
Scheduling of Interactive Processes
“How Can I Play a DVD and Compile Linux at the Same Time?”

Yoav Etsion
etsman@cs.huji.ac.il

School of Computer Science and Engineering
Hebrew University of Jerusalem

A thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

Supervised by Dr. Dror Feitelson

October 2002





Abstract

When we work with computers, most of the workload we generateis of an interactive
nature. Our interactions with the computer are in the form ofa conversation — we type
something, the computers replies and so on. Applications that work in this manner are
considered interactive.

Since the birth of the UNIX operating system in the early 1970s, operating sys-
tems’ task schedulers regard interactive processes as I/O bound — processes that do
not generate substantial CPU load and spend most of their time waiting for the user to
respond.

In the last few years however, with the growing popularity ofgraphical cards ca-
pable of massive rendering, CD and DVD drives and the internet, there is a growing
acceptance of the workstation as a multimedia console, thusintroducing a new type of
applications.

Modern interactive and multimedia applications require greater graphical capabili-
ties. This feature makes them consume much more CPU cycles, so modern interactive
applications no longer adhere to the interactive workload model introduced in the tra-
ditional UNIX scheduler and require a more sophisticated model.

In this thesis we explore the abilities of modern operating systems — especially
with regards to the task scheduler and the operating system clock — to satisfy the
needs of modern, CPU hungry, interactive applications. We show that the common
CPU metric can no longer be used to classify various applications.

Instead, we offer a novel approach to dynamically and autonomously identify inter-
active processes based on monitoring the information flow between the different pro-
cesses and the user. A scheduler based on this model can prioritize processes according
to the user’s desires, without any additional demands from the user.

Finally, we implement a new task scheduler for the Linux kernel based on that
model. Our implementation includes some modifications to the X server and a massive
rewrite of the Linux kernel’s task scheduler. We present benchmarks that show the great
improvement in the handling of interactive processes — withregards to minimizing
dispatch latency and sufficient CPU time allocation — regardless of the load on the
system.
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Chapter 1

Introduction and Related Work

1.1 Introduction

The problem of scheduling the resources of a computer is decades old. While the first
machines were simple number crunchers capable of running one program at a time, it
soon became apparent that there is a need to allow for severalprograms to be served
concurrently.

A simple solution for this problem was to let the programs wait in a queue and be
served in a First-In-First-Out (FIFO) order. A later solution was to let the programs
actually run concurrently by slicing the CPU time among themusing the round robin
algorithm — the multiprocessing computer was created, and gave birth to a variety of
resource allocation problems.

Time-slicing also allowed programs to interact with the user in a conversation-like
manner, albeit using textual medium at that time. This uncovered the problem of real
time scheduling of computer resources among programs whileconsidering the user
sitting by the console waiting for a response. The new operating systems of that time,
such as UNIX [2], incorporated scheduling algorithms that handled the textual based
interactions with the user in a satisfactory manner.

Recent advances in hardware production have made computerscheaper and faster.
As such, computers soon became a common household device that offers an abundance
of interactive activities, ranging from word processing, through web surfing, and up to
playing graphic-rich games and use as a multimedia console.The conversation medium
was no longer limited to the textual domain.

A lot of work has been done on the subject of how to divide the CPU time between
the various running applications, while keeping the interactive user happy. In the fol-
lowing section we review several of the common solutions forscheduling interactive
applications, including modern multimedia applications.We then outline our unique
contribution.

1.2 Related Work

In this section we will review the evolution of interactive processes’ schedulers:
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Classic Operating Systems’ Scheduler Design

At first, interactive processes were textual, and all communication between the user
and the various applications used the terminal. Task schedulers of common operating
systems tried to identify the interactive processes and give them some special treatment,
to prevent the user from experiencing the system load through longer response times.
The UNIX task scheduler [2] works under the assumption that interactive processes
spend most of their time waiting for a response from the user —as the user lives
in a temporal domain much slower than that of the processor — and uses a simple
policy of prioritizing processes that rarely use the CPU over those that do so often.
In a sense, this is a simple fair share approach — the scheduler tries to distribute the
processing time evenly among the different processes (withsome consideration given
to user-assigned weights passed through thenicemechanism).

Other operating systems took this support one step further by identifying which de-
vice a process was waiting for. Operating systems such asSun’s Solaris[29], Digital’s
VAX/VMS[25] andMicrosoft’s Windows NT/2000/XP[48, 49] give a priority boost to
processes that were blocked on a device with inverse proportion to the speed of the
device — the slower the device, the higher the priority boost. This means the a process
waiting for the slower terminal device gets a major boost, ina scheme that implicitly
favors interactive processes.

Microsoftadded another feature to theirWindows NT/2000/XPoperating systems:
the thread owning the focus window gets an additional priority boost. These operating
systems thus had the first mainstream scheduler that explicitly recognizes the interac-
tiveness of applications, as opposed to the previous implicit solution.

These solution worked well when human interaction was limited to the textual do-
main. Contemporary computer workloads however, especially on the desktop, contain
a significant multimedia component: use of graphical user interfaces, playing of music
and sound effects, displaying video clips and animations, etc. These workloads are not
well supported by the mechanisms described so far as shown byNieh et al. [34] and
further investigated in chapter 6.

This deficiency is often attributed to the fact that multimedia applications consume
significant CPU resources themselves — which breaks the basic assumption of the
UNIX scheduler — and to the lack of specific support for real-time features.

In recent years the topic of scheduling multimedia applications has become a crowded
research area, in which we can identify several common approaches. The main ones
are support for soft real time applications and for proportional sharing of resources.

Multimedia Schedulers with Soft Real Time support

Multimedia is commonly associated with soft real time features. Sustained frame rate
and constant audio sample rate are two major features which make multimedia ap-
plications require soft real time support. Several research projects have been done to
enhance multimedia support through better soft real time support from the operating
system.

Soft Timers [1] use general kernel entry points, such as system calls, as opportuni-
ties to execute software timers. This is done in an attempt togive better timer accuracy
than the common solution of executing all software timers from within the general
clock interrupt handler which is called at a constant (and usually coarse) rate. This
solution is shown to highly enhance the operating system’s soft real time properties,
albeit based on a statistical principle.
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The SMART scheduler [35] by Nieh et al. lets a multimedia application request the
operating system for certain soft real time assurances — mainly computation periods
— and receive feedback from the operating system whether these requests can be met.
Originally implemented on the Solaris operating system, and later implemented for
Linux [56], it presented a substantial improvement to the native support. This solution
however, mandates modifications to applications by forcingthem to explicitly request
resources from the operating system.

The applications’ modifications problem was addressed by the BEST scheduler [3].
This scheduler identifies applications with soft real time qualities — application which
have regular computation periods. These periods are recorded and the operating system
attempts to anticipate future periods and schedule the applications accordingly. While
this solution does not require any participation on behalf of the application itself, it
cannot handle overloaded machines in which such computation periods overlap.

On a different note, Zhang et al. [60] approached a differentversion of the same
problem. Their goal was to schedule real time jobs along best-effort ones in a manner
which will maintain the real time deadlines. Their design was aimed at serving parallel
real time multimedia applications that are too demanding tobe serialized. An example
for such applications is detecting motion on a stream of images taken by an airplane by
pipelining the frames through a series of threads running ondifferent processors. Their
proposed solution is dividing the CPU time among the two classes according to a user
supplied “fairness” ratio, and letting each class scheduleits processes in a hierarchical
model. The real time class uses the earliest-deadline-first(EDF) scheme.

Proportional and Fair Share Schedulers

Another common solution is to enable the user/programmer torequest some resource
guarantees from the operating system: a certain percentageof the CPU time, disk
bandwidth etc.

One of the well known schemes in this field isLottery Scheduling[57]. The basic
idea is to assign each process a number of lottery tickets that is proportional to its re-
quested percentage of the CPU time. The scheduling decisionis than made by drawing
a uniformly distributed ticket thus giving each process chance to “win” the CPU that is
distributed according to the user/programmer’s requests.

This work was later developed intoStride Scheduling[58] which was aimed at
turning the probabilistic factor at the base ofLottery Schedulinginto a deterministic
one in order to minimize the mean error in the average throughput and latency that
accompanies the probabilisticLottery Scheduling.

Another well known work in this field is theBorrowed-Virtual-Timescheduler [11].
This scheduler assigns a virtual time to each running thread, and allocates the CPU
according to a user-defined weight policy. A time sensitive thread can “borrow” time
from its future allocations when its schedule is tight. Thiscan minimize the thread’s
dispatch latency in time-critical sections.

Stoica et al. [51] proposed another proportional share scheduling mechanism —
processes are continuously allocated CPU shares accordingto a user defined rate.

Mercer et al. [31] devised an operating system abstraction calledreservethat allows
a server process to bill the client process for its CPU time thus allowing a more accurate
billing according to user-defined weights. Their work was designed for microkernel
operating systems in general (and implemented on the Mach kernel [52]) since such
operating systems rely heavily on user level processes to provide elementary services.
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An adaptive approach was taken by Rau et al. [39] when designing a scheduler
that monitors the CPU demands of both Multimedia and Best-Effort applications and
trying to accommodate those needs by adapting itself to the momentary workload. The
user must specify two limits: a highest tolerable percentage of missed deadlines in
multimedia applications and a highest tolerable slowdown for best-effort applications.
The scheduler than tries to change the CPU portions allocated for each class using 5%
chunks in order to maintain both limits over the possibly changing workload. In case
of a heavy load under which the system cannot maintain both limits, an advantage is
given to the multimedia class whose limit is the one to be maintained.

The Eclipse operating system [6] went a step further in providing proportional share
of the machine to the various running processes. Its scheduling algorithm, calledMove-
To-Rear[7], enables the user/programmer to guarantee portions of other resources —
such as memory blocks, disk bandwidth, network bandwidth etc. — as well as CPU
time to the running processes. In particular, the algorithmis designed so that latencies
incurred waiting for different resources do not accumulateover time.

Hierarchical and Modular Schedulers

Some work investigated the behavior of so called “meta-schedulers” — schedulers that
actually allocate CPU time between other, class specific schedulers.

Goyal et al. [18] designed a hierarchical scheduler fashioned like a tree. Each leaf
is a class specific scheduler and each internal node symbolizes a meta-scheduler with
a specific proportional CPU time division between its children.

In his PhD thesis, Guo [20] extended this hierarchical scheduler model. He de-
signed a priority based algorithm, unique in that it identifies the server processes a
client is serviced by. It then increases the server processes’ priorities to that of the
client (if necessary) to prevent the common cases of priority inversion.

TheVassalproject [8] fromMicrosoftdescribed a hierarchical scheduler with strict
ordering: when a dispatch decision is to be made the dispatcher queries the various
class-specific schedulers for processes, in a strict, predefined order. The focus of this
work is to enable the dynamic loading and unloading of schedulers at runtime, accord-
ing to the applications’ demands. This principle is somewhat similar to the mechanism
we described as theStacked Scheduler(section 8.3.1).

Summary of the Common Approaches

As we have seen, all these schedulers’ attempt to find ways to allocate CPU time to the
running applications in a manner that will keep the user happy, and force the computer
the behave according to the user’s expectations.

Although some of these schemes are very elaborate, there is one common downside
to all of them: they still require the user/programmer to manually specify the needs of
the various application — either in terms of deadlines or of relative weights — and use
this hand tuned process identification as a guide by which to distribute resources.

The only exception to this approach is theBESTscheduler [3] that tries to automate
the identification of soft real time processes and their requirements, rather then letting
the user manually supply this information. But even this provides an automation that
is limited to soft real time processes, cannot distinguish between interactive and non-
interactive processes, and cannot handle overloaded machines.

Our goal is to fully automate this process, and make the computer anticipate the
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user, his desires and interests. Resource allocations willthen be based on this under-
standing of the user’s interests.

1.3 Our Solution

In this thesis we introduce a novel approach to process scheduling based on identifying
interactive processes by monitoring their interactions with the user.

The novelty in our research is that contrary to other solutions — aimed at provid-
ing a mechanismenabling the application programmer or the user to request certain
resources from the operating system — our solution is focused on providing apolicy
that will enable the scheduler to choose the process the useris interested in, without
any need for special input from either the application programmer or the user. The
policy is rather based on understanding the properties of interaction with the human
user.

This identification of interactive processes is dynamic andrequires no cooperation
from either the user or the programmer. It is thus fully independent, user oriented and
is compatible with the newhuman centered computingparadigm.

Another benefit in this approach is that there is no need for specialized interfaces,
that may reduce the portability of applications, and require a larger learning and coding
effort.

On a secondary note we also try to investigate the effects of clock resolution on the
scheduling of interactive and real time processes, and showthat a little change in the
operating system’s clock can lead to great benefits.

1.4 Layout of this Document

An overview of this thesis is as follows: we first discuss the properties of an interac-
tive process (chapter 2), then turn to a detailed review of common operating systems’
schedulers (chapter 3). After describing our testbed (chapter 4), we give an analysis
of the effects of the operating system’s clock on interactive and real time applications
(chapter 5) and analyze why common schedulers fail to handlemultimedia applications
(chapter 6). We then introduce theinformation flow tracking methodology(chapter 7)
on which we base our proposed scheduler (presented in chapter 8) and continue to de-
scribe our experimental results (chapter 9). Finally, we ponder on future applications
of our research (chapter 10).

