Scheduling of Interactive Processes

“How Can | Play a DVD and Compile Linux at the Same Time?”

Yoav Etsion
etsman@cs.huji.ac.il

School of Computer Science and Engineering
Hebrew University of Jerusalem

A thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science
Supervised by Dr. Dror Feitelson

October 2002

Abstract

When we work with computers, most of the workload we gendsadé an interactive
nature. Our interactions with the computer are in the form odnversation — we type
something, the computers replies and so on. Applicaticaistbrk in this manner are
considered interactive.

Since the birth of the UNIX operating system in the early 197dperating sys-
tems’ task schedulers regard interactive processes asoli@do— processes that do
not generate substantial CPU load and spend most of theintiaiting for the user to
respond.

In the last few years however, with the growing popularitygodiphical cards ca-
pable of massive rendering, CD and DVD drives and the intethere is a growing
acceptance of the workstation as a multimedia consoleititteglucing a new type of
applications.

Modern interactive and multimedia applications requireeder graphical capabili-
ties. This feature makes them consume much more CPU cyolespdern interactive
applications no longer adhere to the interactive workloadiehintroduced in the tra-
ditional UNIX scheduler and require a more sophisticatedieho

In this thesis we explore the abilities of modern operatipgtesns — especially
with regards to the task scheduler and the operating syskeck e— to satisfy the
needs of modern, CPU hungry, interactive applications. Wavsthat the common
CPU metric can no longer be used to classify various apjmicat

Instead, we offer a novel approach to dynamically and autangsly identify inter-
active processes based on monitoring the information flawdeen the different pro-
cesses and the user. A scheduler based on this model caitizgiprocesses according
to the user’s desires, without any additional demands firemser.

Finally, we implement a new task scheduler for the Linux k¢tmased on that
model. Our implementation includes some modificationséodtserver and a massive
rewrite of the Linux kernel's task scheduler. We presentbemarks that show the great
improvement in the handling of interactive processes — wtipards to minimizing
dispatch latency and sufficient CPU time allocation — rebgmslof the load on the
system.

Acknowledgements.

First and foremost, | would like to thank my advisor, Dr. DF@itelson, for guiding me
through those uncharted waters of academic research amdnghme what it means
to be both a researcher and a human being.

| would also like to thank my colleague, Dan Tsafrir, for soway helpful tips
and insights and for being a wailing wall during the frustrgtmoments of bug track-
ing. My thanks are also sent to our system group, mainly Da@mnayiss and Tomer
Klainer, for supplying me with the hardware used for thisaesh and for stopping me
from throwing any computer out the window (even though thegoters sometimes
deserved that).

Lastly, I would like to thank the USENIX organization for gig a very generous
grant that funded this research.

Contents

1 Introduction and Related Work 1
1.1 Introduction e
1.2 RelatedWork
1.3 OurSolution. e
1.4 LayoutofthisDocument

[N

2 Whatis an Interactive Process? 7
2.1 Isthe determination that a process is interactive gtersi? 8
2.2 Conclusions 9

3 The Classics: A survey of Modern Operating Systems’ Schediers 11
3.1 Traditional UNIX Scheduler 11
3.2 BSD4.4 11
3.3 LinUX e e 12
3.4 Solaris e 12
3.5 Windows NT4.0/2000. i 13
3.6 Analysis: No Reference to Interactive Processes 13

4 The Testbed 15
4.1 SYStem. 15
4.2 Kernel LOGGER (KLogger) i 15
4.3 ApplicationsTested 16

5 Operating Systems’ Clock Resolution and Its effects on Rédime and In-
teractive Processes 19
5.1 The Resolution of Clock Interrupts 19
5.2 PreviewofResults 20
5.3 Clock ResolutionandOverheads 12
5.4 Clock ResolutionandBilling 32
5.5 Clock Resolutionand Timing 24
5.6 Clock Resolution and the Interleaving of Applications. 25
5.7 Towards Best-Effort Support for Real-Time 27

6 Why is the Classic, CPU Consumption Based, Process Class#tion No
Good anymore? 31
6.1 Total CPU Consumption 31
6.2 CPU Consumption Distribution. 33
6.3 CPU Consumption is Misguiding the Scheduler 34
6.3.1 Interactive Processes Aren’t Getting the CPU Whery'de It 34

10

6.3.2 Interactive Processes Aren't Getting Enough CPU -
6.4 Another Possible CPU Consumption Based Metric (and whyesn’t

WOrK) . .
6.5 Indeed, the Times They Are AChangin...

An Alternative Metric to Identify Interactive Tasks —

Information Flow Tracking

7.1 Following the Flow of Information
7.2 InteractiveDevices
7.3 Isthe Interactive Devices’ Information Complete?
7.4 Interprocess Communication Graph
7.5 Quantifying Interactions With TheUser
7.6 Scheduling with Positive Feedback — Preventing Stemmat

A New, User Oriented Process Scheduler For Linux

8.1 Maintaining the Interactive Device Statistics
8.1.1 Acquiring The Interactive Device Statistics —

Using the X Server as a Meta-Device

8.1.2 Modifying the X Server Data Structures
8.1.3 Monitoring the User Input Using the X Server.
8.1.4 Monitoring the User Output Using the X Server

8.2 Maintaining the Interprocess Communication Graphrimfation . . .
8.2.1 Identifying Interprocess Dependency
8.2.2 Handling of Multi-Threading/Shared Memory

8.3 Puttingitall Together

8.3.1 The Stacked Scheduler

8.3.2 Identifying the Interactive Processes and PriangiZ hem . .

8.3.3 Allocating CPU Time and Choosing the Next InteracBve-
cessToORun,

8.4 Conclusions e

Now Let’s See If It Works...
9.1 Do Interactive Processes Get the CPU When They Need It?.. ...
9.2 Do Interactive Processes Get As Much CPU Time As They Rleed

9.3 Conclusions e

Further Research
10.1 Extending the Research Presented
10.2 Various Application of Information Flow Tracking

A API for the Interprocess Statistics Scheduler

36

39
40

41
41
.4
42
42
44
45

49
49
52

59
59
61
62

65
65
65

67

Chapter 1

Introduction and Related Work

1.1 Introduction

The problem of scheduling the resources of a computer isdésaald. While the first

machines were simple humber crunchers capable of runniegpmygram at a time, it
soon became apparent that there is a need to allow for seyegidams to be served
concurrently.

A simple solution for this problem was to let the programstwaia queue and be
served in a First-In-First-Out (FIFO) order. A later sotutiwas to let the programs
actually run concurrently by slicing the CPU time among theing the round robin
algorithm — the multiprocessing computer was created, ave dirth to a variety of
resource allocation problems.

Time-slicing also allowed programs to interact with theruisea conversation-like
manner, albeit using textual medium at that time. This ueced the problem of real
time scheduling of computer resources among programs wbitsidering the user
sitting by the console waiting for a response. The new opeyalystems of that time,
such as UNIX [2], incorporated scheduling algorithms thetdied the textual based
interactions with the user in a satisfactory manner.

Recent advances in hardware production have made comgheaper and faster.
As such, computers soon became a common household devio#féna an abundance
of interactive activities, ranging from word processirtgptugh web surfing, and up to
playing graphic-rich games and use as a multimedia con§bkeconversation medium
was no longer limited to the textual domain.

A lot of work has been done on the subject of how to divide th&)@me between
the various running applications, while keeping the intéva user happy. In the fol-
lowing section we review several of the common solutionssfdreduling interactive
applications, including modern multimedia applicatiohge then outline our unique
contribution.

1.2 Related Work

In this section we will review the evolution of interactiveogesses’ schedulers:

1

Classic Operating Systems’ Scheduler Design

At first, interactive processes were textual, and all comigation between the user
and the various applications used the terminal. Task s¢bedof common operating
systems tried to identify the interactive processes anelthigm some special treatment,
to prevent the user from experiencing the system load thrdarger response times.
The UNIX task scheduler [2] works under the assumption thegractive processes
spend most of their time waiting for a response from the useas-the user lives
in a temporal domain much slower than that of the processomeé-uses a simple
policy of prioritizing processes that rarely use the CPUrdhese that do so often.
In a sense, this is a simple fair share approach — the schedeketo distribute the
processing time evenly among the different processes @oithe consideration given
to user-assigned weights passed througmtbemechanism).

Other operating systems took this support one step furthieldmtifying which de-
vice a process was waiting for. Operating systems su@uas Solarig29], Digital's
VAX/VMS[25] andMicrosoft's Windows NT/2000/X28, 49] give a priority boost to
processes that were blocked on a device with inverse piiopad the speed of the
device — the slower the device, the higher the priority bobkis means the a process
waiting for the slower terminal device gets a major boost scheme that implicitly
favors interactive processes.

Microsoftadded another feature to th&ifindows NT/2000/XBperating systems:
the thread owning the focus window gets an additional gsidrbost. These operating
systems thus had the first mainstream scheduler that elyphecognizes the interac-
tiveness of applications, as opposed to the previous ihpbtution.

These solution worked well when human interaction was éohib the textual do-
main. Contemporary computer workloads however, espg@althe desktop, contain
a significant multimedia component: use of graphical useriaces, playing of music
and sound effects, displaying video clips and animatictes,ehese workloads are not
well supported by the mechanisms described so far as showtidyet al. [34] and
further investigated in chapter 6.

This deficiency is often attributed to the fact that multinaespplications consume
significant CPU resources themselves — which breaks the laasumption of the
UNIX scheduler — and to the lack of specific support for réaletfeatures.

Inrecent years the topic of scheduling multimedia applicethas become a crowded
research area, in which we can identify several common agpes. The main ones
are support for soft real time applications and for propowl sharing of resources.

Multimedia Schedulers with Soft Real Time support

Multimedia is commonly associated with soft real time featu Sustained frame rate
and constant audio sample rate are two major features whake multimedia ap-
plications require soft real time support. Several redearojects have been done to
enhance multimedia support through better soft real tinppaert from the operating
system.

Soft Timers [1] use general kernel entry points, such agsysalls, as opportuni-
ties to execute software timers. This is done in an attemgivebetter timer accuracy
than the common solution of executing all software timeosrfrwithin the general
clock interrupt handler which is called at a constant (anghllg coarse) rate. This
solution is shown to highly enhance the operating systenfisreal time properties,
albeit based on a statistical principle.

The SMART scheduler [35] by Nieh et al. lets a multimedia &agtion request the
operating system for certain soft real time assurances —rlynedomputation periods
— and receive feedback from the operating system whethse tfegjuests can be met.
Originally implemented on the Solaris operating systermd kEter implemented for
Linux [56], it presented a substantial improvement to thiédveasupport. This solution
however, mandates modifications to applications by fortliegn to explicitly request
resources from the operating system.

The applications’ modifications problem was addressed ®B&ST scheduler [3].
This scheduler identifies applications with soft real tinn@lities — application which
have regular computation periods. These periods are redamnt the operating system
attempts to anticipate future periods and schedule thecapipins accordingly. While
this solution does not require any participation on behfthe application itself, it
cannot handle overloaded machines in which such compuotaédods overlap.

On a different note, Zhang et al. [60] approached a diffevension of the same
problem. Their goal was to schedule real time jobs along-&#gtt ones in a manner
which will maintain the real time deadlines. Their desigrsvaémed at serving parallel
real time multimedia applications that are too demandirugtserialized. An example
for such applications is detecting motion on a stream of msagken by an airplane by
pipelining the frames through a series of threads runningdifferent processors. Their
proposed solution is dividing the CPU time among the twosgasaccording to a user
supplied “fairness” ratio, and letting each class scheitsilerocesses in a hierarchical
model. The real time class uses the earliest-deadlingfiR¥F) scheme.

Proportional and Fair Share Schedulers

Another common solution is to enable the user/programmezdoest some resource
guarantees from the operating system: a certain perceofatie CPU time, disk
bandwidth etc.

One of the well known schemes in this fieldlisttery Schedulings7]. The basic
idea is to assign each process a number of lottery ticketsstipaoportional to its re-
guested percentage of the CPU time. The scheduling deéssiban made by drawing
a uniformly distributed ticket thus giving each processrad®to “win” the CPU that is
distributed according to the user/programmer’s requests.

This work was later developed inttride Scheduling58] which was aimed at
turning the probabilistic factor at the baselafttery Schedulingnto a deterministic
one in order to minimize the mean error in the average thrpughnd latency that
accompanies the probabilistiottery Scheduling

Another well known work in this field is thBorrowed-Virtual-Timescheduler [11].
This scheduler assigns a virtual time to each running thraad allocates the CPU
according to a user-defined weight policy. A time sensitivead can “borrow” time
from its future allocations when its schedule is tight. Ttdé® minimize the thread’s
dispatch latency in time-critical sections.

Stoica et al. [51] proposed another proportional sharedsdivey mechanism —
processes are continuously allocated CPU shares accaodingser defined rate.

Mercer et al. [31] devised an operating system abstractidedreservethat allows
a server process to bill the client process for its CPU tinue #llowing a more accurate
billing according to user-defined weights. Their work wasidgeed for microkernel
operating systems in general (and implemented on the Magtekgs2]) since such
operating systems rely heavily on user level processeotag® elementary services.

3

An adaptive approach was taken by Rau et al. [39] when designischeduler
that monitors the CPU demands of both Multimedia and BefirEdpplications and
trying to accommodate those needs by adapting itself to traentary workload. The
user must specify two limits: a highest tolerable percemtafgmissed deadlines in
multimedia applications and a highest tolerable slowdowrbest-effort applications.
The scheduler than tries to change the CPU portions allddateeach class using 5%
chunks in order to maintain both limits over the possiblyraiag workload. In case
of a heavy load under which the system cannot maintain botitslj an advantage is
given to the multimedia class whose limit is the one to be ma#ied.

The Eclipse operating system [6] went a step further in liog proportional share
of the machine to the various running processes. Its scimepalborithm, calledvove-
To-Rear[7], enables the user/programmer to guarantee portionthef cesources —
such as memory blocks, disk bandwidth, network bandwidth et as well as CPU
time to the running processes. In particular, the algorithdesigned so that latencies
incurred waiting for different resources do not accumudater time.

Hierarchical and Modular Schedulers

Some work investigated the behavior of so called “meta-dglees” — schedulers that
actually allocate CPU time between other, class specifiecuders.

Goyal et al. [18] designed a hierarchical scheduler fagddike a tree. Each leaf
is a class specific scheduler and each internal node symbdimeta-scheduler with
a specific proportional CPU time division between its chatur

In his PhD thesis, Guo [20] extended this hierarchical salerdnodel. He de-
signed a priority based algorithm, unique in that it ideesifthe server processes a
client is serviced by. It then increases the server prosegsmrities to that of the
client (if necessary) to prevent the common cases of pyionitersion.

TheVassalproject [8] fromMicrosoftdescribed a hierarchical scheduler with strict
ordering: when a dispatch decision is to be made the dispatpheries the various
class-specific schedulers for processes, in a strict, finedeorder. The focus of this
work is to enable the dynamic loading and unloading of sclezdat runtime, accord-
ing to the applications’ demands. This principle is somewglmailar to the mechanism
we described as thetacked Schedulésection 8.3.1).

Summary of the Common Approaches

As we have seen, all these schedulers’ attempt to find wayktate CPU time to the
running applications in a manner that will keep the user kiagpd force the computer
the behave according to the user’s expectations.

Although some of these schemes are very elaborate, thane isoonmon downside
to all of them: they still require the user/programmer to oty specify the needs of
the various application — either in terms of deadlines oetdtive weights — and use
this hand tuned process identification as a guide by whiclistalolite resources.

The only exception to this approach is BESTscheduler [3] that tries to automate
the identification of soft real time processes and their irequents, rather then letting
the user manually supply this information. But even thisvjiies an automation that
is limited to soft real time processes, cannot distinguistnieen interactive and non-
interactive processes, and cannot handle overloaded mechi

Our goal is to fully automate this process, and make the coen@unticipate the

4

user, his desires and interests. Resource allocationsheitl be based on this under-
standing of the user’s interests.

