
\Instrution Memoization:Exploiting Previously PerformedCalulations to EnhanePerformane"
A dissertation submitted in ful�llment of therequirements for the degree of Dotor of PhilosophybyDaniel Citron

Submitted to the senate of the Hebrew University inthe year 2000

\Instrution Memoization:Exploiting Previously PerformedCalulations to EnhanePerformane"
A dissertation submitted in ful�llment of therequirements for the degree of Dotor of PhilosophybyDaniel Citron

Submitted to the senate of the Hebrew University inthe year 2000

i

This dissertation was ompiled under the supervision ofDr. Dror G. Feitelson.

ii

AbstratThis thesis explores the onept named memoization: saving the input(s) andoutput(s) of previously alulated (side-e�et-free) funtions, and using the out-put if the input is enountered again. Our fous will be on the memoization ofinstrutions. The operands and results of previous invoations of multi-yleinstrutions are saved in dediated tables named Memo-Tables. Suessfullookups in these tables, before or parallel to instrution exeution, make it pos-sible to improve exeution by reduing the latenies of these instrutions to oneyle. We named this tehnique Instrution Memoization (IM).To test this idea we used a detailed RISC proessor simulator running theSPEC and MediaBenh benhmarks. We �rst explore the organization of theMemo-Tables in searh for an \optimal" design that will maximize hit-ratioand minimize ost. A hit-ratio of over 50% is ahieved for moderate sized tables.Next we integrated IM into a RISC super-salar proessor's datapath. Wedisovered that 13% of the benhmarks' exeution time an be attributed tomulti-yle instrutions. With a 52% hit-ratio an average (harmoni mean)speedup of 1.07 was obtained (1.10 for FP intensive appliations). In our searhfor greater performane improvement we deided to memoize single-yle in-strutions as well.The speedup rised by 50% to 1.11 (1.13 for FP appliations). However thenew speedup is attributed not to instrution lateny redution but rather tothe arti�ial addition of more Funtional Units (FUs). The Memo-Tables atas \virtual" FUs. Adding more FUs to a proessor nulli�es the e�et of single-yle IM. On the other hand multi-yle IM yields a better speedup for fasterproessors.

iii

Contents
1 Introdution 11.1 What is Memoization? . 11.2 Instrution Memoization . 21.3 Prior and Related Work . 31.3.1 Early Use of Memoization 31.3.2 Instrution Reuse . 41.3.3 Other Tehniques . 41.4 Thesis Outline . 42 Instrution Memoization 52.1 The Memo-Table . 52.2 The Rationale Behind Instrution Memoization 73 The Organization of the Lookup Tables 103.1 Simulation Framework . 103.1.1 Simulations . 113.1.2 Benhmarks . 113.1.3 The Instrutions Memoized 123.2 Memo-Table Strutural Fators 133.3 Size and Assoiativity . 153.4 Trivial Calulations . 173.5 Contents of Memo-Tables . 193.5.1 Exploiting Inverse and Commutative Operations 233.6 Mapping Strategies . 243.7 Summary . 264 Integrating IM in a Proessor's Datapath 284.1 A Basi Miroproessor Design 284.1.1 Pipeline Stages . 284.1.2 Funtional Units . 294.1.3 Proessor Charateristis 304.1.4 Integrating IM . 304.2 Basi Proessor Speedup . 344.3 Measuring Attributes of the Datapath 35iv

4.3.1 Hit-Ratio . 374.3.2 Instrutions Per Cyle (IPC) 384.3.3 Fration Enhaned (FE) 394.3.4 Speedup . 394.3.5 Correlation Between Measurements 404.4 Additional Measurements . 414.4.1 Speedup as a Funtion of Memo-Table Organization . . 434.5 Summary . 435 Memoizing Single Cyle Instrutions 455.1 Comparing Single and Multi-Cyle IM 455.1.1 sIM Compared to Other Enhanements 475.2 Lowering the ost of sIM . 486 Comparing IM to Other Tehniques 506.1 Early Memoization . 506.2 Value Predition . 516.3 Comparing IM to IR . 526.3.1 PC vs. Value Mapping . 536.3.2 Table Organization . 546.3.3 Lookup Stage . 556.3.4 Design Simpliity . 557 Summary and Conlusions 567.1 Memo-Table Organization . 577.2 IM in the datapath . 587.3 Single-Cyle Instrution Memoization (sIM) 587.4 The Bottom Line . 59A IM on Real Proessors 60B Memoization of Funtions 63B.1 Memoization of Mathematial Funtions 65B.1.1 Memoization of Software Implemented Funtions 65B.1.2 Overhead Considerations 67B.2 Experiments and Results . 67B.2.1 Simulations . 68B.2.2 Speedups Obtained . 69B.2.3 Memo-Table Con�guration 70B.2.4 Memoization of User Funtions 72B.2.5 Memoization of Funtions and Instrutions 73B.2.6 Implementing the Funtions in Hardware 74B.3 The Rationale Behind Funtion Memoization 75B.4 Related Work . 76B.4.1 Compiler-Direted Dynami Computation Reuse 77B.4.2 Value Pro�ling . 78v

vi B.5 Comparing Hardware to Software Memoization 78B.6 Summary . 80

Chapter 1IntrodutionIn the �eld of Computer Arhiteture the end goal of almost all innovations andenhanements is speed. We want our programs to run in less time. This an beahieved in numerous and various ways: running the proessor at higher speeds,introduing hanges to the design of the proessor, hanging the instrution set,ompiler enhanements, and �nally by altering the programs themselves.This thesis will fous mainly on enhaning the design of the datapath. thedatapath is by analogy the \blood system" of the proessor. Through its stagesow the instrutions fethed from memory. The instrutions are deoded, theiroperands are obtained, they are exeuted, the results of the instrutions arewritten bak to memory or the register �le, and �nally the instrutions areommitted and exit the datapath. During eah yle, a tik of the proessor'slok, instrutions either ow through the datapath or are delayed in the data-path until previous instrutions have progressed through the stages.The less yles it takes instrutions to traverse the datapath the faster theprogram will exeute. This thesis shows a tehnique that shortens the stayof some of the instrutons in the datapath. Just as memory ahing exploitsthe \Prinipal of Loality" in order to present the proessor with a short andalmost uniform memory aess time, we will exploit the onept of memoizationin order to shorten the exeution time of many long lateny instrutions.1.1 What is Memoization?The onept of memoization is as follows: saving the input(s) and output(s)of previously alulated (side-e�et-free) funtions, and using the output if theinput is enountered again.Before a side-e�et-free funtion is to be omputed its input(s) are used toaess (usually with a hash funtion) a Look Up Table (LUT). If the inputs areresident in the LUT the previously alulated output(s) is obtained from thetable and realulation of the funtion is averted. If the input(s) aren't in theLUT the funtion is alulated and its input(s) and output(s) are stored in the1

2 CHAPTER 1. INTRODUCTIONLUT for future referene.This tehnique an result in faster realulations if the storage and lookupof formerly alulated funtions is faster then realulating the funtion again.But in the general ase the LUT is a software based table residing in mainmemory. Thus the lookup and storage are time onsuming. A suessful lookupmust have a lower aess time than alulating the funtion. Every unsuessfullookup results in a penalty. Thus a high suessful lookup ratio is neessary inorder to bene�t from memoization. Coupled with the fat that most softwarebased funtions aren't side-e�et-free, the use of memoization seems limited.But when looking \right under your ode", we �nd that almost all instru-tions are side-e�et-free (exept for memory aesses). And if the LUTs aredediated tables loated on-hip the lookup and storage times are now veryshort. Thus memoizing instrutions seems a muh better prospet than memo-izing funtions. This tehnique is named Instrution Memoization (IM) and isthe topi of this thesis.1.2 Instrution MemoizationInstrution Memoization (IM) is a tehnique that shows great potential forinreasing proessor performane. The tehnique exploits the redundany ofinstrution results by storing the operands and results of exeuted instrutionsin a Lookup Table (LUT), whih we will all a Memo-Table. When the sameinstrution type with mathing operands is enountered again the result is ob-tained from the Memo-Table and instrution exeution is avoided. The \ex-eution time" of the instrution is the aess time of the Memo-Table, whihis a single mahine yle for a small hardware based table. When the lookup isunsuessful the instrution must be exeuted in one to tens of yles (depend-ing on the instrution type). Thus for suessful lookups the exeution time ofthese instrutions is one yle, whih in turn minimizes their oupany in thedatapath whih leads to shorter exeution times.The performane improvement (speedup) obtained is dependent on four ma-jor fators:1. The perentage of instrutions that an bene�t from memoization. In-strutions that have a lateny (number of yles from exeution start untilthe result is ready) of a single-yle and instrutions that must be exeuted(stores to memory) are examples of instrutions that aren't andidates formemoization. This fator is deided by the appliation's instrution mixand by the implementation of the miroproessor (latenies of instru-tions).2. The integration of Memo-Tables in the datapath of the proessor: Thestage of the pipeline that Memo-Tables are aessed, multiple-issue ofinstrutions, long-lateny instrutions ompleting sooner than expeted,and the penalty of an unsuessful lookup. All these issues a�et theusefulness of IM.

1.3. PRIOR AND RELATED WORK 33. The perentage of suessful lookups, i.e. the hit-ratio of the Memo-Table. This is inuened by the nature of the program being exeuted,how muh redundany it ontains, and by the design of theMemo-Table.4. The physial integration of IM modules on the proessor: The numberof transistors needed to implement IM, the added power onsumption,and the omplexity of design all inuene the Cost/Performane ratioof implementing IM. This thesis is an arhitetural researh, the physialaspets of implementation are beyond the sope of this work. However theissues will be addressed, tradeo�s ompared (not always quantitatively),and solutions given for the problems.In this thesis we will explore all four fators in order to understand the im-pat of memoization on the proessor and in order to obtain the best possibleperformane enhanement when using IM.1.3 Prior and Related WorkThis setion will survey prior and losely related work. At this point in thethesis we won't ompare our tehnique to these works but just present themas is. In hapter 6 after the tehnique of IM has been fully presented we willompare it to several of the alternate and omplementing approahes of reusingprevious omputations.1.3.1 Early Use of MemoizationThe onept of memoing was introdued by Mihie [1℄ in 1968. The idea is tosave the inputs and results of side-e�et-free funtions in a table and reuse theresults for mathing inputs. Sine then it has been used mainly in the ontextof delarative languages like Prolog, Lisp, and ML [2, 3, 4℄.In 1982 Harbison [5℄ proposed a stak-oriented arhiteture alled the TreeMahine (TM) whih assumes the role of an optimizing ompiler by detetingand eliminating ommon subexpressions (CSEs) and invariant expressions inloops. It performs this by using a value ahe. Results of instrutions are savedin the value ahe. If the same instrution is to be exeuted and its operandshaven't been hanged, the result is obtained from the value ahe instead ofbeing performed again. Thus the sope of optimizations an be widened toexpressions that aren't available at ompile time.The idea of exploiting redundant omputation for o�-the-shelf RISC arhi-tetures was introdued by Rihardson [6℄ in 1992. The results of multipliation,division, and square-root instrutions are saved in dediated tables. When theinstrutions are to be exeuted a lookup in the table is performed and if thelookup is suessful the result is obtained from the table (this is in fat memo-ization). This idea was further expanded by Flynn and Oberman [7℄ (1995) toinlude storing the reiproals of division instrutions.

4 CHAPTER 1. INTRODUCTION1.3.2 Instrution ReuseIn 1997 Sodani & Sohi [8℄ introdued the onept of Instrution Reuse (IR).All instrutions, even single-yle instrutions are andidates for reuse. Theinstrutions are inserted in a table alled the Reuse Bu�er (RB). Instrutionsin the RB are aessed using the Program Counter (PC). If the operand valuesof the instrution math the operands values in the RB, the result is obtainedfrom the the RB. Variations of the sheme inlude mathing the operand registernames (requires invalidation of entries if the registers were written into), andmathing instrutions that supply the urrent instrution with its operands(again requires invalidation). The tehnique of IR is losely related to IM andin some ases overlaps it. In hapter 6 we will desribe the di�erenes in detail.1.3.3 Other TehniquesOther tehniques suh as Value Predition (VP) (Gabbay & Mendelson [9℄ ,Lipasti, Wilkerson & Shen [10, 11℄, and Sazeides & Smith [12℄), Compiler-Direted Dynami Computation Reuse (Connors and Hwu [13℄), and ValuePro�ling (Calder, Feller & Eustae [14℄) will be presented in more detail inhapter 6.1.4 Thesis OutlineThe rest of this thesis overs the following topis: Chapter 2 desribes how IMworks and shows the rationale behind its suess. Chapter 3 explores variousorganizations of the Memo-Table. Chapter 4 desribes the integration of IMinto the proessor's datapath. Chapter 5 shows how single-yle instrutions anuse IM. Chapter 6 ompares IM to other similar researh e�orts and hapter7 onludes this thesis. Two appendies at the end of the thesis show how IMperforms on real world proessors (appendix A) and appendix B widens thesope of IM to inlude funtion memoization.

Chapter 2Instrution MemoizationIn this hapter we will desribe in detail how Instrution Memoization (IM)works and the basi struture of the Memo-Table. The idea is to mitigate thee�et of multi-yle instrutions (instrutions with a lateny of more than oneyle) by reduing their lateny via IM. The input (operands) and output (re-sult) of partiular instrution types are stored in a ahe-like lookup table (theMemo-Table). The Memo-Table is aessed in parallel to the onventionalomputation. A suessful lookup gives the result of a multi-yle omputationin a single yle, and a failed lookup doesn't neessitate a penalty in omputa-tion time. Figure 2.1 shows a shemati layout of the idea. The operands areforwarded in parallel both to a division unit and its adjaent Memo-Table.2.1 The Memo-TableA Memo-Table is a ahe-like Look Up Table (LUT), that is plaed adjaentto eah Funtional Unit (FU) that has a lateny of multiple yles. The likenessto a ahe is due to the fat that the values in the LUT hange dynamiallyover time with the most reently used values present in the Memo-Table.Just like in a onventional ahe when a value is forwarded to the Memo-Table, a subset of its bits are used to form an index into the LUT. The remain-ing bits are ompared to the value stored in the indexed entry. If they math,we say that we have a \hit" and the value stored in the entry is returned. Ifthey do not math, we say that we have a \miss", no value is returned and thetable is updated with a new value (eviting an \older" entry). Whih subset ofbits to use is one of the harateristis explored in setion 3.6.Unlike a onventional ahe where eah line ontains more than one wordand a relatively small assoiated tag, theMemo-Table ontains a large tag andjust the one word result in eah line. To emphasize this distintion, we shalluse entry instead of the traditional line or blok. Figure 2.2 shows a Memo-Table with n entries. The shaded area ontains the results, the unshaded areasontains the operands and opode (in the ase where several instrution types5

6 CHAPTER 2. INSTRUCTION MEMOIZATION

Result

DIVISION

UNIT

MEMO

TABLE

MUX

hit/miss lineoperation

completed

line

Operand 1

Operand 2

Figure 2.1: A division unit using a Memo-Tablereside in the same Memo-Table) whih are ompared to the operands andopode of the instrution being memoized. Note that no valid bit is neessary,and data is valid at all times even aross ontext swithes due to the fat thatthe instrutions stored in Memo-Tables are ontext free, the result dependsonly on the operands1. The only time invalid data is in a Memo-Table isduring startup, initially loading the opode �elds with invalid opode solvesthis problem.During exeution the operands are forwarded to the appropriate omputa-tion unit and in parallel, to the orresponding Memo-Table. If there is a hitin the Memo-Table, its value is forwarded to the next pipeline stage , theomputation in the FU is aborted and it signals it is free to reeive the nextset of operands. If there is a miss in the Memo-Table, the omputation isallowed to omplete, and the result obtained is forwarded to the next stage andin parallel entered into the Memo-Table.1Exept if di�erent IEEE 754 rounding modes are used.

2.2. THE RATIONALE BEHIND INSTRUCTION MEMOIZATION 7
Operand 1 Operand 2 Opcode Result

Entry 0

Entry 1

Entry 2

Entry n-1 Figure 2.2: Layout of a n entry Memo-Table.2.2 The Rationale Behind Instrution Memoiza-tionAfter we have shown the basi IM tehnique we will explain why it should work.To best understand the rationale a few examples will be presented:vsqrt The appliation vsqrt takes the square-root of all pixels in an image.We have previously shown [15℄ that neighboring pixels in an image tendto have the same values, thus leading to a high hit-ratio in the Memo-Table.vspatial Performs image enhanement based on loal histograms. An examina-tion of a sample image, a self portrait of Guya (�gure 2.3), shows that outof 256 possible pixel values only 161 are represented (�gure 2.4). Zoom-ing in to an 8x8 window surrounding Guya's nose (�gure 2.5) shows thatthere are only 11 unique values. Building a histogram of this windows andrunning the following loop:n = N*N; /* N=8 */for(i=0;i<L;i++) /* L = # of values */e += (hist[i℄/n) * log2(hist[i℄/n);results in a 94% hit-ratio when memoizing division. The same is true forolor images whih are omposed of three \bands" (red, green, and blueimages). Eah band displays a similar amount of redundany.tomatv In the following ode exerpt 2:A = 0.25 * (XY*XY+YY*YY)B = 0.25 * (XX*XX+YX*YX)2This exerpt was taken from Rihardson's paper [6℄.

8 CHAPTER 2. INSTRUCTION MEMOIZATIONThe number of unique pairs is 769. Using an \in�nite" multipliationMemo-Table results in an almost perfet hit-ratio.As we an see the nature of the programs and inputs auses instrution repeti-tion. Most Multi-Media appliations work on loal areas of an image or signalwhih may result in the same alulations being performed over and over again.Of ourse not all programs that exhibit redundany have soure ode exerptsthat pinpoint the ause, most don't.
Figure 2.3: A self portrait of Guya.

Figure 2.4: Histogram of the Guya image.Sodani and Sohi [16℄ have performed a detailed analysis of instrution rep-etition for the SPEC 95 integer benhmarks and have found that most of therepetition originates from internal values of the program (immediates) or fromglobal initialized data. Our onlusions are that for most Floating Point benh-marks the redundany originates from the input sets of the appliations [15℄.

2.2. THE RATIONALE BEHIND INSTRUCTION MEMOIZATION 9

Figure 2.5: A blowup of Guya's nose.