5



6



Chapter 2

What is an Interactive Process?

When investigating how an operating system’s scheduler should handle interactive pro-
cesses, the first step should be formalizing a definition for an interactive process.

TheFree On-line Dictionary of Computing[22] defines an interactive process as:

A term describing a program whose input and output are interleaved, like
a conversation, allowing the user’s input to depend on earlier output from
the same run.

The interaction with the user is usually conducted through either a text-
based interface or a graphical user interface. Other kinds of interface, e.g.
using speech recognition and/or speech synthesis, are alsopossible.

This is in contrast tobatchprocessing where all the input is prepared be-
fore the program runs and so cannot depend on the program’s output.

This definition however, is a little simplistic for two reasons: First, the interaction
between the user and an application might be indirect via a third process, and second,
the rate of user interactiveness is spread over a wide spectrum.

In most UNIX systems the user keyboard and mouse inputs are not delivered di-
rectly to the application, but rather to the X server [59] andthe window manager.
These are responsible to deliver the input event to the application, so the user interac-
tion might not even be a direct one. Other, more extreme examples include the UNIX X
terminal [59] which emulates a rudimentary computer terminal inside the X Windows
System for the purpose of running console based applications. In this case the user I/O
is proxied to and from the application by both the X serverand the X terminal.

Such examples might even include cases ofremote interactiveness— an X ap-
plication running on one machine and connected to an X serveron another machine,
making it interactive on one computer, but relative to a remote user. A more extreme
example is a web server that interacts with an internet browser. In this case the server
interacts indirectly with a human user (actually, because of the X windows system it in-
teracts directly with an application that interacts indirectly with the user - complicated,
hah?). The web browser may quite possibly be running on a remote computer, making
it another example of remote interactiveness.

There is a wide variety of interactive applications. The user feels a delay in an appli-
cation’s response only relatively to its expected runtime (or query time): he frequently
interacts with applications whose response is expected to be quick, and infrequently
interacts with slower applications (by “interact” we also mean that the user checks if
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an application finished its work and has produced some output). By identifying this
difference in frequency, or granularity of the interactions, we have placed the different
applications on a vast spectrum of different frequencies. On one hand we have the
role playing games, to which the user reacts almost immediately after the game draws
something on the screen (and in the opposite direction, the game redraws the screen al-
most immediately after the user sends some input event — key press, mouse move etc.)
and movie players: both types need to maintain a constant frame rate, which requires
CPU resources as well as limited dispatch latency — almost real time assurances. On
the more frequently-interactive side of the spectrum we also have text editors to which
the user sends bursts of inputs. Going toward the other end ofthe spectrum we’ll see
applications such as web browsers and web servers (on the more frequent side), and
even compilers (less frequent)

This spectrum indicates that a frequency threshold has to beset, so that every appli-
cation whose interaction frequency is higher than the threshold will be considered in-
teractive, and we will try to improve its response time. Applications over the threshold
include both internet browsers which have a big response time, largely due to network
latency and bandwidth limitations, and multimedia and graphical applications which
require fixed CPU usage and dispatch latency. This thresholdis agreed upon among
human computer interaction specialiststo be in the area of a few seconds, with the
exact threshold depending on the user and the hardware (on slower hardware the user
will probably be aware that applications may be slower, thusa longer threshold).

2.1 Is the determination that a process is interactive
persistent?

After we have determined what makes a process interactive, we face the next question:
can the interactive status change during a process’ lifetime, or simply — can a process
be considered interactive one minute an non-interactive the next?

The answer to this question is yes. In current working environments, a user may
have more applications openned than he can monitor simultaneously (in other words,
a user open more windows than he can watch). This results in some applications being
dormant while waiting for input from the user. An example of this is an Emacs editor
that is open and showing some file being edited while the user is surfing the net — the
editor is in general an interactive application but this instance of the application is not
interactive at the moment.

But this is the simple case. Some applications might actually be dormant but appear
to be active: An application can be waiting for input from theuser to continue its work,
even though it still requires CPU resources (so it is not dormant from the operating
system’s point of view). Just imagine an instance of netscape that is displaying a web
page with some graphics (animated gif, for example) that needs redrawing: it requires
CPU resources to redraw the graphics, but effectively does nothing but wait for the user
to click the mouse on some link.

From this observation we can deduce that a process is only interactive relating to
its frequency of communication with the user during a periodof time. An interactive
process’s lifespan might also have times when the user is working on some other appli-
cation and checks the output from this process less frequently. If this frequency crosses
the interactive frequency threshold, the process might be demoted to be non-interactive
until the user regains interest in it and the interaction frequency crosses the threshold

8



back to interactive level.

2.2 Conclusions

In this chapter we have discussed the characteristics of an interactive application, and
found that there is a plethora of such, so we must limit our quest.

For the remainder of this document we will not handle cases ofremote interactive-
ness, and limit our discussion to local interactive application. We do however address
the issues of both direct and indirect interactiveness, andoffer a novel approach to
dynamically identify such processes.
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Chapter 3

The Classics: A survey of
Modern Operating Systems’
Schedulers

This review of scheduling policies in contemporary operating systems demonstrates
how CPU usage is factored into scheduling decisions, therefore making accurate billing
important. It also reviews the various operating systems’ clock resolution (note that
billing is always done in operating system clock tick units). It also lists typical clock
interrupt rates and subsequent scheduling time quanta.

3.1 Traditional UNIX Scheduler

In Traditional UNIX [2] the scheduler chooses processes based on priority, which
is calculated as the sum of three terms: abasevalue that distinguishes between user
and kernel priorities, anicevalue representing relative importance, and ausagevalue.
Lower numerical values represent higher priorities. The usage is incremented on each
clock tick for the currently running process, so priority isreduced linearly when a
process is running. However, this is at tick resolution, so running for less than a tick
is unaccountable. The usage is reduced each second for all processes according to the
following formula, whereload_avgis the average length of the runqueue in the last
second:

usage= 2 load_avg
2 load_avg+1

�usage

Thus when the load is high, and the process gets to run less often, the aging is also
slower.

3.2 BSD 4.4

BSD Unix[30, 16], which is the basis for FreeBSD1and Mac OS-X, uses a similar
formula.

1FreeBSD has a new proposed development scheduler that is based on a proportional share algorithm,
as opposed to the older priority feedback based algorithm. Since the change is not relevant to interactive
processes specifically, and is not yet part of the stable distribution, we discuss the stable algorithm.
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One difference is that CPU consumption by the current process is only tabulated
once every four ticks. This makes the resolution problem worse than in traditional
Unix. Another is that thenicevalue is also added into the aging of theusage, so pro-
cesses with high priority (negativenice) get some of their CPU usage for free, whereas
processes with low priority (largenice) look as if they used more CPU than they actu-
ally did. The time quantum in BSD is fixed at 100 ms.

3.3 Linux

In Linux 2[4, 5, 54] the priority dictates both which process is chosento run, and how
long it may run.

The Linux scheduler partitions time into epochs. In each epoch, every process has
an allocation of how long it may run, as measured in ticks. When the process runs, the
allocation is reduced on each tick. When there are no ready processes with an allocation
left, a new epoch is started, with all processes getting a newallocation that is inversely
proportional to their nice value (the lower the nice value, the higher the priority and thus
the higher the allocation). In addition, processes that didnot use up all their previous
allocation transfer half of it to the new epoch. Thus interactive processes that were
blocked for I/O get a higher total allocation, and hence a higher priority. Allocations in
an epoch are in the range of 6–11 ticks (in Linux 2.4), and thena process is preempted.
Special cases exist, though: when a process forks, its allocation is split between the
parent and child processes, and when a process terminates, its remaining allocation is
added to its parent.

3.4 Solaris

Solaris[29, 32] is somewhat more sophisticated. The Solaris scheduler supports sched-
uler modules, so new modules can be loaded at runtime by the administrator, thus
changing the behavior of the scheduler. The default classesare time sharing (TS),
interactive (IA, which is very similar to TS), system (SYS),and real-time (RT).

A scheduler module registers itself with the kernel, specifying the range of prior-
ities it uses. The Solaris scheduler has 170 global prioritylevels, and each scheduler
module specifies a range of priorities is uses. Module priorities can overlap.

User threads are usually handled by the TS and IA classes, which are very similar.
Priorities and quanta are set according to a scheduling-class-specific table, which sets
the quantum length for each priority, and the priority the thread will have if it finishes
its quantum (lower) or if it blocks on I/O (higher). The quanta are in tick units, and the
values in the tables can be changed by the administrator. Thebasic idea is that higher
priorities get shorter quanta: when a process finishes its quantum it gets a longer one
at lower priority, and when it blocks it receives a shorter quantum at a higher priority,
as opposed to what might happen under Linux.

The clock is set to a frequency of 100 Hz, both on the UltraSPARC and on the i386
architectures. The clock tick handler calls the scheduling-class-specific tick handler for
thread runtime accounting. In both the TS and IA classes thisdecrements thecpuleft

2Actually, the new development version of the Linux kernel also has the scheduler completely rewrit-
ten [33]. However, since the changes relate to the scheduler’s data structures and not the algorithm proper,
we discuss the stable version’s scheduler.
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counter in the process structure. The quanta in these classes is in the range of 2–20
ticks.

Solaris’ default timer interrupt frequency is 100Hz, but itcan be changed to 1000Hz
using a parameter in the/etc/systemconfiguration file. This is however highly discour-
aged by the kernel commentators [29].

3.5 Windows NT4.0/2000

The priority of treads inWindows NT4.0/2000[48, 49] also has static and dynamic
components. The static component depends on the process andthread. The dynamic
component is calculated according to a set of rules, that mayalso give the thread a
longer quantum. These rules include the following:� Threads associated with the focus window get a quantum that is up to three times

longer than they would otherwise (this rule only applies to the NT Workstation
version).� Threads that seem to be starved get a double quantum at the toppossible priority,
and then revert to their previous state.� Threads that wait for user input from a GUI get a double quantum at a priority
level that is one less than the maximum, and then revert to their previous state.� After waiting for I/O, a thread’s priority is boosted by a factor that is inversely
proportional to the speed of the I/O device. This is then decremented by one at
the end of each quantum, until the original priority is reached again.

The net effect is a large boost for threads that are explicitly interactive, at the expense
of others. CPU usage enters into the equation in its effect onterminating the boost, and
in the special handling of starving processes.

The basic quantum in NT Workstation is 6 units, and in NT Server it is 36 units.
On each clock tick the scheduler deducts 3 units from the running thread’s quantum,
so even though the quantum unit is less than a tick, the scheduler’s resolution is not
improved. The length of a tick is 10–15ms, depending on the processor (from 486
to Pentium4) and the number of processors present (multiprocessor or uniprocessor).
This gives a resolution of 66–100 Hz.

3.6 Analysis: No Reference to Interactive Processes

It is quite obvious that none of the reviewed schedulers acknowledge the fact that inter-
active processes requires special care, and all treat them as simple I/O bound processes.

The only special handling available is by theWindowsscheduler (section 3.5) which
gives a longer quantum to the thread associated with the focus window. Although
unique, this is a very simplistic approach and not necessarily a good one.

In the following chapters, we will discuss the adequacy of the 30 year old assump-
tion — that interactive processes are merely I/O ones in disguise — and we will show
that it is no longer true for modern workstations’ common workload.

13



14



Chapter 4

The Testbed

In this chapter we will review all the hardware and software systems used to evaluate
our experiments.

4.1 System

Our hardware consists of a 664MHz Pentium III (Coppermine) machine equipped with
256 MB RAM, with a 3DFX Voodoo3 graphics accelerator with 16 MB RAM that
supports openGL in hardware.

Linux is becoming more and more common as a desktop operatingsystem. Because
of its open source nature and the availability of many kernelinformation resources it
can be modified and monitored to measure performance.

For that reason we used the 2.4.8 version of the Linux kernel [54] as the operating
system running with the RedHat 7.0 Linux distribution [40].The kernel’s hardware
clock was changed from the default 100Hz frequency to 1000Hzbased on our investi-
gation of clock effects (see chapter 5).

For the window system we used the open sourced XFree86 X Windows implemen-
tation, version 4.1.0 [53].

4.2 Kernel LOGGER (KLogger)

The measurements were conducted usingklogger, a kernel logger we developed that
supports fine-grain events. In order to reduce interferenceand overhead, logged events
are stored in a largish buffer in memory (we typically use 4MB), and only exported at
large intervals (by a daemon that wakes up every few seconds;the interval is reduced
for higher clock rates to ensure that events are not lost; in latency measurements, the
intervals during which klogger data was offloaded were explicitly excluded). The im-
plementation is based on inlined code to access the CPU’s cycle counter and store the
logged data. Each event has a 20-byte header including a serial number and times-
tamp with cycle resolution, followed by event-specific data. The overhead of each
event is only a few hundred cycles (we estimate that at 100Hz the overhead for log-
ging is 0.63%, and at 1000Hz it is 0.95%). In our use, we log allscheduling-related
events: context switching, recalculation of priorities, forks, execs, changing the state
of processes, and monitoring of activity on Unix-domain sockets (to track potential in-
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teractions with the X server). While the code is integrated into the kernel, its activation
at runtime is controlled by applying a specialsysctlcall using the /proc file system.

4.3 Applications Tested

Our measurements were based on several applications, trying to represent the variety
of interactive applications. We also used two applicationsas background load, which
were modeled to represent common background load applications.

