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Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (H, Z, `), is called Convex-Lipschitz-Bounded, with
parameters ρ,B if the following holds:

The hypothesis class H is a convex set and for all w ∈ H we have
‖w‖ ≤ B.

For all z ∈ Z, the loss function, `(·, z), is a convex and ρ-Lipschitz
function.

Example:

H = {w ∈ Rd : ‖w‖ ≤ B}
X = {x ∈ Rd : ‖x‖ ≤ ρ}, Y = R,

`(w, (x, y)) = |〈w,x〉 − y|

Shai Shalev-Shwartz (Hebrew U) IML Lecture 7 SGD and RLM 3 / 31



Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (H, Z, `), is called Convex-Lipschitz-Bounded, with
parameters ρ,B if the following holds:

The hypothesis class H is a convex set and for all w ∈ H we have
‖w‖ ≤ B.

For all z ∈ Z, the loss function, `(·, z), is a convex and ρ-Lipschitz
function.

Example:

H = {w ∈ Rd : ‖w‖ ≤ B}
X = {x ∈ Rd : ‖x‖ ≤ ρ}, Y = R,

`(w, (x, y)) = |〈w,x〉 − y|

Shai Shalev-Shwartz (Hebrew U) IML Lecture 7 SGD and RLM 3 / 31



Convex-Smooth-bounded learning problem

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (H, Z, `), is called Convex-Smooth-Bounded, with
parameters β,B if the following holds:

The hypothesis class H is a convex set and for all w ∈ H we have
‖w‖ ≤ B.

For all z ∈ Z, the loss function, `(·, z), is a convex, non-negative, and
β-smooth function.

Example:

H = {w ∈ Rd : ‖w‖ ≤ B}
X = {x ∈ Rd : ‖x‖ ≤ β/2}, Y = R,

`(w, (x, y)) = (〈w,x〉 − y)2
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Learning Using Stochastic Gradient Descent

Consider a learning problem.

Recall: our goal is to (probably approximately) solve:

min
w∈H

LD(w) where LD(w) = E
z∼D

[`(w, z)]

So far, learning was based on the empirical risk, LS(w)

We now consider directly minimizing LD(w)
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Stochastic Gradient Descent

min
w∈H

LD(w) where LD(w) = E
z∼D

[`(w, z)]

Recall the gradient descent method in which we initialize w(1) = 0
and update w(t+1) = w(t) − η∇LD(w)

Observe: ∇LD(w) = Ez∼D[∇`(w, z)]
We can’t calculate ∇LD(w) because we don’t know D
But we can estimate it by ∇`(w, z) for z ∼ D
If we take a step based on the direction v = ∇`(w, z) then in
expectation we’re moving in the right direction

In other words, v is an unbiased estimate of the gradient

We’ll show that this is good enough
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Stochastic Gradient Descent

initialize: w(1) = 0
for t = 1, 2, . . . , T

choose zt ∼ D
let vt ∈ ∂`(w(t), zt) update w(t+1) = w(t) − ηvt

output w̄ = 1
T

∑T
t=1w

(t)
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Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of v1, . . . ,vT , and any w?,

T∑
t=1

〈w(t) −w?,vt〉 =
‖w(1) −w?‖2 − ‖w(T+1) −w?‖2

2η
+
η

2

T∑
t=1

‖vt‖2

Assume that ‖vt‖ ≤ ρ for all t and that ‖w?‖ ≤ B we obtain

T∑
t=1

〈w(t) −w?,vt〉 ≤
B2

2η
+
η ρ2 T

2

In particular, for η =
√

B2

ρ2 T
we get

T∑
t=1

〈w(t) −w?,vt〉 ≤ B ρ
√
T .
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Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing
z1, . . . , zT we obtain:

E
z1,...,zT

[
T∑
t=1

〈w(t) −w?,vt〉

]
≤ B ρ

√
T .

The law of total expectation: for every two random variables α, β, and a
function g, Eα[g(α)] = Eβ Eα[g(α)|β]. Therefore

E
z1,...,zT

[〈w(t) −w?,vt〉] = E
z1,...,zt−1

E
z1,...,zT

[〈w(t) −w?,vt〉 | z1, . . . , zt−1] .

