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Abstract

The increasing gap between processor and memory speedsl] as the introduction of multi-
core CPUs, have exacerbated the dependency of CPU perfoernarthe memory subsystem.
This trend motivates the search for more efficient cachinghaeisms, enabling both faster
service of frequently used blocks and decreased power ogotgan.

This thesis explores the temporal locality phenomenon iaffort to devise such efficient
caching mechanisms. Specifically, it is shown that while ideg’'s working sets model puts
all memory blocks in a working set on an equal footing, a drgrdifference in fact exists
between the usage patterns of frequently used data anddahbghtly used data. This thesis
therefore extends Denning’s definition with tb@eworking sets model, employing predicates
to identify the most important subset of blocks in a workieg s

This model forms the base for a probabilistic predictor ttaat distinguish transient cache
insertions from non-transient ones. It is shown that theslotor can identify a small set of data
cache resident blocks that service most of the memory matese This predictor is then used
in the design of an L1 dual-cache that inserts only freqyeamged blocks into a low-latency,
low-power direct-mapped main cache, while serving thesétite blocks from a small fully-
associative filter. The design further employs a novel, latency, low-power fully-associative
element, that uses a small direct-mapped lookup table teecacently accessed blocks in the
filter — thereby eliminating most of the costly fully-assakve lookups.

This L1 dual-cache design demonstrates that a 16K direppethL1 cache, augmented
with a fully-associative 2K filter, can outperform a 32K 4ywv@ache, while consuming 70%-

80% less dynamic power and 40% less static power.
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Chapter 1

Introduction

1.1 Background

The notion of a memory hierarchy is one of the oldest and mgiguitous in computer design,
dating back to the work of von Neumann and his associateeid®0’s. The idea is that a
small and fast memory will cache the most useful items at amyngtime, with a larger but

slower memory serving as a backing store [27, 32, 70].

As the essence of caching is to identify and store those tatesithat will be most useful
in the immediate future [6], caches need to predict whicmgevill be used in the immediate
future. These predictions ubiquitously rely on the priteipf locality, which states that at
any given time only a small fraction of the whole address spaaised, and that this used
part changes relatively slowly [19]. Denning formalizesthsing the notion of &vorking set
defined to be those items that were accessed within a cedaiber of instructions. The goal

of caching is thus effectively to keep the working set in thehe.

The effectiveness of caching thus relies on the existenemKing sets, as these represent
a subset of all memory blocks that are in current use. But ingréets are not homogeneous, as
some memory blocks are more popular than others [35]. Thestgeneous nature of working
sets raises the question whether caches should employradeteous design rather than the

common random-access paradigm, as processors can bettediniiore popular blocks in the
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working set (and in general) are treated beneficially by #ehe by serving them faster. One
way to give preferential treatment to the more importanaddéments is to usedual cache
structure. Such structures partition the cache into twéspand use them for data elements
that exhibit different access patterns [65ln many cases, data elements can also move from
one part to the other. For example, data may first be storedhod-term buffer, and only data
that is identified as important will be promoted into the ldegm cache. The identification of
a certain item as important can be done based on the referémeeeived while in the short-
term buffer: if it is referenced again and again, it is idkedi as part of the core and promoted.
The concept of dual-cache designs has been extensivelgrerpin the past, specifically in
the context of filtering memory references [12, 33, 36, 37,489 46, 62, 64, 65, 63, 79]. But
while dual-cache designs offer flexibility, the filteringrmemory blocks has proven difficult as
it ordinarily requires maintaining information about mempdlocks’ previous usage patterns
in order to predict future use. The mechanisms required pteément the filtering, and specif-
ically those involved with maintaining past reuse inforroat have thus been deemed largely
impractical, due to the number of transistors they requitigh(the corresponding die area) and
the power they consume.

The increasing gap between processor and memory speedsssethin recent years has
exacerbated the CPU’s dependency on the memory systenmparfoe — and especially that
of L1 caches with which the CPU interfaces directly. One ltesiuthis ongoing trend is the
increase in the capacity of L1 and L2 caches, in an effort tdger the memory-processor
gap and improve overall system performance. This improven®wever, also increases the
power consumed by the caches — estimated at more than 10% o¥énall power consumed
by a general purpose CPU [31], and up to 40% for embeddedsy$6.