The classical interactive applications were represented by the GNU Emacs text
editor [14]. To simulate reasonable user I/O, Emacs was measured with a type rate of� 8 characters per second, over a period of 60 seconds.

Modern interactive applications are more diverse, hence were represented by sev-
eral examples:� XFree86 X Windows Server [53]. In UNIX systems, the X server is responsible

for all interactions with the user as it acts as a virtual console. As such, this
server can be thought of as a user proxy from the workstation’s point of view.

This version of the server includes two important extensions to the X proto-
col: the first is theMIT Shared Memory (MIT-SHM) extension, which is used to
transfer images via shared memory rather than using multiple buffer copies with
UNIX domain sockets, thus reducing the load on the CPU. The other extension
is theDirect Rendering Infrastructure (DRI) [37]which allows a graphical ap-
plication direct access to the display adapter’s GPU instead of proxying all these
request through the X server.� OpenOffice [24]. This is a modern, full fledged office productivity suit, with
graphical capabilities. We used its text editor as an example of a modern edi-
tor. The measurements were similar to those used with Emacs,i.e. roughly 8
characters per second, over 60 seconds.� Xine movie player [13]. This is an example of a multi-threaded application. Xine
uses the MIT-SHM X protocol extension.Xinewas measured while playing a 40
seconds MPEG movie - the movie we used was encoded using the MPEG-1
standard [19], at 25 fps and size of 352x288 pixels. All measurements ofXine
were zooming the movie at a 2:1 ratio - twice its size.� MPlayer movie player [38]. This is a single threaded player. MPlayer also uses
the MIT-SHM X protocol extension.MPlayer was measured playing the same
40 seconds MPEG movie asXinedid, but at normal size.� Quake III Arena [47]. This is an example of a modern role playing game, with
heavy graphical requirements.Quakeuses the OpenGL [23] library to render
graphics. Quakecan run in two different modes: it can either run in normal
mode in which a human player is managing the game, or in demo mode in which
the computer plays a game by itself. We measured both modes, to see the effect
of input from the X server on the process’ CPU usage. Both measurement lasted
50 seconds.

For comparison, we measured the CPU usage of two types of common non-interactive
applications:
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� Compilation : A compilation the linux kernel. Since there are several processes
involved in the compilation the data shown is the summation of all processes
involved. Such a compilation takes about 400 seconds.� CPU Intensive : To represent a CPU intensive application, a simple program was
used. The program is an infinite loop incrementing an integer, and is referred to
as astresser. Thestesserswere measured over a 300 seconds period.
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Chapter 5

Operating Systems’ Clock
Resolution and Its effects on
Real-Time and Interactive
Processes

It is generally agreed that scheduling mechanisms in general purpose operating systems
do not provide adequate support for modern interactive applications, notably multi-
media applications. The common solution to this problem is to devise specialized
scheduling mechanisms that take the specific needs of such applications into account.
A much simpler alternative is to better tune existing systems. In particular, we show
that conventional scheduling algorithms typically only have little and possibly mislead-
ing information regarding the CPU usage of processes, because increasing CPU rates
have caused the common 100Hz clock interrupt rate to be coarser than most application
time quanta. Significant increases in clock interrupt ratesare possible with acceptable
overheads, and lead to much better information. In addition, they provide a measure of
support for soft real-time requirements. However, under loaded conditions, the system
may still be unable to distinguish between CPU-intensive multimedia applications and
background CPU-intensive tasks.

5.1 The Resolution of Clock Interrupts

Computer systems have two clocks: a hardware clock that governs the instruction cy-
cle, and an operating system clock that governs system activity. Unlike the hardware
clock, the frequency of the system clock is not predefined: rather, it is set by the oper-
ating system on startup. Thus the system can decide for itself what frequency it wants
to use. It is this tunability that is the focus of the present paper.

The importance of the system clock (also called the timer interrupt rate) lies in the
fact that systems measure time using this clock, including CPU usage and when timers
should go off. The most common frequency used today is 100Hz,and hasn’t changed
much in the last 30 years. For example, back in 1976 Unix version 6 running on a
PDP11 used a clock interrupt rate of 60Hz [27]. At the same time the hardware clock
rate increased by about 3 orders of magnitude [41]. As a consequence, the size of an

19



Figure 5.1: Desired and
achieved frame rate for the
Xine MPEG viewer, on
systems with 100Hz and
1000Hz clock interrupt
rates.
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operating system tick has increased a lot, and is now on the order of 10 million cycles or
instructions. Simple interactive applications such as text editors don’t require that many
cycles per quantum, making the tick rate obsolete — it is too coarse for measuring
the running time of an interactive process. For example, theoperating system cannot
distinguish between processes that run for a thousand cycles and those that run for a
million cycles, because using 100Hz ticks on a 1 GHz processor both look like 0 time.

Another problem is providing support for real-time applications such as games with
realistic video rendering, that require accurate timing down to several milliseconds.
These applications require significant CPU resources, but in a fragmented manner, and
are barely served by a 100Hz tick rate. In some cases, the limited clock interrupt
rate may actually prevent the operating system from providing required services. An
example is given in Figure 5.1. This shows the desired and achieved frame rates of
the Xine MPEG viewer showing 500 frames of a short clip that isalready loaded into
memory, when running on a Linux system with clock interrupt rates of 100Hz and
1000Hz. For this benchmark the disk and CPU power are not bottlenecks, and the
desired frame rates can all be achieved. However, when usinga 100Hz system, the
viewer repeatedly discards frames because the system does not wake it up in time to
display them if the desired frame rate is 60 frames per second.

Increasing the clock interrupt rate may be expected to reduce and maybe even over-
come these problems, but this comes at the expense of additional overhead. In this
chapter we focus on a single simple tuning knob — the clock interrupt resolution, and
investigate the benefits and the costs of turning it to much higher values than commonly
done, without changing the scheduling algorithm.

5.2 Preview of Results

Our initial goal is to show that increasing the clock interrupt rate is both possible and
desirable. Measurements of the overheads involved in interrupt handling and context
switching indicate that current CPUs can tolerate much higher clock interrupt rates
than those common today (Section 5.3). We then go on to demonstrate the following:� Using a higher tick rate allows the system to perform much more accurate billing,

thus giving a better discrimination of interactive processes (Section 5.4). This is
a real issue with typical interactive workloads on today’s machines.
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Table 5.1:Timer interrupt overhead (average�standard deviation).
Interrupt processing Context switch

Clock Load Cycles µs Cycles µs
100 Hz unloaded 4157�211 6.25 702�909 1.06

with Xine 7571�1967 11.39 1743�2102 2.62
1000 Hz unloaded 4176�131 6.28 734�899 1.10

with Xine 4731�822 7.12 1604�1802 2.41� Using a higher tick rate also allows the system to provide a certain “best effort”
style of real-time processing, in which applications can obtain high-resolution
timing measurements and alarms (as exemplified in Figure 5.1, and expanded
in Section 5.5). For applications that use time scales that are related to Human
perception, a modest increase in tick rate may suffice. Applications that operate
at smaller time scales, e.g. to monitor certain sensors, mayrequire much higher
rates and shortening of scheduling quantum lengths (Section 5.7).

We feel that improved clock resolution — and the shorter quanta that it makes pos-
sible — have to be a part of any solution to the scheduling of interactive applications,
and should be taken into account explicitly.

5.3 Clock Resolution and Overheads

A major concern regarding the increase of the clock interrupt rate is the resulting in-
crease in overheads: with more clock interrupts more time will be wasted on processing
them, and there may also be more context switches, which in turn lead to reduced cache
and TLB efficiency. This is the reason why today only the Alphaversion of Linux em-
ploys a rate of 1024Hz (according to the Linux Kernel mailinglist this is because the
Alpha is “strong enough to handle it”). This is compounded bythe concern that oper-
ating systems in general become less efficient on machines with higher hardware clock
rates [36]. We will show that these concerns are unfounded, and a clock interrupt rate
of 1000Hz or more is perfectly possible.

In Linux, clock interrupts are handled by thetimer_interrupt function, which is
called fromdo_IRQ, the main interrupt dispatch function. Using the klogger infras-
tructure we measured the execution time of the handler function for kernels running at
both 100Hz and 1000Hz interrupt rates. To test the effect of load we ran the tests both
on an unloaded machine, and on a machine running Xine.

The results are shown in Table 5.1, and indicate that the handler overhead is rel-
atively small and largely independent of the clock interrupt rate. Handling a clock
interrupt takes less than 4200 cycles; on our 664 MHz machine, this causes an over-
head of only 0.07% if called at 100Hz, and a higher but still negligible 0.7% if called at
1000Hz. Higher rates would also be tolerable: system overheads measuring 10–30%
were the norm a decade ago [10]. A context switch takes even less time, although it
grows with load.

An interesting phenomenon is that on a loaded system the average handling time
actuallydropswhen the clock interrupt rate is increased. We are not sure about why this
happens, and suspect cache effects. The possibility that itis due to the accumulation of
timer events that need to be handled was checked and refuted.
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Table 5.2:Overheads on different processor generations.
Interrupt processing Context switch Cache BW Trap

Processor Cycles µs Cycles µs MB/s Cycles µs
P-90 939�379 10.41 2056�723 22.80 28.01�0.82 187�201 2.08
PP-200 1648�376 8.28 1576�468 7.92 438.49�13.91 379� 85 1.91
PII-350 2372�237 6.79 1451�409 4.16 828.23�17.37 344�102 0.98
PIII-664 4098�695 6.17 1375�468 2.07 2512.06�32.76 346� 23 0.52
PIII-1.133 6475�566 5.73 1356�517 1.20 2683.13�36.80 364�266 0.32
A1.6 11246�662 7.03 2004�502 1.25 4086.78�60.81 291� 79 0.18
PIV-2.2 14130�573 6.44 3978�1191 1.81 3572.57�61.68 1717� 69 0.78

Table 5.3:Time between successive timer interrupts (average�standard deviation).
Clock Load Interval in cycles Clock rate

100 Hz unloaded 6645205.97�3390.41 99.9969 Hz
with Xine 6645206.34�5891.94 99.9969 Hz

1000 Hz unloaded 664409.23�1463.48 1000.1366 Hz
with Xine 664409.22�6358.13 1000.1366 Hz

How are these results expected to change on future machine generations? Ouster-
hout has claimed that operating systems do not become fasteras fast as hardware [36].
We have repeated some of his measurements on a range of Pentium processors with
clock rates from 90MHz to 2.2GHZ, and on an Athlon at 1.6GHz with DDR-SDRAM
memory. Our results, listed in Table 5.2, show the following. First, we find that the
overhead of processing a clock interrupt is dropping at a much slower rate than ex-
pected according to the CPU clock rate. This is due to an optimization of the gettime-
ofday() accuracy by accessing the 8253 timer chip on each clock interrupt, and is there-
fore not related to the CPU clock rate. But even with this optimization, the overhead is
still short enough to allow many more interrupts than are used today, up to an order of
10,000Hz. Second, we find that the overhead for context switching takes roughly the
same number of cycles, regardless of CPU clock speed (excepton the Pentium4, which
is using SDRAM memory at 133MHz and not the newer RDRAM). We also found
that the trap overhead and cache bandwidth behave similarly. This is more optimistic
than Ousterhout’s results. The difference may be due to the fact that Ousterhout com-
pared RISC vs. CISC architectures, and there is also a difference in methodology: we
measure time and cycles directly, whereas Ousterhout basedhis results on performance
relative to a MicrovaxII and on estimated MIPS ratings.

A potential problem with increasing the clock interrupt resolution stems from the
fact that the Linux kernel is monolithic and non-preemptable. It therefore contains
many pieces of code in which interrupts are blocked. Having more clock interrupts
runs the risk of conflicting with these code sections, leading to timing inaccuracies.
Results of measuring the times between the handling of successive clock interrupts are
shown in Table 5.3. As we can see, the interrupt-blocked codesections in the kernel do
not cause a major loss of timer interrupts, or mishandling them, even under loads. The
measured timer frequency is very similar to the programmed one, and the low standard
deviation suggests a relatively constant interrupt rate.
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Figure 5.2:The relationship between quanta durations and how much the process is
billed, for different applications, using a kernel runningat 100Hz and at 1000Hz. Con-
centrations of data points are rendered as larger disks; otherwise the graphs would have
a clean steps shape, because the billing (Y axis) is in whole ticks. Note also that the
optimal would be a diagonal line with slope 1.

Table 5.4:Scheduler billing success rate.
Billing ratio Missed quanta

Application @100Hz @1000Hz @100Hz @1000Hz
Emacs 1.0746 0.9468 95.96% 73.42%
Xine 1.2750 1.0249 89.46% 74.81%
Quake 1.0310 1.0337 54.17% 23.23%
X Server (w/Xine) 0.0202 0.9319 99.43% 64.05%
CPU-bound 1.0071 1.0043 7.86% 7.83%
CPU-bound (w/Quake) 1.0333 1.0390 26.71% 2.36%

5.4 Clock Resolution and Billing

Practically all operating systems use priority-based schedulers, and factor CPU usage
into their priority calculations as discussed in chapeter 3. CPU usage is measured in
ticks, and is based on sampling: the process running when a clock interrupt occurs
is billed for this tick. But the coarse granularity of ticks implies that billing may be
inaccurate, leading to inaccurate information used by the scheduler.