Chapter 3The Organization of theLookup TablesThis hapter is dediated to �nding the near optimal design for Memo-Tablesthat will enable us to reeive the maximal hit-ratio possible (for �nite Memo-Table sizes). In this hapter we memoize all instrutions that have a latenyof more than one yle1. The Memo-Table we will explore is the same asproposed in hapter 2. Eah entry onsists of two operands, a result, and anopode. The organization of the proessor's datapath is irrelevant at this stageof the researh and will be explored in hapter 4 after we �x the Memo-Tableharateristis.The harateristis of the Memo-Tables explored are its ahe-like traits:size, assoiativity, and replaement method, and harateristis that are uniqueto memoization suh as indexing methods (whih bits of the values ompose theindex into the Memo-Table), ontents (whih instrutions are in eah Memo-Table), detetion of trivial alulations that an be omputed easily (x + 0,y�1, ...),and the relationships between instrutions types (a+b = ! = b�a,...).3.1 Simulation FrameworkTo �nd the optimal design of a Memo-Table we performed a series of exper-iments with an arhiteturally detailed simulator: SimpleSalar [17℄, a RISCinstrution-level simulator based upon the MIPS ISA. SimpleSalar reeives asinput a binary exeutable ompiled for the simulator and exeutes it down to theyle level. All appliations were ompiled using g version 2.6.3 with the op-timization ags -O3 -finline-funtions -funroll-loops. We tailored Sim-pleSalar to inorporate Memo-Tables in it's design and thus simulate IM.The two indiators that measure the suess of the memoization are:1Exept memory aesses whih aren't side-e�et free (stores) or aren't ontext free (loads).10

3.1. SIMULATION FRAMEWORK 11Hit-Ratio The hit-ratio of a Memo-Table (number of suessful lookups di-vided by number of lookups) will show how many instrution exeutionswere avoided.Speedup The end goal of using Memo-Tables is to aelerate proessing; ifthe enhanement has no impat on performane, the extra omplexity ofadding it isn't worth the e�ort.The emphasis of the simulations in this hapter will be on enhaning the hit-ratios of the Memo-Tables. The speedup ahieved by using IM will be shownin hapter 4.3.1.1 SimulationsThe simulations were performed using the SimpleSalar simulator. As we wantto negate the inuene of the datapath the programs were run through thesim-fast version of the simulator. This version simulates instrution exeutionstep-by-step but doesn't simulate the memory hierarhy, pipelining, multiple-issue, branh predition, or any other arhitetural enhanements (exept theuse of Memo-Tables, of ourse).3.1.2 BenhmarksThe benhmarks were taken from several soures:� SPEC CFP95 - the oating point omponent of the SPEC CPU95 suite[18℄.� SPEC CINT95 - the integer omponent of the SPEC CPU95 suite [18℄.� MediaBenh - a suite of multi-media and ommuniation appliationsfrom UCLA [19℄.The benhmark appliations are either FP intensive or perform integer mul-tipliation and/or division. Appliations that don't exeute large amounts ofmultiple-lateny instrutions an't bene�t from IM and aren't simulated2.Table 3.1 desribes the spei� appliations, the number of instrutions exe-uted, and the perentage of multiple-yle instrutions exeuted3. Even thoughless than 1% of the instrutions in integer intensive appliations are multiple-yle instrutions we simulate them and give them an equal standing to FP2For this reason adpm and pegwit from the MB suite and li and go from CINT95 aren'tsimulated. Jpeg from MB and ijpeg from CINT95 are similar so only jpeg is run. m88ksimfrom CINT95 is invariant to any Memo-Table hanges, 99% of all integer multipliations arereused in any on�guration, thus this appliation was dropped from the simulations.3In some ases the numbers are the sum of several appliations that make up a benhmark(eg. deode and enode for mpeg2). The SPEC benhmarks were run with the test or trainversions of the inputs in order to keep them relatively short, running them with the refereneinputs gives similar results.

12 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESsuite appliation desription input # of insts %MediaBenh rasta Speeh reognition ex5 1.wav 23M 10.4%mesa 3D graphis library hardoded 130M 17.8%mpeg2 Video ompression mei16v2.m2v 1282M 7.8%epi Image ompression lenna.pgm 60M 15.5%gsm Speeh transoding linton.pm 223M 14.9%ghostsript Postsript interpreter tiger.ps 1294M 4.4%g721 Voie ompression linton.pm 529M 0.6%pgp Cryptography pgptest.pgp 159M 2.3%jpeg Image ompression monalisa.jpg 161M 0.3%CFP95 tomatv Vetorized mesh generation train.in, ITACT=20 818M 10.4%swim Shallow water equations train.in 842M 26.3%su2or Monte-Carlo method test.in 1050M 12.8%hydro2d Navier Stokes equations test.in 1124M 16.4%mgrid 3D potential �eld train.in, NTIMES=1 382M 14.5%applu Partial di�erential equations train.in, itmax=20 1000M 7.7%turb3d Turbulene modeling train.in, nsteps=1 398M 7.5%apsi Weather predition test.in 888M 22.6%fpppp Quantum hemistry train.in 344M 32.8%wave5 Maxwell's equation test.in,nsteps=2 1389M 31.7%CINT95 g C ompiler 1stmt.i 119M 0.3%ompress Lempel-Ziv ompression test.in 35M 0.5%perl Perl interpreter srabll.pl, train input 40M 0.4%Table 3.1: Desription of benhmark appliations, inputs, number of instru-tions exeuted, and perentage of multiple-yle instrutions.intensive appliations4. We are exploring primarily Memo-Table harater-istis not overall speedup, thus the impat of these appliations whih have adi�erent instrution mix than FP appliations is important. The following sim-ulation results are the average (harmoni mean) hit-ratios of theMemo-Tablesfor all the above appliations5.3.1.3 The Instrutions MemoizedAll the instrutions memoized have a lateny of more than one yle. Theseinlude integer division and multipliation and all the oating point instru-tions. Table 3.2 lists the instrutions memoized along with their latenies andthroughputs6 on the R10000 and 604e7. For eah instrution type there is a4The integer intensive appliations are g721, pgp, and jpeg from MediaBenh and theCINT benhmarks.5The average is unweighed, every benhmark, short or long running, has an equal standing.We didn't want the SPEC benhmarks, whih have a longer exeution time, to dominate theresults.6If an unit is pipelined it an omplete an instrution every yle, this is the throughputof the instrution.7The 604e doesn't implement the fsqrt instrution listed in its instrution set, we deidedto do so in our simulator in order to ompare the datapaths of both proessors (a software

3.2. MEMO-TABLE STRUCTURAL FACTORS 13Memo-Table that stores the operands and results of the instanes of the in-strution, for a total of 19 suh Memo-Tables in use.instrution MIPS R10000 PPC 604etype lty thpt lty thptInt Division 35 35 20 19Int Multipliation 6 6 3 1FP Add/Subtrat 2 1 3 1FP Comparison 2 1 3 1FP$FP Conversion 2 1 3 1FP!Int Conversion 2 1 3 1Int!FP Conversion 4 1 3 1FP Neg/Abs 2 1 3 1FP Move 2 1 3 1FP Multipliation 2 1 3 1FP Division (sp/dp) 12/19 14/21 18/31 18/31FP Sqrt (sp/dp)� 18/33 20/35 50/60 50/60� The 604e doesn't implement the fsqrt instrution.Table 3.2: Instrution latenies and throughputs for the MIPS R10000 and PPC604e.3.2 Memo-Table Strutural FatorsWe �rst measured the e�ets of four fators related to the struture of theMemo-Table rather than to its ontents. The fators and their levels are:� Size - the number of entries in eah Memo-Table, the levels are from 8to 16K entries, and an in�nite table size.� Assoiativity - the number of entries in eah set. The levels are fromdiret-mapped (set size 1), to 8-way set assoiative (set size 8), and fullyassoiative (one set).� Replaement Strategy - Whih entry is evited from the Memo-Table inthe ase of a miss. The levels are: replae randomly, First In First Out(FIFO), pseudo Least Reently Used (where the LRU entry is approxi-mated), Most Reently Used (MRU) and true LRU. As memoization isn'tspeulative we don't explore any on�dene shemes, one a value is inthe Memo-Table it is valid.� Mapping Strategy - How an entry is mapped to a set. The levels are tohash the Program Counter (like [8℄ do) or hash the values. The valuesan be hashed using various tehniques, simple ones suh as hashing theLeast Signi�ant Bits (LSBs), to more omplex tehniques whih hash theexponent, mantissa or some bit mix of them.implementation of the sqrt funtion an take over 1000 yles).

14 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESThe number of simulations needed to perform a full fatorial design, simulatingevery possible ombination of all levels, would take: n = Qki=1 ni simulations.In our ase it is (12 levels of size)�(5 levels of assoiativity)�(5 levels of replae-ment shemes)�(6 levels of mapping strategies) = 1800 simulations for eah andevery appliation. This number is daunting and beyond our proessing power.In suh ases where a full fatorial design is impossible, a 2k fatorial designis used. For eah fator two levels or alternatives are hosen resulting in only16 simulations in our ase. These simulations an give us an indiation whihfators have a higher impat on the hit-ratios and whih fators have little orno impat at all.By using the Sign-Table [20℄ tehnique it is possible to ompute the alloationof variation of eah fator and the interation between fators. The importaneof a fator is measured by the proportion of the total variation in the result thatis explained by the fator.The levels hosen for simulation are: Size - 32, 1024 entries; Assoiativity- diret mapped, 8-way set assoiative; Replaement Strategy - random, LRU;Mapping - PC, value (LSBs); The results (harmoni mean hit-ratios of all ap-pliations) are shown in table 3.3.32 1 rand p 0.17 32 1 rand val 0.321024 1 rand p 0.22 1024 1 rand val 0.3932 8 rand p 0.30 32 8 rand val 0.391024 8 rand p 0.32 1024 8 rand val 0.5132 1 lru p 0.17 32 1 lru val 0.321024 1 lru p 0.22 1024 1 lru val 0.3932 8 lru p 0.32 32 8 lru val 0.401024 8 lru p 0.33 1024 8 lru val 0.51Table 3.3: 24 fatorial design and resulting hit-ratios. The fators and lev-els are size (32, 1024), assoiativity (diret mapped, 8-way set assoiativity),replaement strategy (random, lru) and the hashing sheme (p, value).The results obtained are inserted into a Sign-Table. The sample varianeof the data is alulated by omputing the Sum of Squares Total (SST), thisnumber an then be broken into its omponents. The main omponents ofvariation are: Mapping sheme - 55%, Assoiativity - 31%, and Size - 10%. Thevariation attributed to the replaement strategy is 0%. From these numbersand a look at the table we an make two important observations:1. The mapping sheme is of utmost importane. The left hand side ofthe table whih uses the PC as the index into the Memo-Tables showsonsistently poorer results than the right hand side whih uses the operandvalues as indies into the Memo-Tables. Thus in future simulations wewill use the operand values only as indies. Setion 3.6 explains thisphenomena in greater detail.2. The replaement strategy is of little importane. The top half of the table

3.3. SIZE AND ASSOCIATIVITY 15whih uses a random replaement strategy has the same results as thebottom half whih uses the LRU replaement strategy. This is onsistentwith memory ahes where the replaement method has little impat onthe hit-ratio [21℄. The reason is that values that are highly reused willbe reentered into the Memo-Table, even if they were randomly evited.Beause of the simpliity of implementing a random replaement methodwe use this method in future simulations.The variation alloated to size and assoiativity and the results displayedprohibit us from making lean ut deisions as with the mapping and replae-ment method. We must investigate more levels of both size and assoiativity,we will do this in the next setion.3.3 Size and AssoiativityThe next set of simulations are targeted at determining the highest hit-ratiowith the lowest Memo-Table size and assoiativity. The levels of size arefrom 16 to 16K entries per Memo-Table (omitting 512, 2K, and 8K sizes) andan in�nitely large Memo-Table (1MB entries), and the levels of assoiativityare from diret-mapped to 8-way set assoiative and fully assoiative (for largeMemo-Tables an assoiativity of 512 was used).

16 64 256 1K 4K 16K
infinity

Size1
2

4
8

fa

Set Associativity

0.2

0.3

0.4

0.5

0.6

0.7

Hit Ratio

Figure 3.1: Hit-ratio as a fator of Memo-Table size and set assoiativity.

16 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESA two-fator full fatorial design is used [20℄ to determine whih fator inu-enes the hit-ratio more. The total variation an be divided into parts explainedby fators A (size) and B (assoiativity) and an unexplained part due to exper-imental errors. The results show that 68% of the variation is attributed tohanges in the Memo-Tables size and 30% to hanges in the assoiativity, 2%of the variation is unexplained.Size/Asso 1 2 4 8 full16 0.29 0.33 0.35 0.36 0.3632 0.32 0.37 0.38 0.39 0.4064 0.35 0.40 0.42 0.43 0.44128 0.36 0.41 0.44 0.46 0.47256 0.38 0.43 0.46 0.48 0.501K 0.40 0.45 0.49 0.51 0.554K 0.41 0.47 0.50 0.53 0.5716K 0.43 0.48 0.52 0.54 0.58in�nite 0.46 0.51 0.54 0.56 0.60Table 3.4: Tabular version of hit-ratio as a fator of Memo-Table size and setassoiativity.Figure 3.1 is a 3-D plot of the hit-ratio (z-axis) as a funtion of size (x-axis),and assoiativity (y-axis) (the atual results are in table 3.4). Looking at thelesser fator of variation, assoiativity, shows that raising the assoiativity fromdiret-mapped to 2-way gives a onsiderable hit-ratio enhanement and raisingthe assoiativity beyond 4-way hardly hanges the hit-ratio. This is fortunate asimplementing a 8-way set assoiative Memo-Table is the utting-edge [22℄ ofurrent on-hip memory ahe tehnology whih will be used in implementingMemo-Tables. Current on-hip ahes an perform a 4-way set assoiativeahe lookup in a single mahine yle so there is no reason not to set theassoiativity of Memo-Tables to 4.Looking at the plot again shows that for sizes 16 to 128 the urve risesrapidly, from Memo-Table size 256 the urve starts to atten. Dividing thehit-ratio of using 256 entry 4-way set assoiative Memo-Tables with the hit-ratio of using in�nite fully-assoiative Memo-Tables, shows that 76% of allreusable multiple-yle instrutions an be reused with moderate size Memo-Tables.Figure 3.2 shows the breakdown of hit-ratios per instrution (assoiativity:4; size: 32{1024). It is notieable that the hit-ratios for the integer instrutionsare amongst the highest and they ontinue to bene�t from a larger Memo-Table after the hit-ratios for other instrutions atten out (as does single pre-ision to double preision onversion). For the square-root, FP omparison, andFP$INT onversion instrutions the hit-ratio is invariant to Memo-Tablesizes above 128 entries. For FP move a Memo-Table of size 64 is suÆient.Nevertheless, in order to work with a uniform Memo-Table size we will use abaseline size of 256 in future simulations.Another onsideration to take into aount is the hit-time (the time to

3.4. TRIVIAL CALCULATIONS 17

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 1K

H
it

R
at

io

Size

All instructions
F2F conversion
I2F conversion
F2I conversion
FP move
FP subtraction
FP addition
FP negation

32 64 128 256 1K

Size

All instructions
FP multiplication
FP division
Square root
Int multiplication
Int division
FP comparison

Figure 3.2: Breakdown of hit-ratio by instrution type (4-way set assoiativity,random replaement, mapping by value).aess a Memo-Table, hek if the entry is resident in the Memo-Table,and return the result) of a Memo-Table. This time must be a single mahineyle, with most FP instrutions having latenies of 2-3 yles, a longer hit-timewill redue the e�etiveness of IM. Thus the size of a Memo-Table should beomparable to the size of small on-hip ahes, whih have a hit-time of oneyle. A 256 entry Memo-Table holds 256� 3 = 768 double preision valueswhih is 768� 8 = 6144 = 6K bytes. This is onsiderably less than the on-hipahes of the MIPS R10000 (32KB), Power PC 604e (32KB) and other leadingmiroproessors. Thus in any ase the upper limit on the size ofMemo-Tableswill be 1024 entries (24KBytes) with a set assoiativity of 4.3.4 Trivial CalulationsThe result of a trivial alulation is immediately obtained from the operands ofthe alulation itself. No alulation is performed, just a input hek is needed todetet the ourrene of triviality. In all previous simulations trivial alulationswere treated as regular alulations and forwarded to the Memo-Tables. Inthis setion trivial alulations will be deteted in parallel to the Memo-Tablelookup. Thus only non-trivial alulations will be stored in the Memo-Tables.Table 3.5 shows the trivial alulations deteted. Figure 3.3 shows the layout ofa Memo-Table, division unit, and trivial test unit. The alulation is testedfor triviality in parallel to the Memo-Table lookup and FU exeution. Ifthe alulation is trivial the result will be obtained from the Trivial Test Unit(TTU),and the Memo-Table lookup and FU exeution will be terminated. If

18 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESAddition a+ 0; 0 + a aSubtration a� 0 aa� a 0Multipliation a� 0; 0� a 0a� 1; 1� a aDivision a=1 a0=a 0a=0 Inf0=0 NaNa=a 1Sqrt p1 1p0 0a < 0 NaNConversions 0 0Negation 0 0Absolute Value 0 0Table 3.5: Operation, trivial alulation, and result.the alulation isn't trivial the Memo-Table lookup or FU exeution suppliesthe result (for larity eah ontrol line is drawn using a di�erent line style).The TTU is omposed of a set of 4 omparators, a FP negative bit test, andombinational logi to detet triviality (�gure 3.4). This design overs all thetriviality tests de�ned in table 3.5 and enables building a uniform TTU8.Table 3.6 shows the hit-ratios for 256 entry (4-way sets) Memo-Tableswith and without trivial alulation detetion, and the perentage of trivialalulations out of all memoized instrutions. An average 3% enhanementis possible by just adding iruits to perform trivial alulation detetion, asopposed to quadrupling the Memo-Tables size in order to ahieve the sameenhanement as shown by �gure 3.5. For FP appliations, Memo-Tables ofsize 128 with trivial alulation detetion have higher hit-ratios than 1K entryMemo-Tables without trivial alulation detetion.Table 3.7 shows the main trivial operation ontributers. For eah instrutiontype: the trivial operation ratio, the perentage out of all trivial instrutions,and the breakdown of trivial values deteted is displayed. The tables showsthat 93% of all trivial instrutions ontain the values one or zero. Thus we ansimplify the triviality hek by just testing for zero and one. We an furthernarrow down the sope of the triviality test by just heking triviality for thetop ontributers (multipliation, addition, subtration, and division) but for thesake of uniformity we will hek triviality (zero and one only) for all relevantinstrutions. Thus our onlusions are straightforward: eahMemo-Table willhave a TTU integrated into it, this ahieves a hit-ratio enhanement omparableto a size inrease of one order of magnitude.8Just as an integer Memo-Table is di�erent than a FP Memo-Table so is an integer TTUdi�erent than a FP TTU.

3.5. CONTENTS OF MEMO-TABLES 19

Result

MEMO

TABLE

DIVISION

UNIT

operation

completed

line

Operand 2

Operand 1

TRIVIAL

TEST

Opcode

trivial/nontrivial line

hit/miss lineMUX

Figure 3.3: Layout of a Trivial Test Unit adjaent to a Memo-Table andDivision Unit.3.5 Contents of Memo-TablesOur previous simulations used a Memo-Table for eah instrution type. It ispossible that for di�erent appliations someMemo-Tables won't be utilized atall, while others will su�er from apaity misses. Miroproessors have separateInstrution and Data ahes to make it possible to aess them at the sameyle, not beause this enhanes the hit-ratio (it doesn't [21℄). On the otherhand one entralized Memo-Table will su�er from a longer hit-time, mighthave to be multi-ported, might su�er from non-uniform aess due to line delays,and disallows di�erent mapping shemes for integer and oating point values.Our previous simulations show that the average number of Memo-Tablesused per appliation is 11.7 (out of 19). When ounting the number of aessesper Memo-Table we disovered that the mean is lower than the standarddeviation for all appliations. This shows that there are many tables that areaessed relatively little and a few whih are highly aessed, leading us toassume that using a uni�ed Memo-Table might enhane the hit-ratio.Due to the problems in using a uni�ed table mentioned earlier we suggestadding a level betweenMemo-Table per instrution to a uni�edMemo-Table.