Recent years have seen a shift in processor design, as tleasecn CPU clock speeds
witnessed for some 30 years have largely ground to a halttalgseveral inherent physical
limitations [52, 61, 81]: example limitations include widelays preventing the propagation of

fast clock signals uniformly to all parts of the chip; shiimd Silicon features made possible by

we differentiate this from aplit cache structure, where one part is used for data and thefothiestructions,
but some authors use the terms interchangeably.



new process manufacturing improvements hindered tramgjate isolation and increase power
leakage; and increased clock frequency drove designemmpiog longer, more complicated
pipelines, thwarting most of the theoretical performanmezeéase made possible by the faster

clock frequency.

These shifts in technology have increased processors’asvesity and have elevated pro-
cessor power consumption into a major concern. Today, tiepperformance tradeoff is
ever more important. This trend motivates researchers s@maenore efficient caches, that
can deliver performance while maintaining a power budgattHermore, despite predictions,
transistor density continued to grow as predicted by Maotew [47, 48, 66]. The continued
increase in transistor density and the limitations in iasieg processor frequency caused the
microprocessor industry to focus on on-chip parallelisvajlable by placing multiple process-
ing cores on a single chip — also known as chip multiprocesgoMP) [22, 25, 41]. This in
turn, has made the power consumption of caches an even lmggeern, as multi-core CPUs
typically replicates the L1 caches for each core to avoiddiasign complexities of multiple

processors sharing an L1 cache [49].

The increasing concern regarding cache power consumptgether with the increased
memory bandwidth requirements of multiple cores sharingeanory bus [10], have moti-
vated a quest for improved utilization of cache resourcesutlih the design of more efficient
caching structures. This quest solicits a revisit to exgstdeas such as dual cache structures,
specifically ones incorporating direct-mapped cache &iras. Direct-mapped caches are very
appealing in this context, as they are faster and consurselt@sgy than set-associative caches
typically used in L1 caches [28, 38]. However, they are margcsptible to conflict misses
than set-associative caches, thus suffering higher rates-and achieving lower performance.
This deficiency led to abandoning direct-mapped L1 cachéms/or of set-associative ones in

practically all but embedded processors.

The quest for more efficient caches relies on extensive sisaty memory workloads, and
the development of new analysis tools enabling a deeperrstiageling of cache behavior.

The rest of this chapter therefore introduces the worklozlyais concepts explored in this
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work (Section 1.2), and gives a peek into the insights gaimetthe workload analysis, and the

ensuing cache design incorporating these insights ($etti).

1.2 The Mass-Count Disparity Phenomenon and
Core-Working-Sets

It is well known that memory block popularity is skewed, aming blocks are more popular
than others. However, little is known about the scale of pfisnomenon and how extreme is
the variation in the popularity of the various memory bladksr caching purposes, the identi-
fication of the most popular blocks is of utmost importance akows caching mechanisms to
make sure these blocks — servicing very many residenciese-eaahed. Moreover, the exact
subset of popular blocks changes during program execusidrpasses through different com-
puting phases. Denning attempted to capture this changivges of blocks in his definition of
working setg17].

The need to identify memory usage patterns, therefore,vateti an extensive analysis
of memory workloads. This analysis, described in Chapteedals that the skew in block
popularity is even more extreme than thought before, andréxqces a statistical phenomenon
called theMass-Count Disparity The phenomenon describes the relationship between the
number of memory references serviced by each single menock,band howall memory
references are distributed between the different blockBectvely, it reveals that the vast
majority of memory references are commonly serviced byyaftaction of all memory blocks.
In addition, the analysis reveals that even the relativelgapular blocks experience bursty
access patterns.

These results suggests that locality, usually regardedcasaination of two distinct prop-
erties — locality in time and locality in space — is also a nfiestiation of the skewed distribu-
tion of thepopularityof different memory blocks, where some blocks are accessmthmore
frequently than others. In fact, it may be possible to partithe working set into two sub-sets:

those memory blocks that are very popular and are accesse¢eay high rate, and those that
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are only accessed intermittently. This distinction is tetical to Denning’s definition which
puts all items in a working set on an equal footing, and lighatheart of our definition of the
coreof the working set.

The notion of a core leads to the realization that not all elets of the working set are
equally important. As the elements in the working set areanoéssed in a homogeneous man-
ner, treating all the elements of the working set equally teag to sub-optimal performance.
Rather, it may be beneficial to try to identify the more impaitcore elements, and give them
preferential treatment.