The relationship between actual CPU consumption and billing is shown in Figure
5.2. The X axis in these graphs is the effective quantum length: the exact time from
when the process is scheduled to run until when it is preempted or blocked. While the
effective quantum tends to be widely distributed, billing is done in an integral numbers
of ticks. In particular, for Emacs and X the typical quantum is very short, and they are
practically never billed!

Using klogger, we can tabulate all the times each application is scheduled, for how
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much time, and whether or not this was billed. The data is summarized in Table 5.4.
The billing ratio is the time for which an application was billed by the scheduler, di-
vided by the total time actually consumed by it during the test. The miss percentage
is the percentage of the application’s quanta that were totally missed by the scheduler
and not billed for at all.

The table shows that even though very many quanta are totallymissed by the sched-
uler, especially for interactive applications, most applications are actually billed with
reasonable accuracy in the long run. This is a well-known probabilistic phenomenon.
Since most of the quanta are shorter than one clock tick, and the scheduler can only
count in complete tick units, many of the quanta are not billed at all. But when a short
quantum does happen to include a clock interrupt, it is over billed and charged a full
tick. On average, these two effects tend to cancel out, because the probability that a
quantum includes a tick is proportional to its duration. Thesame averaging happens
also for quanta that are longer than a tick: some are rounded up to the next whole tick,
while others are rounded down.

A notable exception is the X server when running with Xine (weused Xine because
Xine intensively uses the X server, as opposed to Quake whichuses DRI). According to
Figure 5.4, when running at 100Hz this application has quanta that are either extremely
short (around 68% of the quanta), or around 0.8–0.9 of a tick (the remaining 32%).
Given the distribution of quanta, we should expect about 30%of them to include a
tick and be counted. But the scheduler misses over 99% of them, and only bills about
2% of the consumed time! This turns out to be the result of synchronization with the
operating system ticks. Specifically, the long quanta always occur after a very short
quantum of a Xine process that was activated by a timer alarm.This is the process
that checks whether to display the next frame. When it decides that the time is right,
it passes the frame to X. X then awakes and takes a relatively long time to actually
display the frame, but just less than a full tick. As the timeralarm is carried out on a
tick, these long quanta always start very soon after one tick, and complete just before
the next tick. Thus, despite being nearly a tick long, they are hardly ever counted.

When running the kernel at 1000 Hz we can see that the situation improves dramat-
ically — the effective quantum length, even for interactiveapplications, is typically
several ticks long, so the scheduler bills the process an amount that reflects the actual
consumed time much more accurately. We can also see the dramatic improvement in
the X server: on a 1000 Hz system it is billed for over 93% of thetime it consumed,
with the missed quanta percentage dropping to 64% — the fraction of quanta that are
indeed very short.

5.5 Clock Resolution and Timing

Increasing the kernel’s clock resolution also yields a major benefit in terms of the sys-
tem’s ability to provide accurate timing services. Specifically, with a high-resolution
clock it is possible to deliver high-resolution timer interrupts. This is especially signif-
icant for real-time applications such as multimedia players, which rely on timer events
to keep correct time.

A striking example was given in the introduction, where it was shown that the
Xine MPEG player was sometimes unable to display a movie at a rate of 60 frames
per second. This is somewhat surprising, because the underlying system clock rate is
100Hz — higher than the desired rate.

The problem stems from the relative timing of the clock interrupts and the times
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Figure 5.3:Relationship of clock interrupts to frame display times that causes frames
to be skipped. In this example the relative shift is 5.833ms,and frame 2 is skipped.

at which frames are to be displayed. Xine operates accordingto two rules: it does not
display a frame ahead of its time, and it skips frames that arelate by more than half
a frame duration. A frame will therefore be displayed only ifthe clock interrupt that
causes Xine’s timer signal to be delivered occurs in the firsthalf of a frame’s scheduled
display time. In the case of 60 frames per second on a 100Hz system, the smallest
common multiple of the frame duration and clock interval is 50ms. Such an interval is
shown in Figure 5.3. In this example frame 2 will be skipped, because interrupt 2 is a
bit too early, whereas interrupt 3 is already too late. In general, the question of whether
this will indeed happen depends on the relative shift between the scheduled frame times
and the clock interrupts. A simple inspection of the figure indicates that frame 1 will
be skipped if the shift (between the first clock interrupt andthe first frame) is in the
range of 813–10ms, frame 2 will be skipped for shifts in the range 5–62

3ms, and frame
3 will be skipped for shifts in the range 12

3–31
3ms (for a total of 5ms). Assuming the

initial shift is random, there is therefore a 50% chance of entering a pattern in which a
third of the frames are skipped, leading to the observed frame rate of about 40 frames
per second (in reality, though, this happens much less than 50% of the time, because
the initial program startup tends to be synchronized with a clock tick).

To check this analysis we also tried a much more extreme case:running a movie at
50 frames per second on a 50Hz system. In this case, either allclock interrupts fall in
the first half of their respective frames, and all frames are shown, or else all interrupts
fall in the second half of their frames, and all are skipped. And indeed, we observed
runs in which all frames were skipped and the screen remainedblack throughout the
movie.

5.6 Clock Resolution and the Interleaving of Applica-
tions

Recall that we define the effective quantum length to be the interval from when a pro-
cess is scheduled until it is descheduled for some reason. Onour Linux system, the
allocation for a quantum is six ticks. However, as we can see from Figures 5.2 and
5.4, our applications never even approach this limit. They are always preempted or
blocked much sooner, often quite soon in their first tick. In other words, the effective
quantum length is very short. This enables the system to support more than 100 quanta
per second, even if the clock interrupt rate is only 100Hz, asshown in Table 5.5.

The distributions of the effective quantum length for the different applications are
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Figure 5.4: Cumulative distribution plots of the effective quantum durations of the
different applications.

Table 5.5: Average quanta per second
achieved by each application when run-
ning in isolation.

Quanta/sec
Application @100Hz @1000Hz
Emacs 22.36 34.60
Xine� 470.67 695.94
Quake 187.88 273.85
X ServerÆ 71.35 148.21
CPU-bound 28.81 38.97� Sum of all processesÆ When running Xine

Table 5.6:CPU usage distribution when
running Xine.

CPU usage
Application @100Hz @1000Hz
Xine 39.42% 40.42%
X Server 20.10% 20.79%
idle loop 31.46% 31.58%
other 9.02% 7.21%
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shown in Figure 5.4, for 100Hz and 1000Hz systems. An interesting observation is
that when running the kernel at 1000Hz the effective quanta become even shorter. This
happens because the system has more opportunities to intervene and preempt a process,
either because it woke up another process that has higher priority, or due to a timer
alarm that has expired. However, the total CPU usage does notchange significantly
(Table 5.6). Thus increasing the clock rate did not change the amount of computation
performed, but the way in which it is partitioned into quanta, and the granularity at
which the processes are interleaved with each other.

A specific example is provided by Xine. One of the Xine processes sets a 4ms
alarm, that is used to synchronize the video stream. In a 100Hz system, the alarm
signal is only delivered every 10ms, because this is the sizeof a tick. But when using
a 1000Hz clock the system can actually deliver the signals ontime. As a result the
maximal effective quantums of X and the other Xine processesare reduced to 4ms,
because they get interrupted by the Xine process with the 4mstimer.

Likewise, the service received by CPU-bound applications is not independent of the
interactive processes that accompany them. To investigatethis effect, these processes
were measured alone and with Quake running. When running alone, their quanta are
typically indeed an integral number of ticks long — Often theallocated 50ms plus one
tick (which is an additional 10ms at 100Hz, but only 1ms at 1000Hz). But when Quake
is added, the quanta of the CPU-bound processes are shortened to the same range as
those of Quake, and moreover, they become less predictable.This also leads to an
increase in the number of quanta that are missed for billing (Table 5.4), unless the
higher clock rate of 1000Hz is used.

5.7 Towards Best-Effort Support for Real-Time

To see how close a general purpose system can come to supporting real-time processes,
we measured the timing delays of processes that requested timer alarms when compet-
ing with each other and with CPU-bound processes. The experiments involved pro-
cesses that repeatedly request an alarm signal 500 times; each alarm is set for a certain
number of milliseconds between 1 and 1000 (a second). All theprocesses are assigned
to the (POSIX) RR scheduling class. The performance metric was the latency till these
signals are delivered. There were three types of processes:The first only set alarms
and did not perform any computing (denoted BLK in the table ofresults). The sec-
ond computed for a certain fraction of the time till the next alarm; specifically, we
checked computation of 1, 2, 4, and 8% of the interval till thenext alarm (denoted by
the percentage). The third computed continuously (denotedCONT). In addition, we
used CPU-bound processes that did not set any alarms as a background load (denoted
by +xCPU, wherex is the number of such processes). We checked combinations of1,
2, 4, and 8 processes of each kind. Note that for the combination of 8 processes com-
puting for 8% of the time, this leads to an average load of 64% of the CPU capacity.

The base system used in the experiments is the original Linux, with 100Hz clock
interrupt rate and scheduling quanta of 6 ticks (60ms). To see what can be achieved
with current technology, we compared this with a rather aggressive alternative: a clock
interrupt resolution of 20,000HZ and a quantum of 3 ticks (i.e. 150µs).

Measurements show that even at this rate, the overhead for clock interrupt process-
ing is only 11.7%, and that for context switching 2.1%. A sample of the results is
shown in Figure 5.5. As we are interested in the worst case latencies, the tails of the
distributions for selected experiments are summarized in Table 5.7.
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Figure 5.5:Distributions of latencies till a timer signal is delivered, for processes that
compute continuously and also set timers for random intervals of up to one second.

Table 5.7:Tails of distributions of latencies to deliver timer signals in different exper-
imental settings. Table values are latencies in microseconds, for various percentiles of
the distribution.

Processes @100Hz @20,000Hz
Type Number 0.9 0.95 0.99 max 0.9 0.95 0.99 max
BLK 2 5 8 11 40 13 14 21 23
BLK 8 5 12 22 420 7 9 13 25
CONT 2 50003 60003 60004 160006 50 53 102 105
CONT 8 370014 400014 420015 740025 606 606 706 708
2% 2 6 9 9193 19153 13 15 23 837
2% 8 2910 8419 17940 32944 12 52 53 1809
8% 2 9 12431 39512 60003 14 19 53 3797
8% 8 40003 60005 130006 294291 53 53 54 37328
4% 1+2CPU 50003 50003 50004 50005 55 56 200 256
4% 1+8CPU 50003 50003 170014 280010 56 57 59 856
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The graphs in Figure 5.5 are for the processes that compute continuously while set-
ting alarms (this is the worst case, because the CPU is alwaysbusy, and, except for the
case of a single process, there are always alternative processes waiting to run). Exam-
ining the results for the original 100Hz system (left of Figure 5.5), we see that a single
process receives the signal within one tick, as may be expected. When more processes
are present, there is also a certain chance that a process will nevertheless receive the
signal within a tick (0.53, 0.30, and 0.16 for 2, 4, and 8 processes, respectively, slightly
more than the probability that this process has the highest priority). But it may also
have to wait until its relative priority becomes high enough. This leads to the step-like
shape of the graphs, because the wait is typically an integral number of ticks. The max-
imal wait is a full quantum for each of the other processes; inthe case of 8 competing
processes, for example, the maximum is 60ms for each of sevenothers, for a total of
420ms.

The situation on the improved system is essentially the same, with two differences.
One is that the distribution of waiting times is less uniform— a process typically has
to wait a full quantum for an even number of other processes. However, the reason for
waiting anevennumber of processes remains a conundrum, and is left for future work.

The other difference is that the time scale is much much shorter — the latency is
almost always less than a millisecond. In other words, the high clock interrupt rate and
rapid context switching allows the system to deliver timer signals in a timely manner,
despite having to cycle through all competing processes. Table 5.7 shows that this is
the case for all our experiments.

Note that using the higher clock rate also provides significantly improved latencies
to the experiments where processes only compute for a fraction of the time till the timer
event. With 100Hz even this scenario sometimes causes conflicts, despite the relatively
low overall CPU utilization.

The very few long-latency events that remain are attributedto conflicts with system
daemons that perform disk I/O, such as the pager. Similar effects have been noted in
other systems [21]. These problems are expected to go away inthe next Linux kernel,
which is preemptive; they should not be an issue in other systems that are already
preemptive such as Solaris.
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Chapter 6

Why is the Classic, CPU
Consumption Based, Process
Classification No Good
anymore?

As noted in chapter 3 processes are classically divided intotwo groups - CPU bound
and I/O bound - and the operating system’s scheduler is designed to identify those two
groups and prioritize the processes accordingly.

In this chapter we will show why the classic distinction is nolonger valid, and new
metrics must be used to identify interactive process. As thesaying goes:“The Times
They Are A Changin”’[12].

6.1 Total CPU Consumption

Historically, computers were text oriented, and interactive applications were no excep-
tions (text editors and browsers, shell interpreters etc.). Because of this I/O with the
user was very simple and did not require much CPU resources, and applications spent
most of the time waiting for user input. This was in fact the behavior of an I/O bound
process, so interactive processes were treated as such.

This behavior was appropriate since I/O bound processes usually have higher CPU
priority, so when the user typed something, the interactiveapplication responded promptly.

