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Abstract

The increasing gap between processor and memory speeds, as well as the introduction of multi-

core CPUs, have exacerbated the dependency of CPU performance on the memory subsystem.

This trend motivates the search for more efficient caching mechanisms, enabling both faster

service of frequently used blocks and decreased power consumption.

This thesis explores the temporal locality phenomenon in aneffort to devise such efficient

caching mechanisms. Specifically, it is shown that while Denning’s working sets model puts

all memory blocks in a working set on an equal footing, a dramatic difference in fact exists

between the usage patterns of frequently used data and thoseof lightly used data. This thesis

therefore extends Denning’s definition with thecoreworking sets model, employing predicates

to identify the most important subset of blocks in a working set.

This model forms the base for a probabilistic predictor thatcan distinguish transient cache

insertions from non-transient ones. It is shown that this predictor can identify a small set of data

cache resident blocks that service most of the memory references. This predictor is then used

in the design of an L1 dual-cache that inserts only frequently used blocks into a low-latency,

low-power direct-mapped main cache, while serving the restof the blocks from a small fully-

associative filter. The design further employs a novel, low-latency, low-power fully-associative

element, that uses a small direct-mapped lookup table to cache recently accessed blocks in the

filter — thereby eliminating most of the costly fully-associative lookups.

This L1 dual-cache design demonstrates that a 16K direct-mapped L1 cache, augmented

with a fully-associative 2K filter, can outperform a 32K 4-way cache, while consuming 70%-

80% less dynamic power and 40% less static power.
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Chapter 1

Introduction

1.1 Background

The notion of a memory hierarchy is one of the oldest and most ubiquitous in computer design,

dating back to the work of von Neumann and his associates in the 1940’s. The idea is that a

small and fast memory will cache the most useful items at any given time, with a larger but

slower memory serving as a backing store [27, 32, 70].

As the essence of caching is to identify and store those data items that will be most useful

in the immediate future [6], caches need to predict which items will be used in the immediate

future. These predictions ubiquitously rely on the principle of locality, which states that at

any given time only a small fraction of the whole address space is used, and that this used

part changes relatively slowly [19]. Denning formalized this using the notion of aworking set,

defined to be those items that were accessed within a certain number of instructions. The goal

of caching is thus effectively to keep the working set in the cache.

The effectiveness of caching thus relies on the existence ofworking sets, as these represent

a subset of all memory blocks that are in current use. But working sets are not homogeneous, as

some memory blocks are more popular than others [35]. This heterogeneous nature of working

sets raises the question whether caches should employ a heterogeneous design rather than the

common random-access paradigm, as processors can benefit ifthe more popular blocks in the
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working set (and in general) are treated beneficially by the cache by serving them faster. One

way to give preferential treatment to the more important data elements is to use adual cache

structure. Such structures partition the cache into two parts, and use them for data elements

that exhibit different access patterns [65]1. In many cases, data elements can also move from

one part to the other. For example, data may first be stored in ashort-term buffer, and only data

that is identified as important will be promoted into the long-term cache. The identification of

a certain item as important can be done based on the references it received while in the short-

term buffer: if it is referenced again and again, it is identified as part of the core and promoted.

The concept of dual-cache designs has been extensively explored in the past, specifically in

the context of filtering memory references [12, 33, 36, 37, 39, 40, 46, 62, 64, 65, 63, 79]. But

while dual-cache designs offer flexibility, the filtering ofmemory blocks has proven difficult as

it ordinarily requires maintaining information about memory blocks’ previous usage patterns

in order to predict future use. The mechanisms required to implement the filtering, and specif-

ically those involved with maintaining past reuse information, have thus been deemed largely

impractical, due to the number of transistors they require (with the corresponding die area) and

the power they consume.

The increasing gap between processor and memory speeds witnessed in recent years has

exacerbated the CPU’s dependency on the memory system performance — and especially that

of L1 caches with which the CPU interfaces directly. One result of this ongoing trend is the

increase in the capacity of L1 and L2 caches, in an effort to bridge the memory-processor

gap and improve overall system performance. This improvement, however, also increases the

power consumed by the caches — estimated at more than 10% of the overall power consumed

by a general purpose CPU [31], and up to 40% for embedded systems [9].

Recent years have seen a shift in processor design, as the increase in CPU clock speeds

witnessed for some 30 years have largely ground to a halt, dueto several inherent physical

limitations [52, 61, 81]: example limitations include wiredelays preventing the propagation of

fast clock signals uniformly to all parts of the chip; shrinking Silicon features made possible by

1We differentiate this from asplit cache structure, where one part is used for data and the otherfor instructions,
but some authors use the terms interchangeably.
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new process manufacturing improvements hindered transistor gate isolation and increase power

leakage; and increased clock frequency drove designers to employ longer, more complicated

pipelines, thwarting most of the theoretical performance increase made possible by the faster

clock frequency.

These shifts in technology have increased processors’ power density and have elevated pro-

cessor power consumption into a major concern. Today, the power-performance tradeoff is

ever more important. This trend motivates researchers to design more efficient caches, that

can deliver performance while maintaining a power budget. Furthermore, despite predictions,

transistor density continued to grow as predicted by Moore’s Law [47, 48, 66]. The continued

increase in transistor density and the limitations in increasing processor frequency caused the

microprocessor industry to focus on on-chip parallelism, available by placing multiple process-

ing cores on a single chip — also known as chip multiprocessors (CMP) [22, 25, 41]. This in

turn, has made the power consumption of caches an even biggerconcern, as multi-core CPUs

typically replicates the L1 caches for each core to avoid thedesign complexities of multiple

processors sharing an L1 cache [49].

The increasing concern regarding cache power consumption,together with the increased

memory bandwidth requirements of multiple cores sharing a memory bus [10], have moti-

vated a quest for improved utilization of cache resources through the design of more efficient

caching structures. This quest solicits a revisit to existing ideas such as dual cache structures,

specifically ones incorporating direct-mapped cache structures. Direct-mapped caches are very

appealing in this context, as they are faster and consume less energy than set-associative caches

typically used in L1 caches [28, 38]. However, they are more susceptible to conflict misses

than set-associative caches, thus suffering higher miss-rates and achieving lower performance.

This deficiency led to abandoning direct-mapped L1 caches infavor of set-associative ones in

practically all but embedded processors.

The quest for more efficient caches relies on extensive analysis of memory workloads, and

the development of new analysis tools enabling a deeper understanding of cache behavior.

The rest of this chapter therefore introduces the workload analysis concepts explored in this
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work (Section 1.2), and gives a peek into the insights gainedby the workload analysis, and the

ensuing cache design incorporating these insights (Section 1.3).

1.2 The Mass-Count Disparity Phenomenon and

Core-Working-Sets

It is well known that memory block popularity is skewed, and some blocks are more popular

than others. However, little is known about the scale of thisphenomenon and how extreme is

the variation in the popularity of the various memory blocks. For caching purposes, the identi-

fication of the most popular blocks is of utmost importance asit allows caching mechanisms to

make sure these blocks — servicing very many residencies — are cached. Moreover, the exact

subset of popular blocks changes during program execution as it passes through different com-

puting phases. Denning attempted to capture this changing subset of blocks in his definition of

working sets[17].

The need to identify memory usage patterns, therefore, motivated an extensive analysis

of memory workloads. This analysis, described in Chapter 3,reveals that the skew in block

popularity is even more extreme than thought before, and experiences a statistical phenomenon

called theMass-Count Disparity. The phenomenon describes the relationship between the

number of memory references serviced by each single memory block, and howall memory

references are distributed between the different blocks. Effectively, it reveals that the vast

majority of memory references are commonly serviced by a tiny fraction of all memory blocks.

In addition, the analysis reveals that even the relatively unpopular blocks experience bursty

access patterns.

These results suggests that locality, usually regarded as acombination of two distinct prop-

erties — locality in time and locality in space — is also a manifestation of the skewed distribu-

tion of thepopularityof different memory blocks, where some blocks are accessed much more

frequently than others. In fact, it may be possible to partition the working set into two sub-sets:

those memory blocks that are very popular and are accessed ata very high rate, and those that
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are only accessed intermittently. This distinction is antithetical to Denning’s definition which

puts all items in a working set on an equal footing, and lies atthe heart of our definition of the

coreof the working set.

The notion of a core leads to the realization that not all elements of the working set are

equally important. As the elements in the working set are notaccessed in a homogeneous man-

ner, treating all the elements of the working set equally maylead to sub-optimal performance.

Rather, it may be beneficial to try to identify the more important core elements, and give them

preferential treatment.

The notion of a popular core leads to the formal definition of aCore Working Set, described

in Chapter 4 as an extension to Denning’s working set. By using logical predicates to identify

this highly popular subset of the entire working set, core working sets devise a formal frame-

work serving designers of caching mechanisms to explicitlyexpress their notion of the working

set’s core, that is to be treated beneficially by their design. In addition, this framework enables

designers to compare and contrast the mechanism’s performance against the formal definition

of their intended core.

1.3 Leveraging Randomness for L1 Cache Design

The existence of a small core that governs the majority of memory references is described by the

mass-count disparity phenomenon. But the phenomenon also implies the opposite — that the

majority of memory blocks only service a small fraction of all memory references. These two

consequences of the mass-count disparity phenomenon lend themselves to the application of

simple, stateless, random sampling in order to partition the reference stream. As most memory

blocks are accessed a small number of times, picking a block at random will likely select a

block that is rarely accessed. In fact, this is the reason whya random eviction policy yields

fairly good results [70, 67]. But on the other hand, since most memory references are serviced

by a small fraction of the working set, a randomly selectedmemory referencelikely pertains to

a very popular block.
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This observation is the corner stone for the probabilistic popularity predictor presented in

Chapter 5. In turn, the probabilistic predictor is used in the design a random sampling L1

filtered cache, described in Chapter 6, that uses simple cointosses to preferentially insert only

frequently used blocks into the cache — composed of a fast, low-power direct-mapped structure

— that services the majority of memory reference. The rest ofthe references are serviced from

the cache’s filter — a small fully-associative auxiliary structure — thus reducing the number of

conflict misses in the direct-mapped cache. This mechanism is shown to use a simple filtering

strategy to overcome the direct-mapped susceptibility to conflict misses, thereby enabling to

harness the speed and low power traits of direct-mapped caches to reduce the overall L1 power

consumption, while still improving overall performance.

This is the first successful attempt that employs a simple statistical phenomenon to filter

both L1 reference streams efficiently enough to use a direct-mapped structure for L1 caches,

thus both reducing power consumption and improving performance.

1.4 List of Publications Composing this Work

The research presented in this thesis is described in the following publications:

• Yoav Etsion and Dror G. Feitelson,Core Working Sets: Concept, Identification, and

Use.

Submitted for Publication.

Also published asTechnical Report 2008-64, School of Computer Science and Engineer-

ing, The Hebrew University of Jerusalem, Jul. 2008.

• Yoav Etsion and Dror G. Feitelson,L1 Cache Filtering Through Random Selection of

Memory References.

In Parallel Architectures and Compilation Techniques (PACT), pages 235-244, Sep. 2007.

• Yoav Etsion and Dror G. Feitelson,Probabilistic Prediction of Temporal Locality .

In IEEE Computer Architecture Letters (CAL), 6(1), pages 17-20, May 2007.
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• Yoav Etsion and Dror G. Feitelson,Cache Insertion Policies to Reduce Bus Traffic

and Cache Conflicts.

Technical Report 2006-4, School of Computer Science and Engineering, The Hebrew

University of Jerusalem, Feb. 2006

1.5 Main Contributions of this Work

For brevity, following is a list containing the main contributions of this research.

• L1 Cache Workload Analysis and the Mass-Count Disparity Phenomenon

The foundation of this work is a detailed analysis of L1 cacheworkloads, and the result-

ing characterization of the mass-count disparity phenomenon in L1 caches (Chapter 3).

• Core Working Sets

The definition of the predicate basedcore working setframework. This framework ex-

tends Denning’s definition of working sets to accommodate their heterogeneous nature.

The framework enables cache designers to explicitly express their perception of the im-

portant subset of the memory blocks (Chapter 4).

• Probabilistic Block Popularity Predictor

A simple application of the mass-count disparity phenomenon offers the use of random

sampling of memory reference to probabilistically identify popular memory blocks in

a completely stateless fashion, without any need for maintaining past use information

(Chapter 5).

• Random Sampling L1 Filtered Cache

The proposed L1 cache design is based on the dual-cache paradigm and uses random

sampling to filter out transient blocks and identify the small fraction of popular memory

blocks. This partitioning of the working set enables the useof a fast, low-power direct-

mapped structure to serve the majority of memory references, thereby improving overall

performance and reducing the power consumed by L1 caches (Chapter 6).
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• Wordline-Lookaside-Buffer (WLB)

A problem with the fully-associative filter is its access time and power consumption. We

alleviate this problem using a small lookup table that harnesses temporal locality to cache

expensive fully-associative lookups in a small inexpensive direct-mapped table. The

WLB therefore reduces both access times and power consumption of fully-associative

caches, without affecting the fully-associative semantics (Chapter 6).

The methodology used throughout the research is discussed in Chapter 2. Following the de-

scription of the research itself (Chapters 3 through 6), thebody of work in the field is reviewed

in Chapter 7.
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Chapter 2

Methodology

Extracting and analyzing memory and cache workloads, as well as the evaluation of alternative

hardware designs, require software simulations of both existing and proposed architectures.

The simulator that was used to carry out all simulations in this work is theSimpleScalarsimu-

lation toolset [4], simulating theAlpha AXParchitecture [69].

Accounting for all aspects of the simulated architecture with a full simulation of all im-

plementation details is an arduous task, resulting in excruciatingly slow simulations. The

SimpleScalar toolset is therefore broken into several individual, yet co-dependent tools that

simulate the underlying hardware with varying degrees of detail, thereby trading off simulation

accuracy for speed. Of the different tools, the ones used were:

• sim-fast is a functional simulator that only simulates the ISA. By ignoring all implemen-

tation details of the underlying architecture it essentially simulates an optimal architec-

ture that incurs no inherent latencies. It is therefore the fastest tool in the toolchain, but

cannot be used to measure performance. In our case,sim-fastwas augmented to col-

lect raw workload statistics that are largely independent on architectural implementation

details.

• sim-cacheis a cache simulator. It can be seen as an extension ofsim-fastthat implements

a full cache hierarchy to collect cache statistics such as hit-rate. Althoughsim-cacheis

oblivious of any statistical artifacts caused by full out-of-order execution, it was found
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accurate enough for collecting cache statistics. To evaluate cache performance of alter-

native cache designs,sim-cache’s cache module was completely rewritten to support the

proposed cache design.

• sim-outorder simulates a detailed out-of-order processor. It is the mostdetailed simu-

lation tool in the SimpleScalar toolset, and is therefore the slowest.sim-outorderwas

used to evaluate the effect of proposed caching mechanism onthe overall architecture

performance, and specifically on metrics such as IPC (instructions-per-cycle). The mod-

ifications tosim-outorderinclude replacing its cache module with one supporting the

proposed cache design, and since this design is based on the dual-cache paradigm, its in-

struction scheduling algorithm was slightly modified to accommodate for variable L1 hit

latencies. The original algorithm is based on the common practice in superscalar designs

that schedule instructions based on the prediction that theL1 hits [67]. This modification

was needed since L1 hits can now hit either in the cache properor the auxiliary filter,

where each has different hit latencies. The algorithm was simply extended to predict that

the L1 hits, and the hit is services by the cache proper, with its associated latency — thus

extending the common practice in an obvious manner.

The benchmarks used consisted on theSPEC2000benchmarks suite [72]. An overall of

20 benchmarks were used in order to accommodate as many different workloads [15]. This

constitutes of all but six SPEC2000 benchmarks:eon, gap, fma3d, sixtrack, andapplufailed to

either compile or execute, andequakeexperienced too few L1 misses (under 0.02%) on both

data and instruction streams to produce meaningful results. All benchmarks were executed

with the ref input set and were fast-forwarded 15 billion (15 × 109) instructions to skip any

initialization code (except forvpr whose full run is shorter), and were then executed for another

2 billion (2 × 109) instructions.

