
6.2 I/O Models 
Before describing select and poll, we need to step back and look at the bigger picture, examining
the basic differences in the five I/O models that are available to us under Unix: 

blocking I/O 

nonblocking I/O 

I/O multiplexing (select and poll) 

signal driven I/O (SIGIO) 

asynchronous I/O (the POSIX aio_functions) 

You may want to skim this section on your first reading and then refer back to it as you encounter 
the different I/O models described in more detail in later chapters. 

As we show in all the examples in this section, there are normally two distinct phases for an input 
operation: 

1. Waiting for the data to be ready 

2. Copying the data from the kernel to the process 

For an input operation on a socket, the first step normally involves waiting for data to arrive on the 
network. When the packet arrives, it is copied into a buffer within the kernel. The second step is 
copying this data from the kernel's buffer into our application buffer. 

Blocking I/O Model 

The most prevalent model for I/O is the blocking I/O model, which we have used for all our 
examples so far in the text. By default, all sockets are blocking. Using a datagram socket for our 
examples, we have the scenario shown in Figure 6.1. 

Figure 6.1. Blocking I/O model. 

Page 1 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...



 

We use UDP for this example instead of TCP because with UDP, the concept of data being "ready" 
to read is simple: either an entire datagram has been received or it has not. With TCP it gets more 
complicated, as additional variables such as the socket's low-water mark come into play. 

In the examples in this section, we also refer to recvfrom as a system call because we are 
differentiating between our application and the kernel. Regardless of how recvfrom is implemented 
(as a system call on a Berkeley-derived kernel or as a function that invokes the getmsg system call 
on a System V kernel), there is normally a switch from running in the application to running in the 
kernel, followed at some time later by a return to the application. 

In Figure 6.1, the process calls recvfrom and the system call does not return until the datagram 
arrives and is copied into our application buffer, or an error occurs. The most common error is the 
system call being interrupted by a signal, as we described in Section 5.9. We say that our process 
is blocked the entire time from when it calls recvfrom until it returns. When recvfrom returns 
successfully, our application processes the datagram. 

Nonblocking I/O Model 

When we set a socket to be nonblocking, we are telling the kernel "when an I/O operation that I 
request cannot be completed without putting the process to sleep, do not put the process to sleep, 
but return an error instead." We will describe nonblocking I/O in Chapter 16, but Figure 6.2 shows 
a summary of the example we are considering. 

Figure 6.2. Nonblocking I/O model. 

Page 2 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...



 

The first three times that we call recvfrom, there is no data to return, so the kernel immediately 
returns an error of EWOULDBLOCK instead. The fourth time we call recvfrom, a datagram is ready, it 
is copied into our application buffer, and recvfrom returns successfully. We then process the data. 

When an application sits in a loop calling recvfrom on a nonblocking descriptor like this, it is called 
polling. The application is continually polling the kernel to see if some operation is ready. This is 
often a waste of CPU time, but this model is occasionally encountered, normally on systems 
dedicated to one function. 

I/O Multiplexing Model 

With I/O multiplexing, we call select or poll and block in one of these two system calls, instead 
of blocking in the actual I/O system call. Figure 6.3 is a summary of the I/O multiplexing model. 

Figure 6.3. I/O multiplexing model. 

 

We block in a call to select, waiting for the datagram socket to be readable. When select returns 
that the socket is readable, we then call recvfrom to copy the datagram into our application buffer.

Page 3 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...



Comparing Figure 6.3 to Figure 6.1, there does not appear to be any advantage, and in fact, there 
is a slight disadvantage because using select requires two system calls instead of one. But the 
advantage in using select, which we will see later in this chapter, is that we can wait for more 
than one descriptor to be ready. 

Another closely related I/O model is to use multithreading with blocking I/O. That 
model very closely resembles the model described above, except that instead of using 
select to block on multiple file descriptors, the program uses multiple threads (one 
per file descriptor), and each thread is then free to call blocking system calls like 
recvfrom. 

Signal-Driven I/O Model 

We can also use signals, telling the kernel to notify us with the SIGIO signal when the descriptor is 
ready. We call this signal-driven I/O and show a summary of it in Figure 6.4. 

Figure 6.4. Signal-Driven I/O model. 

 

We first enable the socket for signal-driven I/O (as we will describe in Section 25.2) and install a 
signal handler using the sigaction system call. The return from this system call is immediate and 
our process continues; it is not blocked. When the datagram is ready to be read, the SIGIO signal 
is generated for our process. We can either read the datagram from the signal handler by calling 
recvfrom and then notify the main loop that the data is ready to be processed (this is what we will 
do in Section 25.3), or we can notify the main loop and let it read the datagram. 

Regardless of how we handle the signal, the advantage to this model is that we are not blocked 
while waiting for the datagram to arrive. The main loop can continue executing and just wait to be 
notified by the signal handler that either the data is ready to process or the datagram is ready to 
be read. 

Asynchronous I/O Model 

Asynchronous I/O is defined by the POSIX specification, and various differences in the real-time 
functions that appeared in the various standards which came together to form the current POSIX 
specification have been reconciled. In general, these functions work by telling the kernel to start 

Page 4 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...



the operation and to notify us when the entire operation (including the copy of the data from the 
kernel to our buffer) is complete. The main difference between this model and the signal-driven I/O
model in the previous section is that with signal-driven I/O, the kernel tells us when an I/O 
operation can be initiated, but with asynchronous I/O, the kernel tells us when an I/O operation is 
complete. We show an example in Figure 6.5. 

Figure 6.5. Asynchronous I/O model. 

 

We call aio_read (the POSIX asynchronous I/O functions begin with aio_ or lio_) and pass the 
kernel the descriptor, buffer pointer, buffer size (the same three arguments for read), file offset 
(similar to lseek), and how to notify us when the entire operation is complete. This system call 
returns immediately and our process is not blocked while waiting for the I/O to complete. We 
assume in this example that we ask the kernel to generate some signal when the operation is 
complete. This signal is not generated until the data has been copied into our application buffer, 
which is different from the signal-driven I/O model. 

As of this writing, few systems support POSIX asynchronous I/O. We are not certain, 
for example, if systems will support it for sockets. Our use of it here is as an example 
to compare against the signal-driven I/O model. 

Comparison of the I/O Models 

Figure 6.6 is a comparison of the five different I/O models. It shows that the main difference 
between the first four models is the first phase, as the second phase in the first four models is the 
same: the process is blocked in a call to recvfrom while the data is copied from the kernel to the 
caller's buffer. Asynchronous I/O, however, handles both phases and is different from the first four.

Figure 6.6. Comparison of the five I/O models. 

Page 5 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...



 

Synchronous I/O versus Asynchronous I/O 

POSIX defines these two terms as follows: 

A synchronous I/O operation causes the requesting process to be blocked until that I/O 
operation completes. 

An asynchronous I/O operation does not cause the requesting process to be blocked. 

Using these definitions, the first four I/O models—blocking, nonblocking, I/O multiplexing, and 
signal-driven I/O—are all synchronous because the actual I/O operation (recvfrom) blocks the 
process. Only the asynchronous I/O model matches the asynchronous I/O definition. 

Page 6 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...