This all changed in recent years with the developments in multimedia technology.
These modern interactive applications, which involve graphics and image rendering re-
quire much more CPU resources for user I/O. Such applications include movie players
which require CPU resources both for decoding multimedia streams and for display-
ing high quality images. Other examples include graphical role playing games that
require many CPU cycles to render complicated geometric models, map textures, etc.
Although modern hardware uses a dedicated Graphical Processor Unit (GPU) based on
the display adapter to assist with these tasks, they still require heavy assistance from
the CPU.

We measured the CPU usage of our test applications (described in section 4.3).
Each application was run on its own, with no interference. Westarted by simply mea-

31



C
P

U
 U

sa
ge

 P
er

ce
nt

0.00

20.00

40.00

60.00

80.00

100.00

Application

Emacs OpenOffice MPlayer Xine
(1:1 scale)

Xine
(2:1 scale)

Quake
(player)

Quake
(demo)

Kernel make stresser

0.17% 2.6%

10.97%11.59%

41.21%

96.95%99.36%
94.73%

99.78%

Application X Server Other
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suring the percentage of CPU consumed by the various exampleapplications, over the
time of the test. The result can be seen in figure 6.1. It is clear that modern applications
consume much more CPU.

When we compare text editors, we can see that the classicEmacsrequired the CPU
for 0.17% of the time measured, while the modernOpenOfficerequired 2.6%. While
still very low compared to others, we can see a 15 fold increase in the CPU consumption
of an inherently non-multimedia application.

With the measured movie players we see that multimedia applications require a
much more substantial portion of the CPU’s time. Although suspicious at first, the
found that the difference in CPU portions consumed byXineandMPlayer is a result of
Xineplaying it at double size, having to zoom each frame. Also, having the X server
require over 20% of the CPU time while servingxine looks exaggerated, but figure
6.1 clearly shows that the ratio of 2:1 between the CPU time consumed by the movie
player and the X server is kept both when playing the movie with MPlayerand when
playing it at normal size withXine. This means that playing a relatively small movie
(about 1

7:75th of the screen size) requires 15% of the CPU resources, and displaying it
at 2:1 zoom requires more than 60% of the CPU’s time (note that2:1 zoom means 4
times the previous size). Note that following this consumption playing a movie in full
screen mode at a mere 1024x768 resolution will require more than 100% of the CPU
time!

This shows us that total CPU consumption is not a good metric for differentiating
between a common interactive application such as a movie player, and between a clear
batch job such as kernel compilation, especially if we remember that even the zoomed
movie is using only a little more than half the screen (1

1:94th of it, to be exact).
It is not surprising that the batch applications consume almost all the CPU time

when allowed to do so, but we can seeQuakebehaves quite the same - when allowed
to run in demo mode, it consumption resembles that of an infinite loop - ourstresser.
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When it accepts user input,Quakerequires a little less of the CPU time, but this gap is
actually filled with the X server serving the input to quake. This is actually a result of
the adaptive nature ofQuake. The rendering engine is designed to use whatever CPU
time it can get, and adapting the achieved frame rate accordingly: the more CPU it
gets, the better the frame rate it produces.

In conclusion of figure 6.1, it is clear that the distinction between modern interactive
applications and well known batch jobs, based on CPU consumption is getting fuzzy
at best, and even non-existent in some cases.

6.2 CPU Consumption Distribution

Schedulers do not calculate the CPU usage statistics based on total CPU consump-
tion, but rather on the momentary consumption, so another important aspect of CPU
consumption is the distribution of the length of effective quanta.

An effective quanta is the actual time consumed by a process,from the time it was
given the CPU, until the time it relinquished the CPU, eithervoluntarily or because of
preemption. We would expect the CPU-bound applications areless likely to relinquish
the CPU voluntarily, thus have generally longer quanta thaninteractive applications
which block on user I/O frequently (all this assuming the system is unloaded, as is the
case in this text).

Figure 6.2 show the cumulative distribution function (CDF)of the effective quanta
length for the various applications we used.

As expected we can see that the effective quanta length of theinteractive appli-
cations is relatively short. Almost all the quanta ofEmacs, OpenOffice, MPlayer, X
ServerandXineare shorter than 5 clock ticks (5msec), when the maximum quantum
is 51 clock ticks - less than 10% of the alloted time quantum are actually used by the
process!

The kernel compilation’s pattern is, surprisingly, not much different from that of the
aforementioned interactive tasks. Even though the kernel compilation includes many
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disk oriented tasks such asrm, we checked and found that there is no big difference
between the distribution ofall the processes involved, and that of thecc1process that
performs the actual compilation. This phenomenon is attributed to the increasing gap
between the CPU speed and the disk speed. Even the compiler process itself is becom-
ing more and more dependent on disk speed for reading the input file, rather than on
processor speed for processing the data.

On the other hand, we can see a striking resemblance between theQuakerunning
a game demo and thestresserprocess. Because ofQuake’s grab-every-cycle-possible
policy in order to achieve an adaptive frame rate, and the fact that for the demo game it
does not communicate with the X server at all (no input, and the output is done using
DRI) its CPU usage pattern is that of thestresser’s.

When runningQuakewith a human player controlling it, its typical effective quan-
tum length is immensely reduced because the X server keeps waking up to handle
mouse input. That is the reason for the big difference inQuake’s two running modes
in the CDF graph.

In summation, we see the difference between interactive andbatch applications is
getting fuzzy with regards to CPU usage pattern, just as it isdiminished with regards
to total CPU consumption (section 6.1).

6.3 CPU Consumption is Misguiding the Scheduler

After seeing how the difference in both CPU consumption quantity and pattern are get-
ting smaller and smaller, let’s see how this diminishing gapactually affects the sched-
uler distinction of interactive processes.

6.3.1 Interactive Processes Aren’t Getting the CPU When They
Need It

One aspect of a misguided scheduler is that it does not prioritize the processes accord-
ing to their real importance. If the scheduler is schedulingthe processes according to
their real importance we would expect the more important processes to get hold of the
CPU as soon as they need it, preempting less important processes.

We tried to evaluate the amount of time an interactive process has to wait for the
CPU on average — itsdispatch latency— and how much of the time it is runnable at
all is spent waiting for the CPU.

The results can be seen in figures 6.3 and 6.4 respectively. For the multi-threaded
applications —XineandOpenOffice— the results are shown for the thread that con-
sumed the most CPU during the test, hence was the thread most affected by the sched-
uler.

The average dispatch latency was calculated as the time between a process insertion
into the run queue and the first time it is scheduled to run, or as the time between
two consecutive events when it is scheduled to run. Figure 6.3 clearly shows that the
average dispatch latency increases dramatically for interactive processes that heavily
consume CPU cycles, such asQuakeandXine. Interactive applications that consume
less CPU are also affected, when running such a number orstresserprocesses so their
portion of the CPU time become less than the interactive one.An example of that is
theMPlayerwhich normally claims about 14% of the total CPU time (figure 6.1), but
when more than 6stresserprocesses are running even it’s equal (and non-preferential)
share of the CPU time becomes less that what it normally needs.
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An interesting effect though is the X server running alongside theXine movie
player. Since it normally requires about 20% of the CPU time in such workload (figure
6.1), we would expect it to be affected even with 4stresserprocesses running, which
is obviously not the case here. The reason for that is that theX server serves theXine
application, which is affected by the load much earlier. Since theXineis so affected, it
cannot produce the same amount of requests to the X server, sothe CPU consumption
decreases along that of theXinemovie player. Because of that theXine is actually the
CPU bottleneck here, and the X server does not suffer from thesame problem.

Figure 6.4 shows another analysis of the same data. In this figure we see the percent
of time a process is spent waiting out of the entire time it is runnable (as oppose to the
time it is blocked). Again, we can see the CPU bound interactive application are heavily
affected by the increasing load in the system, where the interactive applications that
require less CPU are still favored by the CPU consumption metric and need not wait
more for the CPU. Again, we see the affect on theMPlayer when running 6stresser
processes alongside it, and the same phenomenon that the X server is not affected
because theXineacts as the CPU bottleneck.

6.3.2 Interactive Processes Aren’t Getting Enough CPU

Another aspect of a misguided scheduler is that it does not give enough CPU time to
important applications that require it. In this experiment, we wanted to see how an
interactive task’s CPU allocation is reduced in the presence of a batch job. In three sep-
arate tests we ranEmacs XineandQuakewhile adding backgroundstresserprocesses,
and recorded the CPU consumption of the three applications.When playing a movie
with Xinewe also recorded how many frames did not show becauseXinemissed their
display deadlines.

36



number of CPU−bound processes
0 1 2 3 4 5 6 7 8 9 10

C
P

U
 u

til
iz

at
io

n 
[%

]

0

20

40

60

80

100

Xine
X server
CPU−bound
idle
other

frame loss [%]
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Figure 6.5 shows the result forEmacs(note that unlike other graphs of its kind it
uses a logarithmic scale because ofEmacs’s low CPU consumption). In short, it is very
clear theEmacsis not affected by the background load, because its CPU consumption
pattern is that of a classic interactive application and very different than that of the
stresserprocesses, as described in section 6.2. That is the reason the original Linux
scheduler can distinguish it from the background load and favor it over thestressers.

The next benchmark was theXine movie player. Let us first elaborate on how
Xine works: as mentioned earlier,Xine is a multi threaded application. One of its
threads is in charge of decoding the MPEG frames read from theinput stream (the
decoderthread) and another thread displays the decoded frames on the screen using
the X windows system (thedisplaythread).

The main consumer of CPU cycles amongXine’s threads is thedecoderthread.
This thread keeps decoding data from the input stream, putting the decoded frames
on a shared queue, along with their timing information. Thedisplaythread pops each
decoded frame from the shared queue, and checks its scheduled display time. If the
frame is less than12 of a frame time (150th of a seconds, as the movie is encoded at 25
fps) early, it will be displayed. If it’s earlier, thedisplaythread will try it again in 4
msecs. If the frame missed its scheduled display time it willbe discarded. This means
that if thedecoderthread is not getting enough CPU time it will not keep up with the
frame rate, and frames will be lost.

The decision to use thestresseras the background process, rather than a kernel
compilation was based on the fact that this is the most extreme example of a batch job
— one that consumes as many CPU cycles it can get.

The results of this experiment are shown in figure 6.6.
When runningXinewith nostressers at all, the result is similar to that of figure 6.1

- Xineand the X server together require about 60% of the CPU time, leaving the rest
mainly to the idle process. When running only 1 backgroundstresserit takes the place
of the idle process. SinceXine requires much less CPU than thestresserdoes, it has

37



number of CPU−bound processes
0 1 4

C
P

U
 u

til
iz

at
io

n 
[%

]

0

20

40

60

80

100

Quake
X server
CPU−bound
idle
other

Figure 6.7: Effects of playing Quake with background batch jobs using the original
Linux scheduler

a higher priority, thus is given a little more CPU. Note that there is a slight increase
in the frame loss rate even when only running 1 backgroundstresser. This is because
even though thestresserdoes not require more CPU than the idle process, unlike the
latter it has a valid priority and does not relinquish the CPUautomatically whenXine
requires it. In very rare cases thestressermight have a higher priority and get the CPU.

As soon as more backgroundstressers are added to the system, it is clear that the
scheduler cannot clearly tell the interactive applicationfrom the batch ones, andXine
is getting less CPU time than needed. The obvious result is the correlation between
the increase in frame loss rate and the increase in the CPU time alloted to thestresser
tasks.

The resulting problem is that when running a modern interactive job such as an
MPEG movie player, we cannot make effective use of the multi-programming feature
of modern operating systems. If we want to achieve good framerate we must not
let any other application compete with the movie player overthe CPU resources, thus
dismissing the multi programming quality of modern operating systems.

The last benchmark was theQuakegame. Figure 6.7 show the grim results: even
under light loadQuakeneeds to compete with thestresserover the CPU.

Quake’s CPU consumption pattern was discussed in section 6.2. It was established
that it is very similar to that of a CPU bound process such as the stresser. This means
that even when running a singlestresserthe Linux scheduler regards bothQuakeand
thestresseras two processes of the same kind — CPU bound — and divides the CPU
time in similar portions between them. As a resultQuake, which requires almost 100%
of the CPU time when run alone, has to make do with approximately half of that when
running a singlestresser, and much less when running more.
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These benchmarks are a clear sign that CPU consumption is no longer a viable met-
ric to differentiate interactive tasks from batch ones, andother, more effective metrics
are needed.

6.4 Another Possible CPU Consumption Based Metric
(and why it doesn’t work)

In the effort to find a metric that will distinguish interactive from batch jobs, we tried
another unexplored metric: the effective quantum termination reason, or simply put
how many of an application’s quanta ended voluntarily, and how many were preempted.

The rationale behind this metric is based on another interactive workload assump-
tion that such processes do not fully utilize their alloted quantum.

This assumption is based on the idea that the goal of an interactive process is to
reply to queries from the user. Since the user expects a quickreply usually, we assume
that interactive processes will not fully utilize their alloted time quantum — which is
at a scale of120th of a second — since they do not need a long processing time. Even if
an interactive process does need more than a full quantum, itis again very likely that it
will relinquish the CPU after very few quanta where a CPU bound process will take as
much CPU time as the operating system is willing to give.

We defined a voluntary context switch as one that was induced by the process it-
self, either explicitly by blocking on a device or implicitly by performing an action
that triggered another process to run, such as releasing a semaphore. The resulting
visualization can be seen in figure 6.8.