Once we know z1, . . . , zt−1 the value of w(t) is not random, hence,

E
z1,...,zT

[〈w(t) −w?,vt〉 | z1, . . . , zt−1] = 〈w(t) −w? , E
zt

[∇`(w(t), zt)]〉

= 〈w(t) −w? , ∇LD(w(t))〉
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Analyzing SGD for convex-Lipschitz-bounded

We got:

E
z1,...,zT

[
T∑
t=1

〈w(t) −w? , ∇LD(w(t))〉

]
≤ B ρ

√
T

By convexity, this means

E
z1,...,zT

[
T∑
t=1

(LD(w(t))− LD(w?))

]
≤ B ρ

√
T

Dividing by T and using convexity again,

E
z1,...,zT

[
LD

(
1

T

T∑
t=1

w(t)

)]
≤ LD(w?) +

B ρ√
T
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Learning convex-Lipschitz-bounded problems using SGD

Corollary

Consider a convex-Lipschitz-bounded learning problem with parameters
ρ,B. Then, for every ε > 0, if we run the SGD method for minimizing
LD(w) with a number of iterations (i.e., number of examples)

T ≥ B2ρ2

ε2

and with η =
√

B2

ρ2 T
, then the output of SGD satisfies:

E [LD(w̄)] ≤ min
w∈H

LD(w) + ε .

Remark: Can obtain high probability bound using “boosting the
confidence” (Lecture 4)
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Convex-smooth-bounded problems

Similar result holds for smooth problems:

Corollary

Consider a convex-smooth-bounded learning problem with parameters
β,B. Assume in addition that `(0, z) ≤ 1 for all z ∈ Z. For every ε > 0,
set η = 1

β(1+3/ε) . Then, running SGD with T ≥ 12B2β/ε2 yields

E[LD(w̄)] ≤ min
w∈H

LD(w) + ε .

Shai Shalev-Shwartz (Hebrew U) IML Lecture 7 SGD and RLM 13 / 31



Outline

1 Reminder: Convex learning problems

2 Learning Using Stochastic Gradient Descent

3 Learning Using Regularized Loss Minimization

4 Dimension vs. Norm bounds
Example application: Text categorization

Shai Shalev-Shwartz (Hebrew U) IML Lecture 7 SGD and RLM 14 / 31



Regularized Loss Minimization (RLM)

Given a regularization function R : Rd → R, the RLM rule is:

A(S) = argmin
w

(LS(w) +R(w)) .

We will focus on Tikhonov regularization

A(S) = argmin
w

(
LS(w) + λ‖w‖2

)
.
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Why to regularize ?

Similar to MDL: specify “prior belief” in hypotheses. We bias
ourselves toward “short” vectors.

Stabilizer: we’ll show that Tikhonov regularization makes the learner
stable w.r.t. small perturbation of the training set, which in turn
leads to generalization

Shai Shalev-Shwartz (Hebrew U) IML Lecture 7 SGD and RLM 16 / 31



Stability

Informally: an algorithm A is stable if a small change of its input S
will lead to a small change of its output hypothesis

Need to specify what is “small change of input” and what is “small
change of output”
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Stability

Replace one sample: given S = (z1, . . . , zm) and an additional
example z′, let S(i) = (z1, . . . , zi−1, z

′, zi+1, . . . , zm)

Definition (on-average-replace-one-stable)

Let ε : N→ R be a monotonically decreasing function. We say that a
learning algorithm A is on-average-replace-one-stable with rate ε(m) if for
every distribution D

E
(S,z′)∼Dm+1,i∼U(m)

[`(A(S(i), zi))− `(A(S), zi)] ≤ ε(m) .
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Stable rules do not ovefit

Theorem

if A is on-average-replace-one-stable with rate ε(m) then

E
S∼Dm

[LD(A(S))− LS(A(S))] ≤ ε(m) .

Proof.

Since S and z′ are both drawn i.i.d. from D, we have that for every i,

E
S

[LD(A(S))] = E
S,z′

[`(A(S), z′)] = E
S,z′

[`(A(S(i)), zi)] .

On the other hand, we can write

E
S

[LS(A(S))] = E
S,i

[`(A(S), zi)] .