Power estimates were compiled usingCACTI, an integrated cache and memory model that

evaluates access time, cycle time, area, leakage, and dynamic power. The version used was 4.1,

configured for a 70nm manufacturing process [75] (the finest feature size CACTI supports).
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Throughout the thesis, whenever results are shown for all benchmarks, they are summa-

rized using box-plots. The boxes show the 25th, 50th (median) and 75th percentiles over all

the benchmarks’ results. In addition, these plots include whiskers to show the minimum and

maximum values, and a circle marking the average value.
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Chapter 3

The Skewed Distribution of Memory

Accesses and the Mass-Count Disparity

Phenomenon

Mass-Count Disparityis a statistical phenomenon describing a situation where most items in a

population are small, but a few are very large (also known as “mice & elephants” in networking

[8]). The namemass-count disparitycomes from the distinctly disjoint nature of two conjoining

distributions — that of the sizes of individual elements (count distribution), and how the overall

mass is distributed across elements of different sizes (mass distribution). Perhaps the most well-

known example of mass-count disparity is an economic one, namely the distribution of wealth

in the world [43]: with most people in the world being relatively poor, and only a tiny fraction

of the entire population is very rich, the majority of world’s wealth (the aggregate sum of all the

world population’s financial resources) is dominated by a very small fraction of the population.

Formally, given a finite sample space the mass-count disparity phenomenon refers to the

interplay of two conjoined yet opposed distributions defined over that space. The first distri-

bution — called thecountdistribution — is a distribution over the individual samples. Thus,

Fc(x) represents the probability that a sample has a mass smaller thanx. Following the eco-

nomic example, this represents the fraction of the world’s population whose individual wealth
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is smaller thanx currency units. The second distribution — called themassdistribution — is

a distribution over the aggregate mass of all individual samples. Fm(x) represents the proba-

bility that a mass unit is part of a sample whose total mass is smaller thanx. In our economic

example, this represents the probability that a currency unit belongs to a person whose wealth

is smaller thanx currency units.

The disparity between the two distributions exists when thecount probabilityFc(x) is likely

to be high, but the corresponding mass probabilityFm(x) is likely to be low. In our economic

example, this is demonstrated in the fact that most of the world population is poor, therefore the

count probability indicating the fraction of individuals whose total wealth is smaller than say

$100 —Fc(100) — is high. On the other hand, since most of the world’s wealth is dominated

by rich people, the probability that some arbitrary Dollar of all the money in the world belongs

to an individual whose wealth is smaller than $100 —Fm(100) — is very low.

The mass-count disparity phenomenon has interesting implications regarding the identifica-

tion of the small fraction of samples dominating the mass. The rest of this chapter describes a

novel caching efficiency metric —Cache Residency Length— and uses this metric to uncover

a clear manifestation of the mass-count disparity phenomenon in both data and instruction

memory reference streams.

3.1 Cache Residency Length: A New Metric for Rating Tem-

poral Locality of Memory Blocks

Evaluating the relative importance of a memory block for caching purposes requires assessing

both its momentary and global popularity. The naive solution would be counting the number

of references made to each block, and rating the blocks by their sheer popularity. A possi-

ble refinement to this general popularity scaling can be achieved by using a specific window

of memory references of a predetermined size, and rating blocks’ importance based on their

popularity within a window of references.

EitherBlock-Popularitymetrics share a major caveat, as they considerall the references to
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Figure 3.1:Comparison of theCache Residencymetric vs. the more commonBlock Popularity
metric. The figure shows the dispersion of accesses to blocksA andB throughout a window of
6×N memory references. Using the naive block popularity metricputs both blocks on an equal
rating. On the other hand, theCache Residency Lengthmetric will separate the two blocks:
Block B is sparsely used and therefore has a small impact on cache performance, which will
likely manifest in a few short residencies. BlockA is however densely used at the beginning
of the window, and is therefore likely to have a long cache residency, corresponding with its
bigger impact on cache performance.

each address, made throughout an arbitrary sized referencewindow (or simply throughout the

duration of the run). But the relative popularity of different addresses may change in different

phases of the computation, so the instantaneous popularitymay be more important for caching

studies. Using arbitrary sized reference windows further amplifies this problem, since the size

of the window may determine the outcome of the measurement, as it may or may not be aligned

with program phases and instantaneous program memory load.

We therefore proposenot to use a predetermined window of references, but rather to count

the number of references made between a single insertion of ablock into the cache, and its

corresponding eviction. This is denoted as acache residency length. Thus, if a certain block is

referenced 100 times when it is brought into the cache for thefirst time, is then evicted, and fi-

nally is referenced again for 200 times when brought into thecache for the second time, we will

consider this as two distinct cache residencies spanning 100 and 200 references, respectively,

rather than a single block with 300 references.

Figure 3.1 demonstrates the difference between the two metrics: it shows the use of two

blocks that are accessed over a window of6×N references, where the references to each block

are dispersed differently. While blockA is densely used only at the beginning of the reference

window, blockB is referenced the same number of times, but these referencesare dispersed

roughly evenly throughout the6 × N references in the window.
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Block A reference density indicates it affects cache performance more substantially than

block B. This is supported by Belady’s optimal cache replacement algorithm which always re-

places the block whose next use is furthest away in the future[6], indicating blockA’s reuse

frequency will increase its importance to cache performance during the period it is used. The

block popularity metric on the other hand evaluates the entire reference window, and will there-

fore put both blocks on an equal footing with 5 references. Inaddition, even if we reduce the

reference window size toN , the first window[i . . . i + N ] will give a higher rating to blockA

— as it is used 4 times more than blockB in that reference window — but, it will rate both

blocks equally on the second[i + N . . . i + 2 × N ], although the access to blockA during that

period is likely to hit in the cache as it is a continuation of the sequence of references to it which

started during the previous reference window. Such an inconsistency between the block popu-

larity metric’s evaluation of a block’s importance and its actual impact on cache performance is

caused by the arbitrariness of the reference window size andalignment, which does not reflect

the program’s memory phases.

This example demonstrates that arbitrary sized reference windows, as used by the block

popularity metric, may cause incorrect evaluation of the memory workload. On the other hand,

theCache Residency Lengthwill likely include all reference to blockA as a single cache res-

idency, while blockB will show as multiple shorter residencies. In this manner, this metric

incorporates momentary cache load and reference density, and is thus better suited to rate the

temporal locality experienced by different blocks.

One deficiency of the cache residency length metric is the it depends on a specific cache

configuration, and it is therefore important to remain consistent when comparing results. This

thesis uses a 16K direct-mapped configuration as standard, and differing configurations are

clearly marked.
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Figure 3.2:Mass-count disparity plots fordata memory accesses in select SPEC 2000 bench-
marks. The arrows demonstrate theW1/2, joint-ratio, andN1/2 metrics of mass-count disparity.

3.2 Mass-Count Disparity in L1 Workloads

The Residency Lengthmetric enables us to demonstrate the existence of the mass-count dis-

parity phenomenon of memory workloads. In our case, the count distributionFc(x) represents

the probability that a block’s residency length is composedof x references or less. Themass

distribution on the other hand, is a distribution on references; it specifies the popularity of the

block to which the reference pertains. ThusFm(x) represents the probability that a reference

is directed at a residency composed ofx references or less. The disparity is visualized using

mass-count disparity plots [20]. These plots superimpose the two distributions.

The mass-count disparity plots show that the graphs of the count and mass distributions

are quite distinct. An example is shown in Figure 3.2, showing the mass-count disparity for
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4 SPEC2000 benchmarks, one of which (mcf) is known for its poor cache utilization. The

divergence between the distributions can be quantified by the joint ratio [20], which is a gen-

eralization of the proverbial 20/80 principle: This is the unique point in the graphs where the

sum of the two CDFs is 1. In the case of the vortex data, for example, the joint ratio is approx-

imately 13/87 (double-arrow at middle of plot). This means that 13% of the cache residencies,

and more specifically those instances that are highly referenced, service a full 87% of the refer-

ences, whereas the remaining 87% of the residencies serviceonly 13% of the references. Thus

a typicalresidencyis only referenced a rather small number of times (up to about10), whereas

a typicalreferenceis directed at a long residency (one that is accessed from 100to thousands

of times).

More important for this work are theW1/2 andN1/2 metrics [20]. TheW1/2 metric assesses

the combined weight of the half of the residencies that receive few references. For vortex, these

50% of the residencies together get∼3% of the references (left down-pointing arrow). Thus

these are instances of blocks that are inserted into the cache but hardly used, and should actually

not be allowed to pollute the cache. Rather, the cache shouldideally be used preferentially to

store longer residencies, such as those that together account for 50% of the references. The

number of long residencies needed to account for half the references is quantified by theN1/2

metric; for vortex it is less than 1% (right up-pointing arrow). Table 3.1 lists the measured

W1/2, N1/2 and joint-ratio data for the 20 SPEC2000 benchmarks used, along with the maximal

residency length of the blocks accounting forW1/2, and the minimal residency length of the

blocks accounting forN1/2 (marked by the @ value). For vortex, the table reveals that the 50%

of the data cache residencies are accessed up to 3 times, and that 50% of vortex’s references

are serviced by less than 1% of the residencies, each accessed over 500 times. All-in-all, the

table reveals that half of the data references are serviced by less than 1% of all residencies, in

15 of the 20 benchmarks inspected.

The disparity is less apparent in benchmarks that are well known for their poor cache uti-

lization such asmcf, art, swimandlucas. For example almost 96% ofmcf’s residencies consist

of no more than 5 references, but still they account for over 70% of the references. This is man-
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Figure 3.3:Mass-count disparity plots forinstruction memory accesses in select SPEC2000
benchmarks. The arrows demonstrate theW1/2, joint-ratio, andN1/2 metrics of mass-count
disparity. Note that themcf code is so dense that it has no residencies shorter than∼50000
references.

ifested in a joint ratio of 33/66, and relatively highW1/2 andN1/2 values — the weight of half

the residencies (W1/2) is∼25% of the mass, and the∼17% longest residencies are required for

half the mass (N1/2). However, since the longest 3% of the residencies still compose 30% of

the mass,mcf still exhibits some degree of disparity.

Evident in instruction streams as well, the mass-count disparity is not unique do data

streams. Figure 3.3 shows the mass-count disparity plots for the instruction streams corre-

sponding to Figure 3.2. We can see that the benchmarks still enjoy a W1/2 values of∼11%

and less, indicating that the short residencies only service a fraction of all references. Further-
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more, theN1/2 values are generally even lower, indicating the long residencies dominate the

reference stream, and that the major bulk of the references are directed at a small fraction of

the working set. The only exception to this is theN1/2 value formcf which stands at∼10%.

But this actually stems frommcf’s exceptional code density that results in a very small number

of distinct instruction blocks accessed throughout the execution, which in turn yields a small

number of very long residencies — the shortest of which is measured at∼105 references, as

shown in Figure 3.3. Is is the small number of residencies that skewsmcf’s statistics. All in all,

the benchmarks enjoy joint ratios of∼75/25 and up, suggesting that even these points — rep-

resenting an equilibrium between short and long residencies — show a clear separation of the

mass and the count distributions. The mass-count disparityexhibited by the instruction streams

is in fact a manifestation of the well-known “rule-of-thumb” by which programs spend most of

the time executing a small fraction of their code (describedas the 90/10 rule by Hennessy and

Patterson [27]).

These results demonstrate the existence of a mass-count disparity stemming from the skewed

distributions of memory accesses, for both data and instruction streams. While only select

benchmarks are discussed here individually, this phenomenon is indeed consistent for all 20

SPEC2000 benchmarks analyzed. For completeness, all data streams’ mass-count disparity

plots are shown in Figure 3.4, and are accompanied by Table 3.1 listing the corresponding

values of the different mass-count metrics. Figure 3.5 and Table 3.2 show the same for the

instruction streams.

Although only figures for residencies in a direct-mapped cache are discussed here, the mass-

count disparity phenomenon is practically oblivious to cache associativity. Figure 3.6 and the

corresponding metrics’ values listed in Table 3.3 show the disparity observed for residencies

in a 16K 4-way set-associative caches is very similar to thatobserved on similar size direct-

mapped caches. This similarity repeats for the 4-way set-associative instruction stream results,

as shown in Figure 3.7 and its corresponding metrics’ valueslisted in Table 3.4.

Temporal locality of reference is one of the best-known phenomena in computer workloads

[18, 32, 27], and is the foundation around which the computer’s memory hierarchy is designed
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[32, 27]. But mass-count disparity plots show that such locality is actually the result of two

distinct properties: that references to the same address tend to come in batches, and that some

addresses are much more popular than others [35]. The popular blocks are manifested by the

long residencies that service the majority of references. Opposite, most short residencies are not

degenerate and still have a noticeable length (albeit of a small number of references) indicating

that even accesses to a transient blocks are batched together as a burst of activity. Had these

accesses not been bursty in nature, the block would have beenevicted before it is reused and

the residency length would have degenerated.

The existence of mass-count disparity demonstrates that the working set is not evenly used

but is rather focused around acore. These more popular addresses can be grouped together to

form thecore working set— a subset of the Denning’s classic working set definition [18] whose

cache residencies naturally serve the majority of references. This has important consequences

regarding random sampling. Specifically, if you pick a residency at random, there is a good

chance that it is seldom referenced. That is why random replacement is a reasonable eviction

policy, as has been observed many times [67, 70]. But if you pick a referenceat random, there

is a good chance that this reference refers to a block that is referenced very many times, thus

belonging to thecoreof the working set.

Identifying thecore working setcan improve the efficiency of the caching mechanism, and

the nature of this core allows it to be identified using randomsampling.
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Figure 3.4: 16KB Data cache, direct-mapped: A general overview of the mass and count
distributions for thedata streams of all 20 SPEC2000 benchmarks reviewed. Together with the
data from Table 3.1, this figure demonstrates that the mass-count disparity exists in practically
all data streams.
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Table 3.1:16KB Data cache, direct-mapped: TheN1/2 andW1/2 metrics values for L1data
streams of the 20 SPEC2000 benchmarks used.

Benchmark W1/2 W1/2@ N1/2 N1/2@ JR JR@
164.gzip 3.80 1 0.60 230 87 / 13 8
175.vpr 7.60 2 1.71 72 80 / 20 8
176.gcc 11.68 8 0.27 3826 79 / 21 8
181.mcf 24.77 1 16.79 3 67 / 33 1
186.crafty 4.39 1 0.69 169 86 / 14 8
197.parser 4.48 2 0.67 336 85 / 15 9
253.perlbmk 2.29 3 0.93 731 88 / 12 25
255.vortex 3.25 3 0.65 517 87 / 13 15
256.bzip2 1.83 1 0.10 3247 90 / 10 24
300.twolf 7.34 3 4.39 42 78 / 22 9
168.wupwise 3.59 8 1.07 804 84 / 16 32
171.swim 38.98 10 37.48 10 56 / 44 10
172.mgrid 5.34 2 10.41 30 77 / 23 17
177.mesa 2.01 3 0.20 3886 90 / 10 20
178.galgel 11.12 2 6.44 20 78 / 22 8
179.art 21.69 2 16.52 3 67 / 33 2
187.facerec 3.41 2 2.32 104 80 / 20 16
188.ammp 5.88 3 1.85 96 81 / 19 12
189.lucas 18.24 8 11.44 8 67 / 33 8
301.apsi 4.81 1 0.26 396 89 / 11 6
Average 9.33 3.3 5.74 726 80 / 20 12.3
Median 5.34 2 1.71 169 81 / 20∗ 0
∗ Median Joint-Ratio values are independent and thus may not sum up to 100%.
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Figure 3.5:16KB Instruction cache, direct-mapped: A general overview of the mass and
count distributions for theinstruction streams of all 20 SPEC2000 benchmarks reviewed. To-
gether with the data from Table 3.2, this figure demonstratesthat the mass-count disparity exists
in practically all data streams.
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Table 3.2:16KB Instruction cache, direct-mapped: TheN1/2 andW1/2 metrics values for
L1 instruction streams of the 20 SPEC2000 benchmarks used.