Even with this metric we see that there is no clear distinction between interactive
and batch jobs. Here tooQuakebehaves very similar to ourstresser, consuming every
possible cycles. When not in demo mode and having to receive input from the X server
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we see an increase in the rate of voluntary context switchesQuakeexperiences, but not
a drastic one. The difference between the two modes ofQuakeis much less visible
here than in figure 6.2. The similarity betweenXineand the kernel compilation is ever
so apparent, and this metric gives no data to differentiate between the two.

All in all, we see that this metric gives us no better understanding as to the interac-
tive nature of the observed applications.

6.5 Indeed, the Times They Are A’Changin...

In this chapter we investigated the quality of the classic metrics used by most schedulers
to differentiate between interactive and batch jobs — metrics which are all related to
the CPU consumption of a task: the rate of consumption and itspattern.

We conclude that even though this metric was a sufficient one when it was intro-
duced a few decades ago [55, 46], changes in the nature of interactive applications over
the recent years have made it obsolete. Hence, it can no longer be considered a reliable
one, and we must find new metrics to characterize modern interactive applications.
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Chapter 7

An Alternative Metric to
Identify Interactive Tasks —
Information Flow Tracking

After establishing in chapter 6 that the classic CPU consumption based metric is obso-
lete, let us now explore an alternative metric based on a direct quantification of human
computer interactions.

7.1 Following the Flow of Information

The wordinteractionimplies information flow. Interactions between the user andthe
computer naturally implies information is flowing from the user to the computer, and
vice versa.

The relationship between the user and the computer can be viewed as an alternating
consumer-producer relationship, when the computer is the consumer of input informa-
tion, and the producer of output information. Since the abstract computer is actually
several processes, we can rank the processes based on the volume of input the consume
and output they produce.

Following flow of information requires a two phase analysis:the first phase is
tracking the information exchanged between the user and thecomputer, such as input
keystrokes or output displayed on screen. This phase is insufficient because of infor-
mation flow between the different running process in the computer, so a second phase
is required to track the flow of information between the processes inside the computer
itself. A full discussion about the need for two phases is found in section 7.3.

The two phases divide the information flow analysis between two mechanisms: the
first is theinteractive devicetracking described in section 7.2, and the second mecha-
nism is theinterprocess communication graphdescribed in section 7.4.

7.2 Interactive Devices

All of the information received by the computer, or producedby it, is passed through
various devices: keyboard, mouse, disk, network controller, display controller, and
many others. Of these, some may be classified asinteractive devices.
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An interactive deviceis a device that bridges between the user and the computer. A
device the mediates information from the user to the computer is regarded as aninter-
active input device, and one the mediates information in the other direction is obviously
regarded as aninteractive output device. Examples of interactive input devices are the
keyboard, mouse, joystick, graphic tablet, microphone etc. Interactive output devices
are the display controller, the monitor, the sound controller and others. Some devices
mediates both input and output between the user and the computer — an example of
which is a force feedback joystick.

These devices hold the key to the amount and type of information exchanged be-
tween the user and the computer. By maintaining usage statistics of the interactive
devices we can evaluate the level of interactiveness of the different interactive pro-
cesses.

The scheduler can be made aware of this data simply by giving both kernel level and
user level (system call) interfaces by which device driverscan deliver these statistics.

7.3 Is the Interactive Devices’ Information Complete?

Is the information acquired from the interactive devices sufficient? Is it enough to
trace the patterns that processes use interactive devices to classify them as interactive
processes?

The straight answer is (unfortunately) no. A process does not have to directly
interact with a device to be interactive — interactivity hasa transitive quality, so a
more accurate definition interactive processes could be:

A process is interactive if it either exchanges informationwith an interac-
tive device or with another interactive process

A simple example where the interactive device information will not suffice is the X
windows system, present on most UNIX platforms. With this system, the X server
is the application responsible for controlling the user input and user output devices,
and the various processes, called X clients, draw on the screen by sending X request
messages to the server and receiving input as X event messages from the server.

In such cases the interactive device information will only identify the X server as
an interactive process, since it is the only process they come in contact with. The other
processes which generate user output and consume user inputwill not be identified
as interactive processes, because they do not communicate directly with an interactive
device. This is a case in which identification based oninteractive devicesalone results
in a false-negative. Such processes should be considered interactive since they interact
with the user, albeit in an indirect manner.

To overcome this problem we must use a second mechanism whichwill monitor
the information exchanged between the different processes, in order to find the path-
ways of information between the user and all relevant processes, and to identify all the
processes involved in such interactions to some extent.

7.4 Interprocess Communication Graph

Monitoring exchanges of information between processes canbe done by maintaining
anInterprocess Communication Graph. This graph is composed of nodes, representing
the different running processes in the system, and edges which represent information
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Figure 7.1: Connected component of the X server when using only the Emacstext
editor

exchanges. A more formal definition islet G=<V;E >, where
V = fvpj p is a running process0 pidg and
E = fei; j j information was exchanged between processes i and jg

Actually, some consideration should be taken whether the graph should be directed
or undirected. Since information exchanged between processes is not only user related
— getting information from various system servers, querying theX server— it seems
simpler to make the graph undirected since the aggregate volume of the communica-
tion on a link might not represent the portion of it the is directly related to the user.
However, if since interactive applications react to the user all the information they pro-
duce or consume is targeted at serving the user. The result isthat the flow direction
— specifically whether a process is a consumer that is dependent on a producer, or
whether it is a producer itself — is crucial to the understanding of the interprocess
communications graph, which then must be directed.

This graph gives us crucial information — by using simple graph algorithms to find
the connected component of a node representing a process which is directly using an
interactive device, we can extract the lists all the processes involved in some compu-
tation that results in user output, or all the processes involved in some computation
depending on user input.

An example of a simple scenario is a user that is using theEmacstext editor. In this
case, the X server is identified as interactive by using an interactive device. By running
a simple algorithm such as Breadth First Search (BFS [9]), wecan find the connected
group of the X server in the interprocess communication graph. SinceEmacsis an X
windows application, and is the only application in the system, the connected group
consists of only two nodes, as can be seen in figure 7.1.

By using both techniques — the interprocess communication graph and the interac-
tive devices — we can even identify interactive processes incomplex scenarios. Figure
7.2 describes a scenario where a user uses theVI text editor from within an X termi-
nal emulator (xterm) [53] window on an X windows system. The flow of information
in this case is as follows. When the user presses a keyboard key, the X server reads
the typed character from the keyboard device, sends it as an Xevent message to the
xtermprocess, which in turn sends it to theVI process. TheVI process does the neces-
sary processing, and to update the user it sends the output information to the terminal
emulator (xterm), which forward it as an X request to theX serverthat sends the nec-
essary information to the display device for drawing. The connected component in the
interprocess communication graph resulting from this scenario can be seen in figure
7.3.

From the user’s perspective only theVI process is interactive, and the user does not

43



Figure 7.2: Logical layout of using the VI text editor from within an X terminal emu-
lator

Figure 7.3: Interprocess communication graph’s connectedcomponent when using the
VI text editor from within an X terminal emulator

even have to be aware of the other processes involved in the action.
By following the flow of information using both the interactive devices and the in-

terprocess communication graph the scheduler can identifyall the involved processes
as interactive ones: the X server is identified as interactive since it controls an in-
teractive device, and thextermandVI processes are identified as interactive because
they compose the X server’s connected component in the interprocess communication
graph.

7.5 Quantifying Interactions With The User

The remaining problem with this approach is how to quantify the amount of informa-
tion flowing in each direction.

Quantifying user input is relatively simple: we can simply count the number of
input events delivered to each process, and rank the processes accordingly. Since the
human user’s attention span is measured in seconds [45], when we look at a time frame
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of one second this quantification is almost binary — a human user can deliver events
simultaneously to very few processes in one second.

Output to the user is a little harder to quantify: simply counting events will not work
in this case since an event can be as small as printing a character to the screen, or as
large as changing the background image, and it is very hard toestimate the importance
of an event to the user — which event the user is really interested in, and which is a
by-product.

Although it is very hard to read the user’s mind, we can exploit a feature in human
perception, that is a remnant of our predatorial days: humanvision is more sensitive to
movement [45]. Thus by quantifying the rate of changes produced by each process we
have good guess which process grabbed the user attention more often. If we are assum-
ing the user does not like to be distracted and will eliminateany source of interference
— he will close a window that displays an irrelevant movie forexample — anything
that grabs the user’s attention is important.

7.6 Scheduling with Positive Feedback — Preventing
Starvation

An immediate problem that arises is that of starvation. The starvation might occur when
an interactive process is favored over others thus getting more CPU time, have a better
change to communicate with the user, thus getting even higher priority, eventually
starving other processes waiting for the CPU. In essence, this is a positive feedback
loop.

This is not a problem if the other processes are non-interactive and as such consid-
ered less important, but what happens if the starved processes are interactive? the user
might want to change focus to another application but the previous focused applica-
tion’s priority is so high that it dominates the CPU and does not let the newly focused
application gain momentum (and priority).

Such effects can be dealt with by using two mechanisms: one isCPU allocations
that will guarantee that the less privileged processes willget hold of the CPU when
they need it, thus giving them a change to gain momentum communicating with the
user. The other mechanism is a gradual priority decay that will decrease the priority of
a process not communicating with the user.

Combining these two mechanisms will guarantee that when theuser changes focus
between applications the newly focused application can gain momentum, while the
previously focused will lose the priority it gained earlier.

The information flow based scheduler we propose, which is described in chapter 8,
incorporates these two mechanisms thus preventing the starvation caused by positive
feedback.
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Chapter 8

A New, User Oriented Process
Scheduler For Linux

In this chapter we will review all of the implementation aspects of a scheduler for
interactive tasks based on the information flow tracking concept described in chapter 7.

These aspects include the implementation ofinteractive device tracking(section
8.1), of theinterprocess communication graph(section 8.2) and of the actual scheduler
and the quantification of a process’ interactiveness (section 8.3).

8.1 Maintaining the Interactive Device Statistics

As discussed in section 7.2 there is a plethora of possible interactive devices, ranging
from keyboards to sound cards to full sensor suits. To examine the feasibility of basing
scheduling decisions on the information flow tracking methodology, we have decided
to implement it only for the most mainstream devices — the keyboard, mouse and
monitor. We decided to leave other common devices, such as the sound device for
further research, because it is not required for the currentpurpose of feasibility testing.

The data is maintained in a per-process data structure, so that each process has its
own interactive devices ratings in the form of “changes per second”:� The input rating is simply an estimated average of input events the process re-

ceives per second, and there is no distinction between keyboard input and mouse
input.� Output rating is also based on the rate of changes, but is normalized to the screen
size, so it is an estimate of the fraction of screen area the process changes every
second.

The input and output rates cannot simply be the actual changes during the current
second (as this would require an oracle...), but rather an estimate based on the last
few seconds. This is achieved by separating the data structure into two parts:current
changesandaverage.

Whenever an interactive device associates a change (eitheran input event or a
screen change) with a process, the amount of change is accumulated in thecurrent
changessection of the data structure. Once a second the scheduler adds the new data
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to the previous calculated average using an exponential decay mechanism:

new average= old average+current changes
2

(8.1)

Equation 8.1 assures us that a process interactive device rating is equally based on
the last second and previous seconds, so momentary changes of user focus will not
affect the process, but longer changes will decrease the process rating — a process will
maintain some of its peek rating for up to logpeekseconds.

Choosing a second granularity is an attempt to achieve an equilibrium between the
rate of human perception [45] and the amount of processing power needed to compute
a recent average for every process.

Processes’ statistics are updated by the various devices using a well defined inter-
face, presented in appendix A. Part of this interface is alsoexported to user level by
adding non-standard parameters to the standard POSIXsched_setparamsystem call
[17, 42].

8.1.1 Acquiring The Interactive Device Statistics —
Using the X Server as a Meta-Device

Acquiring information from the interactive devices is simply a matter of altering the
appropriate subsystems to report the association of eventsto processes.

In UNIX however, these subsystems do not actually reside in the kernel. The UNIX
kernel does contain the keyboard and mouse drivers, but UNIXuses the X Windows
System [59, 53] to multiplex input and output between the user and the various appli-
cations. The processes are referred to as clients, and are connected to theX Server,
which is the only1 application that receives user input from the kernel and writes to
the display using kernel mechanism. In this sense, the kernel part of the keyboard and
mouse subsystems is degenerate and the actual association of user I/O’s with X clients
(processes).

This design enables us to log processes’ user I/O statisticsby simply hacking the
X Serveritself. TheX Servercan simply log the necessary statistics for every client
connected to it and communicate the statistics to the kernelonce a second (by adding
another timer to the X server’s own timer mechanism), using the system call interface
mentioned above.

The changes to theX Serverare described in the following subsections.

8.1.2 Modifying the X Server Data Structures

X Clients connect to the X server using either TCP for remote connection or UNIX
domain sockets for local connections. The server maintainssome data for each con-
nection, which is regarded as aclient record. We added our own data to this record,
data which includes the number of input events sent to the client and the fraction of the
screen changed by this client since the last time the X serverupdated the kernel. Also,
the peer process pid was saved for local connections.