20 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES
Comparator Comparator Comparator

a a 0 b 1 b 0

Comparator

b1Opcode

Neg

Test

a

equal/not equal equal/not equal equal/not equal neg/not negequal/not equal

Opcode

Triviality
Detection

a b 0 1 NaNInf

trivial/nontrivial line

Result Source

MUX

MUX

Result

1 2 30

Figure 3.4: Layout of a Trivial Test Unit, the opode of the instrution deter-mines whih omparisons are used.The motivations for a spei� setup are the utilization per table, the funtionalunits that proess eah instrution, and the e�et of theMemo-Tables' size onthe hit-ratio. EahMemo-Table will ontain one heavily exeuted instrutionand one or more under utilized instrutions. Thus are hoie of tables is:1. Integer - integer multipliation (heavily used) and division (lightly used).Both use the same unit (604e) or adjaent units (R10000). This table willbe the largest (double size) as the hit-ratio onstantly rises for a largerMemo-Table size (setion 3.3). Total dynami instrution ount:35%.2. Long Lateny - oating point multipliation (heavily used), division,and square root taking. Usually share iruitry in most miroproessors.Total dynami instrution ount: 24%.3. Addition - oating point addition. Total dynami instrution ount:18%.4. Subtration - oating point subtration (moderately used), negation,

3.5. CONTENTS OF MEMO-TABLES 21appliation org hr new hr trivial ratiomesa 0.42 0.51 23%epi 0.15 0.18 4%rasta 0.32 0.37 9%mpeg2 0.58 0.65 51%gsm 0.05 0.08 3%ghostsript 0.96 0.97 57%jpeg 0.82 0.84 54%g721 0.49 0.51 22%pgp 0.07 0.07 0%tomatv 0.19 0.28 13%swim 0.19 0.22 7%su2or 0.25 0.26 5%hydro2d 0.90 0.93 46%mgrid 0.69 0.71 6%applu 0.40 0.43 7%turb3d 0.75 0.83 62%apsi 0.35 0.40 16%fpppp 0.40 0.44 8%wave5 0.11 0.12 1%g 0.94 0.96 72%ompress 0.13 0.13 8%perl 0.96 0.97 1%harmoni mean 0.46 0.49 22%Table 3.6: Hit-ratios for 256 entry (4 entries to a set) Memo-Tables with andwithout trivial alulation detetion, and the perentage of trivial alulationsout of all memoized instrutions.instrution tr/a inst/all value breakdown (%)0 1 = �Int Multipliation 0.38 0.31 45 55 0 0FP Multipliation 0.23 0.25 86 14 0 0FP Addition 0.26 0.22 100 0 0FP Subtration 0.24 0.11 42 0 52 0Int Division 0.25 0.3 46 29 24 0FP Division 0.13 0.2 56 30 14Int!FP Conversion 0.8 0.2 100 0 0 0All Instrutions 0.22 1.00 72 21 7 0Table 3.7: Breakdown of triviality per instrution type. Column 2 is the trivialratio out of all Memo-Table aesses, olumn 3 is the ratio between the in-strutions' trivial operations to all trivial operations, and the last olumns showthe breakdown of the trivial values.absolute value and move. Using Memo-Tables both for addition andsubtration, although they use the same iruitry, makes it possible to

22 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES
��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Change

Ratio

Hit

6%

128
trivial

256 256
trivial

1024

3%

3%

3%

6%

6%

128

integer applications

all applications

fp applications

Figure 3.5: Changes in hit-ratio of Memo-Tables with and without trivialalulation detetion (base Memo-Table of size 128/4).aess both in the same yle. Total dynami instrution ount:11%.5. Comparison & Conversion - oating point omparisons and onver-sions from single preision to double preision to integer formats. Thistable will be smaller (half size) due to the fat that the hit ratios of om-parisons and onversions hardly grow with inreases inMemo-Table size(setion 3.3). Total dynami instrution ount: 12%Table 3.8 ompares using single instrutionMemo-Tables, multiple instrutionMemo-Tables and a uni�ed Memo-Table. Using multiple Memo-Tables,has the same bene�ts of using single Memo-Tables with a better utilization.Using a uni�ed Memo-Table has a better utilization but an have a higherhit-time whih o�sets the possible hit-ratio enhanement.trait single multiple uni�edlookup time small table, small table, larger table,low lookup time low lookup time higher lookup timetable aess lose to FU, lose to FU, distant from some FUs,uniform aess uniform aess nonuniform aessports read/write read/write 1 opode, read/write 1 opode, 2 operands,2 operands, 1 result 2 operands, 1 result 1 result, per FUmapping di�erent mapping di�erent mapping same mapping shemeshemes shemes for di�erent data typesutilization low, some tables moderate, 2-5 instrution high, all instrutionsaren't used types per table use 1 tableontention low, only one moderate, several high, all instrutionsinstrution per table instrutions per table ompete for entrieshardware high, needs omparators moderate, omparators very low, one setomplexity and TTU per instrution and TTU per table of omparators and TTUTable 3.8: Comparison of the three Memo-Tables ontents shemes.

3.5. CONTENTS OF MEMO-TABLES 23
single(64)

single(128) multiple(512)
unified(1024)

unified(2048)
multiple(256)

��
��
��
��

��
��
��
��

fp applications

all applications

integer applications
��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

0.40

0.50

0.60
Hit

Ratio

Figure 3.6: hit-ratio of single, multiple, and uni�ed ontents sheme. EahMemo-Table is 4-way set assoiative, uses random replaement, uses the LSBsof the operands (and opodes) as indies toMemo-Table entries, and performstrivial alulation detetion.Figure 3.6 shows the hit-ratios of 19 single instrution 64 and 128-entryMemo-Tables, 5 multiple instrution 256 and 512-entry Memo-Tables, anda uni�ed 1024 and 2048-entry Memo-Table. Eah level uses approximatelythe same amount of storage. The rest of the harateristis of the the Memo-Tables are 4-way set assoiativity, random replaement, indexing using theLSBs of the values and opodes, and trivial alulation detetion.The �gure shows the multiple table approah is better than the single tableapproah and omparable to the uni�ed approah. Given that using multi-ple Memo-Tables is a good ompromise between single Memo-Tables and auni�ed Memo-Table (table 3.8), and that the di�erene in hit-ratios is negli-gible (�gure 3.6) our deision is to use multiple Memo-Tables eah ontainingseveral instrution types.Using multipleMemo-Tables also answers the question: \How does addingMemo-Tables impat the die size of the proessor?". It is obvious that addingMemo-Tables requires additional transistors and wires to bring the operandsand results from the FUs to the Memo-Tables. However, the size of 5x6KBMemo-Tables is 30KB. Modern miroproessors are already integrating L2ahes with sizes in the 256KB range (Intel Pentium-III, AMD Athlon) withfuture proessors projeting onhip ahes in the exess of 1MB. In fat, miro-proessor designers are looking for beter uses of their transistors than just usingthem as ahes. IM �ts this role perfetly. The wire problem is solved by usingmultiple Memo-Tables loated adjaent to the FUs that use them, no long,ross hip, wires are needed.3.5.1 Exploiting Inverse and Commutative OperationsThe multipliation, addition, and equality operations are ommutative, for ex-ample: a � b = ! b � a = . It might be possible to exploit this trait byperforming a ommutative lookup in the Memo-Table. The index reated byhashing the bits of a; b are the same as for b; a. All we have to do now is omparethe entries in the set to a; b and to b; a. Thus if a previous instrution alulated

24 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLESb�a we will reeive a hit for an instrution alulating a�b. The disadvantage ofthis tehnique is that we now need twie the amount of omparators as before.4-way set assoiativity beomes 8-way.Another mathematial rule we an exploit is the properties of inverse opera-tions. If a+ b = were exeuted and inserted into the Addition Memo-Table,the information to exeute operations a = � b and b = �a are residing in theMemo-Table. The question is ould we exploit this information and memoizeinstrutions that weren't exeuted even one yet? The same is true for FP mul-tipliation and division. We an't implement the same idea for integers beause=b = a doesn't neessarily imply that a � b = (100=3 = 33, 3 � 33 = 99). Thesame problem exists for onversions. Converting a FP number to an integeror onverting a double preision FP number to a single preision FP numberresults in loss of auray. Therefore trying to perform an inverse lookup anlead to wrong results (1:3! 1 but 1! 1:0). We built an elaborate mehanismto enable inverse lookup and simulated it.In addition we omposed aMemo-Table whih we will all the ComparisonMemo-Table, whih ontains the equal, less-then, equal or less-then instru-tions. In order to have omparisons bene�t from previous omparisons betweenthe same two numbers we altered the Memo-Table to store the relationshipsbetween two numbers in the result �eld. It is either -1 (a < b), 0 (a = b), or 1(a > b)9.We ran the benhmarks on this new organization whih performs ommuta-tive and inverse lookups and stores the relationships between pairs of numbers.The results were disappointing, no inrease in the hit-ratio was measured. Thesenew ideas were abandoned in future simulations.3.6 Mapping StrategiesUntil this point in our researh we have indexed the Memo-Tables using theoperand values and spei�ally the least-signi�ant-bits (LSBs) of the value(s)(XORed them together if a two operand operation is memoized) and used themas an index into a Memo-Table. The bene�t of this sheme is it's simpliityand the fat that integer values and FP values an be dealt with in a similarmanner. Mapping using the PC was shown to be inferior.For integer values this mapping strategy is optimal as the LSBs show thehighest entropy [23℄. For FP numbers this isn't neessarily true. Due to theIEEE 754 representation sheme for FP numbers, where the numbers are nor-malized, the most-signi�ant-bits (MSBs) of the mantissa or the LSBs of theexponent would seem to be likely andidates for index bits. Another reason notto use the LSBs for FP numbers is in the ase where integers are the inputs.In this ase the LSBs are all zero, leading to all numbers being mapped to thesame entry.9We are assuming that any ompare instrution an provide this information, this mightnot be true for all arhitetures.

3.6. MAPPING STRATEGIES 25Using these assumptions we devised four additional mapping shemes (as-suming the number of sets in a Memo-Table is n):� Least Signi�ant Bits (lsb) - The log2 n LSBs of the mantissa.� Mantissa (mant) - The log2 n most-signi�ant-bits of the mantissa.� Mixture 1 (mix1) - The LSB of the exponent and the log2 n� 1 MSBs ofthe mantissa.� Mixture 2 (mix2) - The 2 LSBs of the exponent and the log2 n� 2 MSBsof the mantissa.� Exponent (exp) - The log2 n least-signi�ant-bits of the exponent.Figure 3.7 shows the shemes.
lsb

mant

mix
exponent mantissa

expFigure 3.7: The index bits are taken from the LSB of the exponent and MSBof the mantissa.The 5 shemes (and PC indexing) were run on the reommended Memo-Tables of setion 3.5: multiple Memo-Tables of size 256 and 512 and set-assoiativity of 4. An assoiativity of 1 and 2 was simulated as well, as a goodmapping sheme may result in having to use a lesser degree of assoiativity.Figure 3.8 shows the hit-ratios of the FP appliations (as 4 of the 6 shemesaren't relevant to integer appliations).The graph shows that for a lower assoiativity the \middle" shemes (mant,mix1, mix2) result in notieable better hit-ratios. When the assoiativity is 4the di�erenes are muh smaller with exp, mix1, and mix2 having a slight edgeon the lsb and exp shemes. This is due to the exibility of replaing entries ina set. In a diret-mapped Memo-Table mapping two instrutions to the sameset results in onit misses, a better mapping sheme avoids this. If the degreeof assoiativity is higher, instrutions mapped to the same set an ontinue toreside together in the Memo-Table, thus the mapping sheme has less impat.For any degree of assoiativity and any size (the results for 512 entryMemo-Tables add one perent of hit-ratio to the 256 entry results) using the operandvalues as indies results in onsiderable higher hit-ratios than using the PC asan index. The onlusion of this setion is that using a mix of bits from themantissas and exponents of the operand values results in slightly better hit-ratios than the other operand value shemes and muh better hit-ratios thanthe PC based sheme.

26 CHAPTER 3. THE ORGANIZATION OF THE LOOKUP TABLES
lsb mant mix2mix1 exp

��
��
��
��

��
��
��
��

direct-mapped

2-way associativity

4-way associativity
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

0.40

0.45

0.50

Ratio

Hit

Figure 3.8: hit-ratios of a 256 entry Memo-Table (set assoiativity 1/2/4)using the 6 mapping shemes3.7 SummaryThis hapter investigated the struture of theMemo-Tables used in InstrutionMemoization (IM). The harateristis of the Memo-Tables explored were itssize, assoiativity, replaement method, indexing methods, ontents (instrutionmix in the Memo-Tables) and the detetion of trivial alulations.Our main onlusions from the simulations regarding the organization ofMemo-Tables are:� The replaement method is irrelevant, random is as good as LRU.� A degree of set assoiativity higher than four is unneessary.� Enlarging a Memo-Table beyond a ertain point results in diminishingreturns as the hit-time inreases as well as the hit-ratio.� Using several Memo-Tables for di�erent instrution types enables a-essing them onurrently but not having to implement a Memo-Tablefor every instrution type.� Inverse and ommutative operation lookup is hardly suessful and isn'tworth the added Memo-Table omplexity.� Using the ProgramCounter (PC) as the index into aMemo-Table resultsin muh poorer hit-ratios than when the operand values are used as indies.� By deteting trivial alulations, and not entering the operations into theMemo-Tables, a hit-ratio improvement is ahieved that is omparableto a four-fold size inrease.Spei�ally we reommend implementing IM with 5 Memo-Tables: (i) forlong-lateny instrutions (FP div, mult, sqrt), (ii) integer instrutions (INT divand mult), (iii) FP omparisons and FP,INT onversions, (iv) FP addition, (v)and all other FP instrutions (sub, neg, ...). Eah Memo-Table ontains 256entries in sets of 4 (the Integer Memo-Table's size is 512 and the Comp ConvMemo-Table's size is 128) . Entries are replaed randomly and are indexedby the 2 LSBs of the exponent and the 6 MSBs of the mantissa XORed with

3.7. SUMMARY 27the opode. Trivial alulations aren't entered into the Memo-Tables but aredeteted with dediated iruitry. This organization yields an average hit-ratioof 0.50, this is over 80% of the hit-ratio obtained when using an in�nite fully-assoiative Memo-Table (0.60 hit-ratio).

Chapter 4Integrating IM in aProessor's DatapathThis hapter is where we show how IM is integrated into a proessor's dat-apath and enhanes exeution. We will �rst integrate multi-yle instrutionmemoization (mIM) in a miroproessor's datapath (setion 4.1.4), show thespeedup attained (setion 4.2), and explore the inuene of several datapathharateristis on IM (setion 4.3). In the next hapter we will widen the sopeof IM to inlude single-yle instrutions.4.1 A Basi Miroproessor Design4.1.1 Pipeline StagesThe SimpleSalar simulator, whih is modeled after the MIPS series proessors,possesses a �ve stage pipeline for all non Load/Store instrutions (�gure 4.1):1. Feth: Instrutions are fethed from the Instrution Cahe and stored inthe Instrution Feth Queue (IFQ).2. Deode: Instrutions are read from the IFQ and deoded. Their operandsoures are de�ned: either from the Register File (RF) or from instrutionsthat are already in the pipeline. The instrutions are entered into theRegister Update Unit (RUU) (named also the Ative List (R10000) orReorder Bu�er (604e)) where they will reside until ommitted.3. Issue: When an instrution's operands are available it is issued to a freeFuntional Unit (FU) to be exeuted, instrutions are issued out-of-order.An instrution an be delayed in this stage until it's operand dependeniesare satis�ed and a FU is available.4. Exeute: The instrution is exeuted by one of the FUs (there might beseveral types and more than one of eah type). For multi-yle instrutions28

4.1. A BASIC MICROPROCESSOR DESIGN 29
RUUIFQ

Cache
Instruction

Register
File

Fetch Decode Issue

Commit

Execute

IALU

MMU

FADD

FMULT

IMULT

Figure 4.1: Datapath of basi miroproessor.this stage takes several yles. Results are written bak into the RUU,where instrutions wait to be ommitted.5. Commit: The instrution is ommitted by having its result written intothe RF and it is removed from the RUU. Instrutions are ommitted inprogram order, thus even though an instrution has been exeuted it an'tbe ommitted until all previous instrutions have been ommitted.4.1.2 Funtional UnitsThe proessor simulated has �ve di�erent FU types that exeute the proessor'sinstrution set:1. Integer ALU (IALU): Exeutes all integer instrutions (addition, sub-tration, logial operations, shifts, omparisons, and branhes) with theexeption of multipliation and division. All instrutions have a latenyof one yle.2. Integer Multiply Unit (IMULT): Exeutes integer division and mul-tipliation. The unit may be pipelined for multipliation, division isn't

30 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHpipelined.3. Memory Unit (MMU): Exeutes Load/Stores from the L1 ahe.4. Float Add Unit (FADD): Exeutes oating point addition, subtra-tion, omparisons, onversions, negations, and absolute value. The unit ispipelined.5. Float Multipliation Unit (FMULT): Exeutes oating point multi-pliation, division, and square-root taking. The unit is pipelined only formultipliation.4.1.3 Proessor CharateristisL1 Instrution Cahe 16-KBytes, 32-Byte bloks, diret-mappedL1 Data Cahe 16-KBytes, 32-Byte bloks, 4-way assoiativeL2 Uni�ed Cahe 256-Kbytes, 64-Byte bloks, 4-way assoiativeMemory Latenies (yles) L1 hit - 1, L2 hit - 6, L2 miss -18Bus Interfae 64-bit data, 32-bit addressBranh Predition 2048-entry BTB, 2-bit ountersRegisters 32 General Purpose, 32 Floating PointFuntion Units 2 IALU, 1 IMULT1 FADD unit, 1 FMULT, 2 MMUInstrution Latenies Integer multipliation: 4,1& Throughputs Integer division: 20,19All other integer instrutions: 1,1Floating point multipliation: 3,1Floating point division: 20,20Floating point Sqrt: 35,35All other oating point instrutions: 2,1Pipeline attributes 4-instrutions fethed, deoded, issued,and ommitted per yle; 16 instrutions in RUU,out-of-order exeution, in-order retirementTable 4.1: Charateristis of basi miroproessor.The harateristis of the basi datapath we used in our �rst set of simu-lations is listed in table 4.1. This proessor is alled the basi proessor. It'sharateristi values where taken from two popular RISC proessors, the MIPSR10000 [24℄ and PPC 604e [25℄, and from the default values of the SimpleSalarsimulator.4.1.4 Integrating IMThe 5Memo-Tables desribed in the previous hapter are integrated adjaentto the relevant FUs (�gure 4.2). The questions we are onfronted with are: Atwhat stage in the pipeline is memoization performed? What is the lateny of

4.1. A BASIC MICROPROCESSOR DESIGN 31
MT

Integer

MT

MT
Subtract

MT

MT
Long-Lat

Comp-Conv

Addition

IALU

MMU

FADD

FMULT

IMULT

Figure 4.2: Integration of IM in the datapath.a Memo-Table lookup? How many lookups per yle an a Memo-Tablesustain? We will answer the questions in the following setions.
Pipeline StageAs the instrution's operands must be ready before memoization may ommenethere are three alternatives:� Exeute stage: After the instrution is alloated to a FU the Memo-Table lookup and instrution exeution are performed in parallel. A hitterminates the exeution, a miss results in the ompletion of exeution andupdating the Memo-Table with the result. Suessful lookups ompletein 1 yle, unsuessful lookups omplete in the lateny of the instrution.

32 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATH
MT

Lookup

Fetch Decode Issue Execute Commit

instruction’s latency
cycles, the

Save multiple

Overhead
free
lookup

� Issue stage: When the operands are ready we perform a Memo-Tablelookup, whether a FU is ready or not. A hit results in the instrutionbypassing the exeute stage, a miss results in the instrution waiting for aFU, exeuting, and updating the Memo-Table. Suessful lookups om-plete in 1 yle and may gain yles if a FU isn't available. Unsuessfullookups lose one yle due to the lookup, wait for a FU to be available,and then omplete in the lateny of the instrution. Thus an instrutionmay spend extra yles in this stage due to the Memo-Table lookup.
MT

Lookup

Fetch Decode Issue Execute Commit

Save multiple
cycles if FU

isn’t free instruction’s latency
cycles, the

Save multiple

Misses pay a
penalty if a FU
is free

� Deode stage: If during the deode stage it an be determined that theoperands are available, and if they an be read, and if a Memo-Tablelookup an be performed then memoization is possible in this stage. Forhigh-speed proessors suh as the Alpha [26℄, whih requires a pipelinestage just to aess the register �le, this is impossible. For other proes-sors with longer pipeline stages this might be possible with small Memo-Tables (with lower lookup times). A hit ompletely bypasses the issueand exeute stage in one yle. A miss ontinues normal exeution.