Benchmark W1/2 W1/2@ N1/2 N1/2@ JR JR@
164.gzip 2.20 16 0.00 7.2 e+5 90 / 10 123
175.vpr 1.43 16 0.00 2.5 e+7 93 / 7 144
176.gcc 2.74 13 0.05 5.4 e+4 89 / 11 59
181.mcf 6.50 1.46 e+8 10.69 1.0 e+9 74 / 26 2.5 e+8
186.crafty 11.21 15 3.72 112 76 / 24 24
197.parser 3.16 16 0.00 7.2 e+5 89 / 11 48
253.perlbmk 5.91 12 1.48 858 84 / 16 30
255.vortex 11.33 13 4.34 96 76 / 24 20
256.bzip2 0.19 7.5 e+4 5.22 1.2 e+7 82 / 18 4.3 e+6
300.twolf 6.32 16 1.91 416 81 / 19 64
168.wupwise 0.65 16 0.00 2.6 e+7 95 / 5 512
171.swim 0.01 11 0.46 3.5 e+6 99 / 1 6.7 e+5
172.mgrid 0.00 11 1.03 1.8 e+6 95 / 5 2.0 e+5
177.mesa 4.65 11 0.02 3.0 e+4 87 / 13 32
178.galgel 0.06 2.7 e+5 5.33 1.6 e+8 88 / 12 8.6 e+6
179.art 0.00 16 0.04 1.1 e+8 97 / 3 6.4 e+4
187.facerec 0.01 16 0.28 4.6 e+6 97 / 3 1.8 e+5
188.ammp 1.02 16 0.00 1.3 e+7 94 / 6 448
189.lucas 0.00 20 3.94 8.4 e+6 80 / 20 4.2 e+6
301.apsi 7.57 32 1.41 384 79 / 21 86
Average 3.25 7.3 e+6 2.00 7.0 e+7 87 / 13 1.7 e+7
Median 2.20 16 1.03 3.5 e+6 89 / 12∗ 448
∗ Median Joint-Ratio values are independent and thus may not sum up to 100%.
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Figure 3.6:16KB Data cache, 4-way set-associative: A general overview of the mass and
count distributions for thedata streams of all 20 SPEC2000 benchmarks reviewed. Together
with the data from Table 3.3, this figure demonstrates that the mass-count disparity exists in
practically all data streams.
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Table 3.3:16KB Data cache, 4-way set-associative: TheN1/2 andW1/2 metrics values for L1
data streams of the 20 SPEC2000 benchmarks used.

Benchmark W1/2 W1/2@ N1/2 N1/2@ JR JR@
164.gzip 3.22 1 0.02 6005 89 / 11 8
175.vpr 4.41 3 0.09 1606 84 / 16 11
176.gcc 12.40 8 0.01 24085 80 / 20 8
181.mcf 24.47 1 16.00 3 67 / 33 1
186.crafty 2.49 2 0.14 1932 90 / 10 11
197.parser 3.21 3 0.10 3441 88 / 12 14
253.perlbmk 1.83 5 0.52 2277 90 / 10 45
255.vortex 1.75 4 0.20 2528 91 / 9 26
256.bzip2 1.35 1 0.00 52757 91 / 9 32
300.twolf 6.79 3 1.79 60 79 / 21 10
168.wupwise 4.45 16 0.00 11565917 85 / 15 32
171.swim 39.50 10 37.81 10 56 / 44 10
172.mgrid 11.51 10 14.55 32 71 / 29 21
177.mesa 1.51 16 0.36 13377 93 / 7 124
178.galgel 11.99 2 0.61 198 80 / 20 2
179.art 21.75 2 15.74 3 67 / 33 3
187.facerec 2.30 2 0.05 17920 83 / 17 16
188.ammp 5.17 3 0.25 444 82 / 18 14
189.lucas 21.92 8 10.24 16 67 / 33 8
301.apsi 3.04 1 0.07 2232 91 / 9 9
Average 9.25 5 4.93 584742 81 / 19 20
Median 4.45 3 0.25 2232 84 / 17 11
∗ Median Joint-Ratio values are independent and thus may not sum up to 100%.
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Figure 3.7: Instruction cache, 4-way set-associative: A general overview of the mass and
count distributions for theinstruction streams of all 20 SPEC2000 benchmarks reviewed. To-
gether with the data from Table 3.4, this figure demonstratesthat the mass-count disparity exists
in practically all data streams.
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Table 3.4:16KB Instruction cache, 4-way set-associative: TheN1/2 andW1/2 metrics values
for L1 instruction streams of the 20 SPEC2000 benchmarks used.

Benchmark W1/2 W1/2@ N1/2 N1/2@ JR JR@
164.gzip 0.02 2.5 e+4 4.58 6.0 e+7 85 / 15 2.3 e+7
175.vpr 0.00 144 4.73 3.8 e+7 85 / 15 9.9 e+6
176.gcc 2.63 14 0.02 8.4 e+4 89 / 11 65
181.mcf 6.50 146 e+8 10.69 1.0 e+9 74 / 26 2.5 e+8
186.crafty 8.81 16 3.83 190 78 / 22 36
197.parser 0.05 108 0.14 2.6 e+6 94 / 6 3.1 e+4
253.perlbmk 4.32 14 1.81 1.2 e+3 86 / 14 52
255.vortex 8.08 16 1.29 405 80 / 20 32
256.bzip2 0.15 6.9 e+4 7.04 1.0 e+7 82 / 18 4.9 e+6
300.twolf 1.68 18 0.00 5.2 e+6 91 / 9 176
168.wupwise 2.45 1.0 e+6 5.66 4.2 e+7 82 / 18 1.3 e+7
171.swim 0.01 14 0.89 3.5 e+6 98 / 2 1.1 e+6
172.mgrid 0.00 14 1.39 1.8 e+6 93 / 7 2.0 e+5
177.mesa 0.30 27 0.35 4.2 e+4 93 / 7 4.5 e+3
178.galgel 0.06 2.7 e+5 5.33 1.6 e+8 88 / 12 8.6 e+7
179.art 0.01 4.4 e+3 1.75 1.1 e+8 87 / 13 1.6 e+7
187.facerec 0.00 45 1.24 9.8 e+6 92 / 8 3.9 e+5
188.ammp 0.19 3.8 e+4 1.50 1.5 e+7 89 / 11 1.0 e+6
189.lucas 0.00 42 5.14 4.2 e+6 78 / 22 4.2 e+6
301.apsi 10.17 32 2.93 208 76 / 24 72
Average 2.27 7.4 e+6 3.02 7.5 e+7 86 / 14 2.1 e+7
Median 0.19 45 1.81 5.2 e+6 87 / 14 1.0 e+6
∗ Median Joint-Ratio values are independent and thus may not sum up to 100%.
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Chapter 4

Core Working Sets: Capturing the Dual

Nature of Memory Workloads

Locality is usually regarded as a combination of two distinct properties — locality in time and

locality in space. But it is also a manifestation of the skewed distribution of thepopularityof

different memory blocks, where some blocks are accessed more frequently than others. In fact,

as shown below, it may be possible to partition the working set into two sub-sets: those data

items that are very popular and accessed at a very high rate, and those that are only accessed

intermittently. This distinction is antithetical to Denning’s definition which puts all items in a

working set on an equal footing, and lies at the heart of the definition of thecoreof the working

set.

The notion of a core leads to the realization that not all elements of the working set are

equally important. The elements in the working set are not accessed in a homogeneous manner.

Thus treating all the elements of the working set equally maylead to sub-optimal performance.

Rather, it may be beneficial to try to identify the more important core elements, and give them

preferential treatment.

A striking manifestation of a “hot” core within the working set can be seen when exploring

the stack depths accessed in a set-associative cache’s sets, and more specifically as the fraction

of references serviced by the cache sets’ most recently used(MRU) blocks. Figure 4.1 presents
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Figure 4.1:Fraction of accesses serviced by the most recently used (MRU) block in a cache’s
sets for various cache configurations. The top axis show the size of 4-way set-associative cache
(with 64B cache lines) corresponding to each number of sets.Results are shown as an average
over all SPEC2000 benchmarks surveyed.

the fraction of memory references serviced by the MRU blocksin the cache sets for various

cache configurations. This is achieved by simply varying thenumbers of cache sets examined

(the metric is oblivious to the cache’s exact associativityas it only examines MRU accesses).

The X axis in the Figure indicates a number of sets in the cache, and the box-plots represent

the MRU access statistics for all SPEC2000 benchmarks givena specific number of cache

sets — where each box-plot shows the 25-75 percentiles, minimum and maximum values,

median and the average (marked with a circle) over all benchmarks. The Figure shows that

as the number of cache sets increases, more references are serviced by the MRU block in the

referenced set: for caches with at least 128 sets an average of ∼85% of all memory references

(data and instructions) are serviced by the MRU blocks, witheven the 25th percentile crossing

the 80% threshold. When the number of sets doubles to 256 the MRU hits reach∼90% of all

references. The reason for the dependence on the number of sets in the cache is the small set

of blocks servicing the majority of references, and how it isdistributed among the cache sets:

as the number of cache sets increases the number of mapping conflicts between the core blocks
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decreases, thus enabling this small set of blocks — the core of the working set — to be evenly

distributed between the different sets. When the number of set suffices, each set contains on

average at most a single block from the working set’s core. Asthe core is accessed repeatedly,

its blocks maintain their MRU positions.

The Figure also shows the size of a 4-way set-associative cache corresponding to the num-

ber of cache sets displayed. Interestingly, modern processors such as the Intel Core product

series [29] and AMD Phenom series [1] use 32K and 64K L1 caches, respectively, thereby

serving an average of∼90% of all memory references from the sets’ MRU positions. Infact,

since the AMD Phenom uses a 64K 2-way set-associative cache,it has double the number of

sets than a similar size 4-way set-associative cache — thus enjoying an even higher∼95%

MRU hits.

This chapter introduces a formal framework that extends andrefines Denning’s definition

of a working set, enabling designers to explicitly express their perception of which blocks in

the working set are considered important. This framework uses logical predicates to distin-

guish between the important subset — the core — and the remaining blocks. An example of a

predicate that can be used to identify the core is “the block is accessed at least 16 times when

brought into the cache”. The extraction of an explicit predicate enables qualitative comparison

between different caching mechanisms and implementations. In particular, it decouples the

notionof the working set’s core from the actualcaching mechanismused to implement it.

While the core working set framework is aimed for use with anycaching mechanism, this

exploration is focused on the synergy between the skewed distribution of memory references

and dual cache structures. Defining the core based on the intensity of memory references

naturally leads to a dual design, where one part of the cache is used for the core data, while the

more transient data is served by another part. In effect thisfilters non-core data and prevents

them from polluting the cache structure used for core data.
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4.1 Definition of Core Working Sets

Denning’s definition of working sets [17] is based on the principle of locality, which he de-

fined to include three components [19]: a nonuniform popularity of different addresses, a slow

change in the reference frequency to any given page, and a correlation between the immediate

past the near future. Our data strongly supports the first component, that of non-uniform ac-

cess. But it casts a doubt on the other two, by demonstrating the continued access to the same

high-use memory objects, while much of the low-use data is only accessed for very short and

intermittent time windows. In addition, transitions between phases of the computation may

be expected to be sharp rather than gradual, and moreover, they will probably be correlated

for multiple memory objects. This motivates a new definitionthat focuses on the persistent

high-usage data in each phase, namely the core working set.

The definition of a working set by Denning is the set ofall distinct blocks that were accessed

within a window ofT instructions [17]. This set will denoted asDT (t), to mean “the Denning

working set at timet using a window size ofT ”. Our findings imply that this definition is

deficient in the sense that it does not distinguish between the heavily used items and the lightly

used ones.

As an alternative, we define thecore working setto be those blocks that appear in the

working set and are reused a significant number of times. Thiswill be denotedCT,P (t), where

the extra parameterP reflects a predictor used to identify core members; the predictor will be

expressed as a predicate that evaluates to “true” for core members, and “false” for other blocks.

This is a generalization of the Denning working set, which can simply be expressed as the core

working set with a predicate that is always true:

DT (t) ≡ CT,true(t)

The predicateP is meant to capture reuse of memory. In the context of virtualmemory,

temporal locality has been used to justify page replacementalgorithms such as LRU or the clock

algorithm. In particular, Belady emphasized the importance of use bits to identify recently
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used data that should be retained [6]. Our reuse predictors can be seen as an extension of this

practice. The generality of core working sets can also be demonstrated by its applicability

to block prefetchers: at any timet, a prefetcher would estimate the core at a future timet +

n. Therefore, the prefetcher’s core can be described asCT,P (t + n), whereP represents the

predicate best describing the prefetcher designer’s perception of the important subset of blocks.

The simplest reuse predictor is based on counting the numberof references to a given block

(or the number of references during a residency). LetB represent a block ofk words. Letwi,

i = 1, . . . , k be the words in blockB. Let r(w) be the number of references to wordw within

the window of interest. Using this, we can define the predicatenB that evaluates to true if block

B was referencedn times or more:

nB ≡
k

∑

i=1

r(wi) ≥ n

For example, the predicate 3B identifies those blocks that were referenced a total of 3 times or

more.

ThenB predicates are meant to identify a combination of spatial and/or temporal locality,

without requiring either type explicitly. Alternatively,we can write a temporal-locality predi-

cate that requires that some specific wordw in block B was referencedn times or more:

nW ≡ ∃w ∈ B s.t. r(w) ≥ n

We can also write a predicate that requires a certain number of distinct words to be referenced,

to express spatial locality.

An example of a more complicated predicate is then × ST predicate, which is meant to

identify a non-uniform strided reference pattern with reuse. This predicate is designed to filter

out memory scans that use strided access, even if they include up ton accesses to the same

memory location within the scan. This is done by tabulating the last few accesses, as illustrated

by the following pseudocode (where addr is the address accessed last):
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if (prev addr == addr){repeat++;}

else{prev stride = stride; stride = addr - prevaddr; repeat = 0;}

prev addr = addr;

using this data, a block is considered in the core if it was accessed with inconsistent strides, or

if a single word was referenced more thann times in a row. Formally, this is written as

n × ST ≡ (repeat > n) ∨ (stride 6= prev stride)

These examples only demonstrate the richness of the predicates’ design space. But given

the rich set of possible predicates, the question is how to select one that captures the notion

of a core working set. Based on the discussion about the bursty nature of access patterns

(Section 3.2), it seems advisable to require a significant number of references. In particular, we

have found 16B to be a promising predicate.

The effect of this definition is illustrated in Figure 4.2. Using the SPECgccbenchmark as

an example, the top graph simply shows the access pattern to the data. Below it we show the

Denning working setD1000(t) (i.e. for a window of 1000 instructions) and the core workingset

C1000,16B(t). As we can easily see, the core working set is indeed much smaller, typically being

just 10–20% of the Denning working set. Importantly, it eliminates all of the sharp peaks that

appear in the Denning working set. Nevertheless, as shown inthe bottom graph, it routinely

captures about 60% of the memory references.

4.2 Core Working Sets and Dual Cache Structures

We have established that memory blocks can be roughly divided into two groups: thecore

working set, which includes a relatively small number of blocks that are accessed a lot, and the

rest, which are accessed only a few times in a bursty manner. The question then is how this can

be put to use to improve caching.

The principle behind optimal cache replacement is very simple: when space is needed,
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replace the item that will not be used for the most time in the future (or never) [6]. In particular,

it should be noticed that it is certainly possible that the optimal algorithm will decide to replace

the last item that was brought into the cache, if all other items will be accessed before this

item is accessed again. This would indicate that the item wasonly inserted into the cache as

part of the mechanism of performing the access; it was not inserted into the cache in order to

retain it for future reuse. Such blocks were appropriately described as dead-on-arrival (DOA)

by Qureshi et al. [54].

By analyzing the reference streams of SPEC2000 benchmarks it is possible to see that this

sort of behavior does indeed occur in practice. For example,we found that if the references

of the gcc benchmark were to be handled by a 16 KB fully-associative cache, 30% of inser-

tions would belong to this class; in other benchmarks, we sawresults ranging from 13% to a

whopping 86%. Returning togcc, if the cache is 4-way set associative the placement of new

items is much more restricted, and a full 60% of insertions would be immediately removed

by the optimal algorithm. These results imply that the conventional wisdom favoring the LRU

replacement algorithm is of questionable merit.