X normally does not normally know (nor care about) the pid of aclient, or even
if the client is local or not. One of the design goals of the X Windows System was to

1Actually, most UNIX flavors provide one or more virtual terminals which offer the possibility of user
I/O without using the X Windows System. This form of I/O however, is rarely used for routine interactive
workload hence not relevant to our discussion.
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separate the interface implementation from the interface management [59], to give an
abstraction of a user terminal, either local or remote. Thisdesign has some exceptions
though, such as the Direct Rendering Infrastructure [37] which allows local clients to
access the graphics hardware.

By modifying the communication layer in the X server we couldassociate a client
pid with a client connection for any client connected using UNIX domain sockets [50].
This was done by a non-standard socket option implemented inLinux [26].

8.1.3 Monitoring the User Input Using the X Server

The X server reads input events from the input device files, and dispatches them to the
waiting clients. We had to hook into this mechanism so we can log all the input events
send to clients.

The X protocol permits (almost) any client to request input events occurring in
any windows (the only exception is when a window’s creator disables this option on
window creation). This means that an input event can be dispatched to multiple clients.

Implementing the input logging mechanism was quite forward, since the X server
already has a mechanism for hooking various events that is used by X server modules.
It simply maintains lists of callbacks, one of which is called whenever and input event
is sent to a client.

Our modification simply included adding a callback to the input event callback list
that will log the input event sent to the client in the client record data structure.

The current implementation does not distinct between keyboard and mouse events,
and regards all input events as equal. A legitimate questionis whether this approach
is valid, or maybe the various input devices, and even different events emanating from
a single device should be prioritized differently. This issue is left for further research
(see chapter 10).

8.1.4 Monitoring the User Output Using the X Server

The X server accepts graphic requests from the various connected clients and executes
them. Our goal was to estimate the fraction of the screen affected by each request, and
accumulate it in the per-client record (for local clients only).

Since the X protocol defines a reduced set of graphical operations available for
clients, estimating the fraction of the screen affected by every available operation is a
very feasible task. The list of client request that might affect the screen is displayed in
Table 8.1.

We added functions to calculate the fraction of the screen affected by each of the
listed requests. Some of the calculations were very straightforward, for example, calcu-
lating the size of a rectangle. However, some of the graphical requests require complex
calculations to get the exact fraction of the screen affected by them. Since we did not
want to add a substantial overhead to the X server, we only estimated the fraction of
the screen changed by those complex requests.

Examples of such estimates are the calculations for text drawing requests, arc draw-
ing requests and even when drawing a simple diagonal line:� When drawing a diagonal line, the number of pixels drawn is estimated by the

line’swidth�height. This number however, is not accurate since the line’s bound-
aries might not coincide with the discrete pixels’ boundaries as can be seen in
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Table 8.1: X protocol graphical requests [44]

Request Name Description

ClearArea Clear a rectangular area
CopyArea Copy a rectangular area
CopyPlane Copy one color plane of a rectangular area
PolyPoint Draw points
PolyLine Draw a line through the given path of points
PolySegment Draw multiple separate lines
PolyRectangle Draw the outline of rectangles
PolyArc Draw a circular or elliptical arc
FillPoly Fill the region inside the specified path
PolyFillRectangle Fill a rectangle
PolyFillArc Fill a given arc (either Chord or PieSlice types)
PutImage Draw a bitmap
PolyText8 Draw a 1-byte character string
PolyText16 Draw a 2-byte character string
ImageText8 Draw a 1-byte character string after filling the character’sbackground
ImageText16 Draw a 2-byte character string after filling the character’sbackground

figure 8.1. Although in this case the inaccuracy is in the range of 1-2 pixels only,
it might be bigger for other lines.� Figure 8.2 shows the calculation of the area used by a character. When drawing
only the character (without the background, using a PolyText8/16 X request) the
estimate of the area drawn is the sum of the bounding boxes of all the characters
used, whereas the actual area used is smaller.� An arc is complex primitive, so the estimate is even less accurate, as seen in
figure 8.3. The bounding box of the complete circle/ellipse is multiplied by the
fraction of a complete circle the arc’s angle uses.

Since we are only interested in the fraction of the screen affected, and not in the
nature of the change, it is quite obvious that some of the request use the same estimation
code. For example, clearing a rectangular area on the screenand drawing a rectangular
area is essentially the same operation, using different colors, so we can use the same
calculation.

After estimating the area of the screen used by the drawing, the area must be clipped
to the viewable region of the screen. An application might bedrawing on a hidden
of partially hidden window, so the estimated region must be clipped to the viewable
region. The clipping action is very important, since the information on what is actually
viewable is the best hint on what really interests the user — what does the user think is
important enough to allocate a portion of the screen to.

Again, the clipping cannot always be accurate. In cases where the estimated drawn
region is an axis aligned rectangle, the X server’s own clipping mechanism can be
used, and the resulting clipped region is the estimate we eventually accumulate in the
drawing client’s record.
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The inaccuracy when drawing a diagonal line between points(x1;y1)
and(x2;y2) is apparent: requested line’s boundaries are shown in black,

projected over the pixel grid, with the actual pixels used inred.

Figure 8.1: Estimation of a diagonal line area

Figure 8.2: Estimation of text area
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estimated arc area=w � h � α
2π

Figure 8.3: Estimation of arc area (PieSlice mode)

When the estimated region is not an axis aligned rectangle, as is the case with arcs
(figure 8.3), we calculate what fraction of the drawing’s bounding box is viewable, and
multiply the earlier estimated region by this fraction. Statistically, the clipping estimate
should converge to depict the accurate portion of the area estimate actually drawn.

An exception to this mechanism is the Direct Rendering Infrastructure (DRI [37]),
which interacts directly with the graphics controller, circumventing this entire mecha-
nism thus not being tacked by it. DRI is used by the OpenGL library [23], commonly
used by graphical software such as theQuake III Arenarole playing game.

For this reason measurements ofQuakedo not produce any output priority, but we
will later see (section 8.3) that since its input events are still proxied through the X
server it is still identified as an interactive process.

By modifying theOpenGLlibrary to notify the kernel of the area drawn by a pro-
cess it is possible to produce output statistics for applications using DRI, but we did not
implement it since it is not crucial for this feasibility test. For that reason all measure-
ments ofQuakewhen using our proposed scheduler do not include the demo mode,
since in this mode there is no input andQuakewill not be identified as interactive.

8.2 Maintaining the Interprocess Communication Graph
Information

The IPC graph is a directed graph and is maintained inside theprocesses — every
process is a node in the graph, and the node data is kept insidea per process data
structure.

This data structure mainly consists on the incoming and outgoing edges. The edges
are kept in two arrays. To avoid dynamic memory allocations inside the kernel —
which causes memory fragmentation and cannot be done in Linux when holding a lock
— the edges’ arrays are fixed sized, containing up to 12 edges.If a new edge needs to
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be allocated when the array is full, the least weighted edge is recycled.
The interprocess communication graph is actually an interprocess dependency graph.

Whenever a dependency event is identified (just what is a dependency event is de-
scribed in section 8.2.1) the weight of the corresponding edge is incremented. If the
corresponding edge does not exist, one is allocated.

Once a second all the edges are decayed — all the weights are divided by 2, and the
edges whose weight becomes 0 are freed. This decay mechanismassures us that graph
information will represent the interprocess activity of the recent few seconds, and not
of the entire machine’s uptime history.

8.2.1 Identifying Interprocess Dependency

At any time the Linux kernel is running either in process context, executing code on
behalf of a process (system call or even the process itself running in user-mode) or in
interrupt mode executing interrupt or tasklet code.

Whenever a process is sending a message or even releasing a shared resource, an-
other process, either a receiving process or a process waiting for the just released shared
resources is tested for being in the run queue. This scenariois considered to represent
a dependency between the two processes.

The test if a process is on the run queue is always done using the kernel function
try_to_wake_up[54], which adds the process to the run queue if not already onit.

Every time thetry_to_wake_upfunction is called when the kernel is running in
process context we increment the weight of the edge from the tested process to the
running process, since it is considered that the running process has done something the
tested process waited for, even if the tested process was runnable.

This is indeed a liberal approach to interprocess dependency, that extends the for-
mal definition of interprocess communications. However, itis in place since we are
trying to encompass even implicit dependencies between processes, and not only the
explicit ones.

Nonetheless, this approach is not perfect. Several other common interprocess com-
munication primitives are not identified by this mechanism.Primitives such as explicit
shared memory or shared files require different identification mechanisms, but we felt
such mechanisms are not necessary for our exploratory system, and left their imple-
mentation for future work (chapter 10).

8.2.2 Handling of Multi-Threading/Shared Memory

We did address one aspect of shared memory, which is implicitshared memory, or
simply put — threads.

The multi-threaded programming paradigm is becoming very common, and new
processors even support it in hardware level [28]. As such, we could not ignore multi-
threading when designing our scheduler, and even used a multi-threaded application as
a benchmark (Xine Movie Player, section 4.3).

Multi-threaded applications are handled by representing them in the interprocess
dependency graph as hyper-nodes. The kernel keeps track of all threads of a specific
application, they are all represented in the graph as a single node and the communi-
cation with the user is accumulated for the entire thread group collectively, with no
regards which of the threads actually participated in it.

Any dependency between two threads of the same application is ignored since all
the edges are represented as one node in the graph. By nature,most communication
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between threads is done using shared memory so they are all considered equal. Other
more complex mechanisms can be designed to rate the different threads among them-
selves, but our design highlight is its simplicity.

This approach assures that all threads will have the same priority, and the same
quantum length (section 8.3).

8.3 Putting it all Together

After implementing the interprocess dependency graph, andhacking the X server to
deliver interactive information, it is now time to modify the scheduler to use all the
interactive information gathered.

The proposed scheduler is designed to address the common timings of human per-
ception. The scheduling decisions at any point in time are based on statistics gathered
up until no more than a second before, with a larger consideration in the recent few sec-
onds to maintain temporal locality. Using a time resolutionof seconds is appropriate
to human perception rate, as discussed in [45].

In this section we will describe the design of the new scheduler, and its handling of
interactive processes.

8.3.1 The Stacked Scheduler

The original Linux scheduler is not modular. It is hard codedto handle the three POSIX
scheduling classes — FIFO, Round Robin (RR) and Other (implementation dependent)
[43] — so adding a special handling for interactive processes proved to be too tricky.
Also, when prioritizing the interactive processes we must pay attention not to starve
the kernel threads, otherwise the system might become unstable.

For this reason we had to rewrite the scheduler and modify itsdata structures. Our
design was inspired by that of the Solaris 8 scheduler [29], and described as aStacked
Scheduler.

As mentioned earlier, POSIX divides processes between three scheduling classes.
The Stacked Schedulermaintains and enhances the notion of scheduling classes, but
enables programmers to design and incorporate new scheduling classes into the kernel.

Whenever the scheduler needs to choose a process to run, it traverses the stack of
scheduling classes, in the order of the classes’ importance, “asking” each class to pick
a process. Since the classes are traversed in the order of their importance, whenever a
class is found which has a runnable process, that process is chosen.

A process can migrate between the different classes, using amodified version of the
sched_setparamsystem call [42]. When a process is created, it inherits its scheduling
class from its parent (an exception to this are kernel threads, which have no parent, and
are specifically born into the KTHREAD class which is discussed later).

The scheduler comes with 6 default scheduling classes, listed in table 8.2. These
default classes consist of the three POSIX classes — FIFO, RRand OTHER — and
three new ones — KTHREAD, INTERACTIVE and IDLE.

The FIFO and RR classes prioritize their processes according to the FIFO and RR
models accordingly. Note however that this breaks the POSIXscheduling class model
a little, since in ourStacked Schedulerany FIFO processalwayshas a higher priority
than any RR process. The POSIX model only states that the FIFOand RR classes
are always chosen before the OTHER class, but does not define astrict order among
themselves.
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Table 8.2: Default scheduling classes, in their stacking order

Class Name Description

FIFO POSIX First-In-First-Out
RR POSIX Round-Robin
KTHREAD Kernel Threads
INTERACTIVE Interactive Processes
OTHER Linux Original Scheduler — All regular processes
IDLE Idle Processes

The KTHREAD, OTHER and IDLE classes prioritize processes using the original
Linux scheduling algorithm (section 3.3) — each class with its own processes.

Another class — the INTERACTIVE one — is designed to support the schedul-
ing of interactive processes whose identification is described in section 8.3.2. A full
description of the scheduling algorithm the class implements is found in section 8.3.3.

In conclusion, this design has several major advantages over the original Linux
scheduler:� Modular - this design lets programmers design their own scheduling classes and

add them to the stack, with each class prioritizing its process with no external
intervention.� Efficient- the scheduling decision does not need to traverse a list of all the run-
ning processes, as is the case in the original Linux scheduler, but only until it
finds a runnable process. The nature of this traversal is adaptive — if a high
priority process is present it will be found faster since itsclass will be traversed
earlier, thus giving adaptive efficiency based on the process priority (the new de-
velopment Linux kernel has a new and more efficient scheduler[33], but not as
modular as ours).� Dynamic- new scheduling classes can be introduced at runtime, according to the
user’s needs (although this feature is not fully implemented yet).� Multiple Idle Processes- theStacked Schedulersupport long term, low priority
computations be expanding the notion of an idle process intoa scheduling class.
This way the user can migrate a long term process to the IDLE class, without it
competing with more important processes over the CPU.