The notion of a popular core leads to the formal definition Goae Working Setdescribed
in Chapter 4 as an extension to Denning’s working set. Bygukigical predicates to identify
this highly popular subset of the entire working set, corekivay sets devise a formal frame-
work serving designers of caching mechanisms to expliekfyress their notion of the working
set’s core, that is to be treated beneficially by their dedigaddition, this framework enables
designers to compare and contrast the mechanism’s penficaregainst the formal definition

of their intended core.

1.3 Leveraging Randomness for L1 Cache Design

The existence of a small core that governs the majority of orgmeferences is described by the
mass-count disparity phenomenon. But the phenomenonralsiees the opposite — that the
majority of memory blocks only service a small fraction dfraemory references. These two
consequences of the mass-count disparity phenomenonHengsélves to the application of
simple, stateless, random sampling in order to partitieréfierence stream. As most memory
blocks are accessed a small number of times, picking a blockn@om will likely select a
block that is rarely accessed. In fact, this is the reason avlgndom eviction policy yields
fairly good results [70, 67]. But on the other hand, since tmesmory references are serviced
by a small fraction of the working set, a randomly selecteamory referenclkely pertains to

a very popular block.



This observation is the corner stone for the probabilistipiparity predictor presented in
Chapter 5. In turn, the probabilistic predictor is used ia tesign a random sampling L1
filtered cache, described in Chapter 6, that uses simpletosses to preferentially insert only
frequently used blocks into the cache — composed of a fagtplmwver direct-mapped structure
— that services the majority of memory reference. The ret@feferences are serviced from
the cache’s filter — a small fully-associative auxiliaryustiure — thus reducing the number of
conflict misses in the direct-mapped cache. This mecharssiawn to use a simple filtering
strategy to overcome the direct-mapped susceptibilityotaflct misses, thereby enabling to
harness the speed and low power traits of direct-mappectsdchieduce the overall L1 power
consumption, while still improving overall performance.

This is the first successful attempt that employs a simplisttal phenomenon to filter
both L1 reference streams efficiently enough to use a dimagiped structure for L1 caches,

thus both reducing power consumption and improving peréome.

1.4 List of Publications Composing this Work

The research presented in this thesis is described in tlosviag publications:

e Yoav Etsion and Dror G. Feitelso@ore Working Sets: Concept, Identification, and
Use
Submitted for Publication
Also published a3echnical Report 2008-6&chool of Computer Science and Engineer-

ing, The Hebrew University of Jerusalem, Jul. 2008.

e Yoav Etsion and Dror G. Feitelsoh]l Cache Filtering Through Random Selection of
Memory References

In Parallel Architectures and Compilation Techniques (PA@EBges 235-244, Sep. 2007.

e Yoav Etsion and Dror G. FeitelsoRyobabilistic Prediction of Temporal Locality .

In IEEE Computer Architecture Letters (CAI6(1), pages 17-20, May 2007.
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e Yoav Etsion and Dror G. FeitelsoGache Insertion Policies to Reduce Bus Traffic
and Cache Conflicts
Technical Report 2006;45chool of Computer Science and Engineering, The Hebrew

University of Jerusalem, Feb. 2006

1.5 Main Contributions of this Work

For brevity, following is a list containing the main contions of this research.

e L1 Cache Workload Analysis and the Mass-Count Disparity Pheomenon
The foundation of this work is a detailed analysis of L1 casloekloads, and the result-

ing characterization of the mass-count disparity phenamémL1 caches (Chapter 3).

e Core Working Sets
The definition of the predicate basedre working seframework. This framework ex-
tends Denning’s definition of working sets to accommodagér theterogeneous nature.
The framework enables cache designers to explicitly esphesr perception of the im-

portant subset of the memory blocks (Chapter 4).

e Probabilistic Block Popularity Predictor
A simple application of the mass-count disparity phenomeoiters the use of random
sampling of memory reference to probabilistically idenfiopular memory blocks in
a completely stateless fashion, without any need for miaimig. past use information

(Chapter 5).

e Random Sampling L1 Filtered Cache
The proposed L1 cache design is based on the dual-cachegraradd uses random
sampling to filter out transient blocks and identify the drfrakction of popular memory
blocks. This partitioning of the working set enables the oisa fast, low-power direct-
mapped structure to serve the majority of memory referenheseby improving overall

performance and reducing the power consumed by L1 cachep(€1b).
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e Wordline-Lookaside-Buffer (WLB)
A problem with the fully-associative filter is its access¢imnd power consumption. We
alleviate this problem using a small lookup table that hseses temporal locality to cache
expensive fully-associative lookups in a small inexpemsiwect-mapped table. The
WLB therefore reduces both access times and power consumgtifully-associative

caches, without affecting the fully-associative seman(chapter 6).