It is especially easy to visualize why LRU may fail by considering transient streaming data.

When faced with such data, the optimal algorithm would dedicate a single cache line for all

of it, and let the data stream flow through this cache line. Allother cache lines would not be

disturbed.Effectively, the optimal algorithm thus partitions the cache into the main cache (for

core non-streaming data) and a cache bypass for the streaming component (non-core). The

LRU algorithm, by contradistinction, would do the oppositeand lose all the cache contents.

The aforementioned benefits of using a cache bypass can be demonstrated formally using

a simple, specific example cache configuration. Assume a cache with n2 + n cache lines,

organized inton sets whose size is eithern or n+1 cache lines each. In either case, the address

space is partitioned inton equal-size disjoint partitions (assumingn is a power of 2) using the

memory address bits. The two organizations are used as follows.

Set associative: there aren sets ofn + 1 cache lines each, and each serves a distinct partition

of the address space. This is the commonly used approach.
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Bypass: there aren sets ofn cache lines each, and each serves a distinct partition of theaddress

space, as in the conventional approach. The remainingn cache lines are grouped as a

disjoint set (which we will call the “extra” set), and can accept any address and serves as

a bypass.1

These two designs expose a tradeoff: in the set associative design, each set is larger by one,

reducing the danger of conflict misses. In the bypass design,the extra set is not tied to any

specific address, increasing flexibility.

Considering these two options, it is relatively easy to see that the bypass design has the

advantage. Formally this is shown by two claims.

Claim 1 The bypass design can simulate the set associative design.

Proof: While each cache line in the extra set can hold any address from the address space, we

are not required to use this functionality. Instead, we can limit each cache line to one of the

partitions in the address space. Thus the effective space available for caching each partition

becomesn + 1, just like in the set associative design.

The conclusion from this claim is that the bypass design neednever suffer more cache

misses than the set associative design. At the same time, we have the following claim that

establishes that it actually has an advantage.

Claim 2 There exist access patterns that suffer arbitrarily more cache misses when served by

the set associative design than when served by the bypass design.

Proof: An access pattern that provides such an example is the following: repeatedly access2n

addresses from any single address space partition in a cyclic mannerm times. When using the

set associative design, only a single set withn cache lines will be used. At best, an arbitrary

subset ofn − 1 addresses will be cached, and the othern + 1 will share the remaining cell,

leading to a total ofO(nm) misses. When using the bypass design, on the other hand, all2n

1For simplicity, the claims assume the bypass buffer contains the same number of ways as sets in the main
cache — but obviously these numbers need not be the same.
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addresses will be cached by using the original set and the extra set. Therefore only the initial

2n compulsory misses will occur. In this sense, a bypass mechanism can potentially relieve

pressure on specific cache sets resulting from bursty conflict misses. By extending the length

of this pattern (i.e. by increasingm) any arbitrary ratio can be achieved.

An example of a dual-cache design that extends a simple set-associative cache is theVictim

Cacheproposed by Jouppi [37]. The victim cache includes a small fully-associative buffer

into which all memory blocks evicted from the direct-mappedmain cache (the “victims”) are

inserted. Jouppi showed that many of the blocks evicted fromthe main cache will be requested

again within a short period of time, and should therefore be kept in an auxiliary cache and be

given a chance for re-insertion. In that sense, the auxiliary buffer — called thevictim buffer—

serves as an extension to the main cache. The myriad of dual-cache structures proposed in the

literature are discussed in Chapter 7.

The definition ofcore working setsthus extends the classic working set definition by Den-

ning to capture the dual nature of memory workloads, and directly corresponds with the dual-

cache paradigm. While the paradigm itself is not new, the formalization of core working sets is

novel. Core working sets thus enable cache designers to formally describe, compare and con-

trast dual-cache designs in a natural way — thereby adding a useful tool to the cache designer’s

toolbox.

38



Chapter 5

Cache Filtering Through Probabilistic

Prediction of Temporal Locality

The existence of lengthy cache residencies is a direct result of temporal locality — as discussed

in Section 3.1 — since frequent accesses to a block prevent itfrom being replaced in a standard

LRU based set-associative cache. But even long residenciesare sometimes terminated in favor

of shorter residencies, when a more popular block is evictedin favor of a less popular one. This

is commonly caused by changes in a program’s memory workloadthat increase the number

of cache misses (and therefore cache insertions) momentarily, and mainly affects caches with

a relatively low degree of associativity that cannot effectively sustain a sudden burst of cache

insertions. Although frequently accessed blocks will be quickly re-inserted into the cache, the

first access after the eviction will incur a high latency cache miss. This is in fact the rationale

behind theleast-frequently-used(LFU) replacement policy.

Alternatively, these inefficient replacements can be avoided by employing acache insertion

policy that will prevent transient blocks from being inserted to cache in the first place — be-

cause such blocks effectively just pollute the cache. The length of a cache residency can thus

serve as a metric for cache efficiency, with longer residencies indicating better efficiency, as

the initial block insertion overhead (latency and power) isamortized over many cache hits. A

simple filter can therefore be based on a residency length predictor that will be used to predict

39



whether inserting a block into the cache would be beneficial.If the insertion is not beneficial,

references to the block can be served from an auxiliary buffer, or bypass the cache altogether

(these two alternatives are effectively equivalent since the latter can be seen as using an auxil-

iary buffer containing a single block).

However, the definition of a “beneficial insertion” is not trivial, and is tightly coupled with

the specifics of the cache design. Therefore, the discussionon residency length prediction

(or rather whether a residency should be characterized as a long one) is separated from the

proposed cache design (discussed in Chapter 6).

5.1 On the Non-Feasibility of an Optimal Insertion Policy for

Dual-Cache Structures

Caches are commonly evaluated using their achievable miss-rate (or hit-rate), which, for simple

associative cache structures, can be minimized using Belady’s optimal replacement policy [6].

Using an insertion policy however, implies a dual-cache structure since the block selection can

be effectively viewed as making a decision whether to insertthe block into the cache itself, or

rather into an auxiliary buffer. Although in general the auxiliary buffer can contain only one

block — thus effectively implementing a cache bypass — it is assumed here that the auxiliary

buffer contains more than one block.

Dual-cache structures are not addressed by Belady’s optimal algorithm which only accounts

for a replacement policy, and not a cache/buffer arbitration policy. Moreover, Brehob et al.

showed that optimal cache replacement is NP-Hard for dual-caches in which one component is

fully-associative and the other is either set-associativeor direct-mapped [7]. This result can be

extended to show that even if both caches are set-associative but with different numbers of sets,

the problem is still NP-Hard — thereby removing the requirement that one of the components

is fully-associative:

Claim 3 An optimal replacement algorithm for a dual-cache, in whichboth components are
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set-associative with different number of sets, is NP-Hard if1:

• the numbers of sets in both components are powers of 2.

• the address bits used to map addresses to sets in the component containing the smaller

number of sets, is a subset of the mapping bits in the other component.

Proof: Consider a dual-cache containing two set-associative components, where component 1

is of sizeB1 blocks and associativity ofA1 (such that it is not fully-associative, i.e.A1 < B1),

and where component 2 is of sizeB2 and associativityA2 (such thatA2 < B2). Component 1

therefore containsS1 = B1

A1

disjoint sets, and component 2 containsS2 = B2

A2

sets. Based on the

precondition,S1 6= S2.

Now, let us assume (without loss of generality) that component 2 contains more sets than

component 1, i.e.S2 > S1. We can therefore divide the entire reference stream intoS1 dis-

joint reference sub-streamsR1 · · ·RS1
, where each sub-streamRi is mapped to, and uniquely

serviced by, a single set in component 1. In addition, because the address bits used in mapping

addresses to cache sets in component 1 are said to be subset ofthose used in component 2,Ri is

also mapped to, and uniquely serviced by, exactlyS2

S1

sets in component 2. Furthermore, based

on the precondition thatS1 andS2 are distinct powers of 2, it is guaranteed thatS2

S1

is a natural

number.

The entire dual-cache can thus be regarded asS1 disjoint dual-cachesC1 · · ·CS1
, each con-

taining a single set from component 1 andS2

S1

sets from component 2 — with eachCi servicing

only part of the entire reference stream, namely theRi sub-stream. But eachCi is effectively a

dual-cache composed of a fully-associative structure (thesingle set from component 1), and a

set-associative cache of degreeA2 and sizeA2 ×
S2

S1

— a design for which an optimal replace-

ment policy is NP-Hard according to Brehob et al.

The result is that no feasible optimal replacement algorithm exists for each of the sub-

streams, based on the proof by Brehob et al. [7]. But because the sub-streams use disjoint

sub-structures of the entire dual-cache, a block from one sub-stream cannot replace a cached

1Since the two preconditions are in fact common practices in cache design, they do not effectively hinder the
breadth of the claim.
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block from another sub-stream. Thus, aglobal optimal replacement algorithm for the entire

dual-cache must be NP-Hard as well.

This lack of a feasible optimal cache insertion policy suggests a need for a different strategy

to evaluate such policies. Moreover, using a strategy that completely ignores the underlying

caching mechanism is impossible when dealing with cache residencies, since the definition of

a residency depends on the cache parameters — such as the cache size and its eviction policy.

5.2 Identifying An Effective Subset of Blocks

The lack of an optimal replacement algorithm for dual-caches suggests a different strategy

should be used to evaluate cache filtering. It is therefore suggested to approach this problem

from a cost/gain perspective, trying to create a minimal core working set of residencies that will

effectively maximize gain — where thecostis defined as the fraction of all residencies included

in the core working set, and thegain defined to be the fraction of all references composing the

residencies in the core. Effectively, the cost of the core working set can also be regarded as

the size of the cache needed to accommodate all the residencies selected, and the gain as the

hit-rate achieved.

The conflict between thecost andgain here is obvious: on one hand, inserting all resi-

dencies to the core will service all references from the core, but will also represent a cache

of infinite size. On the other hand, leaving the core empty will minimize the number of resi-

dencies included in the core (none), but will serve no residencies from the core as well. The

need to balance the two opposite goals indicates the strategy should employ a threshold param-

eter determining the minimal length of a residency that should be considered part of the core.

Although maximizing the gain in lieu of a cost metric is traditionally addressed by finding a

threshold that maximizes the average gaingain
cost

, this strategy will not work here. In the case

at hand, this method would try to identify a residency lengththreshold that would maximize

the average core residency defined ascore-references
core-residencies

— which would simply set the threshold

to be the length of the longest residency, thus inserting only that single residency into the core
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Figure 5.1:Demonstration of the maximal effectiveness point forvortex. On the left is the
original mass-count plot, and on the right is the same data plotted as a function of the residency
index in the sorted list of all residencies. The double arrowdemonstrate the point where the
difference between the mass and count is maximal in which∼9% of all residencies serve∼84%
of all references. It occurs for a residency length of 23 references, and requires only∼4 × 106

residencies out of a total of∼38 × 106 residencies.

working set.

The strategy proposed is therefore to identify a residency length threshold (the minimal

length of core residencies) that maximizes thedifferencebetween the fraction of all refer-

ences composing the core, and the fraction of all residencies included in the core — namely

core-references−core-residencies. All residencies whose length is longer than the threshold

are considered part of the core working set.

Claim 4 The threshold that maximizes the difference between the fraction of all references

composing the core, and the fraction of all residencies included in the core, is the average

residency length.

Proof: Given R the total number of references,B the total number of residencies, we can

sort the residencies according to length, such that each residency is attributed with an indexi

in the range[1 . . .B]. len(i) is defined as length of theith shortest residency, and the sorted

residencies indicate thatlen(i) ≤ len(i + 1) for all i. Mass-count disparity plots can then be

plotted as a function of the residencies’ indices, as shown in Figure 5.1. In this plot style, the
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count cumulative probability value at theith residency is

count(i) =
i

∑

j=1

1

B
=

i

B

and its mass cumulative probability is

mass(i) =
i

∑

j=1

len(j)

R

This means that theith residency adds1
B

to the count distribution, andlen(i)
R

to the mass.

Therefore, given thatlen(i)
R

is monotonically non-decreasing (aslen(i) ≤ len(i + 1)), the gap

between the two distributions grows whilelen(i)
R

< 1
B

, narrows whenlen(i)
R

> 1
B

, and peaks at

len(i)

R
≃

1

B
⇒ len(i) ≃

R

B

which is the average residency length. But since the averageis not necessarily integral, whereas

a residency length is integral by definition, the feasible threshold is simply the integral part of

the average:

threshold = ⌊
R

B
⌋

Furthermore, because the residencies’ lengths are monotonically non-decreasinglen(i) ≤

len(i + 1), the slope of the mass distribution’s cumulative function is guaranteed to never

decrease, and the gap between the mass and the count will never decrease as well. This assures

that the threshold does not represent a local maxima, but rather the global one.

The floor value of the average residency length thus represents unique equilibrium point

that maximizes the effectiveness of the core working set: any different proposed subset of

residencies will inevitably replace a block in the core withone not belonging to the core, and

will thus replace a long residency with shorter one — therebyreducing the number of references

that will be served by the core. Since the number of references for a specific stream is constant,

this in turn will reduce the difference between the cost and gain, thus reducing the effectiveness
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of the core.

Selecting a threshold requires future knowledge about the number of references issued by

the program and the number of residencies exhibited by the cache (obtained by pre-executing

the program at hand). Once a threshold is selected though, blocks can be theoretically classi-

fied at runtime by maintaining a reference counter for each block. This selection algorithm is

equivalent to the definition of a core working set with a predicatenB, described in Section 4.1.

The predicate evaluates totrue for each residency longer thann references, which in this case

will be the predetermined threshold.

In practice, the counter-based approach cannot be implemented in hardware because it re-

quires maintaining a counter per memory block. A viable predictor can therefore only approx-

imate this counter-based approach using a feasible cache design.

Interestingly, the counter-based algorithm presented here relaxes the requirements from a

residency length predictor, as it does not have to predict the actual length of a residency, but

rather produce a binary prediction stating whether the residency is likely to be longer than the

threshold, or not. Therefore, rather than focusing on a specific threshold, a generic evaluation

of residency length predictor focuses on the ability to approximate any given threshold.

The following section thus presents a probabilistic residency length predictor that uses a

probabilistic parameterP . This predictor is then evaluated in Section 5.4 by exploring the

relationship between the probabilistic parameterP and the threshold parameter used by the

counter-based algorithm.

5.3 Probabilistic Residency Length Predictor

The probabilistic residency predictor harnesses the skewed distributions characterized by the

mass-count disparity phenomenon (discussed in Chapter 3).The phenomenon shows that while

most residencies are short, most references are serviced bya long residency. Therefore, select-

ing a memory reference at random by executing a Bernoulli trial on each memory reference

is likely to identify a reference that is part of a long residency. Thus, if the trial’s outcome is
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true, the rest of the residency is considered to be part of the coreworking set. When sampling

references uniformly with a relatively low probabilityP , short residencies will have a very low

probability of being selected. But given that a single sample is enough to classify a residency as

belonging to the core, the probability that a residency is classified as core aftern references is

1− (1 − P )n. This converges exponentially to 1 for largen. In practice, the selection need not

even be random, and periodic selection achieves results similar to those obtained with random

selection. For consistency though, only results for randomselection are shown.

The definition of a core working set presented in Chapter 4 requires the formalization of a

predicate capturing the core blocks. GivenB the entire working set of a program andblock(i)

the block accessed in theith memory reference, and given a uniformly distributed random bit

stream with a success probabilityP whoseith bit is randP (i) (bit values are referred to here

by their boolean equivalents, such that bit value 1 corresponds to boolean “true”, and bit value

0 corresponds to boolean “false”), the predicaterandomcoreP describing the core blocks is:

randomcoreP ≡ ( b ∈ B | ∃i s.t. block(i) = b ∧ randP (i) = true )

Importantly, implementing such a predictor does not require savingany state information

for the blocks, since every selection is independent of its predecessors. The hardware required

to implement the selection mechanism is trivial — random selection requires a pseudo random

number generator, which can be implemented using a simple linear-feedback shift register,

whereas periodic selection simply requires a saturating counter [81]. This also enables easy

integration with other predictor types, such as those addressing memory level parallelism and

the criticality of specific references for performance [55].