1.3 Our Solution

In this thesis we introduce a novel approach to process siihgdased on identifying
interactive processes by monitoring their interactiorthie user.

The novelty in our research is that contrary to other sohgie- aimed at provid-
ing a mechanisnenabling the application programmer or the user to requershio
resources from the operating system — our solution is fatoseproviding gpolicy
that will enable the scheduler to choose the process theisiggerested in, without
any need for special input from either the application paogmer or the user. The
policy is rather based on understanding the properties of interaatith the human
user.

This identification of interactive processes is dynamic @atgliires no cooperation
from either the user or the programmer. It is thus fully ineleglent, user oriented and
is compatible with the nelWwuman centered computipgradigm.

Another benefit in this approach is that there is no need fecigfized interfaces,
that may reduce the portability of applications, and regaitarger learning and coding
effort.

On a secondary note we also try to investigate the effectdokeesolution on the
scheduling of interactive and real time processes, and shata little change in the
operating system'’s clock can lead to great benefits.

1.4 Layout of this Document

An overview of this thesis is as follows: we first discuss thegerties of an interac-
tive process (chapter 2), then turn to a detailed review ofroon operating systems’
schedulers (chapter 3). After describing our testbed (ehal), we give an analysis
of the effects of the operating system'’s clock on interactind real time applications
(chapter 5) and analyze why common schedulers fail to handlgémedia applications
(chapter 6). We then introduce tirdormation flow tracking methodolodghapter 7)
on which we base our proposed scheduler (presented in ¢ct&@ed continue to de-
scribe our experimental results (chapter 9). Finally, wades on future applications
of our research (chapter 10).

Chapter 2

What Is an Interactive Process?

When investigating how an operating system'’s schedularldi@ndle interactive pro-
cesses, the first step should be formalizing a definitionfiongeractive process
TheFree On-line Dictionary of Computini@?2] defines an interactive process as:

A term describing a program whose input and output are ed&dd, like
a conversation, allowing the user’s input to depend oneasliitput from
the same run.

The interaction with the user is usually conducted throufee a text-
based interface or a graphical user interface. Other kihagerface, e.qg.
using speech recognition and/or speech synthesis, arpadsible.

This is in contrast tdatchprocessing where all the input is prepared be-
fore the program runs and so cannot depend on the progratpstou

This definition however, is a little simplistic for two reaso First, the interaction
between the user and an application might be indirect viard gnocess, and second,
the rate of user interactiveness is spread over a wide spectr

In most UNIX systems the user keyboard and mouse inputs ardetivered di-
rectly to the application, but rather to the X server [59] dhd window manager.
These are responsible to deliver the input event to the egtjlin, so the user interac-
tion might not even be a direct one. Other, more extreme elemmrlude the UNIX X
terminal [59] which emulates a rudimentary computer teahinside the X Windows
System for the purpose of running console based applicatiorthis case the user I/O
is proxied to and from the application by both the X semmedthe X terminal.

Such examples might even include casesesfiote interactiveness- an X ap-
plication running on one machine and connected to an X semwemother machine,
making it interactive on one computer, but relative to a resuser. A more extreme
example is a web server that interacts with an internet beown this case the server
interacts indirectly with a human user (actually, becadskeeX windows system it in-
teracts directly with an application that interacts indihlgwith the user - complicated,
hah?). The web browser may quite possibly be running on ateeconputer, making
it another example of remote interactiveness.

There is a wide variety of interactive applications. Thetisels a delay in an appli-
cation’s response only relatively to its expected runtioreglery time): he frequently
interacts with applications whose response is expectee tguick, and infrequently
interacts with slower applications (by “interact” we alsean that the user checks if

7

an application finished its work and has produced some outf@yt identifying this
difference in frequency, or granularity of the interacpwe have placed the different
applications on a vast spectrum of different frequencies. o®e hand we have the
role playing games, to which the user reacts almost immelgiafter the game draws
something on the screen (and in the opposite direction,aheegedraws the screen al-
most immediately after the user sends some input event —remgpmouse move etc.)
and movie players: both types need to maintain a constamiefrate, which requires
CPU resources as well as limited dispatch latency — almadtirae assurances. On
the more frequently-interactive side of the spectrum we hs/e text editors to which
the user sends bursts of inputs. Going toward the other etlteafpectrum we'll see
applications such as web browsers and web servers (on the fneguent side), and
even compilers (less frequent)

This spectrum indicates that a frequency threshold has $etyso that every appli-
cation whose interaction frequency is higher than the tioleswill be considered in-
teractive, and we will try to improve its response time. Apations over the threshold
include both internet browsers which have a big response, fiangely due to network
latency and bandwidth limitations, and multimedia and greg@ applications which
require fixed CPU usage and dispatch latency. This threshadreed upon among
human computer interaction specialistsbe in the area of a few secondswith the
exact threshold depending on the user and the hardwared@aershardware the user
will probably be aware that applications may be slower, thienger threshold).

2.1 Is the determination that a process is interactive
persistent?

After we have determined what makes a process interactevéage the next question:
can the interactive status change during a process’ lisgtonsimply — can a process
be considered interactive one minute an non-interactee#xt?

The answer to this question is yes. In current working emvitents, a user may
have more applications openned than he can monitor sinadtesty (in other words,
a user open more windows than he can watch). This resultsrie spplications being
dormant while waiting for input from the user. An example loktis an Emacs editor
that is open and showing some file being edited while the gsaurfing the net — the
editor is in general an interactive application but thiganse of the application is not
interactive at the moment.

But this is the simple case. Some applications might agtb&lldormant but appear
to be active: An application can be waiting for input from theer to continue its work,
even though it still requires CPU resources (so it is not @gorinirom the operating
system’s point of view). Just imagine an instance of netsd¢hat is displaying a web
page with some graphics (animated gif, for example) thatlseedrawing: it requires
CPU resources to redraw the graphics, but effectively do#tgmg but wait for the user
to click the mouse on some link.

From this observation we can deduce that a process is omsairtive relating to
its frequency of communication with the user during a pegbtme. An interactive
process’s lifespan might also have times when the user ikimgpon some other appli-
cation and checks the output from this process less fretyudfrthis frequency crosses
the interactive frequency threshold, the process mightineaded to be non-interactive
until the user regains interest in it and the interactiondiency crosses the threshold

8

back to interactive level.

2.2 Conclusions

In this chapter we have discussed the characteristics aftaractive application, and
found that there is a plethora of such, so we must limit ousstjue

For the remainder of this document we will not handle casesraobte interactive-
ness and limit our discussion to local interactive applicatidie do however address
the issues of both direct and indirect interactiveness, cfet a novel approach to
dynamically identify such processes.

10

Chapter 3

The Classics: A survey of
Modern Operating Systems’
Schedulers

This review of scheduling policies in contemporary opergtsystems demonstrates
how CPU usage is factored into scheduling decisions, thex@fiaking accurate billing
important. It also reviews the various operating systenw®lcresolution (note that
billing is always done in operating system clock tick uniti)also lists typical clock
interrupt rates and subsequent scheduling time quanta.

3.1 Traditional UNIX Scheduler

In Traditional UNIX [2] the scheduler chooses processes based on priorityhwhic
is calculated as the sum of three termdasevalue that distinguishes between user
and kernel priorities, aicevalue representing relative importance, angsagevalue.
Lower numerical values represent higher priorities. Thegeds incremented on each
clock tick for the currently running process, so priorityreduced linearly when a
process is running. However, this is at tick resolution,wning for less than a tick

is unaccountable. The usage is reduced each second fooedigzes according to the
following formula, wherdoad_avgis the average length of the runqueue in the last

second:
2load _avg

2load avg+1

Thus when the load is high, and the process gets to run less, dfte aging is also
slower.

usage= x usage

3.2 BSD4.4

BSD Unix[30, 16], which is the basis for FreeB&&nd Mac OS-X, uses a similar
formula.

1FreeBSD has a new proposed development scheduler thated basa proportional share algorithm,
as opposed to the older priority feedback based algorithmceShe change is not relevant to interactive
processes specifically, and is not yet part of the stablelalision, we discuss the stable algorithm.

11

One difference is that CPU consumption by the current pieenly tabulated
once every four ticks. This makes the resolution problemsedhan in traditional
Unix. Another is that thenice value is also added into the aging of theage so pro-
cesses with high priority (negativice) get some of their CPU usage for free, whereas
processes with low priority (largeice) look as if they used more CPU than they actu-
ally did. The time quantum in BSD is fixed at 100 ms.

3.3 Linux

In Linux 2[4, 5, 54] the priority dictates both which process is chaerun, and how
long it may run.

The Linux scheduler partitions time into epochs. In eachchpevery process has
an allocation of how long it may run, as measured in ticks. kMihe process runs, the
allocation is reduced on each tick. When there are no reazbegses with an allocation
left, a new epoch is started, with all processes getting aallewation that is inversely
proportional to their nice value (the lower the nice valhe,ltigher the priority and thus
the higher the allocation). In addition, processes thandiduse up all their previous
allocation transfer half of it to the new epoch. Thus intéva&cprocesses that were
blocked for I/O get a higher total allocation, and hence &éigriority. Allocations in
an epoch are in the range of 6-11 ticks (in Linux 2.4), and thprocess is preempted.
Special cases exist, though: when a process forks, itsatitocis split between the
parent and child processes, and when a process termirtatessniaining allocation is
added to its parent.

3.4 Solaris

Solaris[29, 32] is somewhat more sophisticated. The Solaris sdbesupports sched-
uler modules, so new modules can be loaded at runtime by tméngdrator, thus
changing the behavior of the scheduler. The default claasedime sharing (TS),
interactive (1A, which is very similar to TS), system (SY&d real-time (RT).

A scheduler module registers itself with the kernel, spéed the range of prior-
ities it uses. The Solaris scheduler has 170 global priteitgls, and each scheduler
module specifies a range of priorities is uses. Module gigsrcan overlap.

User threads are usually handled by the TS and IA classeshvané very similar.
Priorities and quanta are set according to a schedulirgsclpecific table, which sets
the quantum length for each priority, and the priority theettd will have if it finishes
its quantum (lower) or if it blocks on I/O (higher). The quastre in tick units, and the
values in the tables can be changed by the administratorbasie idea is that higher
priorities get shorter quanta: when a process finishes @styu it gets a longer one
at lower priority, and when it blocks it receives a shorteagium at a higher priority,
as opposed to what might happen under Linux.

The clock is set to a frequency of 100 Hz, both on the UltraSBARd on the i386
architectures. The clock tick handler calls the schedutilags-specific tick handler for
thread runtime accounting. In both the TS and IA classesdibisements thepuleft

2Actually, the new development version of the Linux kerneloahas the scheduler completely rewrit-
ten [33]. However, since the changes relate to the schesldata structures and not the algorithm proper,
we discuss the stable version’s scheduler.

12

counter in the process structure. The quanta in these slé&sde the range of 2-20
ticks.

Solaris’ default timer interrupt frequency is 100Hz, bugah be changed to 1000Hz
using a parameter in thletc/systenconfiguration file. This is however highly discour-
aged by the kernel commentators [29].

3.5 Windows NT4.0/2000

The priority of treads inVindows NT4.0/2000[48, 49] also has static and dynamic
components. The static component depends on the processraad. The dynamic

component is calculated according to a set of rules, that atexy give the thread a

longer quantum. These rules include the following:

e Threads associated with the focus window get a quantumghigtio three times
longer than they would otherwise (this rule only applieshte NT Workstation
version).

¢ Threads that seem to be starved get a double quantum at thegsiple priority,
and then revert to their previous state.

e Threads that wait for user input from a GUI get a double quardtia priority
level that is one less than the maximum, and then revert foghevious state.

e After waiting for 1/O, a thread'’s priority is boosted by a facthat is inversely
proportional to the speed of the 1/O device. This is then e@ented by one at
the end of each quantum, until the original priority is reatthgain.

The net effect is a large boost for threads that are explititeractive, at the expense
of others. CPU usage enters into the equation in its effetgtroninating the boost, and
in the special handling of starving processes.

The basic quantum in NT Workstation is 6 units, and in NT Seitvis 36 units.
On each clock tick the scheduler deducts 3 units from theingnthread’s quantum,
so even though the quantum unit is less than a tick, the stdréiresolution is not
improved. The length of a tick is 10-15ms, depending on tleegssor (from 486
to Pentium4) and the number of processors present (mutégsmr or uniprocessor).
This gives a resolution of 66—-100 Hz.

3.6 Analysis: No Reference to Interactive Processes

It is quite obvious that none of the reviewed schedulers askedge the fact that inter-
active processes requires special care, and all treat theimale 1/0 bound processes.

The only special handling available is by Méndowsscheduler (section 3.5) which
gives a longer quantum to the thread associated with thesfadgndow. Although
unique, this is a very simplistic approach and not necdgsagood one.

In the following chapters, we will discuss the adequacy ef3b year old assump-
tion — that interactive processes are merely /O ones inuisgeg— and we will show
that it is no longer true for modern workstations’ common kioad.

13

14

Chapter 4

The Testbed

In this chapter we will review all the hardware and softwarstems used to evaluate
our experiments.

4.1 System

Our hardware consists of a 664MHz Pentium Il (Copperminaghine equipped with
256 MB RAM, with a 3DFX Voodoo3 graphics accelerator with 1BNRAM that
supports openGL in hardware.

Linux is becoming more and more common as a desktop opeatstigm. Because
of its open source nature and the availability of many keinfelrmation resources it
can be modified and monitored to measure performance.

For that reason we used the 2.4.8 version of the Linux ke&#lds the operating
system running with the RedHat 7.0 Linux distribution [4d]he kernel's hardware
clock was changed from the default 100Hz frequency to 100f4$ed on our investi-
gation of clock effects (see chapter 5).

For the window system we used the open sourced XFree86 X \Wisdoplemen-
tation, version 4.1.0 [53].

4.2 Kernel LOGGER (KLogger)

The measurements were conducted ugillogger, a kernel logger we developed that
supports fine-grain events. In order to reduce interferandeoverhead, logged events
are stored in a largish buffer in memory (we typically use 4\ahd only exported at
large intervals (by a daemon that wakes up every few secohednterval is reduced
for higher clock rates to ensure that events are not losgtenty measurements, the
intervals during which klogger data was offloaded were expfiexcluded). The im-
plementation is based on inlined code to access the CPU8 cganter and store the
logged data. Each event has a 20-byte header including @ sernber and times-
tamp with cycle resolution, followed by event-specific datehe overhead of each
event is only a few hundred cycles (we estimate that at 100 overhead for log-
ging is 0.63%, and at 1000Hz it is 0.95%). In our use, we logehleduling-related
events: context switching, recalculation of prioritiestks, execs, changing the state
of processes, and monitoring of activity on Unix-domainksis (to track potential in-

15

teractions with the X server). While the code is integrated the kernel, its activation
at runtime is controlled by applying a specsgtctlcall using the /proc file system.

4.3 Applications Tested

Our measurements were based on several applicationg) tyirepresent the variety
of interactive applications. We also used two applicatiamdackground load, which
were modeled to represent common background load appiisati

The classical interactive applications were represenyethb GNU Emacs text
editor [14] To simulate reasonable user /0, Emacs was measured witieadte of
~ 8 characters per second, over a period of 60 seconds.

Modern interactive applications are more diverse, henae wepresented by sev-
eral examples:

o XFree86 X Windows Server [53]n UNIX systems, the X server is responsible
for all interactions with the user as it acts as a virtual od&s As such, this
server can be thought of as a user proxy from the workstatjpoint of view.