The methodology used throughout the research is discus€&thipter 2. Following the de-
scription of the research itself (Chapters 3 through 6)bitdy of work in the field is reviewed
in Chapter 7.



Chapter 2

Methodology

Extracting and analyzing memory and cache workloads, dsas¢he evaluation of alternative
hardware designs, require software simulations of botktiexj and proposed architectures.
The simulator that was used to carry out all simulations isWwork is theSimpleScalasimu-
lation toolset [4], simulating thAlpha AXParchitecture [69].

Accounting for all aspects of the simulated architecturéhwai full simulation of all im-
plementation details is an arduous task, resulting in exatingly slow simulations. The
SimpleScalar toolset is therefore broken into severaliddal, yet co-dependent tools that
simulate the underlying hardware with varying degrees tditjehereby trading off simulation

accuracy for speed. Of the different tools, the ones used:wer

¢ sim-fastis a functional simulator that only simulates the ISA. Byagng all implemen-
tation details of the underlying architecture it esseltisimulates an optimal architec-
ture that incurs no inherent latencies. It is therefore #stefst tool in the toolchain, but
cannot be used to measure performance. In our casefastwas augmented to col-
lect raw workload statistics that are largely independerdrchitectural implementation

details.

e sim-cacheis a cache simulator. It can be seen as an extensisimefastthat implements
a full cache hierarchy to collect cache statistics such tasake. Althoughsim-cacheas

oblivious of any statistical artifacts caused by full odtender execution, it was found
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accurate enough for collecting cache statistics. To etalcache performance of alter-
native cache designsim-caché& cache module was completely rewritten to support the

proposed cache design.

sim-outorder simulates a detailed out-of-order processor. It is the rdetdiled simu-
lation tool in the SimpleScalar toolset, and is therefore glowest. sim-outorderwas
used to evaluate the effect of proposed caching mechanistineoaverall architecture
performance, and specifically on metrics such as IPC (iostnus-per-cycle). The mod-
ifications tosim-outorderinclude replacing its cache module with one supporting the
proposed cache design, and since this design is based onaheathe paradigm, its in-
struction scheduling algorithm was slightly modified to@@enodate for variable L1 hit
latencies. The original algorithm is based on the commoatjm&in superscalar designs
that schedule instructions based on the prediction thdtihets [67]. This modification
was needed since L1 hits can now hit either in the cache prapire auxiliary filter,
where each has different hit latencies. The algorithm waplyi extended to predict that
the L1 hits, and the hit is services by the cache proper, watagsociated latency — thus

extending the common practice in an obvious manner.

The benchmarks used consisted on #REC200enchmarks suite [72]. An overall of

20 benchmarks were used in order to accommodate as mansediff@orkloads [15]. This

constitutes of all but six SPEC2000 benchmasan gap, fma3d sixtrack andapplufailed to

either compile or execute, aretjuakeexperienced too few L1 misses (under 0.02%) on both

data and instruction streams to produce meaningful resélisbenchmarks were executed

with theref input set and were fast-forwarded 15 billiorb(x 10°) instructions to skip any

initialization code (except forpr whose full run is shorter), and were then executed for amothe

2 billion (2 x 10°) instructions.

Power estimates were compiled usiB4CTl an integrated cache and memory model that

evaluates access time, cycle time, area, leakage, and dypawer. The version used was 4.1,

configured for a 70nm manufacturing process [75] (the firegtiire size CACTI supports).
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Throughout the thesis, whenever results are shown for althraarks, they are summa-
rized using box-plots. The boxes show the 25th, 50th (médiad 75th percentiles over all
the benchmarks’ results. In addition, these plots inclutieskers to show the minimum and

maximum values, and a circle marking the average value.
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Chapter 3

The Skewed Distribution of Memory
Accesses and the Mass-Count Disparity

Phenomenon

Mass-Count Disparitys a statistical phenomenon describing a situation wherst items in a
population are small, but a few are very large (also knowmasé & elephants” in networking
[8]). The namemass-count disparityomes from the distinctly disjoint nature of two conjoining
distributions — that of the sizes of individual elementsujetdistribution), and how the overall
mass is distributed across elements of different sizesqhagibution). Perhaps the most well-
known example of mass-count disparity is an economic omaghathe distribution of wealth
in the world [43]: with most people in the world being relay poor, and only a tiny fraction
of the entire population is very rich, the majority of wosdtealth (the aggregate sum of all the

world population’s financial resources) is dominated byrg genall fraction of the population.