4.1. A BASIC MICROPROCESSOR DESIGN 33
Fetch Decode Issue Commit

MT
Lookup

cycles if FU
isn’t free instruction’s latency

cycles, the
Save multiple

Only 12% of hits ready
at this stage, need very
long stage in order to complete lookup

Execute

Save multipleSave 1
cycle

Memoization in the deode stage has the most potential for speedup but only12% of all hits have their operands ready at this stage and we would need a veryaggressive design to enable a Memo-Table lookup at this stage. Memoizationin the issue stage eliminates the need to wait for a FU and an onserve power[27℄ if instrution exeution isn't started, however in the ase of a miss there is anoverhead of the lookup time if a FU was available but wasn't used. Memoizationin the exeute stage is overhead free but the potential gain is the lowest andlimited to the instrution's lateny (less one yle for the lookup).A hybrid solution whih results in a win-win situation is to perform memo-ization in the exeute stage if a FU is available and to perform it in the issuestage if not. This way instrutions that an't issue due to a strutural hazardan still bene�t from memoization without paying the lookup penalty. Futurereferenes will all this sheme: memoization in the issue stage.Aesses to a Memo-Table in this stage are ounted as issues even if thelookup failed and the instrution must wait in the issue stage until a FU is avail-able. The alternative, not to ount Memo-Table lookups as issues, assumesthat the proessor an handle more than four instrutions (the issue width) peryle. This demands resoures that aren't available to the proessor. We de-ided not to make this assumption.
MT

Lookup

instruction progresses to
execute stage

If an FU is available:

Fetch Decode Issue Execute Commit

available: perform
If an FU isn’t

memoization

34 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHMemo-Table Lateny and ParallelismOur assumption is that aMemo-Table lookup has a lateny of one yle. Thisis based on the aess time of on-hip ahes whih an perform several tagompares (in the ase of a set assoiative ahe) and retrieve the ahed datain a single-yle. Thus it should be possible to ompare the operands of aninstrution with a Memo-Table entry and retrieve the result in a single yle.The only di�erene between the lookups is the size of data to ompare.The data ahe tag is at the most 64-bits wide (32-bits for most proessors),the Memo-Table tag may ontain 2 FP numbers and an opode (133 bits).However the omparison is a bitwise equality test so the added gate delay dueto the wider tags shouldn't be muh very big.The same omparison to ahes an be made in order to determine themaximum number of lookups per yle. Most L1 ahes an sustain two lookupsper yle, so we will assume that eah Memo-Table is limited to two aessesper yle (both lookup or update).4.2 Basi Proessor SpeedupOur �rst set of experiments simulates the basi miroproessor with IM per-formed in the issue stage only if an FU isn't available. For all benhmarkssimulated the dynami Fration Enhaned (FE)1 , hit-ratio, and speedup areshown in table 4.2. The FE was measured by simulating a proessor where allmulti-yle instrutions have a lateny of one yle and exeute without theneed of a FU. The di�erene between this run and a regular run is the FE.The table shows that there is a ertain orrelation between the FE to thespeedup, while there is a lesser orrelation between hit-ratio and speedup. Fig-ure 4.3 whih shows the atual points and the best-�t lines (nonlinear leastsquares �tting using the Marquardt-Levenberg algorithm), depits this fat.For example, the integer benhmarks (g721, jpeg, pgp, g, perl, and ompress,whih are irled in �gure 4.3), show a very low speedup, even though theyhave relatively high hit-ratios, due to their low FEs. Floating Point intensivebenhmarks show a muh higher speedup due to a higher FE. Figure 4.4 showsthe breakdown of speedup by suite (SPEC, MB) and data type (Int, FP). Thisshows that we must widen the sope of memoization to enompass more in-strutions and thus enhane more appliations. Chapter 5 is devoted to thistask.1Amdahl's law [21℄ states that the speedup obtained by using an enhanement isTnew = Told � ((1� FE) + FE=SE):Fration Enhaned (FE) is the fration of omputation time in the original mahine thatan use the enhanement. Speedup Enhaned (SE) is the improvement gained if only theenhanement mode ould be used.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 35appliation FE hr spdpmesa 20% 0.51 1.09epi 23% 0.20 1.05rasta 12% 0.40 1.06mpeg2 8% 0.64 1.07gsm 13% 0.09 1.02ghostsript 25% 0.97 1.33jpeg 1% 0.75 1.00g721 1% 0.54 1.01pgp 4% 0.12 1.01harmoni mean 12% 0.47 1.07tomatv 10% 0.30 1.04swim 24% 0.28 1.08su2or 14% 0.12 1.02hydro2d 20% 0.92 1.21mgrid 24% 0.70 1.27applu 6% 0.58 1.04turb3d 10% 0.46 1.04apsi 38% 0.39 1.16fpppp 6% 0.44 1.02wave5 16% 0.34 1.05g 1% 0.96 1.01perl 0% 0.97 1.00ompress 3% 0.27 1.01harmoni mean 13% 0.55 1.07harmoni mean 13% 0.52 1.07Table 4.2: FE, hit-ratios, and speedups on the basi proessor when IM isimplemented.4.3 Measuring Attributes of the DatapathIn order to gauge the impat of di�erent datapath attributes on the e�etivenessof IM we will hange attributes of the datapath and the memoization proess andexplore their impat on the hit-ratio, proessor performane (measured in IPC),fration enhaned, and speedup. We hose eight attributes of the datapath andMemo-Tables to variate:1. Pipeline Width: The maximal number of instrutions that an befethed, deoded, exeuted, and ommitted eah yle. Can vary froma width of 1 (no multiple-issue at all) and upwards.2. Instrution Window: The maximal number of instrutions the pro-essors \sees" in any given yle. Only these instrutions an be issuedout-of-order to the FUs. Must be at least the width of the pipeline.3. Branh Predition: The sheme used to predit the outome of branhesand thus avoid ontrol hazards. Can vary from simple taken/nottaken

36 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATH
1

1.1

1.2

1.3

1.4

10% 20% 30% 40%

S
pe

ed
up

Fraction Enhanced (FE)

O OOOO

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
pe

ed
up

Hit Ratio

OOO OO OFigure 4.3: Correlation between FE to speedup and between hit-ratio to speedup(integer appliations are irled). Lines are best �t using the Marquardt-Levenberg algorithm.shemes to a \perfet" predition sheme.4. Funtional Units: The number of FUs of eah type available, must beat least one of eah type.5. Instrution Latenies: The number of yles it takes to omplete theExeute stage of eah multi-yle instrution.6. Memory Hierarhy: The apaity, line size, assoiativity, hit/miss timeof the ahes, an vary from a perfet ahe to no ahe at all.7. Memoization Lateny: The lateny of a Memo-Table lookup.8. Memoization Stage: Could be either at the issue (hybrid solution) orexeute stages.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 37
all applications

integer applications

By Data Type
1.00

1.02

1.04

1.06

1.08

1.10

Speedup

By Suite

MB applications

fp applications

SPEC applications

Figure 4.4: Breakdown of speedup by appliation suite (SPEC, MediaBenh)and by data type (FP, Int) .In order to perform a full fatorial design we would have to perform thousandsof simulations, even a 2k fatorial design (as performed in the previous hapter)would take 256 simulations. However performing a 2k�p fatorial design withp = 4, neessitates only 16 simulations but provides almost the same level ofauray. The levels of eah of the above 8 fators used are:Fator Low Level High LevelInstrution Window 8 32Pipeline Width 2 8Branh Predition Predit taken Perfet preditionFuntional Units 2 IALU, 1 IMULT, 2 MMU 4 IALU, 2 IMULT, 2 MMU1 FADD, 1 FMULT 2 FADD, 2 FMULTInstrution Lateniesint multipliation 6,6 3,1int division 35,35 20,20fp multipliation 3,1 2,1fp division 31,31 20,20fp sqrt 50,50 35,35Memory Hierarhy Basi Perfet memory aessMemoization Lateny 2 yles 1 yleMemoization Stage Exeute stage Issue stageWe measured the hit-ratio, speedup, FE, and IPC (Instrutions Per Cyle)for eah simulation. The following sub-setions present and explain the resultsfor eah of the measurements.4.3.1 Hit-RatioThe minimal and maximal values of the hit-ratio are 0.51 and 0.63. Using theSign Table method [20℄ to alloate the variation between fators shows that 47%

38 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHof the alloation is attributed to the branh predition mehanism, 27% to thepipeline width, window size and their ombination and an additional 24% to theombinations of branh predition with pipeline width and window size. Thememory hierarhy, number of FUs and their latenies and the stage and latenyof memoization have no impat on the hit-ratio.The alloation of variation is onsistent with the results that show that forthe runs in whih the branh predition rate is perfet the hit-ratio is the lowest.This is explained by the fat that instrutions are re-exeuted when the branhpredition rate is low. The following ode exerpt explains the phenomena:/* 1 */ if (a < b)/* 2 */ = a + 2.5;/* 3 */ else/* 4 */ = b + 2.5;/* 5 */ d = a*b;The instrution at line 5 isn't dependent on the result of the omparison atline 1. If the omparison is predited as being taken lines 2 and 5 are exeuted,if later the predition turns out to have been inorret the pipeline is ushedand lines 4 and 5 are exeuted. Thus the alulation at line 5 resides in one ofthe Memo-Tables and a lookup results in a hit. This ase was the primaryreason Sodani and Sohi [8℄ started exploring instrution reuse, they named it\squash reuse".A wider pipeline and larger instrution window raise the IPC, thus moreexeuted but not yet ommitted instrutions are ushed during a branh mis-predition, whih in turns raises the Memo-Tables hit-ratio. The highest hit-ratio, 0.63, is ahieved when the branh predition rate is low (a predit takensheme is used) and the pipeline width (8) and window size (32) are large. Thisshows that the \true" hit-ratio attributed to program and data harateristis isaround 50%. Any additional hit-ratio perentage is due to branh mispredition.4.3.2 Instrutions Per Cyle (IPC)We will use the IPC, whih is the number of ommitted instrutions divided bythe number of yles, as our performane metri. The higher the IPC the betterthe proessor's performane. We measured both the IPC for a run without IMand for a run with IM. The alloations of variations are almost idential. Thevalues measured range from 0.65 to 2.63. The alloation of variation is: BranhPredition - 58%; Window Size - 16%; Memory Hierarhy - 12%; Pipeline Width- 7%; Instrution Lateny - 4%;The results indiate that branh predition plays a very important role inimproving performane. The IPC for the basi proessor is 1.19 with a BPrate of 0.94, when altering only the branh predition sheme the IPC is 1.26(perfet, BP rate of 1.00) and 0.82 (taken, BP rate of 0.26). This shows thatstandard branh predition tehniques are very lose to the perfet sheme.

4.3. MEASURING ATTRIBUTES OF THE DATAPATH 394.3.3 Fration Enhaned (FE)The part of the program that is suseptible to IM is alled the Fration Enhaned(FE). This is the part of the program that bene�ts from IM. The larger the FEis the larger the potential for speedup is. The minimal and maximal FE valuesare 3% and 28%. The alloation of variation is: Instrution Lateny - 31%;Pipeline Width - 23%; Windows Size - 13%; Branh Predition - 11%; MemoryHierarhy - 6%;That the instrution lateny is a ontributing fator is obvious. A longlateny instrution onsumes more proessor yles, raising the fration of theprogram spent exeuting multi-yle instrutions. However the ombined e�etsof pipeline width and window size have an even larger part in the variation. Awide pipeline an issue more instrutions per yle, that an exeute in parallelto the multi-yle instrution \stuk" in the exeute stage. Our intuition saysthat the wider the pipeline is the less the FE is.However the results are ounter intuitive and show exatly the opposite: Ifthe datapath an't proess more instrutions due to a low pipeline width, smallinstrution window size, and/or a low branh predition rate, the long latenyinstrutions stall only a small number of instrutions. Thus the IPC is lowerbut so is the FE, slower proessors have less potential for exploiting IM. Onthe other hand if the proessor an exeute multiple instrutions per yle thelong lateny instrutions delay the ommitment of many more instrutions. Soalthough the IPC is higher the FE is as well, whih lead to a higher potentialfor improvement using IM.4.3.4 SpeedupFinally we arrive at the most important measurement from our point of view:speedup. A high speedup proves the viability of implementing IM in the data-path. The speedups range from 1.01 whih isn't very promising to 1.18 whihshows great potential. The alloation of variation is: Instrution Lateny -42%; Pipeline Width - 20%; Memoization Lateny 9%; Memory Hierarhy -7%; Branh Predition - 6%; Windows Size - 4%; Again we see that instrutionlateny is, obviously, the leading speedup fator, suessfully memoizing theseinstrutions leads to onsiderable savings. Of the other fators pipeline width isthe dominant, this is onsistent with the FE fators and strengthens the relationbetween FE and speedup.The memoization stage doesn't impat the results at all. Neither do thenumber of FUs. Both these fats are related. When simulating the basi pro-essor the number of strutural hazards aused by multi-yle instrutions arerelatively low, only 10% of issue requests to multi-yle FUs are stalled due tothe lak of an appropriate unit, this is opposed to 31% for all instrutions2. Inaddition only 9% of all suessful memoizations our in the Issue stage. Com-paring memoization in the issue stage to memoization in the exeute stage showsthat the average number of yles an instrution is resident in the RUU (RUU2Multi-yle instrution strutural hazards are 8% of all strutural hazards.

40 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHlateny) is the same. This leads to both runs having the same IPC. The aprioriadvantage of memoization in the issue stage isn't used, setion 4.4 elaboratesthis point. Another surprise is that the memoization lateny ontributes only9%, we will explore this phenomena in setion 4.4 as well.
1

1.05

1.1

1.15

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3

S
pe

ed
up

Fraction Enhanced

1

1.05

1.1

1.15

1.2

0.5 0.55 0.6 0.65 0.7

S
pe

ed
up

Hit Ratio

0.5

1

1.5

2

2.5

3

0.5 0.55 0.6 0.65 0.7

IP
C

Hit Ratio

1

1.05

1.1

1.15

1.2

0.5 1 1.5 2 2.5 3

S
pe

ed
up

Instructions Per CycleFigure 4.5: Correlations between FE and speedup (upper-left), hit-ratio andspeedup (upper-right), hit-ratio and IPC (lower-left), IPC and speedup (lower-right).4.3.5 Correlation Between MeasurementsIn order to verify the usefulness of IM we must orrelate the four measurementsreorded above. A high hit-ratio ombined with a low speedup is useless, as isa high speedup on a slow mahine. Figure 4.5 show the orrelation between allfour measurements. Our observations and onlusions are:� As mentioned above there is a diret orrelation between FE and speedup.The more potential there is for memoization the better the speedup is.

4.4. ADDITIONAL MEASUREMENTS 41� There is no orrelation between hit-ratio and any other measurements.This doesn't mean that a higher hit-ratio doesn't inuene the speedup,it does as will be shown in setion 4.4.1. It means that given a �xedMemo-Table struture the FE or IPC of a proessor don't alter the hit-ratio. The only inuene the datapath has on the hit-ratio is throughbranh predition. A poor predition rate leads to a higer hit-ratio, butthis \gain" is o�set by the low performane (low IPC) of the proessor.� There is no diret orrelation between IPC and speedup. This fat isenouraging, our preliminary assumption was that for powerful proessors(high IPC) the speedups would be low. This isn't true, in fat the speedupon the most powerful proessor is 1.11, whih is higher than the speedupon the basi proessor (1.07), although the powerful proessor is morethan twie as fast (1.19 vs. 2.63 IPC). We will explore this orrelationfurther in setion 4.44.4 Additional MeasurementsAfter examining the previous results we deided to re�ne the simulations andonentrate on three of the eight previously simulated fators, fators for whihwe ouldn't make any lear ut deisions. The fators and levels are:1. Pipeline size: This fator ondenses 3 fators (pipeline width, windowsize, and number of FUs) into one fator. All 3 fators are enlarged orshrunken together, a wide pipeline needs a large instrution window anda large number of FUs. In our previous simulations we saw that theirombined inuene surpassed their individual inuenes. The low level isa small pipeline with a width of 2, instrution window of 8, and 1 unit ofeah type. The high level is a large pipeline with a width of 8, instrutionwindow of 64, and 4 units of eah type.2. Memoization Stage: In the previous simulations we ouldn't disernany di�erenes between them. The levels are memoization in the exeuteor issue stages.3. Memoization Lateny: Memoization lateny ontributed only 9% tothe variation. The levels are 2 or 1 mahine yles for a Memo-Tablelookup.For the remaining three fators we hose to target faster proessors by im-plementing low lateny instrutions, perfet branh predition and a perfetmemory hierarhy. As we have only 3 fators we performed a 2k fatorial designwhih onsists of 8 runs. The results are in table 4.3. We hose to display theresults for the FP intensive appliations only in order to magnify the e�ets ofthe IM stage and IM lateny on the results.The alloation of variation of the IPC (100% pipeline size) and hit-ratio(equal distribution) is trivial. The alloation of variation of the speedup is:

42 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATHFator Levels IPC hr Spdp Fator Levels IPC hr Spdpsmall exeute 2 1.02 0.47 1.04 small issue 2 1.02 0.47 1.04small exeute 1 1.03 0.47 1.06 small issue 1 1.03 0.47 1.06large exeute 2 3.54 0.47 1.09 large issue 2 3.54 0.47 1.09large exeute 1 3.65 0.47 1.13 large issue 1 3.65 0.47 1.13Table 4.3: 23 fatorial design and resulting IPCs, hit-ratios, and speedups. Thefators and levels are pipeline size (small, large), IM stage (exeute, issue), andIM lateny (2 or 1 yles).
1.1

1.15

1.2

1.25

0 0.1 0.2 0.3 0.4 0.5

S
pe

ed
up

Structural hazard ratio

Issue stage
Execute stage

Figure 4.6: Comparison of IM in the issue and exeute stages. On a largepipeline mahine the number of FUs is raised until the strutural hazard ratiois 0. Speedup is shown as a funtion of the strutural hazard ratio.Pipeline size - 78%; IM lateny - 20%; IM stage - 0%; To understand why theresults are neutral to the memoization stage we measured the strutural hazardratio (number of suessful issues divided by number of issue attempts) andfound it to be under 0.02. Reduing the number of FUs raises the struturalhazard ratio. When this happens the di�erenes between memoization in theissue and exeute stage beome apparent as displayed in �gure 4.6. Followingthis set of experiments we an onlude:� The most important onlusion is that IM favors fast proessors. A higherIPC usually results in a higher speedup. A proessor with short latenyinstrutions, perfet memory hierarhy, perfet branh predition, andmultiple-issue apabilities still has it's performane hampered by the la-tenies of multi-yle instrutions. Using IM redues this impediment andaelerates proessing.� The hit-ratio is orthogonal to the datapath design and is dependent uponthe appliation's inherent loality and the Memo-Table design.� The memoization stage has little to no inuene (as an be seen by om-