This version of the server includes two important extersitmthe X proto-

col: the first is theMIT Shared Memory (MIT-SHM) extensjamhich is used to

transfer images via shared memory rather than using meilbipifer copies with

UNIX domain sockets, thus reducing the load on the CPU. Theratxtension
is theDirect Rendering Infrastructure (DRI) [37Alvhich allows a graphical ap-
plication direct access to the display adapter’'s GPU inksté@roxying all these
request through the X server.

e OpenOffice [24] This is a modern, full fledged office productivity suit, with
graphical capabilities. We used its text editor as an exaropbh modern edi-
tor. The measurements were similar to those used with Emacsioughly 8
characters per second, over 60 seconds.

e Xine movie player [13]This is an example of a multi-threaded application. Xine
uses the MIT-SHM X protocol extensioKinewas measured while playing a 40
seconds MPEG movie - the movie we used was encoded using tieGMP
standard [19], at 25 fps and size of 3288 pixels. All measurements &fine
were zooming the movie at a 2:1 ratio - twice its size.

e MPlayer movie player [38]This is a single threaded player. MPlayer also uses
the MIT-SHM X protocol extensionMPlayer was measured playing the same
40 seconds MPEG movie &$nedid, but at normal size.

e Quake Ill Arena [47] This is an example of a modern role playing game, with
heavy graphical requirementQuakeuses the OpenGL [23] library to render
graphics. Quakecan run in two different modes: it can either run in normal
mode in which a human player is managing the game, or in dena mmoxhich
the computer plays a game by itself. We measured both maussetthe effect
of input from the X server on the process’ CPU usage. Both oreasent lasted
50 seconds.

For comparison, we measured the CPU usage of two types of oomon-interactive
applications:

16

e Compilation : A compilation the linux kernel. Since there aeveral processes
involved in the compilation the data shown is the summatibalioprocesses
involved. Such a compilation takes about 400 seconds.

e CPU Intensive : To represent a CPU intensive applicatioimple program was
used. The program is an infinite loop incrementing an inteayst is referred to
as astresser Thestessersvere measured over a 300 seconds period.

17

18

Chapter 5

Operating Systems’ Clock
Resolution and Its effects on
Real-Time and Interactive
Processes

Itis generally agreed that scheduling mechanisms in gépernaose operating systems
do not provide adequate support for modern interactiveiegtpns, notably multi-
media applications. The common solution to this problenpisiévise specialized
scheduling mechanisms that take the specific needs of sydieatpns into account.
A much simpler alternative is to better tune existing systein particular, we show
that conventional scheduling algorithms typically onlydéittle and possibly mislead-
ing information regarding the CPU usage of processes, lsecagreasing CPU rates
have caused the common 100Hz clock interrupt rate to be eodan most application
time quanta. Significant increases in clock interrupt ratespossible with acceptable
overheads, and lead to much better information. In additleey provide a measure of
support for soft real-time requirements. However, undadés conditions, the system
may still be unable to distinguish between CPU-intensivétimedia applications and
background CPU-intensive tasks.

5.1 The Resolution of Clock Interrupts

Computer systems have two clocks: a hardware clock thatrgevke instruction cy-
cle, and an operating system clock that governs systemitgctiynlike the hardware
clock, the frequency of the system clock is not predefineiierait is set by the oper-
ating system on startup. Thus the system can decide foiitbalt frequency it wants
to use. Itis this tunability that is the focus of the preseayiqr.

The importance of the system clock (also called the timeriapt rate) lies in the
fact that systems measure time using this clock, includiRty @sage and when timers
should go off. The most common frequency used today is 108kt hasn't changed
much in the last 30 years. For example, back in 1976 Unix @ar6irunning on a
PDP11 used a clock interrupt rate of 60Hz [27]. At the same tiine hardware clock
rate increased by about 3 orders of magnitude [41]. As a cuesee, the size of an

19

60 —
1000Hz

¢ 100Hz
50 ~

achieved frames per second
N
o
1
\
A Y
\
3

Figure 5.1: Desired and 30 A

achieved frame rate for the ’

Xine MPEG viewer, on 20 I I I I
systems with 100Hz and 20 30 40 50 60
1000Hz clock interrupt desired frames per second
rates.

operating system tick has increased a lot, and is now on ther of 10 million cycles or
instructions. Simple interactive applications such asdéditors don’trequire that many
cycles per quantum, making the tick rate obsolete — it is toarge for measuring
the running time of an interactive process. For examplepfierating system cannot
distinguish between processes that run for a thousandscgolé those that run for a
million cycles, because using 100Hz ticks on a 1 GHz progdssih look like 0 time.

Another problem is providing support for real-time applioas such as games with
realistic video rendering, that require accurate timingvddo several milliseconds.
These applications require significant CPU resourcesnbaifiagmented manner, and
are barely served by a 100Hz tick rate. In some cases, the&etingiock interrupt
rate may actually prevent the operating system from pragidequired services. An
example is given in Figure 5.1. This shows the desired andeeti frame rates of
the Xine MPEG viewer showing 500 frames of a short clip thalisady loaded into
memory, when running on a Linux system with clock interrugtes of 100Hz and
1000Hz. For this benchmark the disk and CPU power are nolebettks, and the
desired frame rates can all be achieved. However, when @asit@pHz system, the
viewer repeatedly discards frames because the system doagke it up in time to
display them if the desired frame rate is 60 frames per second

Increasing the clock interrupt rate may be expected to dnd maybe even over-
come these problems, but this comes at the expense of additwerhead. In this
chapter we focus on a single simple tuning knob — the clodiapt resolution, and
investigate the benefits and the costs of turning it to mughdrivalues than commonly
done, without changing the scheduling algorithm.

5.2 Preview of Results

Our initial goal is to show that increasing the clock intgrreate is both possible and
desirable. Measurements of the overheads involved inrigehandling and context
switching indicate that current CPUs can tolerate much drigthock interrupt rates
than those common today (Section 5.3). We then go on to danatm#he following:

e Using a higher tick rate allows the system to perform mucheagcurate billing,
thus giving a better discrimination of interactive proassgSection 5.4). This is
a real issue with typical interactive workloads on todayacimines.

20

Table 5.1:Timer interrupt overhead (averagndard deviatigh
Interrupt processing Context switch
Clock Load Cycles us Cycles us
100 Hz | unloaded | 4157211 6.25| 702t909 | 1.06
with Xine | 75711967 | 11.39| 1743:2102 | 2.62
1000 Hz | unloaded | 4176t131 6.28 | 734ts09 | 1.10
with Xine | 4731+822 7.12 | 1604+1802 | 2.41

e Using a higher tick rate also allows the system to providertage“best effort”
style of real-time processing, in which applications cataobhigh-resolution
timing measurements and alarms (as exemplified in Figureahd expanded
in Section 5.5). For applications that use time scales tteatedated to Human
perception, a modest increase in tick rate may suffice. &ppbins that operate
at smaller time scales, e.g. to monitor certain sensors,retyire much higher
rates and shortening of scheduling quantum lengths (Sestif).

We feel that improved clock resolution — and the shorter ¢a#rat it makes pos-
sible — have to be a part of any solution to the scheduling t&fractive applications,
and should be taken into account explicitly.

5.3 Clock Resolution and Overheads

A major concern regarding the increase of the clock intdrrage is the resulting in-
crease in overheads: with more clock interrupts more tinido&iwasted on processing
them, and there may also be more context switches, whichrread to reduced cache
and TLB efficiency. This is the reason why today only the Alpbkesion of Linux em-
ploys a rate of 1024Hz (according to the Linux Kernel mailiisgthis is because the
Alpha is “strong enough to handle it"). This is compoundedHtsy concern that oper-
ating systems in general become less efficient on machirtbsigiher hardware clock
rates [36]. We will show that these concerns are unfoundetiaaclock interrupt rate
of 1000Hz or more is perfectly possible.

In Linux, clock interrupts are handled by thiener _interrupt function, which is
called fromdo_IRQ, the main interrupt dispatch function. Using the kloggédraa-
tructure we measured the execution time of the handlerifumébdr kernels running at
both 100Hz and 1000Hz interrupt rates. To test the effeatad e ran the tests both
on an unloaded machine, and on a machine running Xine.

The results are shown in Table 5.1, and indicate that theléanderhead is rel-
atively small and largely independent of the clock intetrtgge. Handling a clock
interrupt takes less than 4200 cycles; on our 664 MHz mactiirie causes an over-
head of only 0.07% if called at 100Hz, and a higher but stifjlizgble 0.7% if called at
1000Hz. Higher rates would also be tolerable: system oeglhieneasuring 10-30%
were the norm a decade ago [10]. A context switch takes ewtil@e, although it
grows with load.

An interesting phenomenon is that on a loaded system thag@drandling time
actuallydropswhen the clock interrupt rate is increased. We are not swetathy this
happens, and suspect cache effects. The possibility tisatute to the accumulation of
timer events that need to be handled was checked and refuted.

21

Table 5.2:0verheads on different processor generations.

Interrupt processing Context switch Cache BW Trap

Processor| Cycles us Cycles us MB/s Cycles | us

P-90 93%379 | 10.41| 2056:723 | 22.80 28.01c0.82 | 187+201 | 2.08
PP-200 1648:376 8.28 | 1576r468 | 7.92| 438.4%1301| 37%s5 | 1.91
PII-350 2372237 6.79| 1451400 | 4.16| 828.2317.37| 344+102 | 0.98
PllI-664 4098t695 6.17 | 1375t468 | 2.07 | 2512.0632.76 | 346:23 | 0.52
PlII-1.133| 6475:566 5.73| 1356t517 | 1.20| 2683.1336.80 | 364+266 | 0.32
Al.6 11246662 7.03| 2004:502 | 1.25| 4086.7860.81| 291+79 | 0.18
PIV-2.2 14130573 6.44| 39781101 | 1.81| 3572.5%6168| 171769 | 0.78

Table 5.3:Time between successive timer interrupts (averageard deviatioh

| Clock | Load [Intervalincycles | Clockrate |
100 Hz | unloaded | 6645205.973390.41 99.9969 Hz
with Xine | 6645206.345891.94 99.9969 Hz

1000 Hz | unloaded 664409.231463.48| 1000.1366 Hz
with Xine 664409.226358.13| 1000.1366 Hz

How are these results expected to change on future machiregaj®ns? Ouster-
hout has claimed that operating systems do not become &estast as hardware [36].
We have repeated some of his measurements on a range ofrRgmtaessors with
clock rates from 90MHz to 2.2GHZ, and on an Athlon at 1.6GHthiiDR-SDRAM
memory. Our results, listed in Table 5.2, show the followirgrst, we find that the
overhead of processing a clock interrupt is dropping at ahslower rate than ex-
pected according to the CPU clock rate. This is due to an daraiion of the gettime-
ofday() accuracy by accessing the 8253 timer chip on eadk @verrupt, and is there-
fore not related to the CPU clock rate. But even with thisroptation, the overhead is
still short enough to allow many more interrupts than arelusday, up to an order of
10,000Hz. Second, we find that the overhead for context Bimigctakes roughly the
same number of cycles, regardless of CPU clock speed (eanépé Pentium4, which
is using SDRAM memory at 133MHz and not the newer RDRAM). Webdbund
that the trap overhead and cache bandwidth behave similEnig is more optimistic
than Ousterhout’s results. The difference may be due toatteliat Ousterhout com-
pared RISC vs. CISC architectures, and there is also a eliféerin methodology: we
measure time and cycles directly, whereas Ousterhout théseesults on performance
relative to a Microvaxll and on estimated MIPS ratings.

A potential problem with increasing the clock interruptalegion stems from the
fact that the Linux kernel is monolithic and non-preempgablt therefore contains
many pieces of code in which interrupts are blocked. Havimgentlock interrupts
runs the risk of conflicting with these code sections, legdimtiming inaccuracies.
Results of measuring the times between the handling of saiveeclock interrupts are
shown in Table 5.3. As we can see, the interrupt-blocked sedtons in the kernel do
not cause a major loss of timer interrupts, or mishandlilegrtheven under loads. The
measured timer frequency is very similar to the programnmex] and the low standard
deviation suggests a relatively constant interrupt rate.

22

0

30 77860 quanta
1000Hz

20 20

xine

10 10

billing [ticks]

21920 quanta

quake

1 2

20 30590 quanta

quake

-4

3 2504 quanta

emacs

3 0

1 2

20 3872 quanta

emacs

20

10

3 8590 quanta
X (w/xine)

0
0 1 2

20 16390 quanta
X (w/xine)

0 - 0 S 0 ATy 0 = e

0 10 20 0 10 20 30 0 10 20 0 10 20

eff. quant. [ticks] eff. quant [ticks] eff. quant. [ticks] eff. quant. [ticks]

Figure 5.2: The relationship between quanta durations and how muchrtieegs is
billed, for different applications, using a kernel runnigl 0OHz and at 1000Hz. Con-
centrations of data points are rendered as larger diskspwite the graphs would have
a clean steps shape, because the billing (Y axis) is in wiake.t Note also that the
optimal would be a diagonal line with slope 1.

Table 5.4:Scheduler billing success rate.

Billing ratio Missed quanta
Application @100Hz| @1000Hz| @100Hz| @1000Hz
Emacs 1.0746 0.9468 95.96% 73.42%
Xine 1.2750 1.0249 89.46% 74.81%
Quake 1.0310 1.0337 54.17% 23.23%
X Server (w/Xine) 0.0202 0.9319 99.43% 64.05%
CPU-bound 1.0071 1.0043 7.86% 7.83%
CPU-bound (w/Quake) 1.0333 1.0390 26.71% 2.36%

5.4 Clock Resolution and Billing

Practically all operating systems use priority-based dalegs, and factor CPU usage
into their priority calculations as discussed in chapete€®U usage is measured in
ticks, and is based on sampling: the process running wheonck ahterrupt occurs
is billed for this tick. But the coarse granularity of ticksplies that billing may be
inaccurate, leading to inaccurate information used by theduler.

The relationship between actual CPU consumption and bilBrshown in Figure
5.2. The X axis in these graphs is the effective quantum kentljie exact time from
when the process is scheduled to run until when it is preedmatélocked. While the
effective quantum tends to be widely distributed, billisglone in an integral numbers
of ticks. In particular, for Emacs and X the typical quantnwery short, and they are
practically never billed!

Using klogger, we can tabulate all the times each applinasischeduled, for how

23

much time, and whether or not this was billed. The data is sariz®d in Table 5.4.

The billing ratio is the time for which an application wasléd by the scheduler, di-
vided by the total time actually consumed by it during the.td$e miss percentage
is the percentage of the application’s quanta that werdytatassed by the scheduler
and not billed for at all.

The table shows that even though very many quanta are tatébked by the sched-
uler, especially for interactive applications, most apgtions are actually billed with
reasonable accuracy in the long run. This is a well-knowrabdistic phenomenon.
Since most of the quanta are shorter than one clock tick, r@ddheduler can only
count in complete tick units, many of the quanta are notdieall. But when a short
guantum does happen to include a clock interrupt, it is ouzdband charged a full
tick. On average, these two effects tend to cancel out, sectne probability that a
guantum includes a tick is proportional to its duration. Baene averaging happens
also for quanta that are longer than a tick: some are roungléal tihe next whole tick,
while others are rounded down.

A notable exception is the X server when running with Xine (@ed Xine because
Xine intensively uses the X server, as opposed to Quake wisieb DRI). According to
Figure 5.4, when running at 100Hz this application has cutrgt are either extremely
short (around 68% of the quanta), or around 0.8-0.9 of a tiok femaining 32%).
Given the distribution of quanta, we should expect about 20%em to include a
tick and be counted. But the scheduler misses over 99% of,taedhonly bills about
2% of the consumed time! This turns out to be the result of Byotization with the
operating system ticks. Specifically, the long quanta asnagcur after a very short
guantum of a Xine process that was activated by a timer alarhis is the process
that checks whether to display the next frame. When it dedidat the time is right,
it passes the frame to X. X then awakes and takes a relatigaty time to actually
display the frame, but just less than a full tick. As the timbrm is carried out on a
tick, these long quanta always start very soon after one dic complete just before
the next tick. Thus, despite being nearly a tick long, theyteardly ever counted.