Formally, given a finite sample space the mass-count digpainenomenon refers to the
interplay of two conjoined yet opposed distributions defioger that space. The first distri-
bution — called thecountdistribution — is a distribution over the individual samglerhus,
F.(x) represents the probability that a sample has a mass snfalex.t Following the eco-

nomic example, this represents the fraction of the worldisysation whose individual wealth
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is smaller tharx currency units. The second distribution — called thassdistribution — is

a distribution over the aggregate mass of all individual glas 7, (x) represents the proba-
bility that a mass unit is part of a sample whose total massalsr thanx. In our economic
example, this represents the probability that a currenaylw@hongs to a person whose wealth
is smaller tharx currency units.

The disparity between the two distributions exists whercthent probabilityF. () is likely
to be high, but the corresponding mass probabiflity(z) is likely to be low. In our economic
example, this is demonstrated in the fact that most of thédsmmpulation is poor, therefore the
count probability indicating the fraction of individualdwse total wealth is smaller than say
$100 —F.(100) — is high. On the other hand, since most of the world’s wealttiaminated
by rich people, the probability that some arbitrary Dollaaththe money in the world belongs
to an individual whose wealth is smaller than $100/5=100) — is very low.

The mass-count disparity phenomenon has interestingéatns regarding the identifica-
tion of the small fraction of samples dominating the masse st of this chapter describes a
novel caching efficiency metric -Sache Residency Length and uses this metric to uncover
a clear manifestation of the mass-count disparity phenomém both data and instruction

memory reference streams.

3.1 Cache Residency Length: A New Metric for Rating Tem-
poral Locality of Memory Blocks

Evaluating the relative importance of a memory block forleag purposes requires assessing
both its momentary and global popularity. The naive sotutMuld be counting the number
of references made to each block, and rating the blocks by sheer popularity. A possi-
ble refinement to this general popularity scaling can beesglu by using a specific window
of memory references of a predetermined size, and ratingkblamportance based on their
popularity within a window of references.

EitherBlock-Popularitymetrics share a major caveat, as they consatiéhe references to
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Figure 3.1:Comparison of th€ache Residenayetric vs. the more commdslock Popularity
metric. The figure shows the dispersion of accesses to blasd B throughout a window of

6 x N memory references. Using the naive block popularity metuts both blocks on an equal
rating. On the other hand, tHeéache Residency Lengthetric will separate the two blocks:
Block B is sparsely used and therefore has a small impact on cacfeErmpance, which will
likely manifest in a few short residencies. Blogkis however densely used at the beginning
of the window, and is therefore likely to have a long cachédeggy, corresponding with its
bigger impact on cache performance.

each address, made throughout an arbitrary sized refevandew (or simply throughout the
duration of the run). But the relative popularity of diffateaddresses may change in different
phases of the computation, so the instantaneous poputaaiyybe more important for caching
studies. Using arbitrary sized reference windows furtimepléies this problem, since the size
of the window may determine the outcome of the measuremgittnay or may not be aligned
with program phases and instantaneous program memory load.

We therefore proposeot to use a predetermined window of references, but ratheruotco
the number of references made between a single insertiorbtufck into the cache, and its
corresponding eviction. This is denoted asaghe residency lengtihus, if a certain block is
referenced 100 times when it is brought into the cache fofitbitime, is then evicted, and fi-
nally is referenced again for 200 times when brought intactehe for the second time, we will
consider this as two distinct cache residencies spannigt@ 200 references, respectively,
rather than a single block with 300 references.