4.5. SUMMARY 43paring the right and left hand sides of table 4.3). Most instrutions �nd aFU and progress to the exeute stage, this limits the e�et of performinga lookup in the issue stage. Figure 4.6 shows that only when the stru-tural hazard ratio (number of suessful issues divided by number of issueattempts) is high (due to less FUs) IM in the issue stage is better.� A memoization lateny of 2 yles isn't \fatal" to IM, even though in ourmodel most FP instrutions have a lateny of 2 yles. This indiatesthat a large amount of the speedup an be attributed to long latenyinstrutions suh as division and sqrt.4.4.1 Speedup as a Funtion of Memo-Table OrganizationThe previous simulations all used a �xed Memo-Table organization. In thissetion we shall observe the impat of varying theMemo-Table organization onthe hit-ratio and speedup (over the basi proessor). We will use the multipleMemo-Table design and vary the size, assoiativity, and trivial alulationdetetion of the Memo-Tables. The replaement method will be random andthe mapping sheme will use the mix2 sheme (setion 3.6).Table 4.4 shows the Memo-Table organizations, hit-ratios, and speedups.The hit-ratio inrease rises swiftly until a size of 512 entries and then tapersout, no matter whatMemo-Table enhanements are introdued. This diretlya�ets the speedup whih also attens out. The results strengthen our hoieof Memo-Table organization. Investing more hardware resoures in Memo-Tables isn't worth the small improvements ahieved. These results mirror theresults observed in hapter 3Size Asso Triv hr spdp32 1 no 0.34 1.0464 2 no 0.41 1.05128 2 yes 0.48 1.06256 4 yes 0.51 1.07512 8 yes 0.54 1.081024 8 yes 0.56 1.082048 16 yes 0.57 1.08Table 4.4: Di�erent Memo-Table organizations and the resulting hit-ratiosand speedups (on the basi proessor).4.5 SummaryIn this hapter we investigated the integration of IM into the proessors's datap-ath, the performane enhanement gained by exploiting IM, and the inuene ofthe datapath struture on IM and vie-versa. On a basi proessor whose designis similar to the MIPS R10000 and PPC 604e, two ubiquitous RISC proessors,

44 CHAPTER 4. INTEGRATING IM IN A PROCESSOR'S DATAPATH13% of the exeution time an be attributed to multi-yle instrutions. 52%of those instrutions are repeated with the same operands. By implementingIM an average (harmoni mean) speedup of 1.07 is attained. This speedup is ashigh as 1.32 for highly intensive FP appliations, and as low as 1.003 for integerappliations whih hardly use multi-yle instrutions.The inuene of the datapath on IM is minimal. The only datapath fatorthat e�ets the hit-ratio is the branh predition rate. Mispredited branhesause instrutions to be ushed from the pipeline, many of these instrutionsmay later be re-exeuted ausing hits in the Memo-Tables. Thus the hit-ratiois raised , together with the total exeution time.On the other hand the inuene IM has on the datapath is large. Themajor ontribution is the redued lateny of suessfully memoized instrutions.Having instrutions omplete exeution earlier enables dependent instrutionsto be issued earlier. The number of yles an instrution spends, from beingfethed until it is ommitted (RUU lateny) is redued, whih diretly reduesexeution time. A minor ontribution to enhaned exeution is the virtualaddition of FUs. When a strutural hazard ours aMemo-Table lookup maybe able to provide the instrution's result, thus the exeute stage of the pipelineis irumvented.Instrution memoization is best utilized when it redues the lateny of \riti-al" instrutions, instrutions that are prohibiting many other instrutions fromadvaning through the pipeline. It is hard to say in what datapath design aninstrution is ritial and in what design it isn't. However it is lear that fasterproessors that an exeute more instrutions per yle bene�t greatly from IM.A proessor with a wide pipeline, a near perfet memory hierarhy, a high rateof branh predition, and enough FUs will enounter a bottlenek when waitingfor long lateny instrution to omplete. IM relieves this bottlenek.On the other hand slower proessors might have their bottlenek in thememory hierarhy or issue rate. In this ase IM will still speedup proessingbut at a lower rate. Even in the ase of an inorder proessor, where everyinstrution delays its suessors, the e�et of memoization is less than for anout-of-order proessor whih an mask the e�et of long lateny instrutions byexeuting \around" them. The average speedup on an inorder basi proessoris 1.05 (over an IPC of 0.70) ompared with 1.07 (over an IPC of 1.27) for thesame out-of-order proessor.All the above notwithstanding, the sope of multi-yle IM is limited. Fewappliations spend more than 20% of their exeution time omputing multi-yle instrutions. Many more spend less than 1%. It is imperative that wewiden the sope of IM to enompass single-yle instrutions as well. Chapter5 is dediated to this issue.

Chapter 5Memoizing Single CyleInstrutionsIn this researh we have only memoized multi-yle instrutions. The rationalebehind this deision has been that single-yle instrutions an be exeuted inthe same yle a Memo-Table lookup is performed, thus no improvement isgained. However if instrutions are memoized in the issue stage their results anbe obtained even if a suitable FU isn't available, thus many strutural hazardsare avoided.We added to our simulator the apability to memoize single-yle instru-tions as well. The instrutions memoized are integer addition and subtration,shifts, logial instrutions, moves, and set less than (slt) instrutions. Themnemoni single-yle IM (sIM) refers to the memoization of both multi-yleand single-yle instrutions.We do not memoize onditional and unonditional branhes, these instru-tions aren't ontext free and their results are Program Counter (PC) dependent.In any ase the branh predition mehanism is itself a Memo-Table of sorts,and performs very well. For the same reason we do not memoize loads or stores.We would have to trae all memory referenes and invalidate Memo-Tableentries that had their addresses updated. Moreover the L1 ahes are them-selves Memo-Tables whih do a very good job of exploiting previous memoryreferenes.5.1 Comparing Single and Multi-Cyle IMFor our �rst set of simulations we have added a 512-entry Memo-Table (theSingle-Cyle table) that holds the single-yle instrutions. Table 5.1 displaysthe single-yle hit-ratios, the aumulated hit-ratio and the speedups, for om-parison the speedups for mIM are inluded in parentheses. The table learlyshows that memoizing single-yle instrutions results in a speedup that is 50%better than the speedup obtained by memoizing only multi-yle instrutions.45

46 CHAPTER 5. MEMOIZING SINGLE CYCLE INSTRUCTIONSappliation s hr hr spdpmesa 0.72 0.64 1.12 (1.09)epi 0.52 0.45 1.08 (1.05)rasta 0.68 0.62 1.09 (1.06)mpeg2 0.49 0.49 1.10 (1.07)gsm 0.36 0.31 1.07 (1.02)ghostsript 0.92 0.92 1.49 (1.33)jpeg 0.45 0.45 1.07 (1.00)g721 0.51 0.51 1.12 (1.01)pgp 0.41 0.39 1.07 (1.01)harmoni mean 0.56 0.53 1.13 (1.07)tomatv 0.57 0.48 1.06 (1.04)swim 0.37 0.33 1.10 (1.08)su2or 0.55 0.42 1.03 (1.02)hydro2d 0.32 0.51 1.22 (1.21)mgrid 0.84 0.80 1.27 (1.27)applu 0.93 0.89 1.04 (1.04)turb3d 0.59 0.55 1.09 (1.04)apsi 0.45 0.42 1.17 (1.16)fpppp 0.65 0.46 1.02 (1.02)wave5 0.33 0.33 1.07 (1.05)g 0.75 0.75 1.04 (1.01)perl 0.75 0.75 1.02 (1.00)ompress 0.51 0.51 1.08 (1.01)harmoni mean 0.58 0.56 1.09 (1.07)harmoni mean 0.57 0.55 1.11 (1.07)Table 5.1: single-yle hit-ratios, ombined hit-ratios, and speedups on the basiproessor when single-yle IM is implemented.But what the table doesn't show is from where this speedup originates. TheRUU lateny is redued but why? If a Memo-Table lookup and the latenyof a single-yle instrution are one yle, where is the speedup oming from?The answer is: by reduing the number of strutural hazards. On the averagethe ratio of strutural hazards out of all requests for a FU is 31%. Almost every3rd instrution in the issue stage an't �nd a free FU.Memoizing single-yle instrutions redues the strutural hazard ratio to15%. Suessful Memo-Table lookups overome the absene of enough FUs.Thus when the number of FUs a proessor possesses is suh that no struturalhazards our, single-yle memoization will be useless. Figure 5.1 is similar to�gure 4.6, it shows the speedup of mIM and sIM as a funtion of struturalhazard ratio and IPC. When the strutural hazard ratio drops the di�erenebetween multi-yle to single-yle narrows and then disappears. mIM speedupis improved as the IPC of an appliation rises, on the other hand sIM speedupdereases as the IPC rises. The impat of sIM diminishes as more FUs areavailable, sIM e�etively beomes mIM.

5.1. COMPARING SINGLE AND MULTI-CYCLE IM 47
1.1

1.13

1.16

1.19

0 0.1 0.2 0.3 0.4

S
pe

ed
up

Structural hazard ratio

multi-cycle IM
single-cycle IM

1.1

1.13

1.16

1.19

3.45 3.55 3.65 3.75 3.85

S
pe

ed
up

Instruction Per Cycle

multi-cycle IM
single-cycle IM

Figure 5.1: Comparison of single to multi-yle IM. On a large pipeline mahinethe number of FUs is raised until the strutural hazard ratio is 0. Speedup isshown as a funtion of the strutural hazard ratio and of IPC.5.1.1 sIM Compared to Other EnhanementsIt isn't neessary to push ILP to its limit to see the futileness of single-yleexeution. Table 5.2 shows the speedups of several on�gurations over the ba-si unmemoized proessor. The on�gurations add IALUs, multi-yle units,implement mIM and sIM, and ombine all tehniques. In addition we imple-mented a proessors with double the L1 ahe size and a proessor with perfetbranh predition. The base we are omparing against is the basi proessorwhih has a performane of 1.0. The table shows that:1. Adding MCUs hardly e�ets performane, due to the inherent low stru-tural hazard ratio of MCUs.2. Adding ALUs enhanes integer appliation performane better than im-plementing sIM, however FP appliation performane isn't improved aswell as using mIM.

48 CHAPTER 5. MEMOIZING SINGLE CYCLE INSTRUCTIONS3. Adding ALUs to mIMyields, aross all appliations, more than a 50%improvement over sIM.4. Using the resoures dediated to IM in order to ahieve a lower L1 missrate or a higher branh predition rate improves integer appliations morethan IM. However FP appliations bene�t from a higher speedup whenthe resoures are used to implement mIM.What we have now is a tradeo� problem. An ALU, whih has a lateny of 1yle and 100% hit-ratio (every alulation is orret), outperforms a 512-entry(12K bytes and 4 omparators) Memo-Table with a 57% hit-ratio. Whihuses less transistors? Whih is simpler to design? Whih onsumes less power?These questions are beyond the sope of this thesis. If adding an ALU is heaperthen there is no ontest: sIM isn't worthwhile. However in the next setionwe will present several tehniques that enable implementing sIM with a lowerost.Name # ALU # MCU IM Int FP Allbasi 2 1 no 1.00 1.00 1.00basi + ahe X 2 2 1 no 1.09 1.06 1.07basi + perfet BP 2 1 no 1.10 1.05 1.07basi + mIM 2 1 mIM 1.01 1.10 1.07basi + sIM 2 1 sIM 1.07 1.13 1.11basi + 3 ALUs 3 1 no 1.10 1.04 1.05basi + 4 ALUs 4 1 no 1.12 1.05 1.07basi + 2 MCUs 2 2 no 1.00 1.01 1.01basi + 3 MCUs 2 3 no 1.00 1.01 1.01basi + 3 ALUs + mIM 3 1 mIM 1.12 1.16 1.15basi + 4 ALUs + mIM 3 1 mIM 1.13 1.17 1.16Table 5.2: Comparison of adding FUs, integrating IM, and ombining both onthe basi proessor. MCU stands for Multi-Cyle Unit, any unit whih exeutesmulti-yle instrutions.5.2 Lowering the ost of sIMIn the previous setion we suggested that sIM isn't \real" memoization, thebene�ts we gain are due to using the Memo-Table that ontains single-yleinstrutions as an additional ALU. Adding an ALU instead of theMemo-Tableresults in greater performane. In order to make sIM worthwhile we have toredue the ost of the single-yle Memo-Table or alternatively improve itsperformane. We suggest three shemes:� Use existing hardware. Spei�ally use the existing Memo-Tables. Wehose to use the IntegerMemo-Table whih ontains integer division andmultipliation instrutions to hold all single-yle instrutions as well. A

5.2. LOWERING THE COST OF SCIM 49variant of these sheme is to use LRU replaement and a vitim ahe thatonly ontains evited division and multipliation instrutions.� Use a simpler Memo-Table. A small (32-entry), diret mapped, with notrivial detetion Memo-Table is used.� Perform sIM in the deode stage. In setion 4.1.4 we desribed howthis may be implemented. The problem is that a long mahine yle isneessary in order to determine if the operands are ready, �nd them, andperform a Memo-Table lookup. Our solution is to speulatively performa lookup using the urrent data in the Register File (RF). If the RF hasvalid data (no previous instrutions are writing to the operand registers)and the lookup was suessful, the instrution an progress to the ommitstage, bypassing the issue and exeute stages.Sheme Int FP Allregular mIM 1.01 1.10 1.07regular sIM 1.07 1.13 1.11s insts. in idiv/imult Memo-Table 1.05 1.12 1.10above with lru and vitim ahe 1.06 1.12 1.10small s Memo-Table (32-entry) 1.02 1.11 1.08s memoization in deode stage 1.02 1.12 1.09Table 5.3: Speedups of di�erent shemes used to lower the overhead of sIM.Table 5.3 ompares the 3 suggested alternatives with regular mIM andsIM. The �rst alternative yields an average speedup of 1.10 as opposed to 1.11when a dediated Memo-Table is used for the single-yle instrutions. Thespeedup attributed to integer division and multipliation is around 1.01, mean-ing that the single-yle instrutions swamped the Integer table and redued thehit-ratio of integer division and multipliation. Thus we onverted the Integertable to the Single-Cyle table. But this table itself is less produtive than anadditional ALU. In the seond alternative the hit-ratio of the Single-Cyle tabledrops from 57% to 19% ausing the speedup to drop to 1.08. The appliationsthat \su�er" the most are the integer appliations, their average speedup is 1.02ompared to 1.10 for regular sIM.The third alternative, memoizing single-yle instrutions in the deodestage only doesn't perform muh better. Only 30% of the previously suessfullookups are deteted now. Morever if IM an be performed in the deode stagewhy not dediate an ALU or two to speulatively perform alulations in thedeode stage. Thus we ould onlude that sIM reaps no real performanegains. Nevertheless sIM in all its variants enhanes FP performane over onlyusing mIM. If it isn't possible to add an ALU any of the above tehniques willsuÆe to boost performane. In appendix A we will present how mIM andsIM work on real world proessors.

Chapter 6Comparing IM to OtherTehniquesIn the introdution hapter of this thesis we surveyed previous ourrenes ofmemoization in the literature and other related tehniques. In this hapter wewill ompare our view of Instrution Memoization to other tehniques proposed,list the advantages and disadvantages of IM over these shemes and try to qualifythe di�erenes. We won't quantify the di�erenes as eah researh uses slightlydi�erent benhmarks with slightly di�erent simulators and in some ases usesdi�erent units of measurement.In this hapter we have not hosen to belittle the work of others. All researhis built upon previous suesses and failures. We will show how IM expandsearlier work on memoization and di�ers from Value Predition (VP). The workof Sodani & Sohi on Instrution Reuse (IR) is monumental in exploring thesoures of instrution reuse and in laying out a framework that strives to reuseall instrutions. We will show how IM is di�erent and omplements IR.6.1 Early MemoizationThe earliest (1982) use of instrution reuse in hardware is by Harbison's TreeMahine (TM) [5℄. The TM is a stak-oriented arhiteture whih evaluatesinstrutions at the head of the stak. A value ahe is used in order to reuseinstrutions that haven't had their operands written to sine the last evaluationof the instrution. In this ase the evaluation of the instrution is performedby obtaining the result from the value ahe. The tehnique is limited by twofators: the instrutions are identi�ed by their PC and are invalidated by awrite to their operands, thus true value memoization isn't possible. The sameoperation might be performed by di�erent instrutions or the same instrutionwill use the same values (but be invalidated by a write to one of the operands).The tehnique is more suited to deteting CSEs during run-time and is almostimpossible to ompare to due to the extraordinary mahine arhiteture.50

6.2. VALUE PREDICTION 51In 1992 Rihardson [6℄ proposed integrating memoizaton and trivial oper-ation testing in multipliation, division, and sqrt instrutions. This work is adiret predeessor to ours and di�ers only in sope. Rihardson used shade [28℄an instrution-level non-arhiteturally detailed simulator. The only arhite-tural details supplied are the latenies of the memoized instrutions. His resultsmath ours in that longer lateny instrutions are more suseptible to memoiza-tion than short lateny instrutions. Our researh, of ourse, is riher in detailand explores all aspets of a memoizing proessor. Rihardson [29℄ mentionsthat funtions and ode areas an be memoized as well (as we do in appendixB) but aside from a few simple examples he doesn't explore the issue in depth.Flynn & Oberman [7℄ expand the idea to inlude storing the reiproals ofdivision instrutions. In addition they perform a detailed analysis of the traitsof the division ahes used (size, assoiativity) and of the ost/performanetradeo�s (silion area vs. CPI) assoiated with implementing them. As withthe work of Rihardson our researh is of a broader sope and more detailed.Azam, Franzon & Liu [27℄ use memoization in order to redue power on-sumption rather than enhane performane. Thus almost every aspet of theirreuse tehnique is di�erent from ours: The stage of memoization (only if alookup fails is the instrution exeuted), the instrutions memoized (only multi-pliation), and the harateristis of the lookup table (small and diret-mappedin order to save more power).6.2 Value PreditionIn 1996 and 1997 a series of papers were published that introdued and disussedthe tehnique of Value Predition (VP) (Gabbay &Mendelson [9℄, Lipasti, Wilk-erson & Shen [10, 11℄, and Sazeides & Smith [12℄). The idea is that the resultsof an instrution an be obtained speulatively based on results of previous in-voations of the same instrution, exeeding the dataow limit on extratableILP.The values are saved in a table and if they are onstant (the same value is re-peatedly produed), are di�erent by a onstant stride (an inrement instrutionwill have a stride of 1), or follow some reurring pattern the result of the urrentinvoation an be predited with a high-degree of auray. The instrutionsare exeuted speuatively and aren't ommitted until their dependenies aresatis�ed. Of ourse a wrong predition will ause the erroneous instrution andall instrutions dependent on it to be realulated.The main di�erene between the tehniques is their reliability: VP is spe-ulative and while it may apture redundany that an break the ILP limit itinurs a high overhead for mis-preditions. On the other hand IM is unspeu-lative and an't resolve data dependenies but it arries no overhead. Sodani& Sohi perform a detailed analysis of the di�erenes in [30℄. Perhaps a hybridVP/IM implementation an exploit the advantages of both tehniques.Gabbay and Mendelson [31℄ have proposed to use program pro�ling in orderto mark instrutions that have a tendeny to be predited orretly and only

52 CHAPTER 6. COMPARING IM TO OTHER TECHNIQUESpredit these instrutions, thus lowering the mis-predition rate. This is yetanother major di�erene between VP and IM. IM is software transparent andmay even be used aross ontext swithes.6.3 Comparing IM to IRThe most omprehensive work in the �eld of reusing previous alulations wasperformed by Sodani & Sohi [8℄ in the years 1997-2000. They introdued theonept of Instrution Reuse (IR). The instrutions are inserted in a table alledthe Reuse Bu�er (RB). Three reuse shemes are presented:Sv Eah entry ontains the PC, operand values, and result of an instrution.If the urrent instrution's PC and operands math an entry the result isused.Sn Eah entry ontains the PC, operand register names and the result. If theurrent instrution's PC and operand register names math the resultis used. If a register is written into, all entries using that register areinvalidated. Thus it is enough for the PC to math.Sn+d In addition to the information in the previous sheme eah operand namehas a link to its soure instrution (if it's in the RB). By building theselinks instrutions may be kept in the RB even if their registers are writtenupon (due to their links).The �rst sheme is similar to IM, if the operands and operation math obtainthe result from the RB. However IR uses the Program Counter as the sole indexto the RB. Thus instrutions at di�erent loations an't use eah others previousresults. We will elaborate on this in setion 6.3.1. This sheme is hampereddue to the fat that the reuse test an be performed only in the instrutionissue stage (the operands must be ready). For single-yle instrutions no yleredution is made.The seond sheme is aimed at solving this problem by omparing the registernames of the fethed instrution to instrutions in the RB. If the register namesmath and the registers' ontents haven't been altered sine storage in the RB,the result an be obtained from the RB as early as the feth stage. This is asigni�ant gain, unfortunately only the last appearane of an instrution anbe used. Previous invoations with di�erent operand values will have beeninvalidated.Molina, Gonz�alez & Tubella [32℄ have reognized this and try to reate linksbetween instrutions that produed the same result, resulting in instrutionswith di�erent PCs aessing the same entry. Their onlusion is that a hybridsheme whih maps an entry both by its PC and by its operand values (doublingthe size of the table) is neessary in order to boost performane. In the fethstage the PC is used to index the table, if the lookup is unsuessful the operandvalues are used in the issue stage.