When running the kernel at 1000 Hz we can see that the situiatiproves dramat-
ically — the effective quantum length, even for interactaygplications, is typically
several ticks long, so the scheduler bills the process aruatiibat reflects the actual
consumed time much more accurately. We can also see the titampgrovement in
the X server: on a 1000 Hz system it is billed for over 93% oftihee it consumed,
with the missed quanta percentage dropping to 64% — thddraof quanta that are
indeed very short.

5.5 Clock Resolution and Timing

Increasing the kernel’s clock resolution also yields a mbgnefit in terms of the sys-
tem’s ability to provide accurate timing services. Spealfic with a high-resolution
clock it is possible to deliver high-resolution timer imapts. This is especially signif-
icant for real-time applications such as multimedia playerich rely on timer events
to keep correct time.

A striking example was given in the introduction, where itsnghown that the
Xine MPEG player was sometimes unable to display a movie ateaaf 60 frames
per second. This is somewhat surprising, because the yimesystem clock rate is
100Hz — higher than the desired rate.

The problem stems from the relative timing of the clock inipts and the times

24

relative ojock interrupts

shift 1 2 3 4 5
5.833ms \ e10ms% l l l

ok | skip | ok | skip | ok | skip |
[
<— 16.667ms —=|
frame 1 frame 2 frame 3
desired frame display times

Figure 5.3:Relationship of clock interrupts to frame display timest ttases frames
to be skipped. In this example the relative shift is 5.833ans| frame 2 is skipped.

at which frames are to be displayed. Xine operates accotditwo rules: it does not
display a frame ahead of its time, and it skips frames thateeeby more than half
a frame duration. A frame will therefore be displayed onlyhié clock interrupt that
causes Xine’s timer signal to be delivered occurs in thetiafftof a frame’s scheduled
display time. In the case of 60 frames per second on a 100Hemyshe smallest
common multiple of the frame duration and clock interval@rts. Such an interval is
shown in Figure 5.3. In this example frame 2 will be skippegkduse interrupt 2 is a
bit too early, whereas interrupt 3 is already too late. Inggeh the question of whether
this will indeed happen depends on the relative shift betvilee scheduled frame times
and the clock interrupts. A simple inspection of the figurdiéates that frame 1 will
be skipped if the shift (between the first clock interrupt éimel first frame) is in the
range of %—10ms, frame 2 will be skipped for shifts in the range —§H=& and frame
3 will be skipped for shifts in the rang(%J:S%ms (for a total of 5ms). Assuming the
initial shift is random, there is therefore a 50% chance ¢éeng a pattern in which a
third of the frames are skipped, leading to the observeddreate of about 40 frames
per second (in reality, though, this happens much less tB& & the time, because
the initial program startup tends to be synchronized witloakctick).

To check this analysis we also tried a much more extreme caseing a movie at
50 frames per second on a 50Hz system. In this case, eithgdoel interrupts fall in
the first half of their respective frames, and all frames amw, or else all interrupts
fall in the second half of their frames, and all are skippeddAndeed, we observed
runs in which all frames were skipped and the screen remditaatk throughout the
movie.

5.6 Clock Resolution and the Interleaving of Applica-
tions

Recall that we define the effective quantum length to be tteval from when a pro-
cess is scheduled until it is descheduled for some reasorou®hinux system, the
allocation for a quantum is six ticks. However, as we can ses frigures 5.2 and
5.4, our applications never even approach this limit. Theyaways preempted or
blocked much sooner, often quite soon in their first tick. tihev words, the effective
guantum length is very short. This enables the system tostipore than 100 quanta
per second, even if the clock interrupt rate is only 100Hzhamvn in Table 5.5.

The distributions of the effective quantum length for thiedlent applications are

25

Xine Emacs
....................................... 1o
(o L
0.9 4 09
0.8 0.8
0.7 - 0.7 ¥
06 06
05] 05
0.4 04 -
0.3 1 03
02 7 02 —
0.1 7 01 —
0 T T T T T T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60

. X (with Xine)

o BT
0.9 H 0.9 T
08 ' 08 i
L] 2
0.7 Fome 0.7 s
0.6 06 .0",
A
05 ;
¥

Probability

03 03
02 02
01 01

o

T T T T T T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60

. CPU bound (alone)

: 1 T g——
0.9 + 09 [
0.8 i 0.8 '
0.7 PRI ; 07 H
06 T 06 i
05 4 e v 05
0 " o1/
L T e — i 03 (&
V !
0.2 H 02 (¥
0.1 —frwmwmss’ 0.1 "
0 T T T T T T 0 7 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
=r=rt 100HZ
1000HZ .
Milliseconds

Figure 5.4: Cumulative distribution plots of the effective quantum alions of the
different applications.

Table 5.5: Average quanta per secondTable 5.6: CPU usage distribution when
achieved by each application when run+unning Xine.

ning in isolation. CPU usage

Quanta/sec Application | @100Hz| @1000Hz

Application | @100Hz| @1000Hz Xine 39.42% 40.42%

Emacs 22.36 34.60 X Server 20.10% 20.79%

Xine* 470.67 695.94 idle loop 31.46% 31.58%

Quake 187.88 273.85 other 9.02% 7.21%

X Servef 71.35 148.21

CPU-bound 28.81 38.97

* Sum of all processes

° When running Xine

shown in Figure 5.4, for 100Hz and 1000Hz systems. An interg@®bservation is
that when running the kernel at 1000Hz the effective quaetaine even shorter. This
happens because the system has more opportunities tceinésawmd preempt a process,
either because it woke up another process that has highaitygrior due to a timer
alarm that has expired. However, the total CPU usage doeshamige significantly
(Table 5.6). Thus increasing the clock rate did not changeathount of computation
performed, but the way in which it is partitioned into quardad the granularity at
which the processes are interleaved with each other.

A specific example is provided by Xine. One of the Xine proesssets a 4ms
alarm, that is used to synchronize the video stream. In a 2Ggidtem, the alarm
signal is only delivered every 10ms, because this is thedfiaetick. But when using
a 1000Hz clock the system can actually deliver the signalsme. As a result the
maximal effective quantums of X and the other Xine processeseduced to 4ms,
because they get interrupted by the Xine process with thetimes.

Likewise, the service received by CPU-bound applicatiem®t independent of the
interactive processes that accompany them. To investigasteffect, these processes
were measured alone and with Quake running. When runningatbeir quanta are
typically indeed an integral number of ticks long — Often #llecated 50ms plus one
tick (which is an additional 10ms at 100Hz, but only 1ms at@8g8). But when Quake
is added, the quanta of the CPU-bound processes are stttettee same range as
those of Quake, and moreover, they become less predictdtlis. also leads to an
increase in the number of quanta that are missed for billliadple 5.4), unless the
higher clock rate of 1000Hz is used.

5.7 Towards Best-Effort Support for Real-Time

To see how close a general purpose system can come to sugpedl-time processes,
we measured the timing delays of processes that requestedalarms when compet-
ing with each other and with CPU-bound processes. The expets involved pro-
cesses that repeatedly request an alarm signal 500 timresakam is set for a certain
number of milliseconds between 1 and 1000 (a second). Ajptbeesses are assigned
to the (POSIX) RR scheduling class. The performance metigtive latency till these
signals are delivered. There were three types of proce3s$esfirst only set alarms
and did not perform any computing (denoted BLK in the tableesiults). The sec-
ond computed for a certain fraction of the time till the nebdran; specifically, we
checked computation of 1, 2, 4, and 8% of the interval till tleet alarm (denoted by
the percentage). The third computed continuously (denGteNT). In addition, we
used CPU-bound processes that did not set any alarms as grbact load (denoted
by +xCPU, wherex is the number of such processes). We checked combinatidhs of
2, 4, and 8 processes of each kind. Note that for the combimafi8 processes com-
puting for 8% of the time, this leads to an average load of 64%eCPU capacity.

The base system used in the experiments is the original itk 100Hz clock
interrupt rate and scheduling quanta of 6 ticks (60ms). Eoveleat can be achieved
with current technology, we compared this with a rather aggjie alternative: a clock
interrupt resolution of 20,000HZ and a quantum of 3 ticks. (1L5Qus).

Measurements show that even at this rate, the overheadftk iciterrupt process-
ing is only 11.7%, and that for context switching 2.1%. A s#npf the results is
shown in Figure 5.5. As we are interested in the worst casadégs, the tails of the
distributions for selected experiments are summarize@piers.7.

27

Probability

. 100Hz, default time quanta (60msec)

20000Hz, 100usecs time quanta

60000 —
120000 —

180000 —

240000 —
300000 —
360000 —
420000 —

== 2 processes

480000 —

300 —

T
o
S
&

100 —

== 4 processes

Microseconds

400 —

500 —

1
o
S
o

600 —
700 —

8 processes

Figure 5.5:Distributions of latencies till a timer signal is deliverddr processes that
compute continuously and also set timers for random intefaup to one second.

Table 5.7:Tails of distributions of latencies to deliver timer sigaai different exper-
imental settings. Table values are latencies in microsgg,dor various percentiles of

the distribution.

Processes @100Hz @20,000Hz
Type Number 0.9 0.95 0.99 max | 0.9| 0.95| 0.99 max
BLK 2 5 8 11 40| 13 14 21 23
BLK 8 5 12 22 420 7 9 13 25
CONT 2 50003| 60003| 60004| 160006| 50 53| 102 105
CONT 8 370014| 400014| 420015| 740025| 606 | 606 | 706 708
2% 2 6 9 9193| 19153| 13 15 23 837
2% 8 2910 8419| 17940| 32944| 12 52 53| 1809
8% 2 9| 12431| 39512| 60003| 14 19 53| 3797
8% 8 40003| 60005| 130006| 294291| 53 53 54 | 37328
4% 1+2CPU| 50003| 50003| 50004| 50005| 55 56 | 200 256
4% 1+8CPU| 50003| 50003| 170014| 280010| 56 57 59 856

28

The graphs in Figure 5.5 are for the processes that compntemaously while set-
ting alarms (this is the worst case, because the CPU is alasys and, except for the
case of a single process, there are always alternative ggesavaiting to run). Exam-
ining the results for the original 100Hz system (left of Fig’.5), we see that a single
process receives the signal within one tick, as may be eggde@then more processes
are present, there is also a certain chance that a procdssewdrtheless receive the
signal within a tick (0.53, 0.30, and 0.16 for 2, 4, and 8 ps3&s, respectively, slightly
more than the probability that this process has the highéstiy). But it may also
have to wait until its relative priority becomes high enoughis leads to the step-like
shape of the graphs, because the wait is typically an integraber of ticks. The max-
imal wait is a full quantum for each of the other processethéncase of 8 competing
processes, for example, the maximum is 60ms for each of sshens, for a total of
420ms.

The situation on the improved system is essentially the saiitietwo differences.
One is that the distribution of waiting times is less uniforma process typically has
to wait a full guantum for an even number of other processesveier, the reason for
waiting anevennumber of processes remains a conundrum, and is left forefutark.

The other difference is that the time scale is much much shett the latency is
almost always less than a millisecond. In other words, thh biock interrupt rate and
rapid context switching allows the system to deliver timignals in a timely manner,
despite having to cycle through all competing processebleTa 7 shows that this is
the case for all our experiments.

Note that using the higher clock rate also provides signiflgamproved latencies
to the experiments where processes only compute for adracfithe time till the timer
event. With 100Hz even this scenario sometimes causesasnéliespite the relatively
low overall CPU utilization.

The very few long-latency events that remain are attribtgexbnflicts with system
daemons that perform disk I/O, such as the pager. Similaceffhave been noted in
other systems [21]. These problems are expected to go avthg imext Linux kernel,
which is preemptive; they should not be an issue in otheregystthat are already
preemptive such as Solaris.

29

30

Chapter 6

Why is the Classic, CPU
Consumption Based, Process
Classification No Good
anymore?

As noted in chapter 3 processes are classically dividedtimbogroups - CPU bound
and I/O bound - and the operating system’s scheduler is degditp identify those two
groups and prioritize the processes accordingly.

In this chapter we will show why the classic distinction islanger valid, and new
metrics must be used to identify interactive process. As#yng goes: The Times
They Are A ChanginT12].

6.1 Total CPU Consumption

Historically, computers were text oriented, and interactipplications were no excep-
tions (text editors and browsers, shell interpreters eecause of this 1/0 with the
user was very simple and did not require much CPU resourndsagplications spent
most of the time waiting for user input. This was in fact thédeor of an I/O bound
process, so interactive processes were treated as such.

This behavior was appropriate since 1/0 bound processeslyfiave higher CPU
priority, so when the user typed something, the interactpication responded promptly.

This all changed in recent years with the developments irtimetia technology.
These modern interactive applications, which involve iepand image rendering re-
quire much more CPU resources for user I/O. Such applicatraiude movie players
which require CPU resources both for decoding multimedizashs and for display-
ing high quality images. Other examples include graphiodd playing games that
require many CPU cycles to render complicated geometricetspchap textures, etc.
Although modern hardware uses a dedicated Graphical Frocesit (GPU) based on
the display adapter to assist with these tasks, they stjliire heavy assistance from
the CPU.

We measured the CPU usage of our test applications (deddribsection 4.3).
Each application was run on its own, with no interference.sfdgeted by simply mea-

31

99.36% 99.78%

100.00 — 0, —
~96.95% 94.73%

80.00 —
<
3
5 60.00 —
[N
)
=)
8
) 41.21%
S 40.00 —
o
O

20.00 —

10.97%11.59%
0.00 —
Emacs OpenOffice MPlayer Xine Xine Quake Quake Kernel make stresser
(1:1 scale) (2:1scale) (player) (demo)
B Application X Server Other

Application

Figure 6.1: CPU Usage Percentage of Various Applications

suring the percentage of CPU consumed by the various exappleations, over the
time of the test. The result can be seen in figure 6.1. It ig thet modern applications
consume much more CPU.

When we compare text editors, we can see that the clessacgequired the CPU
for 0.17% of the time measured, while the modépenOfficeequired 2.6%. While
still very low compared to others, we can see a 15 fold ine@é@athe CPU consumption
of an inherently non-multimedia application.

With the measured movie players we see that multimedia @gtins require a
much more substantial portion of the CPU’s time. Althougbhpicious at first, the
found that the difference in CPU portions consume&imeandMPlayeris a result of
Xine playing it at double size, having to zoom each frame. Alswojritathe X server
require over 20% of the CPU time while servirme looks exaggerated, but figure
6.1 clearly shows that the ratio of 2:1 between the CPU timesemed by the movie
player and the X server is kept both when playing the movié WiPlayer and when
playing it at normal size wittkXine This means that playing a relatively small movie
(about%wth of the screen size) requires 15% of the CPU resources, aplayiisg it
at 2:1 zoom requires more than 60% of the CPU’s time (note2tiaroom means 4
times the previous size). Note that following this consumpplaying a movie in full
screen mode at a mere 16448 resolution will require more than 100% of the CPU
time!

This shows us that total CPU consumption is not a good madridifferentiating
between a common interactive application such as a mowepland between a clear
batch job such as kernel compilation, especially if we retmenthat even the zoomed
movie is using only a little more than half the screq%z(th of it, to be exact).

It is not surprising that the batch applications consumeoatnall the CPU time
when allowed to do so, but we can $gaakebehaves quite the same - when allowed
to run in demo mode, it consumption resembles that of an teflobp - ourstresser

32

Emacs

OpenOffice
====_MPlayer
= Xine

X (with Xine)
=== Quake (player)

Quake (demo)
= Kernel make
= Stresser

Probability

T T 1
55 60 65

Clock Ticks (1000Hz)

Figure 6.2: Cumulative Distribution Function (CDF) of Effeve Quanta Lengths

When it accepts user inpuuakerequires a little less of the CPU time, but this gap is
actually filled with the X server serving the input to quakéisTis actually a result of
the adaptive nature @duake The rendering engine is designed to use whatever CPU
time it can get, and adapting the achieved frame rate acugydithe more CPU it
gets, the better the frame rate it produces.