The core working setCT,randomcoreP
(t) thus represents the core selected using the random

sampling algorithm presented above. Note that the formal definition of the predicate describes

the set of blocks that should be treated preferentially according to the algorithm, but does

not mandate any specific implementation. This is a striking example of how core working sets

offer the decoupling of a cache designer’s perception of theimportant blocks, from any caching
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mechanism or implementation based on this perception

5.4 Evaluating the Probabilistic Predictor

The evaluation of the probabilistic predictor is done against the counter-based algorithm pre-

sented in Section 5.1. In order for the results to be oblivious to any specific residency length

threshold, the evaluation focuses on the relationship between the parameters of the two meth-

ods — the residency length threshold used in the counter-based approach, and the Bernoulli

trial success probability used in the probabilistic predictor.

The counter-based approach essentially relies on achieving hysteresis of N levels (using

a lg(N)-bit saturating counter), which can be approximated using aseries of Bernoulli trials

with a success probability1
N/K

, whereK is the number of successful trials needed to approxi-

mate counter saturation [58]. The correlation sought is therefore between the residency length

thresholdN and the Bernoulli success probabilityP . Specifically, as the simplicity of the pre-

dictor is crucial for the feasibility of its implementation, the predictor can only be viable if a

single Bernoulli trial is sufficient for block selection. The goal is therefore to evaluate relative

performance of probabilistic selection with probabilityP and counter-based selection with a

target count ofN = 1
P

.

Figures 5.2 and 5.4 compare the probabilistic runtime predictor with the counter-based se-

lection, for residencies generated using direct-mapped and 4-way set-associative 16K L1 data

caches, respectively. The figures show the percentage of residencies classified as core (bottom

lines) and the references they service (top lines). Complementing results for the instruction

streams are shown in Figures 5.3 and 5.5 (direct-mapped and 4-way set-associative, respec-

tively). As a unified scale, the X-axis equates a sampling probability of P with a counting

threshold of1
P

. When analyzing the percent of references serviced by the predictor’s selected

core, we see a very good correlation to those serviced by the counter-based predictor, at least

for P up to 0.01. For example, when runningcrafty with a direct-mapped data cache (Fig-

ure 5.2) and using a selection probability ofP = 0.01, the sampling predictor covers some
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52% of all memory references, constituting over 90% of the number of references covered

by the counter-based predictor. This result is fairly consistent for all benchmarks, using resi-

dency traces generated on both direct-mapped and 4-way set-associative caches, with the only

exceptions beingswim artandmcf benchmarks, notorious for their poor temporal locality.

When observing the number of residencies selected by both predictors, we see that the prob-

abilistic predictor may select more residencies than the counter-based one, but for probabilities

lower thanP = 0.01 for data streams andP = 0.001 for instruction streams, the difference

is up to a few percents. This good correlation stems from the fact that both predictors only

select a very small percentage of the residencies, usually just a few percents. But whenP is

relatively high, too many false positives — or transient residencies — are classified as core

(residencies shorter than 15 references constitutes some 90% of all residencies in the bench-

marks shown in Figure 3.2). These extra residencies are alsothe reason why the probabilistic

sampling predictor sometimes seems to serve more references than the counter-based predictor.

Tables 5.1 through 5.4 show how many residencies are classified as core and how many

references they service: the first two tables show the statistics for 16K direct-mapped data and

instruction streams, respectively, and the other two tables show the corresponding results for

4-way set-associative residencies’ traces. When summing over all the residencies experienced

by a 16K direct-mapped data cache, sampling only 0.01% of thedata references selects an

average∼7.39% of the residencies, while covering over 45% of the references (∼8% of res-

idencies and∼59% of the references for 4-way set-associative data caches). As the average

is highly affected by benchmarks known for their poor temporal locality, such asswim, art,

andmcf, the median values are shown as well, demonstrating a coverage of over 50% of direct-

mapped data references (over 70% for 4-way set-associativedata caches). The coverage is even

better for both direct-mapped and 4-way set-associative instruction cache (Tables 5.2 and 5.4,

respectively).

Overall, these results imply that executing Bernoulli trials with success probabilities of

P = 0.01 for data streams andP = 0.001 for instruction streams are good operating points

— a result that is consistent for all benchmarks analyzed. The following chapter describes a

48



Table 5.1:Data cache, 16KB direct-mapped: Percents of residencies (insertions) classified
as core and the references they service, forP = 0.001, P = 0.01 andP = 0.05.

P = 0.001 P = 0.01 P = 0.05
Benchmark %Ins %Refs %Ins %Refs %Ins %Refs
164.gzip 0.90 31.91 5.77 56.63 16.89 75.64
175.vpr 0.90 13.86 6.24 41.09 21.35 61.33
176.gcc 1.30 45.53 8.38 65.26 31.77 74.72
181.mcf 0.20 1.32 1.87 8.12 8.43 20.68
186.crafty 0.83 27.34 5.49 52.29 17.39 70.98
197.parser 1.11 27.15 6.62 56.86 20.99 73.73
253.perlbmk 2.39 35.55 11.40 69.55 29.57 84.86
255.vortex 1.53 33.80 8.36 64.28 24.01 80.32
256.bzip2 1.23 54.96 7.22 73.83 20.22 85.94
300.twolf 0.94 5.98 7.22 28.79 23.38 55.70
168.wupwise 2.63 33.60 13.28 66.83 37.70 81.92
171.swim 1.13 0.88 10.62 7.49 42.60 28.77
172.mgrid 1.08 5.72 8.72 25.08 28.56 52.86
177.mesa 1.63 58.75 8.21 79.39 24.47 88.20
178.galgel 0.67 4.36 5.61 20.54 20.06 45.51
179.art 0.28 3.19 2.53 14.51 11.24 26.93
187.facerec 1.81 17.56 11.43 48.20 33.02 71.29
188.ammp 1.16 17.60 7.90 44.56 25.40 65.81
189.lucas 0.84 13.97 6.99 28.73 27.81 45.62
301.apsi 0.68 34.82 3.90 62.80 12.01 78.04
Average 1.16 23.39 7.39 45.74 23.84 63.44
Median 1.11 27.15 7.22 52.29 24.01 71.29

dual-cache design based on the probabilistic predictor proposed in this chapter, and details a

thorough exploration of specific probabilities suitable for the design.
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Figure 5.2:Data cache, 16KB direct-mapped: Fraction of blocks sampled by the probabilistic
predictor and the percent memory references they service, compared to those of the counter-
based predictor.
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Table 5.2: Instructions cache, 16KB direct-mapped: Percents of residencies (insertions)
classified as core and the references they service, forP = 0.001, P = 0.01 andP = 0.05.

P = 0.001 P = 0.01 P = 0.05
Benchmark %Ins %Refs %Ins %Refs %Ins %Refs
164.gzip 4.50 82.34 28.23 89.06 63.50 95.27
175.vpr 3.49 88.40 21.98 92.77 54.96 96.53
176.gcc 2.86 77.19 18.89 85.06 51.61 92.17
181.mcf 100.00 100.00 100.00 100.00 100.00 100.00
186.crafty 2.63 26.64 18.42 49.17 52.56 72.16
197.parser 2.80 80.93 20.20 86.34 56.79 92.63
253.perlbmk 3.80 36.18 17.90 70.17 48.61 84.44
255.vortex 2.54 18.84 17.27 45.44 49.92 69.73
256.bzip2 67.70 99.97 78.71 100.00 88.40 100.00
300.twolf 4.56 41.09 26.51 66.08 61.12 84.99
168.wupwise 5.49 91.69 22.64 96.61 54.45 98.43
171.swim 5.12 99.87 15.21 99.96 42.76 99.98
172.mgrid 16.03 99.74 27.17 99.96 51.02 99.98
177.mesa 2.13 73.08 15.66 80.39 49.67 88.07
178.galgel 80.95 100.00 89.29 100.00 92.86 100.00
179.art 27.01 99.91 38.87 99.99 67.99 100.00
187.facerec 24.49 99.51 49.91 99.90 60.68 99.98
188.ammp 8.22 88.96 30.93 95.88 67.30 98.28
189.lucas 36.24 99.99 44.83 100.00 65.27 100.00
301.apsi 5.54 46.07 33.79 67.31 72.45 86.56
Average 20.30 77.52 35.82 86.20 62.60 92.96
Median 5.49 88.96 27.17 95.88 60.68 98.28
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Figure 5.3:Instruction cache, 16KB direct-mapped: Fraction of blocks sampled by the prob-
abilistic predictor and the percent memory references theyservice, compared to those of the
counter-based predictor.
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Table 5.3:Data cache, 16KB 4-way set associative: Percents of residencies (insertions) clas-
sified as core and the references they service, forP = 0.001, P = 0.01 andP = 0.05.

P = 0.001 P = 0.01 P = 0.05
Benchmark %Ins %Refs %Ins %Refs %Ins %Refs
164.gzip 0.69 55.30 4.94 68.51 15.29 81.28
175.vpr 0.88 49.99 6.18 65.10 22.66 75.45
176.gcc 1.13 62.95 9.04 70.49 35.14 78.00
181.mcf 0.19 6.86 1.76 14.51 8.10 24.67
186.crafty 1.02 51.57 5.60 73.68 17.03 84.66
197.parser 1.15 55.95 6.90 73.81 23.04 83.23
253.perlbmk 3.05 53.74 13.67 79.43 34.79 89.96
255.vortex 2.20 57.92 9.97 81.15 27.01 90.20
256.bzip2 1.15 68.91 7.41 80.12 20.91 89.24
300.twolf 1.05 25.88 7.67 46.52 26.20 64.89
168.wupwise 1.64 76.67 14.45 79.70 49.03 86.79
171.swim 1.12 3.34 10.68 8.91 43.20 29.28
172.mgrid 1.57 17.30 12.99 32.08 43.71 56.16
177.mesa 4.73 77.62 19.20 90.99 49.67 95.53
178.galgel 0.58 19.16 3.86 46.61 14.57 61.35
179.art 0.24 19.89 2.38 22.35 11.27 29.53
187.facerec 1.17 62.60 9.45 70.22 31.92 80.67
188.ammp 1.01 42.49 7.40 58.11 25.60 72.17
189.lucas 0.79 31.02 7.44 35.72 30.82 48.91
301.apsi 0.74 55.15 4.15 74.99 12.88 85.12
Average 1.31 44.72 8.26 58.65 27.14 70.35
Median 1.12 53.74 7.44 70.22 26.20 80.67
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Figure 5.4:Data cache, 16KB 4-way set-associative: Fraction of blocks sampled by the prob-
abilistic predictor and the percent memory references theyservice, compared to those of the
counter-based predictor.
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Table 5.4: Instructions cache, 16KB 4-way set associative: Percents of residencies (inser-
tions) classified as core and the references they service, for P = 0.001, P = 0.01 andP = 0.05.

P = 0.001 P = 0.01 P = 0.05
Benchmark %Ins %Refs %Ins %Refs %Ins %Refs
164.gzip 86.56 99.99 94.62 100.00 96.77 100.00
175.vpr 51.50 99.99 64.97 100.00 79.04 100.00
176.gcc 3.09 77.80 20.25 85.53 53.46 92.69
181.mcf 100.00 100.00 100.00 100.00 100.00 100.00
186.crafty 3.67 23.10 22.13 53.96 56.07 77.61
197.parser 32.11 98.79 57.35 99.79 77.05 99.94
253.perlbmk 5.46 42.20 22.31 76.55 54.87 88.94
255.vortex 3.45 38.35 21.06 62.73 56.15 80.93
256.bzip2 65.94 99.97 75.96 100.00 88.56 100.00
300.twolf 5.93 81.32 30.44 90.49 64.16 96.16
168.wupwise 87.60 99.99 92.56 100.00 95.45 100.00
171.swim 10.35 99.85 24.90 99.96 56.13 99.98
172.mgrid 21.62 99.71 34.67 99.95 57.71 99.99
177.mesa 14.24 92.29 37.99 97.97 68.36 99.30
178.galgel 80.95 100.00 86.90 100.00 91.67 100.00
179.art 93.98 99.99 98.80 100.00 99.40 100.00
187.facerec 38.34 99.88 52.35 99.98 70.79 100.00
188.ammp 59.06 99.92 67.65 99.99 82.37 100.00
189.lucas 40.97 99.98 49.82 100.00 71.15 100.00
301.apsi 5.35 41.85 34.95 62.32 75.86 84.33
Average 40.51 84.75 54.48 91.46 74.75 95.99
Median 38.34 99.88 52.35 99.98 75.86 100.00
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Figure 5.5:Instruction cache, 16KB 4-way set-associative: Fraction of blocks sampled by
the probabilistic predictor and the percent memory references they service, compared to those
of the counter-based predictor.
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Chapter 6

A Random Sampling L1 Cache Design

Based on the principles described in the previous chapters,this chapter introduces a novel L1

cache design that uses Bernoulli trials to distinguish longresidencies from short, transient ones.

As the long residencies represent a small subset of the working set that service the majority of

references, by identifying these residencies and servicing them using power-efficient, direct-

mapped L1 caches, we can potentially increase CPU performance and at the same time reduce

the power consumption.

Direct-mapped caches are faster and consume less energy than set-associative caches typ-

ically used in L1 caches [28, 38]. However, they are more susceptible to conflict misses than

set-associative caches, thus suffering higher miss-ratesand achieving lower performance [32].

This deficiency led to abandoning direct-mapped L1 caches infavor of set-associative ones in

practically all but embedded processors. The ability to partition the reference stream into long

and short residencies, enables to serve only the small set oflong residencies from the direct-

mapped cache, thus harnessing its power and performance traits, while dramatically reducing

the number of cache conflicts.

The use of a direct-mapped cache for servicing the core is supported by Figure 4.1, which

demonstrates how modern set-associative caches service most of the references from the cache

sets’ MRU position, thus acting as de-facto direct-mapped caches, but with set-associative

access times and power consumption. This phenomenon was even exploited by Flautner et al.

57



[21] to reduce the power consumption of set-associative cache by putting the non-MRU line

into a low power / longer latency state.

The rest of this chapter proposes a design for a random sampling cache based on dual-

cache paradigm, that employs a direct-mapped structure to serve the core working set, and a

fully-associative structure acting as filter serving the transient residencies. It is shown that such

a design offers both better performance as well as reduced power consumption compared to

common cache structures.

6.1 Proposed Design

The proposed design, based on the dual cache paradigm, is depicted in Figure 6.1. It consists

of a direct-mapped cache preceded by a small, fully-associative filter. When a memory access

occurs, the data is first searched in the cache proper, and only if that misses the filter is searched.

If the filter misses as well, the request is sent to the next level cache. In our experiments we have

used 16K and 32K (common L1 sizes) for the direct-mapped cache, and a 2K fully-associative

filter (all structures use 64B lines).

Each memory reference that is serviced either by the filter orby the next level cache initiates

a Bernoulli trial with a predetermined success probabilityP , to decide whether it should be

promoted into the cache proper. Note that this enables a block fetched from the next level

cache to skip the filter altogether and jump directly into thecache. This decision is made by

thememory reference sampling unit(MRSU) which performs the Bernoulli trials, and writes

the block to the cache if selected. In case the block is not selected, and was not already present

in the filter, the MRSU inserts it into the filter.

The MRSU can in fact perform the sampling itself even before the data is fetched, enabling

it to perform any necessary eviction (either from the cache proper of the filter) beforehand,

thus overlapping the two operations. Section 6.2.1 explores the probabilistic design space for a

suitable Bernoulli success probability.

For a desired threshold probabilityP we pre-calculate a constantCP such thatCP

2K ≃ P .
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Figure 6.1:Design of a random sampling filtered cache.

Given a source of random bits, the MRSU generates a random integerr in the range
[

1 . . . 2K
)

.

Therefore, the result of the comparisonr ≤ CP yieldstruewith probability∼ P .

Although such a mechanism is easy to implement (e.g. using a linear-feedback shift register

[81]) and consumes negligible power, we also experimented with naive periodic sampling, us-

ing a period proportional to1
P

(possibly implemented using alog2

(

1
P

)

-bit saturating counter).

This achieved results similar to those of random sampling. We therefore only show the results

for random sampling.