The proof follows from the definition of stability.
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Tikhonov Regularization as Stabilizer

Theorem

Assume that the loss function is convex and ρ-Lipschitz. Then, the RLM
rule with the regularizer λ‖w‖2 is on-average-replace-one-stable with rate
2 ρ2

λm . It follows that

E
S∼Dm

[LD(A(S))− LS(A(S))] ≤ 2 ρ2

λm
.

Similarly, for convex, β-smooth, and non-negative, loss the rate is 48βC
λm ,

where C is an upper bound on maxz `(0, z).

The proof relies on the notion of strong convexity and can be found in the
book.
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The Fitting-Stability Tradeoff

Observe:

E
S

[LD(A(S))] = E
S

[LS(A(S))] + E
S

[LD(A(S))− LS(A(S))] .

The first term is how good A fits the training set

The 2nd term is the overfitting, and is bounded by the stability of A

λ controls the tradeoff between the two terms
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The Fitting-Stability Tradeoff

Let A be the RLM rule

We saw (for convex-Lipschitz losses)

E
S

[LD(A(S))− LS(A(S))] ≤ 2 ρ2

λm

Fix some arbitrary vector w∗, then:

LS(A(S)) ≤ LS(A(S)) + λ‖A(S)‖2 ≤ LS(w∗) + λ‖w∗‖2 .

Taking expectation of both sides with respect to S and noting that
ES [LS(w∗)] = LD(w∗), we obtain that

E
S

[LS(A(S))] ≤ LD(w∗) + λ‖w∗‖2 .

Therefore:

E
S

[LD(A(S))] ≤ LD(w∗) + λ‖w∗‖2 +
2 ρ2

λm
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The Regularization Path

The RLM rule as a function of λ is w(λ) = argminw LS(w) + λ‖w‖2

Can be seen as a pareto objective: minimize both LS(w) and ‖w‖2

feasible w

‖w‖2

LS(w)

pareto optimal

w(0)

w(∞)
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How to choose λ ?

Bound minimization: choose λ according to the bound on LD(w)
usually far from optimal as the bound is worst case

Validation: calculate several pareto optimal points on the
regularization path (by varying λ) and use validation set to choose
the best one
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Outline

1 Reminder: Convex learning problems

2 Learning Using Stochastic Gradient Descent

3 Learning Using Regularized Loss Minimization

4 Dimension vs. Norm bounds
Example application: Text categorization
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Dimension vs. Norm Bounds

Previously in the course, when we learnt d parameters the sample
complexity grew with d

Here, we learn d parameters but the sample complexity depends on
the norm of ‖w?‖ and on the Lipschitzness/smoothness, rather than
on d

Which approach is better depends on the properties of the distribution
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Example: document categorization

Signs all encouraging for Phelps in comeback. He did not win
any gold medals or set any world records but Michael Phelps
ticked all the boxes he needed in his comeback to competitive
swimming.

About sport ?

?
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Bag-of-words representation

Signs all encouraging for Phelps in comeback. He did not win
any gold medals or set any world records but Michael Phelps
ticked all the boxes he needed in his comeback to competitive
swimming.

1 10 0 0 0 0 0 0 0

sw
im

m
in

g

w
or

ld

el
ep

ha
nt
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Document categorization

Let X = {x ∈ {0, 1}d : ‖x‖2 ≤ R2, xd = 1}

Think on x ∈ X as a text document represented as a bag of words:

At most R2 − 1 words in each document
d− 1 is the size of the dictionary
Last coordinate is the bias

Let Y = {±1} (e.g., the document is about sport or not)

Linear classifiers x 7→ sign(〈w,x〉)
Intuitively: wi is large (positive) for words indicative to sport while wi
is small (negative) for words indicative to non-sport

Hinge-loss: `(w, (x, y)) = [1− y〈w,x〉]+
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Dimension vs. Norm

VC dimension is d, but d can be extremely large (number of words in
English)

Loss function is convex and R Lipschitz

Assume that the number of relevant words is small, and their weights
is not too large, then there is a w? with small norm and small LD(w?)

Then, can learn it with sample complexity that depends on R2‖w?‖2,
and does not depend on d at all !

But, there are of course opposite cases, in which d is much smaller
than R2‖w?‖2
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Summary

Learning convex learning problems using SGD

Learning convex learning problems using RLM

The regularization path

Dimension vs. Norm
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