In conclusion of figure 6.1, itis clear that the distincti@tlween modern interactive
applications and well known batch jobs, based on CPU consamis getting fuzzy
at best, and even non-existent in some cases.

6.2 CPU Consumption Distribution

Schedulers do not calculate the CPU usage statistics baséutad CPU consump-
tion, but rather on the momentary consumption, so anothpoitant aspect of CPU
consumption is the distribution of the length of effectiveagta.

An effective quanta is the actual time consumed by a proéess,the time it was
given the CPU, until the time it relinquished the CPU, eith&untarily or because of
preemption. We would expect the CPU-bound applicationteseelikely to relinquish
the CPU voluntarily, thus have generally longer quanta tinseractive applications
which block on user I/O frequently (all this assuming thetegsis unloaded, as is the
case in this text).

Figure 6.2 show the cumulative distribution function (C2F}he effective quanta
length for the various applications we used.

As expected we can see that the effective quanta length ahtaeactive appli-
cations is relatively short. Almost all the quantakrhacs OpenOfficeMPlayer, X
ServerandXine are shorter than 5 clock ticks (5msec), when the maximumtgoan
is 51 clock ticks - less than 10% of the alloted time quantuenaatually used by the
process!

The kernel compilation’s pattern is, surprisingly, not tuaiifferent from that of the
aforementioned interactive tasks. Even though the kewmlpdation includes many

33

disk oriented tasks such a3, we checked and found that there is no big difference
between the distribution &l the processes involved, and that of tied process that
performs the actual compilation. This phenomenon is aiteith to the increasing gap
between the CPU speed and the disk speed. Even the compitergsritself is becom-
ing more and more dependent on disk speed for reading the fitlggurather than on
processor speed for processing the data.

On the other hand, we can see a striking resemblance betive@uakerunning
a game demo and tretressemprocess. Because Qfuakes grab-every-cycle-possible
policy in order to achieve an adaptive frame rate, and thitfiat for the demo game it
does not communicate with the X server at all (no input, aeddtitput is done using
DRI) its CPU usage pattern is that of thigesse’s.

When runningQuakewith a human player controlling it, its typical effectiveayu+
tum length is immensely reduced because the X server keekisgvap to handle
mouse input. That is the reason for the big differenc@®irakés two running modes
in the CDF graph.

In summation, we see the difference between interactivebatch applications is
getting fuzzy with regards to CPU usage pattern, just asdirgnished with regards
to total CPU consumption (section 6.1).

6.3 CPU Consumption is Misguiding the Scheduler

After seeing how the difference in both CPU consumption ¢jtiaand pattern are get-
ting smaller and smaller, let’'s see how this diminishing gefually affects the sched-
uler distinction of interactive processes.

6.3.1 Interactive Processes Aren’t Getting the CPU When The
Need It

One aspect of a misguided scheduler is that it does not fizothe processes accord-
ing to their real importance. If the scheduler is schedulivggprocesses according to
their real importance we would expect the more important@sees to get hold of the
CPU as soon as they need it, preempting less important meses

We tried to evaluate the amount of time an interactive protes to wait for the
CPU on average — itdispatch latency— and how much of the time it is runnable at
all is spent waiting for the CPU.

The results can be seen in figures 6.3 and 6.4 respectivelyh&aonulti-threaded
applications —Xine andOpenOffice— the results are shown for the thread that con-
sumed the most CPU during the test, hence was the thread ffexded by the sched-
uler.

The average dispatch latency was calculated as the timebataprocess insertion
into the run queue and the first time it is scheduled to run,sotha time between
two consecutive events when it is scheduled to run. FigiBelgarly shows that the
average dispatch latency increases dramatically foraotise processes that heavily
consume CPU cycles, such @slakeandXine Interactive applications that consume
less CPU are also affected, when running such a numbsresseiprocesses so their
portion of the CPU time become less than the interactive émeexample of that is
the MPlayerwhich normally claims about 14% of the total CPU time (figurg)pbut
when more than 6tressemprocesses are running even it's equal (and non-prefebentia
share of the CPU time becomes less that what it normally needs

34

8e+06 —

~—# Xine
=—& Quake
kmy 1%*06 7 OpenOffice
% ms ——¢ MPlayer
Q 6e+06 —| Emacs
) X (with Xine)
o
O 50406
o
ES
L 4e+06
o
£
=]
= 3e+06
[
2
S 2e+06
g e+06
9]
>
< 1e+06
e |/ o
. o - /
0 - — T T i T T T T T 1
0 1 2 3 4 5 6 7 8 9 10

number of CPU-bound processes

Figure 6.3: Average dispatch latency of various interacéigplications using the orig-
inal Linux scheduler (reference lines showing 1ms and 10mea< relative to cycles)

100
=S
=]
o
O go
=
=]
o ——4 Xine
Zg ——& Quake
g 60 — OpenOffice
= ~—4& MPlayer
08’_ Emacs
© X (with Xine)
E 40
<
<]
<
c
o
2 20
-
5]
s
. y

0 T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10

number of CPU-bound processes

Figure 6.4: Percent of the interactive processes’ runnitnle spent waiting for the
CPU using the original Linux scheduler

35

100
% i# idle
7 CPU-bound
99 - i other
Z = X server
— N Emacs
.] .

CPU utilization [%)]

1 -

o -

a

0 1
number of CPU-bound processes

Figure 6.5: Effects of using Emacs with background batch jading the original Linux
scheduler

An interesting effect though is the X server running alodgsihe Xine movie
player. Since it normally requires about 20% of the CPU timstich workload (figure
6.1), we would expect it to be affected even witktdessemprocesses running, which
is obviously not the case here. The reason for that is thaX therver serves th¥ine
application, which is affected by the load much earliercBitheXineis so affected, it
cannot produce the same amount of requests to the X seribe &PU consumption
decreases along that of thiéne movie player. Because of that tiéneis actually the
CPU bottleneck here, and the X server does not suffer froradhee problem.

Figure 6.4 shows another analysis of the same data. In thi€fige see the percent
of time a process is spent waiting out of the entire time itizable (as oppose to the
time itis blocked). Again, we can see the CPU bound interaetpplication are heavily
affected by the increasing load in the system, where thedatige applications that
require less CPU are still favored by the CPU consumptiomimahd need not wait
more for the CPU. Again, we see the affect on MBlayer when running Gstresser
processes alongside it, and the same phenomenon that thevet & not affected
because th&ineacts as the CPU bottleneck.

6.3.2 Interactive Processes Aren’t Getting Enough CPU

Another aspect of a misguided scheduler is that it does netgmough CPU time to
important applications that require it. In this experimemé wanted to see how an
interactive task’s CPU allocation is reduced in the preserfi@ batch job. In three sep-
arate tests we raBmacs XinendQuakewhile adding backgrounstresserprocesses,
and recorded the CPU consumption of the three applicatidfigen playing a movie
with Xinewe also recorded how many frames did not show becXusemissed their
display deadlines.

36

=
o
]

N Xine

= X server

7 CPU-bound
idle

it other

I o @
o o =}
1

CPU utilization [%]

IN]
=]

o

0 1 2 3 4 5 6 7 8 9 10
number of CPU-bound processes

Figure 6.6: Effects of playing a movie with background bgtdbs using the original
Linux scheduler

Figure 6.5 shows the result fe&fmacs(note that unlike other graphs of its kind it
uses a logarithmic scale becaus&afacss low CPU consumption). In short, it is very
clear theEmacsds not affected by the background load, because its CPU oopison
pattern is that of a classic interactive application and/fferent than that of the
stresserprocesses, as described in section 6.2. That is the reasaritfinal Linux
scheduler can distinguish it from the background load andrfa over thestresses.

The next benchmark was théne movie player. Let us first elaborate on how
Xine works: as mentioned earlieXine is a multi threaded application. One of its
threads is in charge of decoding the MPEG frames read froniniing stream (the
decoderthread) and another thread displays the decoded framesatthen using
the X windows system (thdisplaythread).

The main consumer of CPU cycles amaXimes threads is thalecoderthread.
This thread keeps decoding data from the input stream,nguttie decoded frames
on a shared queue, along with their timing information. @replaythread pops each
decoded frame from the shared queue, and checks its scheatigfgay time. If the
frame is less thaé of a frame time %th of a seconds, as the movie is encoded at 25
fps) early, it will be displayed. If it's earlier, thdisplaythread will try it again in 4
msecs. If the frame missed its scheduled display time itlvéltliscarded. This means
that if thedecoderthread is not getting enough CPU time it will not keep up with t
frame rate, and frames will be lost.

The decision to use thgtresseras the background process, rather than a kernel
compilation was based on the fact that this is the most exdmxample of a batch job
— one that consumes as many CPU cycles it can get.

The results of this experiment are shown in figure 6.6.

When runningKinewith no stresses at all, the result is similar to that of figure 6.1
- Xineand the X server together require about 60% of the CPU tina@jrig the rest
mainly to the idle process. When running only 1 backgrosinesseiit takes the place
of the idle process. Sinc€inerequires much less CPU than tegesserdoes, it has

37

100
Quake

X server

7 CPU-bound
idle

i other

80 —

60 —

e
-

40

CPU utilization [%0]

T T
0 1 4

number of CPU-bound processes

Figure 6.7: Effects of playing Quake with background batuhsjusing the original
Linux scheduler

a higher priority, thus is given a litle more CPU. Note thare is a slight increase
in the frame loss rate even when only running 1 backgraire$ser This is because
even though thetresserdoes not require more CPU than the idle process, unlike the
latter it has a valid priority and does not relinquish the Ciitomatically wherXine
requiresit. In very rare cases thgessemmight have a higher priority and get the CPU.

As soon as more backgroustitesses are added to the system, it is clear that the
scheduler cannot clearly tell the interactive applicafimm the batch ones, angine
is getting less CPU time than needed. The obvious resuleixdnrelation between
the increase in frame loss rate and the increase in the CRiJalloted to thestresser
tasks.

The resulting problem is that when running a modern intéragob such as an
MPEG movie player, we cannot make effective use of the nputigramming feature
of modern operating systems. If we want to achieve good freatee we must not
let any other application compete with the movie player dkierCPU resources, thus
dismissing the multi programming quality of modern opergystems.

The last benchmark was tiiguakegame. Figure 6.7 show the grim results: even
under light loadQuakeneeds to compete with thetresserover the CPU.

Quakés CPU consumption pattern was discussed in section 6.2adtestablished
that it is very similar to that of a CPU bound process such astiiesser This means
that even when running a singdéresserthe Linux scheduler regards baQuakeand
thestresseras two processes of the same kind — CPU bound — and dividesRhe C
time in similar portions between them. As a re€@itake which requires almost 100%
of the CPU time when run alone, has to make do with approximbtdf of that when
running a singlestresserand much less when running more.

38

99.56% 99.1% 98.51%

100.00 —
81.63%

80.00 —

66.16%

60.00 —

40.00 —

20.00

Voluntary Context Switches Percentage

14.26%

1.16% 0.52%
0.00 — T T
Emacs OpenOffice MPlayer Xine X (with Xine) Quake Quake Kernel make stresser
(player) (demo)

Preemption B Voluntary Application

Figure 6.8: Context switch reason for various applications

These benchmarks are a clear sign that CPU consumptionésger a viable met-
ric to differentiate interactive tasks from batch ones, atigbr, more effective metrics
are needed.

6.4 Another Possible CPU Consumption Based Metric
(and why it doesn’t work)

In the effort to find a metric that will distinguish interaatifrom batch jobs, we tried
another unexplored metric: the effective quantum ternonateason, or simply put
how many of an application’s quanta ended voluntarily, ama many were preempted.

The rationale behind this metric is based on another intieeaworkload assump-
tion that such processes do not fully utilize their allotedugtum.

This assumption is based on the idea that the goal of an atkezgorocess is to
reply to queries from the user. Since the user expects a gejtk usually, we assume
that interactive processes will not fully utilize their@tkd time quantum — which is
at a scale oleoth of a second — since they do not need a long processing tixren iE
an interactive process does need more than a full quantisragain very likely that it
will relinquish the CPU after very few quanta where a CPU hibprocess will take as
much CPU time as the operating system is willing to give.

We defined a voluntary context switch as one that was indugetidoprocess it-
self, either explicitly by blocking on a device or impligitby performing an action
that triggered another process to run, such as releasingmapb®re. The resulting
visualization can be seen in figure 6.8.

Even with this metric we see that there is no clear distimchetween interactive
and batch jobs. Here tdQuakebehaves very similar to ogtresser consuming every
possible cycles. When not in demo mode and having to receue from the X server

39

we see an increase in the rate of voluntary context switGekeexperiences, but not
a drastic one. The difference between the two mode@uakeis much less visible
here than in figure 6.2. The similarity betwe¥imeand the kernel compilation is ever
so apparent, and this metric gives no data to differentieteden the two.

All'in all, we see that this metric gives us no better underditag as to the interac-
tive nature of the observed applications.

6.5 Indeed, the Times They Are A'Changin...

In this chapter we investigated the quality of the classitriteused by most schedulers
to differentiate between interactive and batch jobs — rogtwhich are all related to
the CPU consumption of a task: the rate of consumption arpghitern.

We conclude that even though this metric was a sufficient dmenvit was intro-
duced a few decades ago [55, 46], changes in the nature cddtite applications over
the recent years have made it obsolete. Hence, it can norlbegmnsidered a reliable
one, and we must find new metrics to characterize moderraictiee applications.

40

Chapter 7

An Alternative Metric to
|dentify Interactive Tasks —
Information Flow Tracking

After establishing in chapter 6 that the classic CPU congignfpased metric is obso-
lete, let us now explore an alternative metric based on tigantification of human
computer interactions.

7.1 Following the Flow of Information

The wordinteractionimplies information flow. Interactions between the user trel
computer naturally implies information is flowing from theeus to the computer, and
vice versa.

The relationship between the user and the computer canWwedias an alternating
consumer-producer relationship, when the computer isadhsumer of input informa-
tion, and the producer of output information. Since the r@astcomputer is actually
several processes, we can rank the processes based onuimewadlinput the consume
and output they produce.

Following flow of information requires a two phase analydise first phase is
tracking the information exchanged between the user anddimputer, such as input
keystrokes or output displayed on screen. This phase iffitisut because of infor-
mation flow between the different running process in the asterp so a second phase
is required to track the flow of information between the pss&s inside the computer
itself. A full discussion about the need for two phases isitbin section 7.3.

The two phases divide the information flow analysis betwaennhechanisms: the
first is theinteractive devicaracking described in section 7.2, and the second mecha-
nism is theinterprocess communication grajlescribed in section 7.4.

7.2 Interactive Devices
All of the information received by the computer, or produtsdt, is passed through

various devices: keyboard, mouse, disk, network contradlisplay controller, and
many others. Of these, some may be classifiedtasactive devices

41

An interactive devicés a device that bridges between the user and the computer. A
device the mediates information from the user to the comgsitegarded as ainter-
active input deviceand one the mediates information in the other directiotisausly
regarded as aimteractive output deviceExamples of interactive input devices are the
keyboard, mouse, joystick, graphic tablet, microphone ktieractive output devices
are the display controller, the monitor, the sound corgraihd others. Some devices
mediates both input and output between the user and the dempuan example of
which is a force feedback joystick.

These devices hold the key to the amount and type of infoomatkchanged be-
tween the user and the computer. By maintaining usagetstatis the interactive
devices we can evaluate the level of interactiveness of iffiereht interactive pro-
cesses.

The scheduler can be made aware of this data simply by givitigkernel level and
user level (system call) interfaces by which device driwans deliver these statistics.

7.3 Isthe Interactive Devices’ Information Complete?

Is the information acquired from the interactive deviceffigent? Is it enough to
trace the patterns that processes use interactive deviatsssify them as interactive
processes?