6.3. COMPARING IM TO IR 53The third sheme suggested by Sodani & Sohi is targeted at exploiting de-pendent instrutions fethed together, these instrutions are alled dependenehains. If dependene an be determined it is enough to detet reuse of the�rst instrution in the hain, the linked instrutions an be reused as well. Thissheme performs better than the seond one as all instrutions are hains ofone. However only 25% of all dependene hains are of a length of more thanone. Thus the use of this sheme is limited.The onlusion of Sodani & Sohi is that their �rst sheme is the best asit unovers the most reuse. However the potential for speedup is diminishedas most instrutions an be exeuted during the time it takes to perform aRB lookup. For this reason IM whih is streamlined to use only the operandvalues an outperform the Sv sheme of IR. The reasons are due to the di�erentmapping shemes, organization of the tables, the stage at whih IM is performed,and the simpliity of IM.6.3.1 PC vs. Value Mapping. In setion 3.2 we have shown that mapping Memo-Table entries using theoperand values is superior to using the PC (table 3.3 displays this learly).The di�erenes between mapping using the PC vs. mapping using the operandvalues an be understood by examining a simple yet widely used appliation:matrix multipliation.for (i=0;i<N;i++){for (j=0;j<N;j++){[i℄[j℄ = 0.0;for (k=0;k<N;k++)[i℄[j℄ += a[i℄[k℄*b[k℄[j℄;}} Table 6.1: Naive matrix multipliation.The most naive sheme (table 6.1) performs N3 multipliations when multi-plying two N �N matries. To ensure that we will have redundant multiplia-tions we usedN di�erent oeÆients whih result inN2 di�erent multipliations.The hit-ratios (of FP multipliation only) for multiplying two 100�100 matriesare shown in the top graph of �gure 6.1 (sizes 128-1024, assoiativity 4, randomreplaement, trivial alulations stored in the Memo-Table). The hit-ratioswhen the PC is used as an index are invariant to the size of the Memo-Table,this is easily explained by looking at the ode. All multipliations are exeutedby one instrution, thus all multipliations are mapped to a single set, leavingthe rest of the Memo-Table unused.Fixing the Memo-Table size and varying the assoiativity is shown in thebottom graph of �gure 6.1 (size 512, assoiativity 1-512, random replaement,trivial alulations stored in the Memo-Table). Only when using a fully-

54 CHAPTER 6. COMPARING IM TO OTHER TECHNIQUESassoiative Memo-Table do the hit-ratios math, this is again due to the fatthat all multipliations are mapped to the same set.
0

0.05

0.1

0.15

0.2

0.25

0.3

128 256 512 1024

H
it

R
at

io

Size

pc
value

0

0.05

0.1

0.15

0.2

1 2 4 8 16 32 64 128 256 512

H
it

R
at

io

Associativity

pc
value

Figure 6.1: Hit-ratios of the multipliation Memo-Table in matrix multiplia-tion.When more omplex algorithms suh as loop unrolling, tiling, and sub-bloking are used the PC indexed hit-ratios are even worse. The multiplia-tion alulations are performed by several instrutions whih leads to a betterMemo-Table utilization but results in a lower hit-ratio. This is due to the fatthat the same alulation might be performed by di�erent instrutions and thusmapped to di�erent sets, ausing Memo-Table misses instead of hits.Using IM a 48% hit-ratio is ahieved on the SPEC CFP95 benhmarks forFP instrutions. Sodani & Sohi report only a 6.6% hit ratio. This is due to aninferior mapping sheme.6.3.2 Table OrganizationIR looks at all instrutions as equal and uses a uni�ed RB whih ontainsall instrutions. Instrutions with longer latenies and a higher potential forimproving performane are evited from the RB by instrutions whose reuseontributes muh less. In setion 5.2 we have shown that storing the single-yle

6.3. COMPARING IM TO IR 55instrutions in the Integer Memo-Table (integer division and multipliation)results in the hit-ratio of the \original" oupants of the Memo-Table beingsuppressed.On the other hand IM uses a set ofMemo-Tables eah ontaining di�erentinstrution types. Setion 3.5 desribes the advantages and disadvantages ofusing several tables or a uni�ed one. In addition we have shown that the speedupattributed to single-yle instrutions (setion 5.1) is due to reating a \virtual"ALU out of the Memo-Table. In setion 5.1.1 we have shown that adding anALU is better than memoizing single-yle instrutions. In this ase due toour distributed table struture we an hoose to memoize hoie single-yleinstrutions or not to memoize them at all.6.3.3 Lookup StageAn IR lookup is performed in the deode stage. This is possible for the Sn andSn+d shemes but not for the Sv sheme whih must have the operand valuesavailable. As we have shown in setion 5.2 even if a lookup is possible, only asmall fration of instrutions have their operands ready at this stage.Thus it is more likely that the lookup is performed in the issue stage. Inthis ase due to the uniformity in whih all instrutions are treated in IR theinstrution isn't issued to a unit until a lookup has been performed. But in thisase a penalty of one yle is paid if the lookup has failed.Our tests have shown that IM in the issue stage results in an average speedupof only 1.05 ompared to a speedup of 1.11 for performing IM in the issue stageonly if a FU isn't available. If a FU is available, IM is performed in parallel tothe FU exeution, reduing the overhead of a miss to zero yles. But there is nouse in memoizing a single-yle instrution in the exeute stage. The distributednature of IM whih uses di�erent Memo-Tables for di�erent instrutions en-ables us to treat single-yle and multi-yle instrutions di�erently.6.3.4 Design SimpliityIM uses tables that store only values and operations. The entries in the tablesare always valid (exept on startup) even aross ontext swithes. In the aseof a FP appliation sharing a proessor with integer appliations IM has ahuge advantage, the FP Memo-Tables will remain untouhed by the otherappliations.IR must invalidate the RB aross ontext swithes as it is indexed by thePC. Even the �rst sheme of IR whih stores operand values must keep trakof memory referenes as it memoizes loads and stores. A write to a memoryaddress invalidates other referenes to the same address. The other two shemesare muh more ompliated as every instrution exeuted may invalidate RBentries and links between instrutions must be maintained at all times.

Chapter 7Summary and ConlusionsThis thesis explored the onept named memoization: saving the input(s) andoutput(s) of previously alulated (side-e�et-free) funtions, and using the out-put if the input is enountered again. However our fous was on very shortfuntions: instrutions. By saving the operands and results of previous invo-ations of exeuted instrutions in dediated tables (named Memo-Tables byus) implemented in the proessor, it is possible to redue the latenies of in-strutions from multiple yles to one yle. This is used to improve exeution.We named this tehnique Instrution Memoization (IM).A simulator (based on the SimpleSalar [17℄ simulator) of a RISC super-salar proessor with IM integrated in its datapath has been onstruted. On itwe have run two sets of ommonly used benhmarks (SPEC95 [18℄, MediaBenh[19℄). The simulations have been performed in three major stages:1. The organization of the Memo-Tables has been explored in searh foran \optimal" design that will maximize hit-ratio and minimize ost. Theinstrutions memoized are multi-yle instrutions, instrutions with la-tenies larger than one (hapter 3).2. The integration of Memo-Tables in a RISC proessor has been simu-lated and explored in order to quantify the speedup ahieved by using IM(hapter 4).3. The sope of IM was widened to inlude single-yle instrutions as well(hapter 5).The following setions will summarize the stages and present our onlusions.We want to stress that this thesis deals with the arhitetural aspets of IM.The positive or negative inuenes of ompilers, for super-salar or EPIC1 pro-essors, on IM hasn't been takled in this researh. Nor has the ost of IM in1An Expliitly Parallel Instrution Computing (EPIC) a.k.a Very Long Instrution Word(VLIW) omputer, shedules during ompile time several operations to several FUs. Reduingthe latenies of instrutions might not improve omputation if instrution sheduling is stati.56

7.1. MEMO-TABLE ORGANIZATION 57terms of number of transistors, power onsumption, or design omplexity beendisussed. We have performed several simulations that ompare IM to otherarhitetural enhanements but not on a transistor to transistor basis, theseresults are presented later.7.1 Memo-Table OrganizationOur �rst task was to prove that instrution results are reusable. This wasperformed by apturing the operands of all multi-yle instrutions exeuted inan \in�nitely" large \fully assoiative"Memo-Table (in pratie 1M entries insets of 512). The simulations have shown that 60% of all dynami instrutionappearanes are repeatable, they are exeuted with the same operand values.We then proeeded to haraterize the \optimal"Memo-Table struture. AMemo-Table is \ahe-like", it saves the last instrutions exeuted. Thus theahe-like traits: size, assoiativity, replaement method, and mapping shemewere explored �rst. Then shemes like trivial alulation detetion, ommutativeand inverse operation detetion were tested. Finally the number of Memo-Tables and the ontents of eah Memo-Table were investigated. The resultsand onlusions at this stage were:� A degree of set assoiativity higher than four is unneessary.� Enlarging a Memo-Table beyond a ertain point results in diminishingreturns as the hit-time inreases as well as the hit-ratio.� Using several Memo-Tables for di�erent instrution types enables a-essing them onurrently but not having to implement a Memo-Tablefor every instrution type.� Using the ProgramCounter (PC) as the index into aMemo-Table resultsin muh poorer hit-ratios than when the operand values are used as indies.� By deteting trivial alulations, and not entering the operations into theMemo-Tables, a hit-ratio improvement is ahieved that is omparableto a four-fold size inrease.Spei�ally we reommended implementing IM with 5 Memo-Tables, eahholding several of the multi-yle instrution types. Eah Memo-Table on-tains 256 entries in sets of 4 . Entries are replaed randomly and are indexedby the operand values XORed with the opode. Trivial alulations involvingvalues of 0 or 1 aren't entered into the Memo-Tables but are deteted withdediated iruitry. This organization yields an average hit-ratio of 0.50, thisis over 80% of the hit-ratio obtained when using an in�nite fully-assoiativeMemo-Table.

58 CHAPTER 7. SUMMARY AND CONCLUSIONS7.2 IM in the datapathThe proposed Memo-Table organization was integrated into a RISC super-salar proessor with harateristis similar to the MIPS R10000 [24℄ and thePower PC 604e [25℄ proessors. We disovered that 13% of the benhmarks'exeution time an be attributed to multi-yle instrutions. With a 52% hit-ratio an average speedup of 1.07 was obtained. We then proeeded to alter theattributes of the datapath to hek their inuene on IM and vie-versa. Ourresults and onlusions are:� The only datapath fator that e�ets the hit-ratio is the branh preditionrate. Mispredited branhes ause instrutions to be ushed from thepipeline, many of these instrutions may later be re-exeuted ausing hitsin the Memo-Tables.� The major ontribution of IM is the redued lateny of suessfully mem-oized instrutions. Having instrutions omplete exeution earlier enablesdependent instrutions to be issued earlier. The number of yles aninstrution spends in the pipeline is redued, whih diretly redues exe-ution time.� A minor ontribution to enhaned exeution is the virtual addition of FUs.When a strutural hazard ours a Memo-Table lookup may be able toprovide the instrution's result, irumventing the exeute stage of thepipeline.� Given a �xed lateny for multi-yle instrutions, IM works better forfaster proessors. A proessor with a wide pipeline, a near perfet memoryhierarhy, a high rate of branh predition, and enough FUs will enountera bottlenek when waiting for long lateny instrution to omplete. IMrelieves this bottlenek. The basi proessor has an IPC of 1.22, IM pro-vides a speedup of 1.07. On a proessor with an IPC of 3.65 the speedupof using IM is 1.09.� IM is a tehnique that predominantly favors FP intensive appliations.The speedup for FP appliations is 1.10, for integer appliations it is only1.01 (for appliations whih heavily use integer division and multiplia-tion). A way must be found to widen the sope of IM.7.3 Single-Cyle Instrution Memoization (sIM)In order to enompass more instrutions in IM we added a Memo-Table thatontains most integer single-yle instrutions. 57% of these instrutions arereused resulting in a 1.11 speedup. However the speedup is only the result ofreduing the strutural-hazard ratio. TheMemo-Table is used as an additionalFU, supplying results when no FU is available. We ontinued to explore thisaspet of sIM and arrived at the following onlusions:

7.4. THE BOTTOM LINE 59� Adding more FUs to a proessor minimizes the impat of sIM. Whenthe strutural-hazard ratio reahes 0 the e�et of memoizing single-yleinstrutions is non-existent.� Adding more FUs doesn't harm mIM, in fat it performs even better.� Better performane is gained by adding just one ALU and implementingsIM, than implementing mIM.� Using the area dediated to the Memo-Tables to enlarge on-hip ahesor improve branh predition proves better than IM for integer applia-tions but not for FP appliations.7.4 The Bottom LineThe bottom line is that IM improves FP proessing. By reusing previous al-ulations the lateny of multi-yle instrutions is redued 50% of the time toone yle. Thus, in pratie the lateny of FP instrutions is ut in half.The more powerful the proessor is the better it an utilize IM. The onlyenhanement that redues the e�etiveness of IM is reduing the lateny (notthe throughput, IM works �ne with pipelined FUs), this doesn't seem to be thetrend in state of the art miroproessors.

Appendix AIM on Real ProessorsIn the body of this researh IM has been an aademi issue desribed and sim-ulated in the ontext of an unexistent proessor. We will now desribe andquantify the e�et of IM on two real proessors: The MIPS R10000 [24℄ anf thePower PC 604e [25℄. Tables A.1 and A.2 list the harateristis of both proes-sors. Both proessors are similar in their memory hierarhy, branh preditionapabilities, funtional units and instrution latenies (slightly shorter for theR10000). The main di�erene is in their super-salar apabilities. While theR10000 has three instrution queues (Integer, FP, Memory) of 16 instrutionseah, the 604e has only 2-instrution reservation stations for eah FU. Thislimits the out-of-order issue apability of the 604e.SimpleSalar was modi�ed to simulate both proessors as lose to reality aspossible1. The benhmarks were then run on the simulators with and withoutIM (mIM at this stage). The IM is performed at the exeute stage of thepipeline if a FU is available and at the issue stage if not. IM lateny is oneyle and the Memo-Table struture de�ned in hapter 3 is used. The resultsof both sets of simulations are ompared to the basi proessor in table A.3.The results for mIM are similar with the basi proessor having a slightedge. The 604e is a slightly slower proessor and as we have shown in setion4.4 bene�ts less from IM. The R10000 is almost as fast as the basi proessorbut has shorter instrution latenies for FP instrutions whih leads to a lowerFE and speedup (setion 4.3).The main di�erene is in the results of sIM. Single-yle instrutions maybene�t from IM if at the issue stage they are ready to be issued but lak a FUto exeute on. The Memo-Table is then utilized as an additional FU. For thebasi proessor 27% of all hits are performed in the issue stage. However for theR10000 and 604e the ratio of hits in the issue stage is muh lower being 17%and 8% respetively. This strengthens our laim that sIM is of limited use.1The instrution set of the R10000 is idential to the SimpleSalar ISA. The 604e ISA isdi�erent whih might lead to slightly inaurate results.60

61

L1 Instrution Cahe 32-KBytes, 64-Byte bloks, 2-way assoiativeL1 Data Cahe 32-KBytes, 32-Byte bloks, 2-way assoiativeL2 Uni�ed Cahe 1-Mbytes, 64-Byte bloks, 2-way assoiativeMemory Latenies (yles) L1 hit - 1, L2 hit - 6, L2 miss -18Bus Interfae 64-bit data, 32-bit addressBranh Predition 512-entry BHT, 2-bit ountersRegisters 32 General Purpose, 32 Floating PointFuntion Units 2 IALU�, 1 IMULT1 FADD unit, 1 FMULT, 1 MMU��Instrution Latenies Integer multipliation: 6,6& Throughputs Integer division: 35,35All other integer instrutions: 1,1Floating point multipliation: 2,1Floating point division: 19,21 (sp: 12,14)Floating point Sqrt: 33,35 (sp:18,20)All other oating point instrutions: 2,1Pipeline attributes 4-instrutions fethed, deoded, issued,and ommitted per yle; 32 instrutions in Ative List;16 instrution INT, FP, Address queues;out-of-order exeution; in-order retirement� One of the IALUs performs idiv.�� Has a dediated ALU for EA alulation.Table A.1: Charateristis of the MIPS R10000 miroproessor.

62 APPENDIX A. IM ON REAL PROCESSORSL1 Instrution Cahe 32-KBytes, 32-Byte bloks, 4-way assoiativeL1 Data Cahe 32-KBytes, 32-Byte bloks, 4-way assoiativeL2 Uni�ed Cahe 1-Mbytes, 64-Byte bloks, 2-way assoiativeMemory Latenies (yles) L1 hit - 1, L2 hit - 6, L2 miss -18Bus Interfae 64-bit data, 32-bit addressBranh Predition 512-entry BHT, 2-bit ountersRegisters 32 General Purpose, 32 Floating PointFuntion Units 2 IALU, 1 IMULT1 FPU�, 1 BPU, 1 MMU��Instrution Latenies Integer multipliation: 3,1& Throughputs Integer division: 20,19All other integer instrutions: 1,1Floating point multipliation: 3,1Floating point division: 31,31 (sp: 18,18)Floating point Sqrt���: 60,60 (sp: 50,50)All other oating point instrutions: 3,1Pipeline attributes 4-instrutions fethed, deoded, issued,and ommitted per yle; 16 instrutions in Reorder Bu�er;2-instrution reservation stations for eah FU;out-of-order exeution; in-order retirement� Performs all FP instrutions.�� Has a dediated ALU for EA alulation.��� The 604e doesn't implement the fsqrt instrution.Table A.2: Charateristis of the PPC 604e miroproessor.
Proessor IPC hr FE SpeedupmIMBasi 1.27 0.51 13% 1.07R10000 1.23 0.51 9% 1.06604e 1.06 0.51 11% 1.06sIMBasi 1.27 0.55 - 1.11R10000 1.23 0.55 - 1.08604e 1.06 0.54 - 1.06Table A.3: Comparison of R10000, 604e, and \basi" proessors (mIM andsIM integrated into pipeline).

