If H has the uniform convergence property with a function mUC
H then

H is agnostically PAC learnable with the sample complexity
mH(ε, δ) ≤ mUC

H (ε/2, δ).

Furthermore, in that case, the ERMH paradigm is a successful
agnostic PAC learner for H.
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Finite Classes are Agnostic PAC Learnable

We will prove the following:

Theorem

Assume H is finite and the range of the loss function is [0, 1]. Then, H is
agnostically PAC learnable using the ERMH algorithm with sample
complexity

mH(ε, δ) ≤
⌈

2 log(2|H|/δ)
ε2

⌉
.

Proof: It suffices to show that H has the uniform convergence property
with

mUC
H (ε, δ) ≤

⌈
log(2|H|/δ)

2ε2

⌉
.
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Proof (cont.)

To show uniform convergence, we need:

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) < δ .

Using the union bound:

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) =

Dm(∪h∈H{S : |LS(h)− LD(h)| > ε}) ≤∑
h∈H
Dm({S : |LS(h)− LD(h)| > ε}) .
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Proof (cont.)

Recall: LD(h) = Ez∼D[`(h, z)] and LS(h) = 1
m

∑m
i=1 `(h, zi).

Denote θi = `(h, zi).

Then, for all i, E[θi] = LD(h)

Lemma (Hoeffding’s inequality)

Let θ1, . . . , θm be a sequence of i.i.d. random variables and assume that
for all i, E[θi] = µ and P[a ≤ θi ≤ b] = 1. Then, for any ε > 0

P

[∣∣∣∣∣ 1
m

m∑
i=1

θi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2mε2/(b− a)2

)
.

This implies:

Dm({S : |LS(h)− LD(h)| > ε}) ≤ 2 exp
(
−2mε2

)
.
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Proof (cont.)

We have shown:

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤ 2 |H| exp
(
−2mε2

)
So, if m ≥ log(2|H|/δ)

2ε2
then the right-hand side is at most δ as required.
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The Discretization Trick

Suppose H is parameterized by d numbers

Suppose we are happy with a representation of each number using b
bits (say, b = 32)

Then |H| ≤ 2db, and so

mH(ε, δ) ≤
⌈

2db+ 2 log(2/δ)

ε2

⌉
.

While not very elegant, it’s a great tool for upper bounding sample
complexity
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Linear Regression

X ⊂ Rd, Y ⊂ R, H = {x 7→ 〈w,x〉 : w ∈ Rd}
Example: d = 1, predict weight of a child based on his age.
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Shai Shalev-Shwartz (Hebrew U) IML Lecture 2 bias-complexity tradeoff 20 / 39



The Squared Loss

Zero-one loss doesn’t make sense in regression

Squared loss: `(h, (x, y)) = (h(x)− y)2

The ERM problem:

min
w∈Rd

1

m

m∑
i=1

(〈w,xi〉 − yi)2

Equivalently, suppose X is a matrix whose ith column is xi, and y is
a vector with yi on its ith entry, then

min
w∈Rd

‖X>w − y‖2
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Background: Gradient and Optimization

Given a function f : R→ R, its derivative is

f ′(x) = lim
∆→0

f(x+ ∆)− f(x)

∆

If x minimizes f(x) then f ′(x) = 0

Now take f : Rd → R
Its gradient is a d-dimensional vector, ∇f(x), where the ith
coordinate of ∇f(x) is the derivative of the scalar function
g(a) = f((x1, . . . , xi−1, xi + a, xi+1, . . . , xd)).

The derivative of g is called the partial derivative of f

If x minimizes f(x) then ∇f(x) = (0, . . . , 0)
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Background: Jacobian and the chain rule

The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x

Note: if m = 1 then Jx(f) = ∇f(x) (as a row vector)

Example: If f(w) = Aw for A ∈ Rm,n then Jw(f) = A

Chain rule: Given f : Rn → Rm and g : Rk → Rn, the Jacobian of
the composition function, (f ◦ g) : Rk → Rm, at x, is

Jx(f ◦ g) = Jg(x)(f)Jx(g) .
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Least Squares

Recall that we’d like to solve the ERM problem:

min
w∈Rd

1

2
‖X>w − y‖2

Let g(w) = X>w − y and f(v) = 1
2‖v‖

2 =
∑m

i=1 v
2
i

Then, we need to solve minw f(g(w))

Note that Jw(g) = X> and Jv(f) = (v1, . . . , vm)

Using the chain rule:

Jw(f ◦ g) = Jg(w)(f)Jw(g) = g(w)>X> = (X>w − y)>X>

Requiring that Jw(f ◦ g) = (0, . . . , 0) yields

(X>w − y)>X> = 0> ⇒ XX>w = Xy .