The straight answer is (unfortunately) no. A process dodshawve to directly
interact with a device to be interactive — interactivity reasransitive quality, so a
more accurate definition interactive processes could be:

A process is interactive if it either exchanges informatioth an interac-
tive device or with another interactive process

A simple example where the interactive device informatidt mot suffice is the X
windows system, present on most UNIX platforms. With thistegn, the X server
is the application responsible for controlling the useringnd user output devices,
and the various processes, called X clients, draw on thesdrg sending X request
messages to the server and receiving input as X event medsagethe server.

In such cases the interactive device information will omlgritify the X server as
an interactive process, since it is the only process theyedaraontact with. The other
processes which generate user output and consume usemiilipabt be identified
as interactive processes, because they do not communioeddydwith an interactive
device. This is a case in which identification basednteractive devicealone results
in a false-negative. Such processes should be considdegddtive since they interact
with the user, albeit in an indirect manner.

To overcome this problem we must use a second mechanism wiiiamonitor
the information exchanged between the different processesder to find the path-
ways of information between the user and all relevant psegsand to identify all the
processes involved in such interactions to some extent.

7.4 Interprocess Communication Graph
Monitoring exchanges of information between processedeatione by maintaining

aninterprocess Communication Graphhis graph is composed of nodes, representing
the different running processes in the system, and edgeshwbpresent information

42

Figure 7.1: Connected component of the X server when usimg tbe Emacstext
editor

exchanges. A more formal definitionlet G=< V,E >, where
V = {vp| pis a running procespid} and
E = {¢ ;| information was exchanged between processes i pnd |

Actually, some consideration should be taken whether taplgshould be directed
or undirected. Since information exchanged between psesds not only user related
— getting information from various system servers, quagyhreX server— it seems
simpler to make the graph undirected since the aggregatenebf the communica-
tion on a link might not represent the portion of it the is dife related to the user.
However, if since interactive applications react to theradliehe information they pro-
duce or consume is targeted at serving the user. The reghttithe flow direction
— specifically whether a process is a consumer that is deperdea producer, or
whether it is a producer itself — is crucial to the understagf the interprocess
communications graph, which then must be directed.

This graph gives us crucial information — by using simplepdralgorithms to find
the connected component of a node representing a procesk ishdirectly using an
interactive device, we can extract the lists all the proeggsvolved in some compu-
tation that results in user output, or all the processeshiegbin some computation
depending on user input.

An example of a simple scenario is a user that is usingsthacgext editor. In this
case, the X server is identified as interactive by using aractive device. By running
a simple algorithm such as Breadth First Search (BFS [9])cavefind the connected
group of the X server in the interprocess communication lyr&inceEmacsis an X
windows application, and is the only application in the eyst the connected group
consists of only two nodes, as can be seen in figure 7.1.

By using both techniques — the interprocess communicatiaplgand the interac-
tive devices — we can even identify interactive processesimplex scenarios. Figure
7.2 describes a scenario where a user use¥lhext editor from within an X termi-
nal emulator (xterm) [53] window on an X windows system. Thsvfof information
in this case is as follows. When the user presses a keybogyrdheeX server reads
the typed character from the keyboard device, sends it as eweRt message to the
xtermprocess, which in turn sends it to thié process. Th&| process does the neces-
sary processing, and to update the user it sends the oufptrmiation to the terminal
emulator kterm), which forward it as an X request to tieserverthat sends the nec-
essary information to the display device for drawing. Thermcted component in the
interprocess communication graph resulting from this adencan be seen in figure
7.3.

From the user’s perspective only tiiéprocess is interactive, and the user does not

43

Information Flow - f M

X Terminal
A f [VI Text Editor

x Computer Display

Figure 7.2: Logical layout of using the VI text editor fromthin an X terminal emu-
lator

X Server

, Xterm

VI

Figure 7.3: Interprocess communication graph’s connemtethonent when using the
VI text editor from within an X terminal emulator

even have to be aware of the other processes involved in tiomac

By following the flow of information using both the interagtidevices and the in-
terprocess communication graph the scheduler can ideditifiie involved processes
as interactive ones: the X server is identified as interactince it controls an in-
teractive device, and thgermandVI processes are identified as interactive because
they compose the X server's connected component in thepirtieess communication
graph.

7.5 Quantifying Interactions With The User

The remaining problem with this approach is how to quantify &amount of informa-
tion flowing in each direction.

Quantifying user input is relatively simple: we can simpluat the number of
input events delivered to each process, and rank the pexassordingly. Since the
human user’s attention span is measured in seconds [45h w&éook at a time frame

44

of one second this quantification is almost binary — a human can deliver events
simultaneously to very few processes in one second.

Output to the user is a little harder to quantify: simply ctiuig events will not work
in this case since an event can be as small as printing a ¢batadhe screen, or as
large as changing the background image, and it is very hagstimate the importance
of an event to the user — which event the user is really intedeis, and which is a
by-product.

Although it is very hard to read the user’s mind, we can ex@deature in human
perception, that is a remnant of our predatorial days: huwignn is more sensitive to
movement [45]. Thus by quantifying the rate of changes ptediby each process we
have good guess which process grabbed the user attentieroften. If we are assum-
ing the user does not like to be distracted and will elimirzatg source of interference
— he will close a window that displays an irrelevant movie éaample — anything
that grabs the user’s attention is important.

7.6 Scheduling with Positive Feedback — Preventing
Starvation

An immediate problem that arises is that of starvation. Tarvation might occur when
an interactive process is favored over others thus gettmg@PU time, have a better
change to communicate with the user, thus getting even higherity, eventually
starving other processes waiting for the CPU. In essen&ejdta positive feedback
loop.

This is not a problem if the other processes are non-inteesahd as such consid-
ered less important, but what happens if the starved presess interactive? the user
might want to change focus to another application but theipus focused applica-
tion’s priority is so high that it dominates the CPU and doeslet the newly focused
application gain momentum (and priority).

Such effects can be dealt with by using two mechanisms: o6&14 allocations
that will guarantee that the less privileged processesgeillhold of the CPU when
they need it, thus giving them a change to gain momentum cargating with the
user. The other mechanism is a gradual priority decay tHatledérease the priority of
a process not communicating with the user.

Combining these two mechanisms will guarantee that whentkechanges focus
between applications the newly focused application can gggmentum, while the
previously focused will lose the priority it gained earlier

The information flow based scheduler we propose, which isrie=d in chapter 8,
incorporates these two mechanisms thus preventing theatitar caused by positive
feedback.

45

46

Chapter 8

A New, User Oriented Process
Scheduler For Linux

In this chapter we will review all of the implementation asfeof a scheduler for
interactive tasks based on the information flow trackingoegr described in chapter 7.

These aspects include the implementatiorindéractive device trackingsection
8.1), of theinterprocess communication grafgection 8.2) and of the actual scheduler
and the quantification of a process’ interactiveness (@e&i3).

8.1 Maintaining the Interactive Device Statistics

As discussed in section 7.2 there is a plethora of possibdedative devices, ranging
from keyboards to sound cards to full sensor suits. To exaihia feasibility of basing
scheduling decisions on the information flow tracking metilogy, we have decided
to implement it only for the most mainstream devices — thebkeyd, mouse and
monitor. We decided to leave other common devices, sucheasdtind device for
further research, because it is not required for the cupergose of feasibility testing.

The data is maintained in a per-process data structure as@alch process has its
own interactive devices ratings in the form of “changes peoad”:

e The input rating is simply an estimated average of input &vére process re-
ceives per second, and there is no distinction between leegilioput and mouse
input.

e Outputrating is also based on the rate of changes, but isalized to the screen
size, so it is an estimate of the fraction of screen area theggs changes every
second.

The input and output rates cannot simply be the actual clsadhgeng the current
second (as this would require an oracle...), but rather ima&t® based on the last
few seconds. This is achieved by separating the data steuictio two parts:current
changesndaverage

Whenever an interactive device associates a change (eitherput event or a
screen change) with a process, the amount of change is ataechin thecurrent
changessection of the data structure. Once a second the schedusttlagl new data

47

to the previous calculated average using an exponentiaydaechanism:

old averaget current changes

new average- >

(8.1)

Equation 8.1 assures us that a process interactive deiog fia equally based on
the last second and previous seconds, so momentary chahgssrdocus will not
affect the process, but longer changes will decrease tleegsaating — a process will
maintain some of its peek rating for up to Ipgekseconds.

Choosing a second granularity is an attempt to achieve atitegqum between the
rate of human perception [45] and the amount of processiagpoeeded to compute
a recent average for every process.

Processes’ statistics are updated by the various deviass asvell defined inter-
face, presented in appendix A. Part of this interface is algmrted to user level by
adding non-standard parameters to the standard PG&i¥d_setpararaystem call
[17, 42].

8.1.1 Acquiring The Interactive Device Statistics —
Using the X Server as a Meta-Device

Acquiring information from the interactive devices is sipp matter of altering the
appropriate subsystems to report the association of et@ptecesses.

In UNIX however, these subsystems do not actually residedrkérnel. The UNIX
kernel does contain the keyboard and mouse drivers, but UNB§ the X Windows
System [59, 53] to multiplex input and output between the asel the various appli-
cations. The processes are referred to as clients, and areced to theX Server
which is the only application that receives user input from the kernel andesrio
the display using kernel mechanism. In this sense, the kpaneof the keyboard and
mouse subsystems is degenerate and the actual assocfaigar ¢/O’s with X clients
(processes).

This design enables us to log processes’ user I/O statlsficimply hacking the
X Serveritself. TheX Servercan simply log the necessary statistics for every client
connected to it and communicate the statistics to the kenmeg a second (by adding
another timer to the X server’'s own timer mechanism), usiegsystem call interface
mentioned above.

The changes to the Serverare described in the following subsections.

8.1.2 Maodifying the X Server Data Structures

X Clients connect to the X server using either TCP for rematenection or UNIX
domain sockets for local connections. The server maintonse data for each con-
nection, which is regarded asclent record We added our own data to this record,
data which includes the number of input events sent to tleaiciind the fraction of the
screen changed by this client since the last time the X sep@ated the kernel. Also,
the peer process pid was saved for local connections.

X normally does not normally know (nor care about) the pid aliant, or even
if the client is local or not. One of the design goals of the Xndéws System was to

IActually, most UNIX flavors provide one or more virtual termals which offer the possibility of user
1/0 without using the X Windows System. This form of I/O howeyvis rarely used for routine interactive
workload hence not relevant to our discussion.

48

separate the interface implementation from the interfasragement [59], to give an
abstraction of a user terminal, either local or remote. @eisign has some exceptions
though, such as the Direct Rendering Infrastructure [37fvallows local clients to
access the graphics hardware.

By modifying the communication layer in the X server we coatdociate a client
pid with a client connection for any client connected usirglXl domain sockets [50].
This was done by a non-standard socket option implementeithir [26].

8.1.3 Monitoring the User Input Using the X Server

The X server reads input events from the input device filed,dispatches them to the
waiting clients. We had to hook into this mechanism so we ograll the input events
send to clients.

The X protocol permits (almost) any client to request inpugres occurring in
any windows (the only exception is when a window’s creatgalles this option on
window creation). This means that an input event can be ttibpd to multiple clients.

Implementing the input logging mechanism was quite forwaice the X server
already has a mechanism for hooking various events thaei log X server modules.
It simply maintains lists of callbacks, one of which is cdll@henever and input event
is sent to a client.

Our modification simply included adding a callback to theuhgvent callback list
that will log the input event sent to the client in the clieaetord data structure.

The current implementation does not distinct between kagdband mouse events,
and regards all input events as equal. A legitimate quesiarhether this approach
is valid, or maybe the various input devices, and even diffeevents emanating from
a single device should be prioritized differently. Thisuiess left for further research
(see chapter 10).

8.1.4 Monitoring the User Output Using the X Server

The X server accepts graphic requests from the various coehelients and executes
them. Our goal was to estimate the fraction of the screewtaffieby each request, and
accumulate it in the per-client record (for local clientdydn

Since the X protocol defines a reduced set of graphical dpesaavailable for
clients, estimating the fraction of the screen affectedmrgavailable operation is a
very feasible task. The list of client request that migheetffthe screen is displayed in
Table 8.1.

We added functions to calculate the fraction of the screstid by each of the
listed requests. Some of the calculations were very stifaigiard, for example, calcu-
lating the size of a rectangle. However, some of the grapregaests require complex
calculations to get the exact fraction of the screen aftebiethem. Since we did not
want to add a substantial overhead to the X server, we oniyatd the fraction of
the screen changed by those complex requests.

Examples of such estimates are the calculations for temtidgarequests, arc draw-
ing requests and even when drawing a simple diagonal line:

e When drawing a diagonal line, the number of pixels drawn fsreged by the
line’swidth- height This number however, is not accurate since the line’s bound
aries might not coincide with the discrete pixels’ boundaris can be seen in

49

Table 8.1: X protocol graphical requests [44]

| Request Name | Description
ClearArea Clear a rectangular area
CopyArea Copy a rectangular area
CopyPlane Copy one color plane of a rectangular area
PolyPoint Draw points
PolyLine Draw a line through the given path of points
PolySegment Draw multiple separate lines
PolyRectangle Draw the outline of rectangles
PolyArc Draw a circular or elliptical arc
FillPoly Fill the region inside the specified path
PolyFillRectangle| Fill a rectangle
PolyFillArc Fill a given arc (either Chord or PieSlice types)
Putimage Draw a bitmap
PolyText8 Draw a 1-byte character string
PolyText16 Draw a 2-byte character string
ImageText8 Draw a 1-byte character string after filling the characteaskground
ImageTextl6 Draw a 2-byte character string after filling the characteaskground

figure 8.1. Although in this case the inaccuracy is in the eaofgl-2 pixels only,
it might be bigger for other lines.

e Figure 8.2 shows the calculation of the area used by a cleara@hen drawing
only the character (without the background, using a Pol{g/&% X request) the
estimate of the area drawn is the sum of the bounding boxdbktbEacharacters
used, whereas the actual area used is smaller.

e An arc is complex primitive, so the estimate is even less i@teuas seen in
figure 8.3. The bounding box of the complete circle/ellipsenultiplied by the
fraction of a complete circle the arc’s angle uses.

Since we are only interested in the fraction of the screeectdfl, and not in the
nature of the change, it is quite obvious that some of theastguse the same estimation
code. For example, clearing a rectangular area on the sargkdrawing a rectangular
area is essentially the same operation, using differemtrspo we can use the same

calculation.

After estimating the area of the screen used by the drawhegitea must be clipped
to the viewable region of the screen. An application mightlbewing on a hidden
of partially hidden window, so the estimated region must ljgped to the viewable
region. The clipping action is very important, since themfiation on what is actually
viewable is the best hint on what really interests the userkatwloes the user think is
important enough to allocate a portion of the screen to.

Again, the clipping cannot always be accurate. In casesentherestimated drawn
region is an axis aligned rectangle, the X server's own aligpnechanism can be
used, and the resulting clipped region is the estimate wetealy accumulate in the
drawing client’s record.

50

The inaccuracy when drawing a diagonal line between pdigty,)
and(x,,Y,) is apparent: requested line’s boundaries are shown in black
projected over the pixel grid, with the actual pixels useceih.

Figure 8.1: Estimation of a diagonal line area

Font
Height

,,,

,,

Character
Width

Figure 8.2: Estimation of text area

51

estimated arc area=w- h- %T

Figure 8.3: Estimation of arc area (PieSlice mode)

When the estimated region is not an axis aligned rectanglis,the case with arcs
(figure 8.3), we calculate what fraction of the drawing’s bding box is viewable, and
multiply the earlier estimated region by this fraction.t&técally, the clipping estimate
should converge to depict the accurate portion of the atéaae actually drawn.

An exception to this mechanism is the Direct Rendering Biftacture (DRI [37]),
which interacts directly with the graphics controller,ctimventing this entire mecha-
nism thus not being tacked by it. DRI is used by the OpenGlati{pf23], commonly
used by graphical software such as @ake 1l Arenarole playing game.