Appendix BMemoization of FuntionsWe have shown in the previous hapters that IM works for instrutions andenhanes exeution. Thus, if the tehnique works for instrutions with lateniesof several yles only, it should surely work for funtions with latenies of tensto hundreds of yles. Table B.1 shows the latenies in yles of several ommonmathematial and trigonometri funtions in the Pentium II proessor [33℄,1 theonly proessor to date to inlude these funtions in its instrution set, and thelatenies of the software implementations of the same funtions2. The numberslead us to believe that suessful memoization will be produtive. The fat thatthese funtions are ommon to most sienti�, engineering, and Multi-Mediaappliations enouraged us to suggest a hardware based solution rather that asoftware one. We will all this sheme Funtion Memoization (FM).funtion Pentium II softwareSquare root 70 1,700Sine 16{126 250Cosine 18{124 230Tangent 17{173 320Logarithm 22{111 196Exponent 13{57 131Ceiling 9{20 15Floor 9{20 15Power - 473Table B.1: Latenies of mathematial funtions, in ylesFigure B.1 shows a shemati layout of the idea using a hardware-implemented1The instrutions aren't exeuted by dediated funtional units, they use all the proessor'sunits and blok all other instrutions from issuing until they omplete. The latenies are inputdependent, usually inputs with longer mantissas entail a longer yle time in omputing thefuntion.2The ode was taken from the gnu C library version 1.09 (glib-1.09) and run through thesimple-salar simulator. The numbers are the average of measuring the omputation time for10,000 random double preision values. 63

64 APPENDIX B. MEMOIZATION OF FUNCTIONSsquare root unit as an example. The operands are forwarded in parallel both tothe square root unit and its adjaent Memo-Table. Whihever ompletes �rst| the Memo-Table lookup or the atual omputation | anels the otherand produes the result. In the ase of the atual omputation the result is alsostored in the Memo-Table for future use.
Operand

SQRT

UNIT

MEMO

TABLE

MUX

hit/miss lineoperation

completed

line

ResultFigure B.1: A square root unit using a Memo-TableWhat di�erentiates this work from other works in the immediate �eld is thefat that aside from Intel all other miroproessor manufaturers don't inludethese funtions (aside from square root taking) in their instrution sets anddon't have hardware units to implement them. Therefore the framework de-sribed above annot be applied. Instead, we propose to modify the InstrutionSet Arhiteture (ISA) by adding two new instrutions to lookup and updatea generi Memo-Table. These instrutions provide a ompletely general in-terfae to the Memo-Table, and allow the ompiler to use it to memoize anyfuntion it hooses, be it a library funtion or a user funtion. Even inlinedfuntions are supported. We assume that the funtions are side-e�et free, thisis noted by the developer and enfored by the ompiler. Funtions with side-e�ets will have to be exeuted in any ase.

B.1. MEMOIZATION OF MATHEMATICAL FUNCTIONS 65B.1 Memoization of Mathematial FuntionsThis setion desribes how using Memo-Tables aelerates omputing math-ematial and trigonometri funtions. The Memo-Table used is idential tothe Memo-Table desribed in the previous hapters. Eah entry ontains twooperands, a result, and a �eld that identi�es the funtion. A desription ofhow a Memo-Table works in tandem with a FU was overed in the previoushapters and won't be overed her. What we will show is how memoization isimplemented if the funtion is alulated in software (setion B.1.1) and analyzethe overhead of FM (setion B.1.2).B.1.1 Memoization of Software Implemented FuntionsIn the ommon ase where most funtions are implemented in software severalISA hanges must be made. Three main reasons motivated our design hoie:1. Deouple the memoization from the routine that exeutes the funtion.Not in all ases will the funtion ode be available for ompilation, thus wedeided to perform the lookup and update outside the routine body insteadof altering the alling and return instrutions to perform the lookup andupdate the Memo-Table.2. Most RISC ISAs have instrution formats of three register operands and asmall (5-6 bit) immediate �eld (the MIPS R-format or the PPC A-Form).We will use these instrution formats for our new instrutions.3. Most of the mathematial and trigonometri funtions have a single operandand single result, and a minority of them have two operands and a singleresult. Thus it is possible to use the sameMemo-Table struture used tomemoize instrutions. The new instrutions introdued support funtionswith one or two inputs and one output.The ISA we will add the new instrutions to is SimpleSalar [17℄ whih isbased on the MIPS instrution set. Only two new instrutions (eah with twovariations) must be added:� LUPM2 (LookUP Memo2) - Look up a value in aMemo-Table. Theinstrution has three operands whih reside in registers and one immediateoperand.1. IN1 - funtion input 1 in a register2. IN2 - funtion input 2 in a register3. OUT - funtion result in a register4. FID - funtion identi�er, a 5 bit ode.When exeuted the instrution uses the values in IN1, IN2 and the funtionidenti�er to index a separate or uni�ed Memo-Table (separate tables:FID identi�es the Memo-Table and IN1 & IN2 index it, uni�ed table:

66 APPENDIX B. MEMOIZATION OF FUNCTIONSIN1, IN2 and FID index the table). If the lookup is suessful the output ofthe funtion is loaded from the Memo-Table into OUT and the oatingpoint ag is set. A test instrution (suh as b1t) an then branh to anaddress beyond the funtion all.� UPDM2 (UPDate Memo2) - Update an entry in a Memo-Table.Like lupm2, this instrution has three operands whih reside in registersand one immediate operand.1. IN1 - funtion input 1 in a register2. IN2 - funtion input 2 in a register3. IN3 - funtion result in a register4. FID - funtion identi�er, a 5 bit ode.When exeuted the instrution uses the values in IN1, IN2 and FID toindex a Memo-Table, and stores the value in IN3 in it.Eah of these instrutions has an one operand version (lupm1, updm1) where theseond input register (IN2) is an impliit 0.Table B.2 shows a omplete assembly ode exerpt whih uses the new in-strutions. The assembly is for the SimpleSalar ISA (f* are fp registers, L* arelabels, sin is the address of the Sine routine, and NSIN is its 5-bit mnemoni).The ode demonstrates the memoization of a single operand funtion. The om-piler loads f20 with the input to the sin() funtion and exeutes lupm1with f22as the OUT register. If the lookup is suessful the result in the Memo-Tablewill overwrite f22 and set the oating point ag, ausing the next instrutionto branh and skip the funtion all. If the lookup is unsuessful the funtionall will be performed and the instrution updm1 updates the Memo-Tablewith the value in f0 (the result of the funtion all).C ode Assembly Remarksa = 1.1; l.d f20,LC The input (1.1) is loaded into f20lupm1 f20,f22,NSIN is 1.1 in the table?b1t L1 if lookup sueed skip routine allmov.d f12,f20 f20) f12 (input reg)b = sin(a); jal sin all routinemov.d f22, f0 f0 (output reg)) f22updm1 f12,f0,NSIN update table with sin(1.1) = b + a; L1: add.d f24,f22,f20 ontinue exeutionTable B.2: Assembly ode implementing memoization of sin funtion. Newinstrutions are bold faed (lupm1), added instrutions are in sans serif (b1t)(the $ sign before registers and variables is omitted).

B.2. EXPERIMENTS AND RESULTS 67B.1.2 Overhead ConsiderationsIf lupm1 is unsuessful no branh is performed, the routine is setup, jumpedto, leaned up (the output is moved from f0, the funtion's output register, intof22), the Memo-Table is updated with the omputed value, and exeutionontinues at L1. Thus the overhead of a miss is three instrutions: lupm1,updm1, and b1t (for the ase of two operand funtions the penalty is thesame). Of ourse a hit eliminates the funtion's setup, exeution and leanupsaving tens to hundreds of mahine yles.When the hit ratios are high the ost of the extra instrutions is insigni�antin omparison to the elimination of tens to hundreds of instrutions due tosuessful memoization. When the hit ratios are low or nonexistent (see setionB.2.1), a penalty of three instrutions per funtion all might seem high.The following table shows how a proessor apable of exeuting 4 instrutionsper yle (suh as the MIPS R10000) will exeute the ode. The proessor has aFloating Point Unit, and an Integer Unit whih exeutes the branhes. lupm1and updm1 are exeuted by the FP Unit.yle FP Unit Integer Unit0 lupm1 f20,f22,NSIN1 mov.d f12,f20 b1t L12 jal sin3{253 exeuting sin254 mov.d f22,f0255 updm1 f12,f0,NSINDue to the dependenies between lupm1 and b1t and the use of the FU byboth updm1 and mov.d the overhead of a miss is two yles. This penalty anbe redued by adding a unit that an exeute a lupm1 or updm1 in parallelto other FP instrutions (a dediated Memo-Table Unit (MTU) or anotherFPU), enabling the Memo-Table update to be performed in parallel to thefuntion's leanup. This redues the miss penalty to a single yle.As mentioned above the new instrutions are written in MIPS style assemblyode. For other arhitetures the instrutions would take on harateristis ofthe relevant ISA. For instane for the Power PC ISA the lupm1 instrutionwill set a Condition Register (CR) based on the suess of the lookup and thefollowing instrution will be a onditional branh based on the value inserted intoit. For the Intel 80x86 ISA the lupm1 instrution will pop it's operands fromthe oating point stak and set the appropriate ag in the EFLAGS register.B.2 Experiments and ResultsTo verify the usefulness of memoization of mathematial and trigonometri fun-tions, we performed a series of experiments with SimpleSalar [17℄ (the samesimulator used for the simulations in hapter 3) , we tailored SimpleSalar toinorporateMemo-Tables in it's design and thus simulate the memoization ofmathematial and trigonometri funtions. The new instrutions were addedby inserting ompiler diretives in the funtions to be memoized. The ompiler

68 APPENDIX B. MEMOIZATION OF FUNCTIONSthen replaed these diretives with the new instrutions. The simulator wasaltered to reognize these instrutions and at upon them.The two indiators that measure the suess of the memoization are the hit-ratio and speedup. Naturally, they depend on the spei� design of the Memo-Table. The size, assoiativity and ontents of the Memo-Table, impat theexpeted hit-ratio and speedup.B.2.1 SimulationsThe hit-ratio is a funtion of the size of theMemo-Table, its assoiativity, andits ontents (single funtion results or all funtion results) as we have seen inhapter 3. We have simulated a Memo-Table with its size varying from 16to 1K entries and the spetrum of assoiativity from diret mapped to 16-wayassoiativity. In addition we have simulated using several Memo-Tables, onefor eah funtion, and using a single uni�ed Memo-Table for all funtions.We have also run the benhmarks through an \in�nitely" large fully assoiativeMemo-Table for omparison. In setion B.2.4 we explore memoization of userde�ned funtions, in setion B.2.5 we ompare funtion memoization to instru-tion memoization, and in setion B.2.6 we ompare funtion memoization tousing the same hardware to implement the funtions in hardware on-hip.The overhead of memoization in our simulations is two mahine yles, thestriter of the two options shown in setion B.1.2. The simulated system isbuilt upon the MIPS R10000 proessor [24℄. The funtions are assumed to beimplemented in software exept square root taking whih is implemented inhardware on hip. This is the urrent state for most modern miroproessors.Eah funtion has its ownMemo-Table or they share a uni�ed Memo-Table.The benhmarks were taken from several soures:� SPEC CFP95 - the oating point omponent of the SPEC CPU95 suite[18℄.� MediaBenh - a suite of multi-media and ommuniation appliationsfrom UCLA [19℄.� Khoros - Khoros Pro 2000 [34℄ is a development environment that onsistsof a suite of Image Proessing (IP) and Digital Signal Proessing (DSP)appliations.Only benhmarks whih have a nontrivial (thousands) number of mathematialand trigonometri funtion alls were seleted for simulation. Appliations thatdon't all the above funtions aren't inuened by our enhanements to theproessor.Table B.3 desribes the spei� appliations, and table B.4 shows how manyinstrution and yles eah appliation exeuted, and how many funtion allswere made by it (at least 1,000 alls)3. It an be seen that in most ases only two3In some ases the numbers are the sum of several appliations that make up a benhmark(eg. deode and enode for mpeg2) or the sum of several runs with di�erent inputs (theKhoros appliations).

B.2. EXPERIMENTS AND RESULTS 69suite appliation desriptionMediaBenh rasta Speeh reognitionmesa 3D graphis librarympeg2 Video ompressionSPEC swim Shallow water equationssu2or Monte-Carlo methodhydro2d Navier Stokes equationsturb3d Turbulene modelingapsi Weather preditionfpppp Quantum hemistrywave5 Maxwell's equationKhoros k�t Fast Fourier Transformkgsin Generate sinusoidal datakhisto Compute image histogramklogexp Image logarithm takingvgbox Parallelogram reationvpml Fratal dim. estimationvmarr Edge detetionTable B.3: Desription of benhmark appliationsor three funtions are used heavily in eah appliation. This inuenes the hoieof whether to use separateMemo-Tables for eah Funtion-Instrution orto have a uni�ed Memo-Table for all funtions.B.2.2 Speedups ObtainedThe basi on�guration of a Memo-Table that we have hosen is one with256 entries arranged in 64 sets (set assoiativity of 4), eah funtion has it'sown Memo-Table. Table B.5 shows the results. We ompare the results ofusing \in�nitely" large fully assoiativeMemo-Tables to the results of using 9256 entry 4-way assoiative Memo-Tables. In addition we show the results ofusing a single 512 entry uni�ed Memo-Table (4-way assoiative) whih holdsall funtion values. What is shown in the table is:� FE - Fration Enhaned, the fration of omputation time in the originalmahine that an use the enhanement. This is shown in terms of dynamiinstrution ount and number of yles.� HR - the hit ratios of the Memo-Tables (for the in�nite, separate anduni�ed ases).� SP - the atual speedup attained (for the in�nite, separate and uni�edases).The results show that for most appliations the hit ratio is high with an av-erage of 57% for separateMemo-Tables and 58% for a uni�ed Memo-Table.

70 APPENDIX B. MEMOIZATION OF FUNCTIONSappliation insts yles sqrt sin os tan log exp oor eil powrasta 53 58 13K 12K 12K 11K 5K 15Kmesa 107 129 27K 4K 4K 77K 119K 29K 13Kmpeg2 2411 2159 4.1M 1.4Mswim 2674 3021 526K 526Ksu2or 5234 5462 2.0Mhydro2d 3740 4879 1.54M 96Kturb3d 6836 5996 531K 531Kapsi 3605 5179 1.0M 49K 1.3Mfpppp 4957 6300 1.3M 856K 315K 87Kwave5 7918 8372 9.0M 750K 1.5M 1.5Mk�t 483 582 2K 103K 103K 2K 2Kkgsin 135 135 288K 7Kkhisto 107 142 1.2M 6K 3Kklogexp 52 54 80K 2Kvgbox 128 134 5K 5K 5Kvpml 1129 726 48K 50Kvmarr 21 25 84k 2kTable B.4: Number of instrutions, Number of yles (in millions) and break-down of funtion alls (in thousands) in the benhmark appliations. Entries ofless then 1K are ignoredThe more signi�ant number is the speedup. An average speedup of 10% (har-moni mean) is attained (11% for a uni�ed Memo-Table).While the average hit ratios and speedup are good we �nd a lak of or-relation between them, as is the ase for IM (setions 4.2 and 4.3). FigureB.2 shows that for the SPEC and Khoros appliations the hit ratios are higherthan for the MediaBenh benhmarks. On the other hand �gure B.3 showsthe breakdown of the speedup aording to suite. From this �gure it an beseen that the Multi-Media benhmarks attain higher speedups than the SPECbenhmarks. This an be attributed to the higher perentage of exeution timespent omputing the funtions (FE). While the Multi-Media benhmarks spend19% (MediaBenh) to 20% (Khoros) of their exeution time in mathematial andtrigonometri funtions the SPEC benhmarks only spend 8% of their exeutiontime in these funtions.B.2.3 Memo-Table Con�gurationThe next three experiments performed test the attributes of the LUT itself,its size, assoiativity and ontents (uni�ed Memo-Table or separate Memo-Tables for eah funtion). For these tests we used only 114 out of 17 appliationused in the previous tests. Figure B.4 shows the average hit-ratios of the hosenappliations when the size of the LUT ranges from 16 to 1024 entries, and itsassoiativity is 4.4We have omitted the benhmarks su2or, turb3d, wave5, vpml and vgbox where the hit-ratios are almost the same regardless of the Memo-Table size. And fpppp was omitted dueto its long run time.

B.2. EXPERIMENTS AND RESULTS 71appliation FE Hit Ratio Speedupinst yle inf sep unif inf sep unifrasta .27 .31 .72 .67 .45 1.24 1.25 1.13mesa .18 .20 .69 .26 .20 1.20 1.06 1.04mpeg2 .04 .05 .32 .17 .22 1.03 1.02 1.02harmoni mean .16 .19 .56 .37 .29 1.15 1.12 1.06swim .07 .06 .99 .50 .49 1.07 1.03 1.03su2or .20 .22 .99 .99 .99 1.29 1.29 1.29hydro2d .01 .02 .99 .70 .77 1.03 1.02 1.02turb3d .03 .03 .99 .99 .99 1.03 1.03 1.03apsi .01 .02 .89 .69 .65 1.02 1.01 1.01fpppp .04 .08 .62 .39 .34 1.09 1.08 1.07wave5 .10 .10 .00 .00 .00 0.98 0.98 0.98harmoni mean .07 .08 .78 .61 .59 1.07 1.06 1.06k�t .10 .09 .99 .75 .60 1.10 1.07 1.06kgsin .54 .50 .99 .06 .13 2.02 1.13 1.20khisto .21 .13 .99 .63 .83 1.14 1.05 1.08klogexp .41 .40 .99 .85 .92 1.66 1.53 1.60vgbox .02 .02 .99 .99 .99 1.02 1.02 1.02vpml .01 .01 .92 .86 .88 1.02 1.01 1.01vmarr .40 .26 .90 .26 .41 1.33 1.11 1.19harmoni mean .24 .20 .96 .62 .68 1.32 1.13 1.16harmoni mean .16 .15 .82 .57 .58 1.19 1.10 1.11Table B.5: Performane enhanement with memoization of mathematial andtrigonometri funtions. Memo-Tables are either in�nitely large, of size 256for eah funtion or a 512-entry uni�ed for all funtions.The �gure ompares a uni�edMemo-Table (dashed line) to separateMemo-Tables for eah funtion (solid line). We see that performane improves up toabout 1024 entries after whih the line starts to atten towards in�nity. The�gure shows that almost the same hit-ratios are obtained for a uni�ed table ofsize n and separate tables of size n=2. In our ase, where 9 separate Memo-Tables are implemented, using a uni�ed Memo-Table gives the same resultsat less than 1=4 of the area ost. Table B.5 orroborates this by showing thatthe average speedup ahieved using a uni�ed Memo-Table of size 512 (11%)is slightly greater than the average speedup ahieved when using 9 separateMemo-Tables of size 256 (10%). This is due to the fat that most applia-tions heavily use only two or three funtions (table B.4).Figure B.5 shows the hit-ratios as a funtion of set assoiativity. For separateMemo-Tables any set assoiativity higher than one (diret-mapped) hardly in-uenes the hit-ratio. For a uni�edMemo-Table the urve starts straighteningout only for a set size of 4. These results an be explained by the ontents of theMemo-Tables. The separate tables are only mapped by the input value(s),leading to a greater spread of values throughout the entries in the table. Ina uni�ed Memo-Table the mapping is by the input value(s) and the funtion

72 APPENDIX B. MEMOIZATION OF FUNCTIONS

0.10

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��Hit

Ratio

0.30

0.50

0.70

0.90

Infinite

Separate (256/4)

Unified (512/4)

KhorosSPECMediaBenchFigure B.2: Breakdown of hit ratios by suiteidenti�er. In some appliations (k�t, swim) the same values are being omputedfor several funtions. This leads to onit misses in the ase of a diret mappedor even 2-set assoiative table. A set assoiativity of 4 alleviates this problemand enhanes the hit-ratios.B.2.4 Memoization of User FuntionsIt is possible to memoize user de�ned, appliation spei�, funtions in additionto the ommon mathematial funtions. In the benhmarks we used we foundonly two appliations that heavily use side-e�et free funtions, apsi (funtionOVL) and wave5 (funtions VAVG, ERF, DENSX, and DENSY). The funtionsmemoized have one or two arguments and one return value. As suh they areperfet andidates for memoization in our proposed infrastruture, and the re-sults of memoizing them are enouraging. Table B.6 shows the hit ratios andspeedups of memoizing user de�ned instrutions (in addition to the mathemat-ial instrutions) ompared with only memoizing mathematial funtions.The table learly shows that there is an advantage to memoizing user de�nedfuntions as well (when possible). The hit ratio for user de�ned funtions islower (for apsi) due to the fat that a suessful user funtion lookup avoidsmany mathematial funtions. When the user funtion lookup is unsuessfulthe mathematial funtions are alled with new values, ausing a lower hitratio. However the run-time is redued due to many other instrutions avoiding

B.2. EXPERIMENTS AND RESULTS 73

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Speed
Up

1.05

1.10

1.15

1.20

1.25

MediaBench

Optimal

SPEC Khoros

1.33 1.321.26

Infinite

Separate (256/4)

Unified (512/4)

Figure B.3: Breakdown of speedups by suiteappliation math math + userhr spdp hr spdpapsi .69 1.01 .20 1.05wave5 .00 0.98 .55 1.02Table B.6: Memoization of user de�ned funtions (and math + trig funtions)ompared with memoization of only math and trig funtions.exeution.B.2.5 Memoization of Funtions and InstrutionsIn this setion we will integrate the tehnique of IM proposed in the previoushapters with the tehnique of FU introdued in this hapter. We will ompare3 implementations::1. The implementation explored in this hapter where funtions are memo-ized.2. Multiple-yle instrutions (without loads/stores) are memoized. Fun-tions are implemented in software and bene�t from the memoized instru-tions.3. A ombined approah where both funtions and instrutions are memo-ized.