To reduce both time and power overheads associated with accessing the fully-associative

filter, we have augmented the classic CAM / SRAM design [14, 81] with a wordline look-aside

buffer (WLB) that caches recent lookups to the fully-associative buffer, thus eliminating re-

peating fully-associative lookups and saving the power/performance cost associated with them.

The WLB is a small direct-mapped cache structure mapping block tags directly to the filter’s

SRAM based data store, thus avoiding the majority of the costly CAM lookups, while still

maintaining fully-associative semantics. Section 6.3 offers a detailed description of the WLB

design, and an analysis of the WLB performance to determine the number of entries it requires.
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Dual caches, and specifically filtered caches have been proposed in various contexts in the

past, using various filtering metrics [37, 64, 63, 46, 62, 5].However, none of the aforemen-

tioned studies offer such a simple categorization mechanism to distinguish between frequently

used and transient memory blocks using random sampling, eliminating the need to maintain

any per-block reuse history information. This work is compared and contrasted with such al-

ternatives in Chapter 7.

6.2 The Effects of Random Sampling

Random sampling of memory references can be viewed as the partitioning of the reference

stream into two components — one consisting of long residencies, and the other consisting of

short transient residencies. This partitioning enables treating each component of the workload

using a special caching structure that is better suited to service the blocks (and thereby residen-

cies) composing that component. The number of references tofrequently used blocks are nu-

merous, but involve only a relatively small number of distinct blocks. This reduces the number

of conflict misses, enabling the use of a low-latency, low-energy, direct-mapped cache struc-

ture. On the other hand, transient residencies compose the majority of residencies, but naturally

have a shorter cache lifetime. Therefore, they can be servedby a smaller, fully-associative (and

costly) structure.

The filtering rate and probability therefore poses a delicate tuning knob: aggressive filtering

might be counter-productive, since too many blocks may end up being served by the filter and

not promoted to the cache proper, making the filter a bottleneck and degrade performance. On

the other hand, loose filtering may promote too many blocks tothe main direct-mapped cache,

thereby saturating the direct-mapped structure, increasing the number of conflict misses and

degrading its performance.

This section is therefore dedicated to evaluate the effectiveness of probabilistic filtering,

while exploring the statistical design space. The selectedparameters are then used to evaluate

performance and power consumption in Section 6.4.
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6.2.1 Impact on Miss-Rate

First, we address the effects of filtering on the overall miss-rate in order to determine the

Bernoulli probabilities that yields best cache performance. Figure 6.2 shows the distributions

of the miss-rate achieved by a filtered 16K direct-mapped cache (fraction of blocks missed

by both the cacheand the filter) compared to that achieved by a regular 16K direct-mapped

cache, for various Bernoulli success probabilities (lowervalues indicate a decreased miss rate).

The data shown for each combination are a summary of the observed change in miss rate over

all benchmarks simulated: the distribution’s middle range(25%–75%), average, median and

min/max values. An ideal combination would yield maximal overall miss-rate reduction with

a dense distribution, i.e. a small differences between the 25%–75% percentiles and min–max

values, as a denser distribution indicates more consistentresults over all benchmarks.

The figure shows that the best average reduction in data miss-rate is∼25%, and is achieved

for P values of0.05 to 0.1. Moreover, this average improvement is not the result of a single

benchmark skewing the distribution: when comparing the center of these distributions — the

25%–75% box — we can see the entire distribution is moved downwards. The same can be

said about the miss-rate reduction in the instruction stream, for which selection probabilities

of 0.01 to 0.0001 all achieve an average improvement of∼60%. In this case as well the best

averages are achieved for probabilities that shift the entire distribution downwards.

The fact that a similar improvement is achieved over a range of probabilities, for both

data and instruction, indicates that using a static selection probability is a reasonable choice,

especially as it eliminates the need to add a dynamic tuning mechanism.

We therefore chose sampling probabilities of0.05 and0.0005 for the data and instruction

streams, respectively, for the 16K cache configuration. In asimilar manner, probabilities of

0.1 and0.0005 were selected for the data and instruction streams, respectively, for the 32K

configuration.

Interestingly, the data and instruction stream require different Bernoulli success probabili-

ties — with two orders of magnitude difference! The reason for this is the fact that the instruc-

tion memory blocks are usually accessed over an order of magnitude more times compared

61



-100

-80

-60

-40

-20

 0

0.0001

0.0005

0.001
0.005

0.01
0.05

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

D
at

a

-100

-80

-60

-40

-20

 0

0.0001

0.0005

0.001
0.005

0.01
0.05

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

In
st

ru
ct

io
ns M

is
s-

ra
te

 c
ha

ng
e 

[%
]

Sampling probability

25%--75% Avg.
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to data blocks. In the benchmarks shown in Figure 3.2, 50% of the data memory blocks are

accessed 1–2 times while in the cache, whereas the same percentile of instruction blocks are

accessed 10–15 times. This difference is mainly attributedto the fact that instruction memory

blocks are mostly read sequentially as blocks of instructions.

6.2.2 Impact on Reference Distribution

As noted above, random sampling is aimed at splitting the references stream into two com-

ponents — one consisting of long cache residencies, and another consisting of short transient

ones. In this section we conduct a qualitative analysis of the effectiveness of random sampling
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Figure 6.3:Comparison of the data references’ mass distributions in the filtered cache structure
and the regular cache structure for select SPEC2000 benchmarks using the ref input, for both
data (top) and instruction (bottom). The horizontal arrowsshow the median-to-median range,
and the vertical arrows show the false-∗ equilibrium point.

in splitting the distribution of memory references.

Figure 6.3 compares distributions of reference masses — thefraction of references serviced

by each residency length — of the filtered 16K cache and the original 16K direct-mapped

cache. Results are shown for select SPEC2000 benchmarks with Bernoulli probabilities of

0.05 for data streams and0.0005 for instruction streams. The probability selection is based on

the analysis described in Section 6.2.1.

Each plot shows three lines: the distributions for the direct-mapped cache and fully-associative

filter for the filtered design, and the original distributionfor a conventional direct-mapped cache

— which is the combination of the first two (this is the same distribution as the one shown in

Figure 3.2). The distributions for the filter and the cache account for residencies that are split

because the block was promoted to the cache — references to the block serviced while the
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block was in the filter are counted as an individual filter residency, whereas the references

serviced from the cache itself after the block was promoted are counted as a separate cache

residency. The median value of the two filtered distributions is marked with a down pointing

arrow. Invariably, the distributions show that the majority of references directed at the filter are

part of residencies much shorter than those in the direct-mapped cache proper, which in turn

serve the majority of the references. (Figures 6.4 and 6.5 display the naked data and instruction

distributions, respectively, for all SPEC2000 benchmarks’ reviewed).

The qualitative difference between the two resulting distributions is estimated using two

intuitive metrics: median ratio (marked with a horizontal double arrow) and false-∗ equilibrium

(marked with a vertical double arrow). Tables 6.1 and 6.2 list the two metrics’ values for all

SPEC2000 benchmarks data and instruction streams, respectively.

The first metric is the ratio between the median values of the cache and filter distributions:

ratio = cachemedian

filtermedian

. This metric is used to quantify the distinction between thetwo distribu-

tions, thereby evaluating the effectiveness of random selection to distinguish shorter residencies

— which should stay in the filter — from longer ones that shouldbe promoted into the cache

proper.

The median ratios for all benchmarks’ data streams are measured at50 − 104, with an

average ratio of∼320 (median∼180), with the instruction streams’ median ratio averaging

at ∼50,000 (median∼4,400). In practice, this result indicates that the median residency in

the direct-mapped cache is several orders of magnitude longer than the median residency in

its corresponding fully-associative for filter, demonstrating the effectiveness of the design in

splitting the original reference (mass) distribution.

The second metric is denoted as thefalse-∗ equilibrium, and is an estimate of false predic-

tions: Any given residency length threshold we choose in hindsight will show up on the plot as

a vertical line, with a fraction of the cache’s distributionto its left indicating the false-positives

(short residencies promoted to the cache), and a fraction ofthe filter’s distribution to its right

indicating the false-negatives (long residencies remaining in the filter). Obviously, choosing

another threshold will either increase the fraction of false-positivesand decrease the fraction

64



of false-negatives, or vice versa. The false-∗ equilibrium is a unique threshold that if chosen,

generates equal percentages of false-positives and false-negatives, thereby serving as an upper

bound for the overall percentage of false predictions.

For example, if we examinevortex’s data stream we see that the false-* equilibrium point

stands at a residency length of∼20 and generates∼6% false predictions (∼3% for the instruc-

tion stream). The false prediction rate for the cache unfriendly mcf data stream was found to

be∼22%, which although tolerable was among the highest values observed. This is caused

by the large number of short residencies in the original reference stream — which is actually

dominated by these residencies. These short residencies swamp the filter causing a dual effect:

the short residencies push blocks whose residencies can potentially grow to be long out of the

filter, while the random sampling algorithm statistically selects more short residencies because

of their sheer number. The result is consistent with other cache unfriendly benchmarks such

asswim (over 40% false predictions) andart (over 20% false predictions). Still, the overall

average percentage of false predictions for the data streams was found to be∼13%, with∼2%

for the instruction streams — a fairly good upper bound considering it is based on stateless

random sampling.
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Table 6.1:L1 data cache, selection probabilityP = 0.05: Median/Median ratios and false-∗
equilibrium values for all SPEC2000 benchmarks reviewed.

Benchmark Med-to-Med ratio False-∗ Equ. False-∗ @
164.gzip 840 6 / 94 23
175.vpr 90 12 / 88 12
176.gcc 480 11 / 89 8
181.mcf 26 22 / 78 2
186.crafty 350 5 / 95 19
197.parser 240 8 / 92 16
253.perlbmk 240 5 / 95 24
255.vortex 270 6 / 94 22
256.bzip2 1900 5 / 95 25
300.twolf 29 14 / 86 11
168.wupwise 180 8 / 92 20
171.swim 1.1 43 / 57 8
172.mgrid 3.6 12 / 88 14
177.mesa 600 5 / 95 32
178.galgel 57 15 / 85 10
179.art 140 23 / 77 3
187.facerec 48 15 / 85 16
188.ammp 58 12 / 88 14
189.lucas 4.1 26 / 74 8
301.apsi 840 6 / 94 16
Average 320 12 / 87∗ 15
Median 180 12 / 89∗ 16
∗ Average and median False-∗ equilibria values are calculated

independently and thus may not sum up to 100%.
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Figure 6.4:Comparison of thedata references’ mass distributions in the filtered cache structure
and the regular cache structure for all SPEC2000 benchmarks.
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Table 6.2:L1 instruction cache, selection probabilityP = 0.0005: Median/Median ratios and
false-∗ equilibrium values for all SPEC2000 benchmarks reviewed.

Benchmark Med-to-Med ratio False-∗ Equ. False-∗ @
164.gzip 5.5 e+3 3 / 97 9715
175.vpr 1.4 e+4 2 / 98 10298
176.gcc 2.2 e+4 3 / 97 2438
181.mcf 8 e+5 0 / 100 29946
186.crafty 1.7 e+3 1 / 99 320
197.parser 4.3 e+2 6 / 94 7995
253.perlbmk 6.3 e+2 6 / 94 1327
255.vortex 1.6 e+3 3 / 97 655
256.bzip2 7.3 e+3 0 / 100 9591
300.twolf 1.7 e+3 2 / 98 1429
168.wupwise 9.5 e+3 1 / 99 11865
171.swim 1.6 e+3 0 / 100 19332
172.mgrid 2.1 e+3 0 / 100 13748
177.mesa 2.1 e+3 9 / 91 5918
178.galgel 6.5 e+4 0 / 100 23124
179.art 4.6 e+4 0 / 100 11266
187.facerec 4.4 e+3 0 / 100 12051
188.ammp 5.9 e+3 6 / 94 8462
189.lucas 2.7 e+3 0 / 100 31174
301.apsi 1.8 e+3 3 / 97 1307
Average 5 e+4 2 / 97 10598
Median 4.4 e+3 2 / 99 9715
∗ Average and median False-∗ equilibria values are calculated

independently and thus may not sum up to 100%.
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Figure 6.5:Comparison of theinstruction references’ mass distributions in the filtered cache
structure and the regular cache structure for all SPEC2000 benchmarks.
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Another aspect of the reference distributions is the numberof references in each distribu-

tion, compared with the number of residencies served by the cache and the filter. Figure 6.6

shows the percentage of references serviced by the cache, compared with the percentage of

blocks promoted into the cache, for various probabilities.Considering the mass-count dispar-

ity we expect that promoting frequently accessedblocksinto the cache will result in a substan-

tial increase in the number ofreferencesit will service, and that promoting not-so-frequently

used blocks have a smaller impact on the number of referencesserviced by the cache. This

is indeed evident in Figure 6.6: when increasing the successprobabilities we see a distinctive

increase in the number of references serviced by the cache, until some level — indicated by the

horizontal line — where this increase slows dramatically and promoting more blocks into the

cache hardly increases the cache’s hit-rate. In our case this saturation occurs atP = 0.2 for
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the data andP = 0.05 for the instructions. Beyond these probabilities the promoted blocks are

mostly transient blocks and we start experiencing diminishing returns. Specifically, the chosen

probabilities insert an average of only∼33% of the data blocks into the cache proper, servicing

∼77% of the data references (∼35% /∼92% for instructions streams).

In summary, we see that random sampling is very effective in splitting the distribution of

references into two distinct components — one composed mainly of frequently used blocks,

and the other of transient ones.

6.3 The Wordline Look-aside Buffer

A fully-associative caching element like the filter, introduces long access latencies and in-

creased power consumption that are mostly caused by the fully-associative block lookup. Such

an element is commonly implemented using content-addressable-memory (CAM) serving as a

tag-store, and whose wordline are connected to the wordlines of an SRAM block, serving as the

data-store [14, 81], as shown in Figure 6.7 (left). Temporallocality only aggravates its impact

on performance as it suggests the expensive fully-associative lookups may be frequently re-

peated for a specific block. We therefore propose awordline look-aside buffer(WLB) to cache

recent lookup results. The design is shown in Figure 6.7 (right).

The WLB consists of a direct-mapped structure, mapping tagsof filter-resident blocks to

their location in the fully-associative buffer’s SRAM structure. The data contained in the WLB

for each tag is a bitmap whose width is similar to the number oflines in the filter — 32 lines

for a 2K filter. This allows for each WLB output bit to be directly connected to an SRAM

word-line without a decoder, offering a fast, low-power caching of CAM results. In fact, the

WLB structure is efficient enough to be accessed in parallel with the cache on every access,

eliminating the need for a costly CAM lookup on most filter accesses. If the WLB misses, the

CAM is accessed, and the result is fed back to the WLB during the ensuing SRAM access,

hiding the WLB update latency. Furthermore, the number of entries in the WLB can be much

smaller than the number of filter lines, as temporal localityalso exists in the filter. This section
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explores the WLB design space.

A basic question when exploring the design space of the WLB isto determine what may

be an effective size for the buffer. Figure 6.8 shows the stack depth distributions of filter ac-

cesses, for the different SPEC2000 benchmarks, as well as the average distribution over all

benchmarks. The various benchmarks are not individually marked as only the clustering of

distributions matters in this context, but it is interesting to note that the three benchmarks that

fall below the main cluster areswim, art, andcrafty. While the first two benchmarks are known

for their poor temporal locality, it seems the filtered design is very effective at splittingcrafty’s
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workload so the vast majority of blocks in the filter exhibit very poor locality (the design in fact

reducescrafty’s miss-rate by∼50%). Still, it is clear that overall the vast majority of accesses

pertain to recently used blocks — in fact, on average∼94% of data accesses are to stack depths

of 8 or less, out of a total of 32 lines in the filter. But a WLB consisting of 8 entries may

not be sufficient to simulate a stack depth of 8 accesses, because the WLB is a direct-mapped

structure, and is thus susceptible to conflicts. A WLB consisting of N entries can therefore

only approximatea stack of depthN . For this reason we have explored WLB sizes of 8 and

16 entries. In our experiments, we have found that using an 8 entry WLB achieves an average

of ∼78% hit-rate for the data stream (∼83% median) and over 97% for the instruction stream

(∼97% median) for a 2K filter. Doubling the WLB size to 16 entriesonly improves the average

data hit-rate to∼84% (∼89% median) and∼99% for the instruction stream (∼99% median),

but increased the dynamic power consumption by∼10% and the leakage by∼50% (with simi-

lar results for the 32K configuration). The conclusion was that although an 8-entry WLB loses

performance to cache conflicts, its hit-rate is still good, especially given that doubling the size

of the WLB to 16 entries only increases its hit-rate by a few percents.