For this reason measurementsafakedo not produce any output priority, but we
will later see (section 8.3) that since its input events difepoxied through the X
server it is still identified as an interactive process.

By modifying theOpenGLlibrary to notify the kernel of the area drawn by a pro-
cess it is possible to produce output statistics for apitina using DRI, but we did not
implement it since it is not crucial for this feasibility tegor that reason all measure-
ments ofQuakewhen using our proposed scheduler do not include the demamod
since in this mode there is no input a@diakewill not be identified as interactive.

8.2 Maintaining the Interprocess Communication Graph
Information

The IPC graph is a directed graph and is maintained insidetheesses — every
process is a node in the graph, and the node data is kept iagiée process data
structure.

This data structure mainly consists on the incoming andantgedges. The edges
are kept in two arrays. To avoid dynamic memory allocatiorside the kernel —
which causes memory fragmentation and cannot be done ixkhen holding a lock
— the edges’ arrays are fixed sized, containing up to 12 edb@snew edge needs to

52

be allocated when the array is full, the least weighted eslgedycled.

The interprocess communication graph is actually an inbegss dependency graph.
Whenever a dependency event is identified (just what is ardkgey event is de-
scribed in section 8.2.1) the weight of the correspondirgead incremented. If the
corresponding edge does not exist, one is allocated.

Once a second all the edges are decayed — all the weights/atediby 2, and the
edges whose weight becomes 0 are freed. This decay mechasssines us that graph
information will represent the interprocess activity oé ttecent few seconds, and not
of the entire machine’s uptime history.

8.2.1 Identifying Interprocess Dependency

At any time the Linux kernel is running either in process estitexecuting code on
behalf of a process (system call or even the process itsaffing in user-mode) or in
interrupt mode executing interrupt or tasklet code.

Whenever a process is sending a message or even releasiaged sksource, an-
other process, either a receiving process or a processig/éiti the just released shared
resources is tested for being in the run queue. This sceisazinsidered to represent
a dependency between the two processes.

The test if a process is on the run queue is always done usinketimel function
try_to_wake_up54], which adds the process to the run queue if not already; on

Every time thetry_to_wake_ugunction is called when the kernel is running in
process context we increment the weight of the edge fromdakied process to the
running process, since it is considered that the runninggg®has done something the
tested process waited for, even if the tested process wasile:

This is indeed a liberal approach to interprocess deperydtrat extends the for-
mal definition of interprocess communications. Howeveis i place since we are
trying to encompass even implicit dependencies betweerepses, and not only the
explicit ones.

Nonetheless, this approach is not perfect. Several otmenam interprocess com-
munication primitives are not identified by this mechanigimimitives such as explicit
shared memory or shared files require different identificethechanisms, but we felt
such mechanisms are not necessary for our exploratorynsysied left their imple-
mentation for future work (chapter 10).

8.2.2 Handling of Multi-Threading/Shared Memory

We did address one aspect of shared memory, which is imgheited memory, or
simply put — threads.

The multi-threaded programming paradigm is becoming vemroon, and new
processors even support it in hardware level [28]. As suehceuld not ignore multi-
threading when designing our scheduler, and even used athm@ldded application as
a benchmarkXine Movie Playersection 4.3).

Multi-threaded applications are handled by representiegntin the interprocess
dependency graph as hyper-nodes. The kernel keeps tratiktofeads of a specific
application, they are all represented in the graph as aesimglle and the communi-
cation with the user is accumulated for the entire threadigreollectively, with no
regards which of the threads actually participated in it.

Any dependency between two threads of the same applicatigmored since all
the edges are represented as one node in the graph. By mathstcommunication

53

between threads is done using shared memory so they arenaltleced equal. Other
more complex mechanisms can be designed to rate the difftwreads among them-
selves, but our design highlight is its simplicity.

This approach assures that all threads will have the sametpriand the same
guantum length (section 8.3).

8.3 Putting it all Together

After implementing the interprocess dependency graph,handting the X server to
deliver interactive information, it is now time to modifydtscheduler to use all the
interactive information gathered.

The proposed scheduler is designed to address the commiagsiof human per-
ception. The scheduling decisions at any point in time aset@n statistics gathered
up until no more than a second before, with a larger condiideri the recent few sec-
onds to maintain temporal locality. Using a time resolutidrseconds is appropriate
to human perception rate, as discussed in [45].

In this section we will describe the design of the new schedaihd its handling of
interactive processes.

8.3.1 The Stacked Scheduler

The original Linux scheduler is not modular. It is hard cottedandle the three POSIX
scheduling classes — FIFO, Round Robin (RR) and Other (imefgation dependent)
[43] — so adding a special handling for interactive procegs®eved to be too tricky.
Also, when prioritizing the interactive processes we must gttention not to starve
the kernel threads, otherwise the system might becomehlasta

For this reason we had to rewrite the scheduler and modifjaita structures. Our
design was inspired by that of the Solaris 8 scheduler [28],described as &tacked
Scheduler

As mentioned earlier, POSIX divides processes betweee uleeduling classes.
The Stacked Schedulenaintains and enhances the notion of scheduling classes, bu
enables programmers to design and incorporate new schgailgisses into the kernel.

Whenever the scheduler needs to choose a process to ruavetdes the stack of
scheduling classes, in the order of the classes’ importdasking” each class to pick
a process. Since the classes are traversed in the ordeiiraftpertance, whenever a
class is found which has a runnable process, that procekssg.

A process can migrate between the different classes, usirggl#ied version of the
sched_setpararsystem call [42]. When a process is created, it inheritscit@duling
class from its parent (an exception to this are kernel trgeaich have no parent, and
are specifically born into the KTHREAD class which is disadskater).

The scheduler comes with 6 default scheduling classesdlisttable 8.2. These
default classes consist of the three POSIX classes — FIFOaiRROTHER — and
three new ones — KTHREAD, INTERACTIVE and IDLE.

The FIFO and RR classes prioritize their processes acaptdithe FIFO and RR
models accordingly. Note however that this breaks the PG8heduling class model
a little, since in ouiStacked Schedulany FIFO procesalwayshas a higher priority
than any RR process. The POSIX model only states that the BIRDRR classes
are always chosen before the OTHER class, but does not dedimetaorder among
themselves.

54

Table 8.2: Default scheduling classes, in their stackimgor

| Class Name | Description |
FIFO POSIX First-In-First-Out
RR POSIX Round-Robin
KTHREAD Kernel Threads
INTERACTIVE | Interactive Processes
OTHER Linux Original Scheduler — All regular processes
IDLE Idle Processes

The KTHREAD, OTHER and IDLE classes prioritize processasgithe original
Linux scheduling algorithm (section 3.3) — each class wiloivn processes.

Another class — the INTERACTIVE one — is designed to suppiogtschedul-
ing of interactive processes whose identification is descriin section 8.3.2. A full
description of the scheduling algorithm the class impletmenfound in section 8.3.3.

In conclusion, this design has several major advantagestbeeoriginal Linux
scheduler:

¢ Modular - this design lets programmers design their own schedulasges and
add them to the stack, with each class prioritizing its pssosith no external
intervention.

¢ Efficient- the scheduling decision does not need to traverse a lidt thfearun-
ning processes, as is the case in the original Linux schedulé only until it
finds a runnable process. The nature of this traversal istizgdap- if a high
priority process is present it will be found faster sincecitsss will be traversed
earlier, thus giving adaptive efficiency based on the propesrity (the new de-
velopment Linux kernel has a new and more efficient sched88r but not as
modular as ours).

e Dynamic- new scheduling classes can be introduced at runtime, diocptio the
user’s needs (although this feature is not fully implemeyet).

e Multiple Idle Processesthe Stacked Schedulsupport long term, low priority
computations be expanding the notion of an idle processaisttheduling class.
This way the user can migrate a long term process to the IDag&s¢cwithout it
competing with more important processes over the CPU.

8.3.2 Identifying the Interactive Processes and Prioritimg Them

As discussed in section 7.4, the connected component of feevér in the interprocess
dependency graph is the group of processes that communiithtthe X server, both
directly and indirectly. Also, a single stream of user I/Qgirtidepend on a group of
processes rather than only one process. We'll refer to sugrow@p as an interactive
application, with each member of that group being an interaprocess.

A process’ priority is calculatednce a secondccording to the following equation:

process priority= distancet shortcut (8.2)

55

with distancebeing the topological distance between the process and gerver
in the interprocess dependency graph, ahdrtcutbeing per-application prioritizing
number set according to amount of user I/O generated and/eelcky that process.
As we'll see next, thalistanceis an intra-application priority, and thehortcutis an
inter-application priority.

For distance calculation, all the edges are given a length, oégardless of the
amount of interprocess interactions they represent. Timiglstic approach was found
sufficient for our purposes (see results in section 9).

All the processes which directly communicate with the X serand have a inter-
active priority set by the server (processes regardedplcitly interactive are sorted
according to both their input and output rating. These pses then accumulate their
shortcus according to the following rules:

1. All the processes that send output to the X server (andithile user) receive a
path shortcut of half an edge.

2. All the processes that receive input from the X server (g from the user)
receive a path shortcut of one edge.

3. The 3 processes that have the most effect on the displématiein edge shortcut.

4. The two processes that receive the most input from thereseive a shortcut
worth two edges.

Since we regard user input as the best indication that theisiseterested in a
process, thehortcutvalue for input is higher than that of output.

After the shortcus has been calculated for the explicitly interactive preessa
Breadth First Search (BFS, [9]) algorithm is run on the iptecess dependency graph
to topologically sort the various processes, find the sBopath from the X server
to each of them and thus find the X server’s connected compofidre topological
distance is calculated for each process.

While traversing the graph, the BFS algorithm propagatestortcutvalue of
each explicitly interactive process to all the processessstshortest path from the X
server passes through that explicitly interactive process

This way, aside from obtaining the X server connected coraptrihe processes
are prioritized in groups, with each group being considenéhteractive application.
Among themselves, the processes inside an interactivécapiph are prioritized ac-
cording to their topological distance from the X server,hattieshortcutvalue being
an inter-application priority.

For example, let's consider a shell prompt which receivesamiger input than any
other process. That shell communicate witlXalerminal which in turn communicates
directly with the X server. Since all the data between the asel that shell passes
through theX terminal this terminal with receive ahortcutvalue fitting the process
that receives the most input — 2 for any input and 4 for beatirp totaling at 6.

The shortest path to the shell passes throughxtherminal so theX terminals
shortcutvalue is propagated to the shell, and the entire interaejiy@ication K ter-
minal + shell) receives thehortcutvalue, with the priority inside the application rated
according to the topological distance.

Finally, the X server gets a specgthortcutvalue that will give it the highest in-
teractive priority, since this is the user information jtion. We could have similarly
treated the X server as a kernel thread (which will give itghbr priority than any user
process) but decided it should be treated as part dNfERACTIVEprocess class.

56

Note that this algorithm is general enough that even a drpoieess like the win-
dow manager can be treated just like any other interactiveqss — since it is directly
connected to the X server, and it monitors almost all inpenés, it has a very high
priority.

Although this algorithm seems time consuming, our measeangsnshows that is
requires~ 2 milliseconds, and it is only run once a second so its oveflia mere
0.2% of the CPU time.

8.3.3 Allocating CPU Time and Choosing the Next Interactivéro-
cess To Run

Although many changes we've made to the scheduler, the pbrdecomputation
epoch, introduced with the original Linux scheduler (s&t.3), is still maintained.

At the beginning of an epoch each process is alloted a CPUdimatum to con-
sume. Whenever a scheduling decision is to be made, theldelnetiooses the process
with the biggest remaining time quantum. Once all proceksags consumed their al-
loted quantum, the epoch is considered over and a new ddbodatmade. The only
difference from the original Linux scheduler is way a timeagtum is allocated for
each process.

The time quanta are allocated in the following manner: wengefi maximum
time quantum for an interactive application (which curhgstands at~ 200 clock
ticks, with a clock tick every 1 millisecond). The highesigpity interactive processes
(according to the priority calculated using the augmentE®& Blgorithm described in
section 8.3.2) receive the maximum time quantum. The psasawith the second best
priority get half that quantum. This goes on with the proessat each priority level
getting half as much time as those in the higher level (unitesgrocesses in the higher
level got a quantum which less than 4 clock ticks, in whicledh® quantum is set to
2 clock ticks). This exponential decay continues until laél processes got a new time
quantum.

Using the notion of a computation epoch gives two major b&nefiprevents star-
vation caused by the positive feedback mechafisms solving the problem discussed
in section 7.6. Also, it does not add any overhead to the goselection mechanism,
relative to the original Linux scheduler thus limits the mdime consuming graph
algorithm to run only once a second.

8.4 Conclusions

In this chapter we introduced a novel approach to schedititegactive application
based on interprocess and process-user information flow.

We have proposed and implemented a new scheduler designytocle captures
the complexity and variety of existing workloads, and intea a new scheduling algo-
rithm that specifically targets the interactive workloacdysncommon in workstations
and desktop.

2Actually, some of our measurements show a problem with ipesieedback when an interactive pro-
cess hogs the CPU, but we suspect this is caused by an illosgyén the interprocess dependency graph
implementation

57

58

Chapter 9

Now Let's See If It Works...

To see if the proposed scheduler works, we ran a variety efactive applications with
background CPU bound processes, as described in sectio®dr3oal was to check
if our proposed scheduler solves the problem arising froimgthie CPU consumption
as a scheduling metric, problems which are shown in secti®n 6

The questions to be asked are whether an interactive prgeesthe CPU when it
need it (discussed in section 9.1) and whether an inteeptiocess get enough CPU
time, even though its CPU consumption pattern is similar ©P4J bound pattern
(discussed in section 9.2)

9.1 Do Interactive Processes Get the CPU When They
Need It?

The main purpose of a scheduler is to allocate the CPU to theritant processes when
they need. As described in section 6.3.1, we measured hayvdoas an interactive
process has to wait in the run queue until it is given the CPhilitoon — its dispatch
latency.

Figure 9.1 shows the average time the various interactivegsses wait on the
run queue until they get the CPU, when using our proposedisdéie It is clear that
the background load has practically no effect on the displatency of the interactive
processes, which means the proposed scheduler ident#iesdbrrectly as interactive
and prioritize them accordingly, as oppose to the originauk scheduler dispatch
latency described in figure 6.3.

The other aspect we discussed in section 6.3.1 is the fraofids runnable time
a process waits for the CPU, and we have seen that this pi#edecteases dramat-
ically when using the original Linux scheduler and runniregkground CPU bound
applications (figure 6.4).

However, figure 9.2 clearly shows that using our proposeddwer prevents this
increase altogether. It shows that the fraction of runntéibie spent waiting for the
CPU hardly increases even under heavy CPU load. This meanghia proposed
scheduler identifies the interactive processes correxitymaintains the correct iden-
tification over time.

Figures 9.1 and 9.2 establish that the proposed schedplesiity scheme is cor-
rect — it identifies the interactive processes, and the adere@poch model works.
This observation leads us to the next question: we now knewpthposed scheduler

59

8e+06 —

~—& Xine
=—& Quake
i 1%*’06 7 OpenOffice
% ms ——¢ MPlayer
E 6e+06 — Emacs
2 X (with Xine)
o
O 5e+06
o
<
L 4e+06
)
£
= 3et06
]
2
I3 i
g 2e+06
9]
>
< 1e+06 o
1ms + a » *> * o S ——?
¢ o * - . . .~ ——
0 = | I I I I i I | I i
0 1 2 3 4 5 6 7 8 9 10

number of CPU-bound processes

Figure 9.1: Average dispatch latency of various interactigplications using our new
information flow based scheduler (reference lines showingdnd 10ms times relative
to cycles). Compare with figure 6.3.