8.3.2 Identifying the Interactive Processes and Prioritizing Them

As discussed in section 7.4, the connected component of the Xserver in the interprocess
dependency graph is the group of processes that communicatewith the X server, both
directly and indirectly. Also, a single stream of user I/O might depend on a group of
processes rather than only one process. We’ll refer to such agroup as an interactive
application, with each member of that group being an interactive process.

A process’ priority is calculatedonce a secondaccording to the following equation:

process priority= distance+shortcut (8.2)
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with distancebeing the topological distance between the process and the Xserver
in the interprocess dependency graph, andshortcutbeing per-application prioritizing
number set according to amount of user I/O generated and received by that process.
As we’ll see next, thedistanceis an intra-application priority, and theshortcutis an
inter-application priority.

For distance calculation, all the edges are given a length of2, regardless of the
amount of interprocess interactions they represent. This simplistic approach was found
sufficient for our purposes (see results in section 9).

All the processes which directly communicate with the X server and have a inter-
active priority set by the server (processes regarded asexplicitly interactive) are sorted
according to both their input and output rating. These processes then accumulate their
shortcuts according to the following rules:

1. All the processes that send output to the X server (and thusto the user) receive a
path shortcut of half an edge.

2. All the processes that receive input from the X server (andthus from the user)
receive a path shortcut of one edge.

3. The 3 processes that have the most effect on the display gethalf an edge shortcut.

4. The two processes that receive the most input from the userreceive a shortcut
worth two edges.

Since we regard user input as the best indication that the user is interested in a
process, theshortcutvalue for input is higher than that of output.

After the shortcuts has been calculated for the explicitly interactive processes, a
Breadth First Search (BFS, [9]) algorithm is run on the interprocess dependency graph
to topologically sort the various processes, find the shortest path from the X server
to each of them and thus find the X server’s connected component. The topological
distance is calculated for each process.

While traversing the graph, the BFS algorithm propagates the shortcutvalue of
each explicitly interactive process to all the processes whose shortest path from the X
server passes through that explicitly interactive process.

This way, aside from obtaining the X server connected component, the processes
are prioritized in groups, with each group being consideredan interactive application.
Among themselves, the processes inside an interactive application are prioritized ac-
cording to their topological distance from the X server, with theshortcutvalue being
an inter-application priority.

For example, let’s consider a shell prompt which receives more user input than any
other process. That shell communicate with anX terminal, which in turn communicates
directly with the X server. Since all the data between the user and that shell passes
through theX terminal, this terminal with receive ashortcutvalue fitting the process
that receives the most input — 2 for any input and 4 for best input — totaling at 6.

The shortest path to the shell passes through theX terminal, so theX terminal’s
shortcutvalue is propagated to the shell, and the entire interactiveapplication (X ter-
minal+ shell) receives theshortcutvalue, with the priority inside the application rated
according to the topological distance.

Finally, the X server gets a specialshortcutvalue that will give it the highest in-
teractive priority, since this is the user information junction. We could have similarly
treated the X server as a kernel thread (which will give it a higher priority than any user
process) but decided it should be treated as part of theINTERACTIVEprocess class.
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Note that this algorithm is general enough that even a crucial process like the win-
dow manager can be treated just like any other interactive process — since it is directly
connected to the X server, and it monitors almost all input events, it has a very high
priority.

Although this algorithm seems time consuming, our measurements shows that is
requires� 2 milliseconds, and it is only run once a second so its overhead is a mere
0:2% of the CPU time.

8.3.3 Allocating CPU Time and Choosing the Next InteractivePro-
cess To Run

Although many changes we’ve made to the scheduler, the concept of computation
epoch, introduced with the original Linux scheduler (section 3.3), is still maintained.

At the beginning of an epoch each process is alloted a CPU timequantum to con-
sume. Whenever a scheduling decision is to be made, the scheduler chooses the process
with the biggest remaining time quantum. Once all processeshave consumed their al-
loted quantum, the epoch is considered over and a new allocation is made. The only
difference from the original Linux scheduler is way a time quantum is allocated for
each process.

The time quanta are allocated in the following manner: we define a maximum
time quantum for an interactive application (which currently stands at� 200 clock
ticks, with a clock tick every 1 millisecond). The highest priority interactive processes
(according to the priority calculated using the augmented BFS algorithm described in
section 8.3.2) receive the maximum time quantum. The processes with the second best
priority get half that quantum. This goes on with the processes at each priority level
getting half as much time as those in the higher level (unlessthe processes in the higher
level got a quantum which less than 4 clock ticks, in which case the quantum is set to
2 clock ticks). This exponential decay continues until all the processes got a new time
quantum.

Using the notion of a computation epoch gives two major benefits: it prevents star-
vation caused by the positive feedback mechanism2 thus solving the problem discussed
in section 7.6. Also, it does not add any overhead to the process selection mechanism,
relative to the original Linux scheduler thus limits the more time consuming graph
algorithm to run only once a second.

8.4 Conclusions

In this chapter we introduced a novel approach to schedulinginteractive application
based on interprocess and process-user information flow.

We have proposed and implemented a new scheduler design, onewhich captures
the complexity and variety of existing workloads, and includes a new scheduling algo-
rithm that specifically targets the interactive workload, most common in workstations
and desktop.

2Actually, some of our measurements show a problem with positive feedback when an interactive pro-
cess hogs the CPU, but we suspect this is caused by an illusivebug in the interprocess dependency graph
implementation
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Chapter 9

Now Let’s See If It Works...

To see if the proposed scheduler works, we ran a variety of interactive applications with
background CPU bound processes, as described in section 4.3. Our goal was to check
if our proposed scheduler solves the problem arising from using the CPU consumption
as a scheduling metric, problems which are shown in section 6.3.

The questions to be asked are whether an interactive processgets the CPU when it
need it (discussed in section 9.1) and whether an interactive process get enough CPU
time, even though its CPU consumption pattern is similar to aCPU bound pattern
(discussed in section 9.2)

9.1 Do Interactive Processes Get the CPU When They
Need It?

The main purpose of a scheduler is to allocate the CPU to the important processes when
they need. As described in section 6.3.1, we measured how long does an interactive
process has to wait in the run queue until it is given the CPU torun on — its dispatch
latency.

Figure 9.1 shows the average time the various interactive processes wait on the
run queue until they get the CPU, when using our proposed scheduler. It is clear that
the background load has practically no effect on the dispatch latency of the interactive
processes, which means the proposed scheduler identifies them correctly as interactive
and prioritize them accordingly, as oppose to the original Linux scheduler dispatch
latency described in figure 6.3.

The other aspect we discussed in section 6.3.1 is the fraction of its runnable time
a process waits for the CPU, and we have seen that this percentile increases dramat-
ically when using the original Linux scheduler and running background CPU bound
applications (figure 6.4).

However, figure 9.2 clearly shows that using our proposed scheduler prevents this
increase altogether. It shows that the fraction of runnabletime spent waiting for the
CPU hardly increases even under heavy CPU load. This means that the proposed
scheduler identifies the interactive processes correctly,and maintains the correct iden-
tification over time.

Figures 9.1 and 9.2 establish that the proposed scheduler’spriority scheme is cor-
rect — it identifies the interactive processes, and the scheduler epoch model works.
This observation leads us to the next question: we now know the proposed scheduler
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Figure 9.1: Average dispatch latency of various interactive applications using our new
information flow based scheduler (reference lines showing 1ms and 10ms times relative
to cycles). Compare with figure 6.3.
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CPU using our new information flow based scheduler. Compare with figure 6.4.
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Figure 9.3: Effects of typing text with background batch jobs using our new informa-
tion flow based scheduler. Compare with figure 6.5.

gives the CPU to the interactive processes when they need it,but does it give them
enoughCPU time?

9.2 Do Interactive Processes Get As Much CPU Time
As They Need?

First, let us verify that we did not mess things up, and thingsthat worked correctly
with the original Linux scheduler, still do with the proposed scheduler. Chapter 6, and
especially section 6.3.2 and figure 6.5 show that CPU consumption based schedulers,
such as the original Linux scheduler, still favor classic interactive applications such
as theEmacstext editor, and prioritize them over non-interactive applications. We
wanted to verify thatEmacsis getting enough CPU time when using information flow
as the scheduling metric. We ranEmacswith a variable number ofstresserprocesses
as described in section 4.3 and measured the fraction of the CPU timeEmacsreceived.
The result is shown in figure 9.3 (again, note that unlike other graphs of its kind it uses
a logarithmic scale because ofEmacs’s low CPU consumption). We can clearly see
thatEmacsis getting approximately the same percentage of CPU time no matter how
manystresserprocesses are running in the background.

The next step is to check for improvements. Section 6.3.2 shows that theXine
movie player is heavily affected by background CPU load, andthis effect is graphically
depicted in figure 6.6.

We ran the same benchmark using the information flow based scheduler, and the
results can be seen in figure 9.4.

It is clear that our proposed scheduler identifies theXinemovie player as interactive
and prioritized all its threads accordingly, so it is not affected by background CPU
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Figure 9.4: Effects of playing a movie with background batchjobs using our new
information flow based scheduler. Compare with figure 6.6.

load, and the percentage of lost frames remains approximately constant asstressers are
added.

The final step was to test theQuakerole playing game. Section 6.2 shows that
QuakeCPU consumption pattern is very similar to that of a CPUstresser, a similarity
that is further established when observing howQuakehas to compete with background
load (figure 6.7).

However, figure 9.5 which sums the last benchmarks clearly shows that the pro-
posed, information flow based scheduler easily characterizesQuakeas an interactive
application and favors it over the background load simulated by thestresserprocesses.

9.3 Conclusions

Using a variety of benchmarks involving sample interactiveapplications that repre-
sent most of the common type of interactive applications, wehave given an alternate
scheduling theory. We have shown that the information flow tracking methodology
discussed in chapter 7 is a viable and feasible alternative to the 30 year old general
purpose process scheduling theory governing most general purpose operating systems.
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Chapter 10

Further Research

10.1 Extending the Research Presented

The most immediate extension to this research is to explore other interprocess com-
munication mechanism and monitor them for interprocess dependencies. Such mecha-
nisms include shared memory, shared files and many others.

Other extensions include further analysis of the differenttypes of user I/O and their
workloads. For example, we assumed all input events are equal and treated them as
such, but this may not be true. For example, a keyboard event might be more indicative
of the user’s interests than a mouse event. Another example is differentiating events
according to their rate — a slow rate of text output might indicate that the user is
reading it, while a fast rate can be beyond user’s perceptionrate thus indicate that the
user is not evaluating it at real time.

Exploring these paths involves cognitive research and can give much understanding
of human computer interactions.

Another very interesting path is extending the interactiveevent monitoring to in-
cluderemote interactiveness, as described in chapter 2. This path might add new pos-
sibilities to the fields of grid computing and distributed operating systems. This path is
also interesting since it involves several security challenges of saving global interpro-
cess dependency kernel information in non-secure networks.

10.2 Various Application of Information Flow Track-
ing

Application of trackinginformation flowin other areas of system research might be
very interesting. Such applications include:� Global Scheduling— Using information flow we evaluated the importance of

a process to the user, and used this priority to manage CPU time. However,
CPU time is not the only resource managed by modern operatingsystems. Other
resources such as network bandwidth, disk bandwidth and memory are also man-
aged and using our evaluation of the user’s interests to allocate other resources to
the running processes can make the computer more user centered, thus friendlier
from the user’s perspective.
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Implicit Gang Scheduling— Using interprocess dependencies can help identify
gangs of processes, thus making gang scheduling implicit rather than explicit. A
similar idea has been already presented in [15].
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Appendix A

API for the Interprocess
Statistics Scheduler� The interprocess communications graph must be protected bya global lock so

changes to the data structures will not cause inconsistencies.

static inline void sstats_global_lock(void);
static inline void sstats_global_unlock(void);� Initialize the IPC scheduler. Called during the boot process.

int sstats_init (void);� Graph management: processp is added to the run queue.

static inline int sstats_runqueue_add(structtask_struct � p);� Graph management: processp called exit, and we have to remove it from the
graph.

THIS FUNCTION MUST BE CALLED WITH THE tasklist_lock LOCKED
(because it calls find_task_by_pid). (since the only place we call it from is un-
hash_process which write-locks this lock it’s ok).

void sstats_process_release(struct task_struct � p);� Graph management:child was just forked fromparent, usingclone_f lagsflags.

void sstats_process_ f ork(struct task_struct � parent;
struct task_struct �child;
unsigned long clone_f lags);� Graph management: processp just called exec.

void sstats_process_exec(struct task_struct � p);
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� This function is used to update the X server perceived user priorities for pro-
cessp. It is called from the modifiedsched_set paramsystem call during the
periodical update from the X server.

static inline int sstats_interactive_update(struct task_struct � p;
int input_priority;
int out put_priority;
int part_o f_out put);� The basic goal: a process priority. These functions return aprocess’s interactive

priority (and whether it is considered interactive at all).The interactive priority
is an integral value in the range 0: : :255.

static inline int sstats_process_is_interactive(struct task_struct � p);
static inline long sstats_process_interactive_priority(struct task_struct � p);
The following function does the same but does not lock the graph itself, so it
MUST BE CALLED WITH THE SSTATS LOCKED!!!

static inline int__sstats_process_is_interactive(struct task_struct � p);
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