We have therefore used an 8 entry WLB in our power and performance evaluation, elimi-

nating almost 80% of the costly filter CAM lookups for the datacache, and 98% of those in

the instruction cache. Given that the hit-rate for the main cache stands at almost 80% for the

data stream and over 90% for the instruction stream (Section6.2.2), these results yield that on

average only∼4% of the data references and∼0.1% of the instruction references still initi-

ate expensive fully-associative lookups. Furthermore, the small size of the WLB results in a

negligible power consumption, and since its access time is shorter than that of the main direct-

mapped cache, the WLB can be accessed in parallel to the main cache, reducing the average

fully-associative filter’s latency even further.

The WLB thus demonstrates that harnessing temporal locality we can dramatically reduce

a fully-associative filter’s power consumption, while improving its performance — without

losing the fully-associative semantics.
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IL1/DL1 cache micro-architecture
size 16/32 K fetch / issue / decode 4
line size 64 B functional units 4
assoc. DM window size 128
latency 1 cy.∗ Load/Store queue 64

filter branch predictor
entries 32 meta-predictor with 64K-entry
assoc. full bimodal and gshare, and a
latency 5 cy. similar size meta table.
CAM lat. 3 cy. 4K branch target buffer (BTB).
SRAM lat. 1 cy. L2 cache
WLB lat. 1 cy. design unified
WLB entries 8 size 512 K
WLB line 32 b line size 64 B

memory assoc. 8
latency 350 cy. latency 16 cy.

Bernoulli probabilities
Size Data Instruction
16K P = 0.05 P = 0.0005

32K P = 0.1 P = 0.0005

∗ L1 latency is 2 cycles for set-associative and fully-associative caches

Table 6.3:micro-architecture and cache configurations used in the out-of-order simulations.

6.4 Impact on Power and Performance

The reduced miss-rate achieved by the random sampling design, combined with a low-latency,

low-power, direct-mapped cache, potentially offers both improved performance and reduced

power consumption. Augmenting the fully-associative filter with a WLB reduces the overhead

incurred by the filter, further improving efficiency.

Using the SimpleScalar toolset [4] for out-of-order simulations we have compared the per-

formance achieved by direct-mapped filtered caches againstvarious set-associative caches. Our

micro-architecture consisted of a 4-wide superscalar design, whose parameters are listed in Ta-

ble 6.3. Timing estimates are based on the CACTI 4.1 timing model: the direct-mapped cache’s

hit latency was set to 1 cycle, as is the lookup latency in the WLB, as well as the SRAM access

time. The latency of a CAM lookup is estimated at 3 cycles.

Figure 6.9 shows the timing diagram of the different components in the proposed cache

design. The main cache and WLB are searched in parallel during the first cycle. If the main

cache misses, the result of the WLB lookup determines the filter lookup path: if the requested
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Figure 6.9:Timing diagram of the cache design, based on the microarchitectural parameters
listed in Table 6.3. Down pointing arrows indicate lookup hits, while up pointing arrows indi-
cate lookup misses. Based on the results described in Section 6.3, almost 96% of all L1 hits are
resolved within 2 cycles.

block is found in the WLB then no CAM lookup is necessary, thusenabling a fast path by

accessing the SRAM directly, and resulting in a 2 cycles total filter latency. Only if both the

direct-mapped main cacheand the WLB miss, the filter’s slow path is needed and the CAM is

looked up.

In addition, the hit latency incurred by set-associative caches was set to 2 cycles. For fully-

associative caches we used an unrealistically fast 2 cycle latency — same as set-associative

— placing both on a similar baseline, thus focusing on the reduced miss-rates achieved by

fully-associative caches.

Figure 6.10 shows the IPC improvement achieved by a random sampling cache over a sim-

ilar size 4-way associative cache, for the SPEC2000 benchmarks. The figure shows consistent

improvements (up to∼35% for a 16K configuration and∼28% for 32K one), with an average

IPC improvement of just over 10% for both 16K and 32K configuration.

While the results are consistent, it is clear that benchmarks suffering from conflict misses

enjoy better performance gains. This is most pronounced forapsi that includes a large portion

of short residencies — over 70% of all residencies consist ofa single reference, as shown in

Figure 3.4. Supporting this is the fact that doubling the cache size to 32K — thus reducing con-
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Figure 6.11:Average IPC improvement for 16K and 32K direct-mapped filtered caches over
common cache configurations.

flicts by increasing the number of sets — decreases the performance gains for this benchmark,

while other benchmarks remain largely unaffected.

Figure 6.11 compares the average performance achieved with16K and 32K random sam-

pling caches to that of common cache structures. It shows that a direct-mapped random sam-

pling filtered cache achieves significantly better performance than a similar size set-associative

cache. Moreover, a random sampling cache can even gain better overall performance than

larger, more expensive caches: a 16K-DM random sampling cache yields∼5% higher IPC

than a 32K-4way cache, and a 32K configuration outperforms a 64K-4way by over 7%. Like-

wise, using the extra 2K for a filter yields better performance than using them as a victim buffer,
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indicating that even such a relatively large victim buffer may be swamped by transient blocks.

Interestingly, the IPC improvement is similar when comparing the 16K-DM random sam-

pling cache to both a regular 16K-DM cache and a 16K-4way set-associative cache, indicating

similar performance achieved by the latter two. The reason for this similarity is that while

the direct-mapped cache suffers from a higher miss-rate compared to the 4-way set-associative

cache, it compensates with its lower access latency. This iseven more evident when considering

the larger 32K and 64K caches, where the direct-mapped configuration takes the lead. When

doubling the cache size from the 32K to 64K the number of cachesets doubles, thus reducing

the number of conflicts and allowing the direct-mapped cache’s lower latency to prevail.

Next, we compare the power consumption of the random sampling cache with that of the

other configurations. Using independent random sampling eliminates the need to maintain

any previous reuse information, reducing the power consumption calculation to averaging the

energies consumed by the combination of a direct-mapped cache, a fully-associative filter, and

a small, direct-mapped WLB. All power consumption estimates are based on the CACTI 4.1

power model [75] (which models CAMs for fully-associative structures).

The average dynamic energy consumption is simply the aggregate energy — the sum of

number of accesses × access energy

for each component — divided by the overall number of hits. Even simpler, the leakage power

consumed by the random sampling cache is the sum of leakage power consumed by all com-

ponents.

Figure 6.12 shows both dynamic read energy and leakage powerconsumed by the random

sampling cache, compared to common cache configurations (same as those in Figure 6.11).

Obviously, the power consumed by the random sampling cache is higher than that of a simple

direct-mapped cache, because of the fully-associative filter: up to∼30% more dynamic energy

and under 15% excess leakage power for a 16K random sampling cache (and just over half that

for a 32K cache). However, when comparing a random sampling cache to a more common
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Figure 6.12:Relative power consumption of the random sampling cache, compared to common
cache designs (lower is better), for a 70nm process.

4-way associative cache of a similar size, the 16K random sampling cache design consumes

70%–80% less dynamic energy, with only∼5% more leakage power. The 32K configuration

yields 60%-70% reduction in dynamic energy, with no increase in leakage.

However, the main contribution of a random sampling cache isapparent when compared

to a set-associative cache double its size: both the 16K and 32K random sampling caches

consume 70%-80% less dynamic energy, and 40%-50% less leakage than 32K and 64K 4-

way set-associative caches, respectively, while still offering better performance, as shown in

Figure 6.11.

In summary, this chapter shows that a random sampling direct-mapped cache backed up by

a fully-associative filter, offers performance superior tothat of a double sized set-associative

cache, while consuming considerably less power — both dynamic and static. This suggests that

adding just a small buffer and a trivial insertion policy is more efficient than blindly doubling

cache size.
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Chapter 7

Related Work

The concepts presented in this work cover a variety of research topics covered by the different

subsections in this review. The detailed review is precededby a general overview of the work

and its related topics.

The fundamental base of the research presented in this thesis is the identification of the

Mass-Count Disparityphenomenon in L1 workloads, and its implications — the skewed dis-

tributions of memory access patterns, and specifically the partitioning of the reference stream

into two parts, with the minor part addressing short cache residencies, and the major part ad-

dressing long cache residencies. But the phenomenon is not unique to cache workloads, and in

fact present in different scientific disciplines, discussed in Section 7.1.

The partitioning of the reference stream into frequently used blocks (long cache residencies)

and transient blocks that experience short term bursty access patterns (short cache residencies)

suggests that reference streams commonly experience the duality of frequency vs. recency. The

observation that memory access patterns may display different types of locality, possibly war-

ranting different types of caching policies, has already motivated studies that tried to identify

the frequently used blocks. This duality is manifested by the co-existence of two disjoint re-

placement policies, namely theleast-recently-used(LRU) and theleast-frequently-used(LFU)

policies [32]. Attempts to combine characteristics from multiple replacement policies normally

yield more complex policies, but a recent study showed a simple method to combine multiple
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separate replacement policies into a single meta-policy that chooses the best single policy for a

momentary workload. Qureshi et al. explored several variations onCache Set Dueling, where

a small number of cache sets are allocated as placebo groups,each managed by a different

replacement policy [55, 56, 54]. The cache controller tracks how each of the placebo groups

performs, and switches the remaining bulk of cache sets to operate using the best performing

policy. Although this adaptive mechanisms is currently only suitable for L2 caches because of

its associated overheads, such meta-policies holds promise for future cache designs.

Interestingly, combining different replacement policieshas been attempted in other caching

disciplines, such as the software-based caching that is used in operating systems’ buffer-caches

[68]. Such software-based designs have the advantage of being able to incur a much more

substantial runtime overhead. This advantage in fact makesbuffer-cache studies an interesting

source through which one can gain new insights and perspectives about caching. Section 7.2

reviews several buffer cache replacement algorithms.

The extremely skewed access distributions described aboveenables probabilistic sampling

to be successfully employed in this work as an easy-to-implement mechanism that can success-

fully separate short and long term cache residencies, allowing them to be served by different

cache structures using the dual-cache paradigm. Using probabilistic sampling for cache filter-

ing is a new idea, and two studies published in recent years are reviewed in Section 7.3.

But probabilistic filtering is only one possible method to partition the memory reference

stream. A myriad of techniques to partition the memory reference stream have been proposed

in the past, tuned to different types of locality — with most targeting dual-cache designs [65].

Different partitioning methods are reviewed in Section 7.4. However, it is important to note

that all the reviewed methods rely on maintaining block reuse information, which in turn war-

rants designing a special hardware mechanism to store that information, thereby incurring both

energy and space overheads. In contradistinction, the probabilistic partitioning proposed here

is completely stateless, and does not depend on maintainingany reuse information.

Finally, the cache design presented above makes use of both direct-mapped and fully-

associative structures. Direct-mapped caches are known for their low-latency and low-power
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characteristic, but also for their susceptibility to conflict misses. The opposite can be said about

fully-associative caches, which suffer no conflicts (and hence lower miss-rates) at the cost of

increased latency and power overheads. These combinationsmotivated many researchers to

overcome the two structures’ inherent deficiencies in orderto get the best of both worlds. These

designs are reviewed in Section 7.5.

7.1 Mass Count Disparity

Themass-count disparityphenomenon identified above in L1 cache workloads is surprisingly

not uncommon, and is an artifact of heavy-tail distributions. Evidence of inverse correlations

between the popularity of object sizes and their dominance in the aggregate size of the sample

space have been reported in various fields of study. One of thefirst reports was made by Lorenz

in 1905, when he described inequalities in the distributionof wealth [43], in which most people

are poor, but the rich govern the majority of the wealth. This(now) well-known economical

phenomenon was thus used to explain mass-count disparity inChapter 3. More relevant to this

research, inverse correlations were reported in several aspects of computer systems. Among

others, Irlam showed most files on UNIX file systems to be small, with most disk space occu-

pied by a small number of very large files [30]; Broido et al. reported several different inverse

correlations in IP traffic, such as that only a fraction of allInternet service providers (ISPs)

are involved in up to 90% of the routes observed, and that a fraction of all autonomous ad-

ministrative systems may contribute up to 95% of the traffic on a link [8]; Harchol-Balter and

Downey found UNIX processes to be mostly short, but that mostof the CPU time goes to a

small number of long-lasting processes [26].

Somewhat surprisingly, it was not until recent years that these supposedly disjoint occur-

rences of inverse correlations were characterized and generalized as a single statistical phe-

nomenon. The two seminal papers describing theMass-Count Disparityphenomenon were

published by Crovella [16] and Feitelson [20]. Crovella identified that several supposedly dis-

joint examples of inverse correlations are in fact occurrences of a single statistical phenomenon,
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and coined the termMass-Count Disparityto describe it. Feitelson developed this concept by

introducing quantitative metrics to evaluate the disparity. These metrics, described in Chapter 3

include theW1/2 metric that evaluates the aggregate mass of the smaller halfof the samples;

theN1/2 metric evaluating the fraction of samples dominating half of the aggregate mass; and

theJoint-Ratiometric as a generalization of the proverbial 80/20 rule thatestimates the equi-

librium between the count and mass distributions (both Irlam [30] and Broido et al. [8] in fact

used a similar metric, referred to in the latter as thecrossover point).

7.2 Strategies for Operating Systems’ Buffer Caches

An operating system’s buffer cache [68] shares similar goals with a hardware cache, e.g. to

cache items that are likely to be used in the near future, in order to eliminate long-latency

accesses to a secondary storage. Despite different storagefacilities, buffer cache replacement

policies can inspire hardware cache replacement policies,especially given their relaxed timing

requirements. Therefore, reviewing some of the buffer cache replacement policies proposed is

useful to gain some insights about caching in general.

Most notable of these is theadaptive replacement cache(ARC) by Megiddo and Modha

[45]. ARC combines the frequency and recency of reuse metrics — used in the LFU and LRU

eviction policies, respectively, and common in cache design — into a single mechanism. By

managing two lists, one for each metric, this approach yields a dynamic partitioning of the

buffer cache between LRU and LFU.

Lee et al. show the correlation between frequency and recency and the probability that

a buffer is re-accessed, and build an analytical model for buffer replacement, using a weight

function to weigh each buffer’s reuse probability [42]. Theobservations on which this policy

is based are that a buffer might have been used frequently in the recent past, but a change in

the working set deems it unnecessary, thus making the LFU metric counter-productive. On

the other hand, a buffer might have been accessed recently, but only once and is not to be

accessed again, in contradiction with the rationale behindLRU. The proposed weight function
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thus utilize a combined recency and frequency metric that weighs each previous access to a

buffer with its age. The authors show that this weight function can model both LFU and LRU,

and a variety of algorithms in between.

Tomkins et al. advocate informed buffer prefetching by using programmer hints to know

which pages to prefetch [77]. The authors try to combine bothTIP2 [51] and LRU-SP [11]

algorithms and overcome what seems to be the major drawbacksof each — the aggressive

prefetching of LRU-SP that sometimes fetches pages that won’t be needed, and the limited

prefetching horizon of TIP2 which limits the number of prefetched pages to the number of

”hits” spent by a single ”miss”.

Jiang and Jhang tried to balance frequency and recency in theLeast Inter-Reference Set

(LIRS) buffer cache policy [34]. LIRS tries to improve the common LRU by accounting for

access frequency. This is achieved by measuring how many times other buffers were accessed

between each two consecutive accesses to a certain buffer — defined as theinter-reference

recency(IRR) metric. The buffers that were accessed more frequently — i.e. ones with a low

IRR count — are not considered for eviction.

As noted above, although these policies target a software based cache whose requirements

are much more relaxed than a hardware based cache. The improved performance achieved

by these policies demonstrates the promise of combining caching policies tuned to different

types of locality, and thus motivate further exploration aimed towards lowering their overheads,

making them feasible for use in processor caches.

