Theorem: There exist small problems with a vertices, b edges, $a \geq \frac{b}{a}$, which are yes instances of GAP problem. These are no instances of the problem of finding all solutions to $\frac{b}{a}$.

GAP problem: Given a list of vertices and edges, determine if there exists a set of vertices that satisfy specific conditions.

Note: For small values of a, the problem becomes easier to solve. However, for larger values of a, the problem becomes harder.

Theorem: For any a and b, there exist yes instances of the GAP problem with $a \geq \frac{b}{a}$.

Note: For small values of a, the problem becomes easier to solve. However, for larger values of a, the problem becomes harder.
The image contains a page of text in a language that is not clearly identifiable. The text appears to be a mathematical or computational problem, possibly related to graph theory or combinatorial optimization. The page includes symbols, equations, and algorithmic descriptions that are challenging to interpret without additional context or a clearer presentation of the text.
\[a + b + c = 1 \]
\[(a \lor b \lor c) \land (a \lor b \lor c) \lor (a \lor b \lor c) \]
\[a + b + c = 0 \]
\[(a \lor b \lor c) \land (a \lor b \lor c) \lor (a \lor b \lor c) \]

GAP: MAX-3-SAT

\[
\frac{4(1-\varepsilon)M}{2} + \frac{3M\varepsilon}{2} = 4M - \varepsilon M \quad \text{YES}
\]

\[
M \leq \frac{4 + \varepsilon}{2} = 3.5M \quad \text{NO}
\]

\[4M - \varepsilon M \leq\]

\[\frac{8}{7} - \frac{2}{7} \varepsilon \]

לפי משפט וירון ז"ה: \[\varepsilon \leq 0.1 \]

כדי למדתת את האלגוריתמהほう פולינומי בונדל הקטן:

Knapsack

נתן סכום בונדל \(S = \{a_1 \ldots a_n\} \). B. \(S \subseteq S \) \(a_i \) \(\text{size}(a_i) \) \(\text{profit}(a_i) \)

המטרה: לקוטב את \(S \) כדי \(\sum_{a_i \in S} \text{profit}(a_i) - \sum_{a_i \in S} \text{size}(a_i) \leq B \). \(\text{ככ ש:} \quad S \subseteq S \)

ונכתב בקצף מליין ציד "אלאגוריתמה הדינמי:

\[P = \max \text{profit}(a_i) \]

בנחל become בנות \(\text{A}(p,i) \). \(\text{A}(p,i) \) יסמי את קבוצת הפריטים חלק \(\{a_1 \ldots a_i\} \) \(\text{A}(p,i+1) = \min \left\{ A(p,i) \right\} \]

ולכל שולק קיבומ בודק את \(\text{A}(p,i) \) את האפשרויות הבאות: \(\text{A}(p-\text{profit}(a_i),i+\text{size}(a_{i+1})) \)

לynch הצהובות (המינימלית) במב תמות.
הכותרת היא בכף שארדנגייט המ""ל פותר את הבעיה ב \(\text{O}(\text{hhhP}) \) קלטים פוליוניםブ產 الحر.”

הميرיבו, והו מצבו שיאו רויצט להמען ממעון.