74 APPENDIX B. MEMOIZATION OF FUNCTIONS

Number of LUT Entries

0.10

Hit
Ratio

0.30

0.50

0.70

0.90

2 25 642 27 28 29 210 infinity

Separate

Unified

Figure B.4: Hit ratios as a funtion of LUT size (set size is 4). Memo-Tableis uni�ed (dashed line) or separate Memo-Tables are used (solid line).The Memo-Tables used to memoize instrutions are the tables reommendedat the end of hapter 3. Figure B.6 shows the speedups per suite.The �gure shows that appliations that heavily use mathematial funtions(Multi-Media) bene�t more by memoizing funtions than by only memoizinginstrutions. A large amount of the instrutions memoized are in the memoizedfuntions (this was veri�ed by analyzing the soure ode of the appliations),leading to their exeution being avoided when the funtion is memoized. On theother hand appliations that use the mathematial funtions sparingly bene�tfrom instrution memoization whih an ath instrutions not in the mathe-matial funtions.Obviously the ombined approah is superior with an average 15% speedup.In hoosing between the funtion to instrution implementations we might bemislead to hoose funtion memoization due to the higher speedup (10% vs.8%). However we must remember that instrution memoization is e�etive fora broader sope of appliations and is ompiler transparent. As opposed tofuntion memoization whih is limited in its sope to spei� appliations andneeds ompiler support for most arhitetures.B.2.6 Implementing the Funtions in HardwareIn this setion we will ompare a proessor that implements the mathematialand trigonometri funtions on hip (like the Pentium family does) to a proessorthat memoizes these funtions. In both ases square-root taking is implementedon hip. In addition we will ombine both approahes and memoize the hardwareimplemented funtions. The latenies of the on hip funtions are the average

B.3. THE RATIONALE BEHIND FUNCTION MEMOIZATION 75
Hit

0.40

0.60

0.70

1 2 4 8

0.50

Set Associativity Size

16

0.30

Separate

Unified

Ratio

Figure B.5: Hit ratios as a funtion of set assoiativity size. Memo-Table isuni�ed (dashed line, 512-entry) or separateMemo-Tables are used (solid line,256-entry per Memo-Table).latenies shown in table B.1.Figure B.7 ompares the approahes. The hardware only approah yields theworst results. For the SPEC benhmarks whih use the math & trig funtionsmuh less than the Multi-Media appliations the hardware approah barelysurpasses the base proessor. The ombined approah is the fastest as it bene�tsfrom a lower lateny for Memo-Table misses and from a lateny of one ylefor Memo-Table hits.B.3 The Rationale Behind Funtion Memoiza-tionIt is important to understand why the tehnique works. Why do benhmarkssuh as vgbox, turb3d and klogexp display suh high benhmarks. A look ata simpli�ed exerpt from the soure ode of vgbox shows (table B.7) that it isomputing in a loop the Sine and Cosine of a variable. Pro�ling showed thatthis variable doesn't hange. However the ompiler an't perform CommonSubexpression Elimination (CSE) and move it out of the loop body due to aondition that might hange the variable's values. The ompiler an't detet thefat that the value doesn't hange. Using a Memo-Table solves the problemby saving the previous omputations.The benhmark turb3d ontains ode that performs a omplex Fast Fourier

76 APPENDIX B. MEMOIZATION OF FUNCTIONS

Average

Functions

Instructions

Combined

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Speed
Up

1.05

1.10

1.15

1.20

1.25

MediaBench SPEC Khoros

��
��
��
��

��
��
��
��

Figure B.6: Breakdown of funtion, instrution, and ombined memoizationspeedups by suite.Transformation (FFT). The main loop of the fortran subroutine is shown intable B.8. In the inner loop half the values of TI are the same as from theprevious iteration of the outer loop. The Memo-Table easily takes advantageof this.The appliation klogexp takes the logarithm of all pixels in an image. Setion2.2 has shown that neighboring pixels in an image tend to have the same valuesleading to a high hit-ratio in the Memo-Table.for(i=0;i<N;i++){xp = i/px;std[i℄ = xp*os(teta)/sin(teta);if(std[i℄ >= KPI - EPS && std[i℄ <= KPI + EPS)teta += KPI;} Table B.7: Simpli�ed vgbox ode.
B.4 Related WorkTwo tehniques are omparable to FM. The �rst is a hardware implementationwith extensive software support. The other is a pure software approah.

B.4. RELATED WORK 77

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Speed
Up

MediaBench SPEC Khoros Average

Memoized Software Functions

Hardware Functions

Memoized Hardware Functions1.05

1.10

1.15

1.20

1.25

Figure B.7: Breakdown of software memoization, hardware implemented fun-tions, and ombined hardware memoization speedups by suite.DO 110 J = 1, MT = PI / LNDO 100 I = 0, LN - 1TI = I * TU(I+KU) = COS (TI)U(I+KN) = SIN (TI)100 CONTINUEKU = KU + LNKN = KU + NULN = 2 * LN110 CONTINUE Table B.8: FFT routine from turb3d.B.4.1 Compiler-Direted Dynami Computation ReuseConnors & Hwu [13℄ propose a general tehnique for reusing large regions of odewhih have distint entry and exit points. They named it: Compiler-DiretedDynami Computation Reuse. If the values at the entry points math the val-ues stored in a lookup table the results stored an be used, thus avoiding theneed to reompute the region. Changes in the registers and memory loationsaessed in the region invalidate the stored results. The regions are deteted bya pro�ling-ompiler whih inserts new instrutions that test reuse, update thetable, and invalidate stored entries.While our tehnique an be seen as a subset of theirs it neessitates smallerhanges to the existing ompiler and hardware and doesn't all for extensivepro�ling. Both works are limited by the number of funtion arguments and

78 APPENDIX B. MEMOIZATION OF FUNCTIONSreturn values they an support.B.4.2 Value Pro�lingA software approah suggested by Calder, Feller & Eustae [14℄ uses value pro�l-ing to identify instrutions that have invariant or preditable values at run-time.By inserting speialized ode they an ompare the inputs of funtions or odesegments to the values that have been found to be most ommon. If they maththe results are obtained immediately, if not the funtion or ode segment isexeuted.The only advantage this tehnique has over hardware memoization is thatno hardware and instrution set hanges are needed. On the other hand ourtehnique has the following advantages:� It doesn't need the extensive pro�ling neessary for value pro�ling.� It an apture reuse that value pro�ling doesn't detet suh as a largenumber of data values eah used only a few times, or data that is inputvariant.� If there are even two values to ompare to, the overhead of a software missis greater than the overhead of a hardware miss.B.5 Comparing Hardware to Software Memo-izationA fundamental question about memoization is: \Why an't it be done in soft-ware?" At the instrution level it is obvious that software memoization is of noavail. The overhead of a lookup would be tens of instrutions. Nevertheless thequestion is valid in the sope of funtion memoization.Memoization is, of ourse, possible to implement in software but there areseveral reasons why a hardware-based approah is superior:� the most ompelling reason for using hardware-basedMemo-Table is thepenalty of an unsuessful lookup. For terminal ases where the hit-ratioon the Memo-Table is low, the penalty for a software test and updateis several memory aesses and tens of extra instrutions. The penaltyof a hardware-based Memo-Table miss is one or two mahine yles asshown in setion B.1.2.� Initializing, aessing and updating the software based Memo-Tableompliates programming and ompiler design. Global Memo-Tableswill have to be reognized by ode that was written by di�erent teams ofdevelopers or by a third party ompany. A hardware-basedMemo-Tableaess is simple (lupm1 and updm1) and all modules of an appliation

B.5. COMPARING HARDWARE TO SOFTWARE MEMOIZATION 79aess the same table. A developer need not know of the existene of mem-oization and the ompiler writer needs to add only three extra instrutionsfor eah memoized funtion all.� Amemory basedMemo-Table demands resoures suh as registers, ahelines, and memory ports. These resoures are deduted from the originalappliation. A hardware-basedMemo-Table uses none of the above.Table B.9 ompares hardware based to software based memoization. Shownare the average speedups per suite when using separateMemo-Tables for eahfuntion. The size of eah Memo-Table is 256 entries and the assoiativityis either diret-mapped or 4-way set assoiativity. In addition to the speedupswe show the table size needed in order to ahieve the same speedup of usinga hardware 256/4 Memo-Table, or the maximal speedup if it is impossibleto obtain the same speedup. This happens when the miss ratio is so highthat the miss penalty is larger than the number of yles avoided by suessfulmemoization, or the software tables are so large that they dominate the L1 dataahe and degrade exeution.The results were that only 5 out of 17 appliations ahieve any speedup(with software-memoing & 256-entry tables). The average speedup is -11% (-7% for a diret-mapped table), in other words a slowdown. It is interesting topoint out that while the hardware based sheme favors the higher assoiativity(10% ompared to 8%), the software favors the diret-mapped approah. Thisis due to serialization of the 4-way lookup in software. Further simulations haveshown that for software a 2-way lookup is the best tradeo� between hit-ratioand lookup overhead.When trying to �nd the software based table that yields the best results weobserved that a table larger than 2K entries will always ause a degradation inperformane. This is aused by the doubling of the miss ratio of the L1 dataahe over the ase where a 1K entry table is used (for some appliations asmaller table size already auses degradation). The average speedup obtained is1%, with only six appliations being slowed down, and 11 ahieving some degreeof speedup. 256-entry tables best ahievedsuite 4-way diret soft memoizationhard soft hard soft size/asso spdpMediaBenh 1.12 0.86 1.10 0.90 1024/2 0.95SPEC 1.06 0.93 1.05 0.95 2048/2 1.01Khoros 1.13 0.88 1.12 0.92 1024/2 1.03Harmoni mean 1.10 0.89 1.08 0.93 1.01Table B.9: Speedup omparison between hardware based to software basedmemoization. Hardware Memo-Tables are separate and of size 256/1 and256/4.

80 APPENDIX B. MEMOIZATION OF FUNCTIONSB.6 SummaryThis hapter investigates the tehnique of memoization in the framework ofthe mathematial and trigonometri funtions. The results of previous funtioninvoations are saved (along with their inputs) in lookup tables. If the result of afuntion all already resides in a table, it is obtained in a single yle as opposedto the tens to hundreds of yles it would take to ompute the funtion. Ourtests have shown that an average suess rate of 58% is ahieved for appliationsthat utilize the mathematial and trigonometri funtions.Our main onlusion is that with hardware support in the form of a small andsimple to design lookup table (a uni�ed, 512-entry, 4-way assoiative Memo-Table's size is 16KBytes) it is possible to attain an average (harmoni mean)speedup of 11% for appliations whih utilize the aforementioned funtions. Thisis 60% of the maximal speedup ahievable whih would require using Memo-Tables with millions of entries.The overhead for unsuessful lookups is one or two yles for eah funtionall, thus an almost negligible penalty is paid for appliations that don't displaya large degree of \value loality". Suh a low overhead is impossible to dupliateusing software memoization tehniques.As most mathematial and trigonometri funtions aren't inluded in theinstrution sets of most miroproessors (square root taking being the exep-tion) we suggest adding two new instrutions to the ISA. lupm1 (lupm2) andupdm1 (updm2), whih lookup and update a generi Memo-Table.In omparing FM with IM we saw that for appliations whih heavily utilizemathematial and trigonometri funtions, funtion memoization yields betterresults. For almost all appliations both approahes omplement eah otherleading to a 14% speedup using a ombined implementation. We ompareda proessor that implements the mathematial and trigonometri funtions inhardware on hip, to a proessor that memoizes these funtions on hip, butexeutes them in software. The results showed that the latter proessor was7% faster than the former one. Combining both approahes yields a speedup of15% over the base proessor.

Bibliography[1℄ Mihie D., \Memo Funtions and Mahine Learning," Nature 218, pp. 19{22, 1968.[2℄ L. Sterling and E. Shapiro, \The Art of Prolog, 2nd Ed.", MIT Press Cam-bridge MA, 1992.[3℄ Abelson, H. and Sussman, G.J. Struture and Interpretation of ComputerPrograms. MIT Press, Cambridge, Mass. 1985.[4℄ R. Milner, M. Tofte, R. Harper, and D. MaQueen, The De�nition of Stan-dard ML (Revised) .MIT Press, Cambridge, Mass. 1997.[5℄ S. Harbision, \An Arhitetural Alternative to Optimizing Compil-ers",Pro. of the 1st Int. Conf. on Arhitetural Support for ProgrammingLanguages and Operationg Systems, pp. 57{65, Marh 1982.[6℄ S. Rihardson, \Exploiting Trivial and Redundant Computation", Pro. ofthe 11th Symp. on Computer Arithmeti, pp. 220{227, July 1993.[7℄ S. Oberman and M. Flynn, \Reduing Division Lateny with ReiproalCahes", Reliable Computing, Vol 2, no. 2, pp. 147{153, April 1996.[8℄ A. Sodani and G. Sohi, \Dynami Instrution Reuse", Pro. of the 24thInt. Symp. on Computer Arhiteture, pp. 194{205, June 1997.[9℄ F. Gabbay and A. Mendelson, \Speulative Exeution based on Value Pre-dition", EE Department TR #1080, Tehnion - Israel Institute of Teh-nology, November 1996.[10℄ M. Lipasti, C. Wilkerson and J. Shen, \Value Loality and Load ValuePredition", Pro. of the 7th Int. Conf. on Arhitetural Support for Pro-gramming Languages and Operationg Systems, pp. 138{147, Otober 1996.[11℄ M. Lipasti and J. Shen, \Exeeding the Dataow Limit via Value Predi-tion", Pro. of the 29th Int. Symp. on Miroarhiteture, Deember 1996.[12℄ Y. Sazeides and J. Smith, \The Preditability of Data Values", Pro. ofthe 30th Int. Symp. on Miroarhiteture, pp. 138{148, Deember 1997.81

82 BIBLIOGRAPHY[13℄ D. Connors and W. Hwu, \Compiler-Direted Dynami ComputationReuse: Rationale and Initial Results",Pro. of 32nd Int. Symp. on Mi-roarhiteture, pp. 158{169, November 1999.[14℄ B. Calder, P. Feller, A. Eustae, \Value Pro�ling and Optimization", Jour-nal of Instrution-Level Parallelism, Vol. 1, 1-6 1999.[15℄ D. Citron, D. Feitelson and L. Rudolph, \Aelerating Multi-Media Pro-essing by Implementing Memoing in Multipliation and Division Units",Pro. of the 8th Int. Conf. on Arhitetural Support for Programming Lan-guages and Operationg Systems, pp. 252{261, Otober 1998.[16℄ A. Sodani and G. Sohi, \An Empirial Analysis of Instrution Repetition",Pro. of the 8th Int. Conf. on Arhitetural Support for Programming Lan-guages and Operationg Systems, pp. 35{45, Otober 1998.[17℄ D. Burger and T. Austin, \The SimpleSalar Tool Set, Version 2.0", Teh-nial Report TR-CS-97-1342, University of Wisonsin-Madison, June 1997.[18℄ http://www.spebenh.org[19℄ C. Lee, M. Potkonjak, and W. H. Mangione-Smith, \MediaBenh: A Toolfor Evaluating and Synthesizing Multimedia and Communiations Sys-tems", Pro. of 30th Int. Symp. on Miroarhiteture, Deember 1997.[20℄ Jain R., \The Art of Computer Systems Performane Analysis", John Wi-ley & Sons, 1991.[21℄ Hennessy J. L. and Patterson D. A., \Computer Arhiteture: A Quanti-tative Approah", Morgan Kaufmann Publishers, San Mateo CA, 1990.[22℄ http://www.mot.om/SPS/PowerPC/produts/semiondutor/pu/750.html[23℄ D. Citron and L. Rudolph, \Creating a Wider Bus Using Cahing Teh-niques", Pro. of 1st Int. Symp. on High Performane Computer Arhite-ture (HPCA), January 1995.[24℄ http://www.sgi.om/MIPS/produts/r10k[25℄ http://www.mot.om/SPS/PowerPC/produts/semiondutor/pu/604.html[26℄ http://www.support.ompaq.om/alpha-tools/doumentation/urrent/hip-dos.html[27℄ M. Azam, P. Franzon, and W. Liu, \Low Power Data Proessing by Elimination of Redundant Computations", 7th Int. Symp. on Low PowerEletronis and Design, August 1997.[28℄ Cmelik R. and Keppel D., Shade: A Fast Instrution-Set Simulator forExeution Pro�ling, Sun Mirosystems Laboratories.

BIBLIOGRAPHY 83[29℄ S. Rihardson, \Cahing Funtion Results: Faster Arithmeti b y Avoid-ing Unneessary Computation", Sun Mirosystems Laboratories,Tehni alReport TR-92-1, September 1992.[30℄ A. Sodani and G. Sohi, \Understanding the Di�erenes Between ValuePredition and Instrution Reuse", Pro. of 31st Int. Symp. on Miroar-hiteture, November 1998.[31℄ F. Gabbay and A. Mendelson, \Can Program Pro�ling Support Value Pre-dition?", Pro. of the 30th Int. Symp. on Miroarhiteture, pp. 138{148,Deember 1997.[32℄ C. Molina, A. Gonz�alez, and J. Tubella, \Dynami Removal of RedundantComputations", Pro. of the ACM Int. Conf on Superomputing, June 1999.[33℄ http://www.intel.om/design/[34℄ http://www.khoral.om