7.3 Probabilistic Filtering

Skewed distributions, such as those described by mass-count disparity, naturally lend them-

selves to the design of probabilistic sampling algorithms.Namely, when the distribution is

skewed, randomly selecting elements from the sample space will quickly identify the element

groups dominating the distribution. Although the simplicity of such designs is appealing, only

two other cases are known to the author in which sampling was used to enhance performance
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of hardware caches.

Behar et al. employed this same principle to reduce the powerspent on trace generation

by using periodic trace sampling [5]. This was based on the observation that the majority

of execution time is spent executing a small number of traces(the proverbial 90/10 rule for

instructions traces [27]), thereby generating only everyN th trace is sufficient to quickly find

the most useful traces. The 90/10 effect described by the authors only demonstrates that the

mass-count disparity is also common in trace generation.

Qureshi et al. observed that most L2 blocks are never reused,and suggested inserting most

blocks into the LRU position (rather then to the MRU as commonly practiced), and infrequently

select a random block insertion to be inserted into the MRU position [54].

Skewed distributions can therefore be used in different aspects of hardware caching to im-

prove performance and save power. The application of probabilistic sampling to filter a work-

load that exhibits mass-count disparity — presented in thisresearch — was in fact inspired by

the study conducted by Behar et al. Nevertheless, the use of sampling is the only commonality

between the two studies, as the current study focuses on a different workload and emphasizes

the reasoning behind the effectiveness of sampling — with the combination of the two traits

warranting a completely different design. Furthermore, asknown examples for the use of sam-

pling in processor caches have only been published in recentyears, it is the author’s hope that

this principle will gain more popularity in the coming years. Anecdotally, probabilistic sam-

pling has already been used in software-based web caching strategies: Starobinski and Tse use

probability to decide whether to promote or demote a document in the cache [73].

7.4 Partitioning the Reference Stream

Dual-caches have been extensively studied in the past as a design concept that can be used to

accommodate different types of locality. Such designs differ mainly in the types of locality

examined (temporal vs. spacial, popular blocks vs. transient ones, etc.), and the corresponding

criteria used to partition the reference stream [65]. This section therefore surveys several such
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designs.

González at al. suggested that the cache be partitioned into two parts, one each for handling

data that exhibit spatial and temporal locality [23]. Basedon previous reuse information, their

predictor classifies memory accesses to either scalars references (temporal locality) or vectors

references (spatial locality).

The work of Sahuquillo and Pont involves a filter used to optimize the hit ratio of the

cache [64, 63]. The authors associate a reference counter with each cache line promoting the

most popular blocks into a small L0 cache. A similar mechanism is proposed by Rivers and

Davidson in theirnon-temporal streaming(NTS) cache, which also base caching decisions in

a dual-cache structure on a reference count [59].

Kin et al. focused on reducing cache power consumption, and used an L0 structure to ac-

commodate the most popular blocks while maintaining the L1 in low-power mode [40]. The

power reduction is in fact traded off for performance as the L1 has to be re-powered on every

access. In a followup work by Memik and Mangione-Smith, the filtering takes place between

the L1 and L2 caches [46].

Karlsson and Hagersten use a filter to audit whether a block would have been replaced

before its next access [39]. If the reuse distance is short enough, the block is promoted to

the cache. This mechanism requires keeping a last-accessed-timestamp for every block in the

cache, and comparing it on every replacement.

Johnson and Hwu used a bypass buffer for all blocks only allowing most frequently used

blocks into the cache proper [36]. AMemory Access Table(MAT) is used to group contigu-

ous memory blocks experiencing similar cache behavior. This is quite costly in hardware as it

requires maintaining access frequency information for allmacro-blocks. Jalminger and Sten-

ström followed the same rationale, but tracked memory access patterns using a design inspired

by a two level branch predictor [33].

Chang et al. effectively designed an dual-cache mechanism by partitioning the cache of the

System/370CPU into an on-chip and off-chip parts, with emphasize on reducing the hit latency

of the MRU block in a cache set to 1 cycle [13]. They do so by storing information in the TLB
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and accessing it in parallel with the cache lookup.

Rosner et al. employed the dual-cache paradigm in the designof trace caches, either to filter

out infrequently used traces, or to avoid generating them inthe first place [62]. In this paper,

the authors explore several trace filtering techniques which rely on past block usage to predict

whether it would be beneficial to promote a trace from a fully-associative filter into the trace

cache proper.

Unlike the previous methods that characterize a memory block based on its address, some

studies used the program counter (PC) of the accessing instruction as a means to characterize

the memory access. Tyson et al. showed that a small fraction of memory access instructions

generate the majority of misses [79]. They therefore proposed to avoid caching memory lo-

cations when accessed by these instructions. Rivers et al. extended this work to create the

program counter selective(PCS) cache [60]. In this extension, the PC based predictionis used

to decide into which part of a dual-cache structure a memory block should be inserted.

In a comparative study, Tam et al. compared several approaches to the reference stream

partitioning (required for dual-cache designs), in order to assess their potential [74]. The tech-

niques compared were NTS [59], PCS [60], MAT [36] and thepseudo-optnear-optimal re-

placement scheme for dual-caches [71]. The conclusion fromthis comparison is that effective

address based approaches such as NTS outperform macroblockgrouping (MAT) and PC-based

(PCS) designs. Still, the authors showed that there is stillmuch room for improvement as the

near optimal algorithm outperform all others by a large margin.

Some partitioning approaches focus on partitioning the memory blocks themselves, based

on the observation that not all words in a block necessarily exhibit the same types of locality.

Fetching only partial blocks into the cache can therefore save both precious cache and memory

bandwidth resources.

Pujara and Aggarwal noticed that despite the prevalent method of caching memory blocks

as a whole to employ spacial locality, the common access pattern only uses a small number of

the words in a block [53]. This effect dramatically reduces both L1 cache and bus utilization

— defined as the ratio between the number of memory words used by the processor and the
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number of words brought into the cache. The authors have thusdevised a mechanism that

predicts which words in a memory block are likely to be used, and only fetches these into the

L1 cache. This predictor tracks accesses to individual words in the cache, and based on the

words accessed in recently evicted blocks predicts which words should be brought into the

cache.

Park et al. used a spatial buffer to observe usage at different granularities [50]. Then when

a word is referenced, only a small sub-line including this word is promoted to the temporal

cache.

Qureshi et al. addressed a similar phenomenon in L2 caches, and have taken an opposite

approach [57]. Rather than preventing the fetching of unused words, they introduce a mech-

anism called “Line Distillation” that identifies unused words in the cache and evicts them to

save cache space. Their approach however is less appropriate for L1 caches at it still wastes

precious bus bandwidth to fetch the full memory block.

The main problem when evaluating a dual-cache design is the lack of an optimal eviction

policy with which a design can be compared. In an effort to develop an optimal replacement

policy, Srinivasan and Davidson developed a near optimal policy, namedpseudo-opt[71]. The

policy is based on Belady’s optimal replacement for simple caches and tries to move the blocks

that will be used farthest in the future from the main cache tothe auxiliary buffer (exchanging

blocks between the two structures if needed). The authors describe cases in which such a policy

is sub-optimal, but were not able to describe an optimal policy. A few years later, Brehob et

al. showed that an optimal replacement policy for dual caches where one of the components is

fully-associative and the other is not is indeed NP-Hard [7].

As described above, all the structures reviewed require maintaining reuse information, thus

complicating the filtering hardware. In contradistinction, the random sampling cache proposed

in this study is purely probabilistic and is therefore stateless, thus not requiring any per-block

information other than its mere presence in either the cacheor the filter.
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7.5 Efficient Use of Direct-Mapped and Fully-associative Caches

Direct-mapped caches are faster and consume less energy than set-associative caches typically

used in L1 caches [28, 38]. However, they are more susceptible to conflict misses than set-

associative caches, thus suffering higher miss-rates and achieving lower performance [32]. On

the other hand, fully-associative caches offer lower miss-rates but do so with increased tim-

ing and power overheads caused by the fully-associative lookup, commonly performed using

content addressable memory(CAM) [81]. These issues motivate researchers to augment the

classic designs in order to overcome their deficiencies and enjoy the inherent advantages of

these diverse structures.

In one of the first attempts to overcome direct-mapped caches’ susceptibility to conflicts,

Jouppi presented the the victim cache and stream buffers [37]. The design includes a small

auxiliary cache used to store cache lines that were evicted from the main cache. This helps

reduce the adverse effects of conflict misses, because the victim buffer is fully associative and

therefore effectively increases the size of the most heavily used cache sets. In this case the

added structure is not used to filter out transient data, but rather to recover core data that was

accidentally displaced by transient data. By virtue of being applied after lines are evicted, this

too avoids the need to maintain historical data. Walsh and Board extended Jouppi’s victim

cache [80]. They also proposed a dual design with a direct-mapped main cache and a small

fully-associative filter, but in their design the referenced data is first placed in the filter, and only

if it is referenced again it is promoted to the direct-mappedcache — thus avoiding polluting

the cache with data that is only referenced once. Walsh and Board’s design can be regarded as

a degenerate version of the design presented in this thesis (Chapter 6): our design both allows

for a block to be inserted into the cache after the first memoryreference, as well as allowing

blocks to be served from the filter for more than a single memory reference.

Column-associative caches presented by Agarwal and Pudar improve the hit-rate of a direct-

mapped cache by using two different hash functions for mapping blocks into the cache [3].

Specifically, if a conflict exists in the original mapping, ituses an alternative mapping function
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and stores the block in the alternative location. Because ofthe double hashing, this design is

also known as a hash-rehash cache. While eliminating most conflicts, this approach incurs a

timing overhead as the cache has to be accessed in two phases when a conflict occurs. Topham

et al. used a slightly different approach that uses probabilistic mapping rather than double

hashing to achieve the same goal [78].

Theobald et al. generalized some of the aforementioned mechanisms that partition the cache

in order to reduce the number of conflict misses into a generalframework namedhalf-and-half

caches[76]. The authors specifically addressedvictim caches[37], column-associative / hash-

rehash caches[2, 3] and MRU caches [13].

Another mechanism employing the dual-cache paradigm to overcome conflict misses was

theassist cachepresented by Chan et al. [12]. The function of the assist cache is to compensate

for the fact that the main cache is direct mapped, thus makingit vulnerable to address conflicts.

Unlike the victim cache, the fully-associative assist cache is placed between the direct-mapped

cache and the bus such that blocks are inserted into the assist cache before they are moved into

the cache itself, rather than the post-eviction approach used in victim caches. This mechanism

was included in the commercial HP-PA 7220 CPU, and thereforeserves as a guideline for what

can be implemented in practice (fully associative buffer containing 64 lines of 32 bytes each).

A different approach to overcome conflict misses in direct-mapped caches was made by

Mcfarling [44], in his minimalistic, bypass-only approach, dynamic exclusion cache. Here

cache lines are augmented with just two state bits, the last-hit bit and the sticky bit. In particular,

the sticky bit is used to retain a desirable cache line ratherthan evicting it upon a conflict; the

conflicting line is served directly to the processor withoutbeing cached. However, this approach

is limited to instruction streams and specifically to cases where typically only two instructions

conflict with each other.

A more recent study by Zhang presented theB-Cache, addressing cache conflicts by ac-

cessing the direct-mapped cache using two decoders, one of which is programmable [82]. The

replacement algorithms utilizes the programmable decoderto alleviate excess replacements on

any single cache set and distribute the load evenly among thedifferent sets, thereby preventing
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most conflicts. The use of a programmable decoder eliminatesthe need for accessing the cache

in two phases in the case of a conflict, as is required by the hash-rehash approach.

Except for the B-Cache, all studies trying to overcome conflict misses in direct-mapped

cache were performed over a decade ago, and have never reallybecome mainstream. But recent

concerns about processors’ power consumption, aggravatedby the shift towards on-chip paral-

lelism and the resulting replication of caches, brings renewed attention to power consumed by

caches relative to that consumed by the entire processor. Inthis context, direct-mapped caches’

low-power (and low-latency) characteristics makes them a very attractive solution. Given an

effective partitioning of the reference stream, only the most popular blocks can be inserted into

the direct-mapped cache. The mass-count disparity exhibited in L1 reference stream suggest

such designs will only insert a fraction of all memory blocksinto the direct-mapped cache, but

will still enjoy the low-power and low-latency traits in most memory references.

A similar problem exists on the opposite side of the cache design spectrum, where fully-

associative caches yield fewer misses than other designs (as they are not susceptible to conflicts

at all), but do so with increased timing and power overheads.The research presented in this

thesis addresses the issue using the wordline-lookaside-buffer (WLB) that harnesses temporal

locality to avoid costly fully-associative lookups. Another interesting study addressed this issue

by combining both hardware and software to speed up accessesto a fully-associative cache.

Hallnor and Reinhardt proposed using the hardware cache’s tag-store to hold the mappings

only for cache resident block that are likely to be referenced in the near future, whereas the

rest of the mappings are stored in a list oriented, software managed map [24]. When data is

accessed, its location in the cache is first searched in the hardware tag-store, and if that fails the

lookup continues in the software based tag-store.

The main advantages of the WLB over Hallnor and Reinhardt’s scheme is that recent ac-

cesses do not require set-associative lookups at all (as theWLB is direct-mapped), thus con-

suming considerably less power. In addition, if the looked up block has not been accessed

recently, the WLB scheme falls back to normal fully-associative lookup, whereas Hallnor and

Reinhardt’s scheme falls back to a much slower serial software lookup.
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Chapter 8

Conclusions

Processor caches have been an area of active research for decades. Nevertheless, additional

work is still important due to the continuing gap between processors and memory. In fact, the

problem is expected to intensify with the advent of multicore processors, due to the replication

of L1 caches for each core and the increased pressure on shared L2 caches.

One way to continue and improve is by taking cues from workload patterns. This research

has shown that memory references display mass-count disparity, with a relatively small frac-

tion of memory blocks receiving a relatively large fractionof the references. But this skewed

distribution is at odds with the classic homogeneous definition of working sets, that puts all

memory blocks in the working set on an equal footing. The author therefore proposes the core

working set framework as an extension and refinement of Denning’s working set. This formal

framework uses logical predicates to distinguish between the more important subset of the data

and the rest. Such a distinction, in turn, motivates dual cache structures that handle core and

non-core data differently.

Harnessing the mass-count disparity phenomenon, this research describes the design of a

reuse predictor that classifies cache residencies based on their expected length. The predictor

uses independent random selection of references with a low success probability, thereby mostly

selecting long residencies. The use of independent selection eliminates the need to maintain

any past-use information. This also enables easy integration with other predictor types, such as
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those addressing memory level parallelism and the criticality of specific references for perfor-

mance [55].

The reuse predictor is then used in the design of a random sampling cache, that uses prob-

abilistic sampling of thereferencedistribution to split theblockdistribution into its two com-

ponents — frequently used blocks that are to be served from a fast, low-power, direct-mapped

cache, and transient blocks served by a fully-associative filter, thus preventing them from pol-

luting the cache and causing conflict misses.

After examining the design space it was found that using a constant Bernoulli success prob-

ability P per specific cache configuration is very effective for most benchmarks, with no need

for adaptive tuning. For example, when using a 16K direct-mapped cache and a 2K filter, the

valuesP = 0.05 andP = 0.0005 are found to be best choices for the data and instruction

streams, respectively.

To reduce the added overheads of using a fully-associative buffer, it is shown that most

fully-associative CAM lookups can be avoided by using a direct mappedwordline look-aside

buffer (WLB) that caches recent fully-associative lookups. A WLB with only 8 entries was

sufficient to avoid∼80% of the lookups for a 32 entry CAM.

The random sampling cache design was able to effectively utilize a 16K direct-mapped

structure for both L1 caches yielding up to∼35% improvement in IPC, with an average of

∼10% over all benchmarks — better than a double size, 4-way set-associative conventional

cache. Moreover, this L1 design dramatically reduces the overall power consumption — both

16K and 32K caches were shown to perform better than 32K and 64K caches, respectively,

while reducing the dynamic power consumption by∼70%–80% and the leakage by over 40%.

With the ubiquitous use of set-associative L1 caches in modern processors the author believes

these results can contribute to future processor design andimplementation as the proposed

design offers a win-win situation — achieving better performance while consuming less power.
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