This is a linear set of equations. If XX> is invertible, the solution is

w = (XX>)−1Xy .
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Least Squares

What if XX> is not invertible ?

In the exercise you’ll see that there’s always a solution to the set of
linear equations using pseudo-inverse

Non-rigorous trick to help remembering the formula:

We want X>w ≈ y

Multiply both sides by X to obtain XX>w ≈ Xy

Multiply both sides by (XX>)−1 to obtain the formula:

w = (XX>)−1Xy
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Least Squares — Interpretation as projection

Recall, we try to minimize ‖X>w − y‖
The set C = {X>w : w ∈ Rd} ⊂ Rm is a linear subspace, forming
the range of X>

Therefore, if w is the least squares solution, then the vector
ŷ = X>w is the vector in C which is closest to y.

This is called the projection of y onto C

We can find ŷ by taking V to be an m× d matrix whose columns are
orthonormal basis of the range of X>, and then setting ŷ = V V >y
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Polynomial Fitting

Sometimes, linear predictors are not expressive enough for our data

We will show how to fit a polynomial to the data using linear
regression
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Polynomial Fitting

A one-dimensional polynomial function of degree n:

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

Goal: given data S = ((x1, y1), . . . , (xm, ym)) find ERM with respect
to the class of polynomials of degree n

Reduction to linear regression:

Define ψ : R→ Rn+1 by ψ(x) = (1, x, x2, . . . , xn)

Define a = (a0, a1, . . . , an) and observe:

p(x) =

n∑
i=0

aix
i = 〈a, ψ(x)〉

To find a, we can solve Least Squares w.r.t.
((ψ(x1), y1), . . . , (ψ(xm), ym))
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Outline

1 The general PAC model
Releasing the realizability assumption
beyond binary classification
The general PAC learning model

2 Learning via Uniform Convergence

3 Linear Regression and Least Squares
Polynomial Fitting

4 The Bias-Complexity Tradeoff
Error Decomposition

5 Validation and Model Selection
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Error Decomposition

Let hS = ERMH(S). We can decompose the risk of hS as:

LD(hS) = εapp + εest

εapp εest

The approximation error, εapp = minh∈H LD(h):

How much risk do we have due to restricting to H
Doesn’t depend on S
Decreases with the complexity (size, or VC dimension) of H

The estimation error, εest = LD(hS)− εapp:

Result of LS being only an estimate of LD
Decreases with the size of S
Increases with the complexity of H
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Bias-Complexity Tradeoff

How to choose H ?

degree 2 degree 3 degree 10
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Validation

We have already learned some hypothesis h

Now we want to estimate how good is h

Simple solution: Take “fresh” i.i.d. sample
V = (x1, y1), . . . , (xmv , ymv)

Output LV (h) as an estimator of LD(h)

Using Hoeffding’s inequality, if the range of ` is [0, 1] we have

|LV (h)− LD(h)| ≤

√
log(2/δ)

2mv
.
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Validation for Model Selection

Fitting polynomials of degrees 2,3, and 10 based on the black points

The red points are validation examples

Choose the degree 3 polynomial as it has minimal validation error
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Validation for Model Selection — Analysis

Let H = {h1, . . . , hr} be the output predictors of applying ERM
w.r.t. the different classes on S

Let V be a fresh validation set

Choose h∗ ∈ ERMH(V )

By our analysis of finite classes,

LD(h∗) ≤ min
h∈H

LD(h) +

√
2 log(2|H|/δ)

|V |
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The model-selection curve
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Train-Validation-Test split

In practice, we usually have one pool of examples and we split them
into three sets:

Training set: apply the learning algorithm with different parameters on
the training set to produce H = {h1, . . . , hr}
Validation set: Choose h∗ from H based on the validation set
Test set: Estimate the error of h∗ using the test set
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k-fold cross validation

The train-validation-test split is the best approach when data is
plentiful. If data is scarce:

k-Fold Cross Validation for Model Selection

input:
training set S = (x1, y1), . . . , (xm, ym)
learning algorithm A and a set of parameter values Θ

partition S into S1, S2, . . . , Sk
foreach θ ∈ Θ

for i = 1 . . . k
hi,θ = A(S \ Si; θ)

error(θ) = 1
k

∑k
i=1 LSi(hi,θ)

output
θ? = argminθ [error(θ)], hθ? = A(S; θ?)
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Summary

The general PAC model

Agnostic
General loss functions

Uniform convergence is sufficient for learnability

Uniform convergence holds for finite classes and bounded loss

Least squares

Linear regression
Polynomial fitting

The bias-complexity tradeoff

Approximation error vs. Estimation error

Validation

Model selection
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