80

60

4oﬂ

20

—— Xine
=—& Quake
OpenOffice
=—& MPlayer
Emacs
X (with Xine)

Part of runnable time spent waiting for CPU [%)]

T T T T
3 4 5 6 7 8 9 10

number of CPU-bound processes

Figure 9.2: Percent of the interactive processes’ runniile spent waiting for the
CPU using our new information flow based scheduler. Compétefigure 6.4.

60

CPU-bound
i other

X server
Emacs

N

100
% # idle

Z

| ®
|
1\

CPU utilization [%)]

0 1
number of CPU-bound processes

Figure 9.3: Effects of typing text with background batchgalsing our new informa-
tion flow based scheduler. Compare with figure 6.5.

gives the CPU to the interactive processes when they needtitloes it give them
enoughCPU time?

9.2 Do Interactive Processes Get As Much CPU Time
As They Need?

First, let us verify that we did not mess things up, and thitigag worked correctly
with the original Linux scheduler, still do with the propasscheduler. Chapter 6, and
especially section 6.3.2 and figure 6.5 show that CPU consampased schedulers,
such as the original Linux scheduler, still favor classiteractive applications such
as theEmacstext editor, and prioritize them over non-interactive aggtions. We
wanted to verify thaEmacss getting enough CPU time when using information flow
as the scheduling metric. We r&@macswith a variable number dastressemprocesses
as described in section 4.3 and measured the fraction offfietiineEmacgeceived.
The result is shown in figure 9.3 (again, note that unlike ogiiaphs of its kind it uses
a logarithmic scale because Bfmacs low CPU consumption). We can clearly see
thatEmacsis getting approximately the same percentage of CPU time aitemhow
manystresseiprocesses are running in the background.

The next step is to check for improvements. Section 6.3.%shbat theXine
movie player is heavily affected by background CPU load,thigleffect is graphically
depicted in figure 6.6.

We ran the same benchmark using the information flow basestisétr, and the
results can be seen in figure 9.4.

Itis clear that our proposed scheduler identifiesXireemovie player as interactive
and prioritized all its threads accordingly, so it is noteated by background CPU

61

Figure 9.4: Effects of playing a movie with background bajmbs using our new
information flow based scheduler. Compare with figure 6.6.

load, and the percentage of lost frames remains approxiycatestant astresses are
added.

The final step was to test tH@uakerole playing game. Section 6.2 shows that
QuakeCPU consumption pattern is very similar to that of a CRtéssera similarity
that is further established when observing Hpuakehas to compete with background
load (figure 6.7).

However, figure 9.5 which sums the last benchmarks cleadystthat the pro-
posed, information flow based scheduler easily charaee@uakeas an interactive
application and favors it over the background load simdlatethestresserprocesses.

9.3 Conclusions

Using a variety of benchmarks involving sample interactipplications that repre-
sent most of the common type of interactive applicationshesxe given an alternate
scheduling theory. We have shown that the information flaweking methodology
discussed in chapter 7 is a viable and feasible alternatithe 30 year old general
purpose process scheduling theory governing most gengnabpe operating systems.

62

°
c
= 3
o
o> 9
AV - f .
c O 2D 4]
S v @ ¢
OXxX OTB ©
2 I Y= =

ound processes

infor-

W

63

Figure 9.5: Effects of playing Quake with background battksjusing our ne

mation flow based scheduler. Compare with figure 6.7.

64

Chapter 10

Further Research

10.1 Extending the Research Presented

The most immediate extension to this research is to expltirer anterprocess com-
munication mechanism and monitor them for interprocessdégncies. Such mecha
nisms include shared memory, shared files and many others.

Other extensions include further analysis of the diffetgpés of user 1/0O and their
workloads. For example, we assumed all input events arel eqdatreated them as
such, but this may not be true. For example, a keyboard evight ime more indicative
of the user’s interests than a mouse event. Another examplé#férentiating events
according to their rate — a slow rate of text output might dadé that the user is
reading it, while a fast rate can be beyond user’s percepéitanthus indicate that the
user is not evaluating it at real time.

Exploring these paths involves cognitive research and s@&mguch understanding
of human computer interactions.

Another very interesting path is extending the interacéivent monitoring to in-
cluderemote interactivenesas described in chapter 2. This path might add new pos-
sibilities to the fields of grid computing and distributeceogting systems. This path is
also interesting since it involves several security cimgjéess of saving global interpro-
cess dependency kernel information in non-secure networks

10.2 Various Application of Information Flow Track-
ing

Application of trackinginformation flowin other areas of system research might be
very interesting. Such applications include:

e Global Scheduling— Using information flow we evaluated the importance of
a process to the user, and used this priority to manage CP&l tifowever,
CPU time is not the only resource managed by modern opersgstgms. Other
resources such as network bandwidth, disk bandwidth andomegine also man-
aged and using our evaluation of the user’s interests toatkoother resources to
the running processes can make the computer more userexbritars friendlier
from the user’s perspective.

65

Implicit Gang Scheduling— Using interprocess dependencies can help identify
gangs of processes, thus making gang scheduling impltbigrghan explicit. A
similar idea has been already presented in [15].

66

Appendix A

API for the Interprocess
Statistics Scheduler

e The interprocess communications graph must be protecteddigbal lock so
changes to the data structures will not cause inconsigenci

static inline void sstatgylobal_lock(void);
static inline void sstatgylobal_unlockvoid);
e Initialize the IPC scheduler. Called during the boot praces

int sstatsinit (void);

e Graph management: procgsss added to the run queue.
static inline int sstatsrunqueueadd(structtaskstruct = p);

e Graph management: proceg<alled exit, and we have to remove it from the
graph.

THIS FUNCTION MUST BE CALLED WITH THE tasklist_lock LOCKED
(because it calls find_task_by_pid). (since the only plaeecall it from is un-
hash_process which write-locks this lock it's ok).

void sstatsprocessreleaséstruct taskstruct p);

e Graph managementhild was just forked fronparent, usingclone flagsflags.

void sstatsprocess fork(struct taskstruct x parent
struct taskstruct x child,
unsigned long cloneflags);

e Graph management: procgsfust called exec.

void sstatsprocessexegstruct taskstruct * p);

67

e This function is used to update the X server perceived userifies for pro-
cessp. lItis called from the modifiedched set paramsystem call during the
periodical update from the X server.

static inline int sstatsinteractive updatéstruct taskstruct p,
int input_priority,
int out put_priority,
int part_of_output);

e The basic goal: a process priority. These functions retyroaess’s interactive
priority (and whether it is considered interactive at allhe interactive priority
is an integral value in the range 0255.

static inline int sstatsprocessis_interactivestruct taskstruct x p);
static inline long sstatgprocessinteractive priority (struct taskstruct = p);

The following function does the same but does not lock thelgitself, so it
MUST BE CALLED WITH THE SSTATS LOCKED!!!

static inline int__sstats processis_interactivestruct taskstruct = p);

68

Bibliography

[1] Mohit Aron and Peter Druschel. Soft timers: efficient naisecond software
timer support for network processingCM Transactions on Computer Systems
18(3):197-228, 2000.

[2] Maurice J. BachThe Design of the UNIX Operating Systdpnentice Hall, 1986.

[3] Scott A. Banachowski and Scott A. Brandt. The BEST Sclexdior Integrated
Processing of Best-Effort and Soft Real-Time Processesluliimedia Comput-
ing and Networking (MMCN)anuary 2002.

[4] Michael Beck, Harald Bohme, Mirkok Dziadzka, Ulich Kunia nd Robert Mag-
nus, and Dirk VerwornerLinux Kernel Internals Addison-Wesley, 2nd edition,
1998.

[5] Daniel P. Bovet and Marco CesatUnderstanding the Linux KernelO'Reilly,
2001. ISBN: 0596000022.

[6] John Bruno, Eran Gabber, Banu Ozden, and Abraham Sdbatz. The eclipse
operating system: Providing quality of service via reseovadomains. In
USENIX Technical Conferenggages 235-246, 1998.

[7] John L. Bruno, Eran Gabber, Banu Ozden, and Abraham iSithatz. Move-to-
Rear List Scheduling: A New Scheduling Algorithm for Prawig QoS Guaran-
tees. INACM Multimedia pages 63—73, 1997.

[8] George Candea and Michael B. Jones. Vassal: Loadabkdsatdr support for
multi-policy scheduling. InSecond USENIX Windows NT Symposipages
157-166, Seattle, WA, August 1998. USENIX.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald LesRiintroduction to
Algorithms MIT Press, second edition, September 2001. SBN: 026203293

[10] R. T. Dimpsey and R. K. lyer. Modeling and measuring fipatigramming and
system overheads on a shared memory multiprocessor: Gae sburnal of
Parallel and Distributed Computind 2(4):402—-414, Aug 1991.

[11] Kenneth J. Duda and David R. Cheriton. Borrowed virtirak (BVT) schedul-
ing: supporting latency sensitive threads in a generalgaescheduler. IRro-
ceedings of the 17th ACM Symposium on Operating Systemeif?eis) pages
261-276, May 1999.

[12] Bob Dylan. The Times They Are A Changin’. Columbia RetsirFebuary 1964.

69

[13] Gunter Bartsch et al. Xine Movie Player. http://xireusceforge.net/. version
0.5.1.

[14] Free Software Foundation. GNU Emacs.
http://www.gnu.org/software/emacs/emacs.html. vergi0.7.1.

[15] Eitan Frachtenberg. Flexible coscheduling. Mastiérésis, School of Computer
Science and Engineering, Hebrew University of Jerusaleseeihber 2001.

[16] FreeBSD.org. The freebsd 4.4 kernel. http://www.frged org.

[17] Bill O. Gallmeister. Posix. 4: Programming for the Real WorldO'Reilly &
Associates, January 1995. ISBN: 1565920740.

[18] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A Hieraiedl CPU Scheduler
for Multimedia Operating Systems. Wsenix Association Second Symposium on
Operating Systems Design and Implementation (OSialges 107-121, 1996.

[19] Moving Pictures Experts Group. Short MPEG-1 descrip-
tion. International Organisation for Standardisation, June9619
http://mpeg.telecomitalialab.com/standards/mpegp&fml .htm.

[20] Xingang Guo. Predictable CPU Bandwidth Management Framework for Next-
generation Operating System&hD thesis, The University of Texas at Austin,
2000.

[21] Joe Gwinn. Some measurements of timeline gaps in VAX8/@perating Sys-
tems Review28(2):92—-96, Apr 1994.

[22] Denis Howe. The Free On-line Dictionary of Computingmw.foldoc.org.
[23] Silicon Graphics Inc. OpenGL. http://www.opengl.brg
[24] Sun Microsystems Inc. OpenOffice. http://www.operagfforg. version 1.0.1.

[25] Lawrence J. Kenah and Simon F. Ba¥AX/VMS Internals and Data Structures
Digital Press, 1984.

[26] Andi Kleen. Linux Manual Page: UNIX Domain Sockets
[27] John Lions.Lions’ Commentary on UNIX 6th EditioAnnabooks, 1996.

[28] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Midr, and M. Upton. Hyper-
threading technology architecture and microarchitectéiieypertext historyln-
tel Technology Journab(1), February 2002.

[29] Jim Mauro and Richard McDougaltolaris Internals: Core Kernel Architecture
Sun Microsystems Press/A Prentice Hall Title, 2001. ISBN3@24960.

[30] Marshal Kirk McKusick, Keith Bostic, Michael J. Kareland John S. Quarter-
man.The Design and Implementation of the 4.4 BSD Operating By#tddison
Wesley, 1997. ISBN: 0201549794.

[31] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokudarocessor capacity
reserves: Operating system support for multimedia apgjmics. InInternational
Conference on Multimedia Computing and Systgrages 90-99, 1994.

70

[32] Sun Microsystems. Solaris 8 kernel sources. http:ifvaun.com.

[33] Ingo Molnar. Goals, Design and Implementation of thevndtra-scalable O(1)
scheduler. www.kernel.org.

[34] Jason Nieh, James G. Hanko, J. Duane Northcutt, andré6érawall. SVR4
UNIX scheduler unacceptable for multimedia applicatiorns. Proceedings of
the Forth International Workshop on Network and Operatiygt8m Support for
Digital Audio and Videp1993.

[35] Jason Nieh and Monica S. Lam. The Design, Implemematial Evaluation of
SMART: A Scheduler for Multimedia Applications. IRroceedings of the 16th
Symposium on Operating System Princip{@stober 1997.

[36] John K. Ousterhout. Why aren’t operating systems iggtiaster as fast as hard-
ware? INUSENIX Summer Conflun 1990.

[37] Brian Paul. Introduction to the Direct Rendering Irdiaucture.
http://dri.sourceforge.net/doc/DRIintro.html, Aug@§00.

[38] Various Programmers. MPlayer. http://www.mplayethd. version 0.90prel.1.

[39] Melissa A. Rau and Evgenia Smirni. Adaptive CPU schizdupolicies for
mixed multimedia and best-effort workloads. MASCOTS Conference, Mary-
land, USA pages 252—-261, October 1999.

[40] RedHat, Inc. RedHat Linux Distribution — Version 7.0ww.redhat.com.

[41] Ronny Ronen, Avi Mendelson, Konrad Lai, Shih-Lien Lue# Pollack, and
John P. Shen. Coming challenges in microarchitecture actutacture. Pro-
ceedings of the IEEB9(3):325-340, Mar 2001.

[42] Linux Manual Page: sched_setparam System.Call
[43] Linux Manual Page: sched_setscheduler System Call

[44] Robert W. ScheiflerX Protocol Reference Manualolume 0. O'Reilly & Asso-
ciates, July 1989.

[45] Ben ShneidermarDesigning the User InterfacéAddison-Wesley, third edition,
1998. ISBN: 0201694972.

[46] Abraham Silberschatz and Peter Baer GalM@perating System Conceptad-
dison Wesley, fifth edition, 1998.

[47] ID Software. Quake IIl Arena. http://www.idsoftwacem.
[48] David A. Solomon.nside Windows NTMicrosoft Press, second edition, 1998.

[49] David A. Solomon and Mark E. Russinovicinside Windows 20Q0Microsoft
Press, third edition, 2000.

[50] W. Richard StevendJNIX Network Programmingvolume 1. Networking APIs:
Sockets and XTI. Prentice Hall PTR, second edition, 199BN:313490012X.

71

[51] lon Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanpgruah, Johannes
Gehrke, and C. Greg Plaxton. A Proportional Share Resoulioeaiion Al-
gorithm for Real-Time, Time-Shared Systems|HEE Real-Time Systems Sym-
posium December 1996.

[52] Avadis Tevanian, Jr., Richard F. Rashid, David B. GolDlavid L. Black, Eric
Cooper, and Michael W. Young. Mach threads and the unix kefitne battle for
control. InProc. Summer USENIX Technical Conferengages 185-197, June
1987.

[53] The XFree86 Project Inc. XFree86 , an open-source implgation of the X
Window System. http://xfree86.org/. version 4.1.0.

[54] Linux Trovalds, Alan Cox, and many others. The Linux KekSources, Version
2.4.8. http://lwww.kernel.org.

[55] Uresh Vahalia.Unix Internals: The New FrontiersPrentice-Hall, first edition,
1995. ISBN: 0131019082.

[56] Jorge E. Vieira and Dilma M. Silva. The SMART Schedulfiog Linux.

[57] Carl A. Waldspurger and William E. Weihl. Lottery scheihg: Flexible
proportional-share resource management.Symposium on Operating System
Design and Implementation (OSDNovember 1994.

[58] Carl A. Waldspurger and William E. Weihl. Stride schédg: Deterministic
proportional-share resource management. Technical REp®/LCS/TM-528,
Massachusetts Institute of Technology, 1995.

[59] X Consortium. X Windows System. www.X.org.

[60] Yanyong Zhang and Anand Sivasubramaniam. Schedulast-Bffort and Real-
Time Pipelined Applications on Time-Shared Clusters. AGM Symposium on
Parallel Algorithms and Architectures(SPAARges 209-218, July 2001.

72