Figure 3.1 demonstrates the difference between the twaaseit shows the use of two
blocks that are accessed over a window af NV references, where the references to each block
are dispersed differently. While blogkis densely used only at the beginning of the reference

window, blockB is referenced the same number of times, but these referaneetispersed

roughly evenly throughout th& x N references in the window.
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Block A reference density indicates it affects cache performanmes substantially than
block B. This is supported by Belady’s optimal cache replacemedrahm which always re-
places the block whose next use is furthest away in the fy@jrendicating blockA’s reuse
frequency will increase its importance to cache perforreatharing the period it is used. The
block popularity metric on the other hand evaluates theentiference window, and will there-
fore put both blocks on an equal footing with 5 referencesaddition, even if we reduce the
reference window size t&y, the first window(i . . . + N] will give a higher rating to bloclA
— as it is used 4 times more than bloBkin that reference window — but, it will rate both
blocks equally on the second+ N ...i + 2 x N, although the access to blogkduring that
period is likely to hitin the cache as it is a continuationtté sequence of references to it which
started during the previous reference window. Such an sistancy between the block popu-
larity metric’s evaluation of a block’s importance and it$taal impact on cache performance is
caused by the arbitrariness of the reference window sizebguiment, which does not reflect

the program’s memory phases.

This example demonstrates that arbitrary sized referencdows, as used by the block
popularity metric, may cause incorrect evaluation of thenoey workload. On the other hand,
the Cache Residency Lengtlill likely include all reference to blocld as a single cache res-
idency, while blockB will show as multiple shorter residencies. In this mannkis tmetric
incorporates momentary cache load and reference densdysdhus better suited to rate the

temporal locality experienced by different blocks.

One deficiency of the cache residency length metric is thepedds on a specific cache
configuration, and it is therefore important to remain csiesit when comparing results. This
thesis uses a 16K direct-mapped configuration as standadddiéfering configurations are

clearly marked.
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Figure 3.2:Mass-count disparity plots fatata memory accesses in select SPEC 2000 bench-
marks. The arrows demonstrate thg,, joint-ratio, andN, ,, metrics of mass-count disparity.

3.2 Mass-Count Disparity in L1 Workloads

The Residency Lengtmetric enables us to demonstrate the existence of the noass-dis-
parity phenomenon of memory workloads. In our case, thetodistribution /.(z) represents
the probability that a block’s residency length is composkd references or less. Theass
distribution on the other hand, is a distribution on refee=s it specifies the popularity of the
block to which the reference pertains. Thiig(x) represents the probability that a reference
is directed at a residency composedrafeferences or less. The disparity is visualized using

mass-count disparity plots [20]. These plots superimplosdvwo distributions.
The mass-count disparity plots show that the graphs of thatcand mass distributions

are quite distinct. An example is shown in Figure 3.2, shovthre mass-count disparity for
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4 SPEC2000 benchmarks, one of whiechcf) is known for its poor cache utilization. The
divergence between the distributions can be quantified éydint ratio [20], which is a gen-
eralization of the proverbial 20/80 principle: This is tha&que point in the graphs where the
sum of the two CDFs is 1. In the case of the vortex data, for gkanthe joint ratio is approx-
imately 13/87 (double-arrow at middle of plot). This medmattl3% of the cache residencies,
and more specifically those instances that are highly neéexd service a full 87% of the refer-
ences, whereas the remaining 87% of the residencies semigd 3% of the references. Thus
a typicalresidencyis only referenced a rather small number of times (up to ab@ytwhereas

a typicalreferences directed at a long residency (one that is accessed fromdlidusands

of times).

More important for this work are thi/, , and .V, /, metrics [20]. Thél; ,, metric assesses
the combined weight of the half of the residencies that weckeiw references. For vortex, these
50% of the residencies together ge3% of the references (left down-pointing arrow). Thus
these are instances of blocks that are inserted into thedadthardly used, and should actually
not be allowed to pollute the cache. Rather, the cache shdeddly be used preferentially to
store longer residencies, such as those that together racimmb0% of the references. The
number of long residencies needed to account for half trezertes is quantified by thé,
metric; for vortex it is less than 1% (right up-pointing amo Table 3.1 lists the measured
W1,2, N1 /2 and joint-ratio data for the 20 SPEC2000 benchmarks usedgatith the maximal
residency length of the blocks accounting % », and the minimal residency length of the
blocks accounting forV, ,, (marked by the @ value). For vortex, the table reveals teab@%
of the data cache residencies are accessed up to 3 timedhariD® of vortex’s references
are serviced by less than 1% of the residencies, each adoa#se500 times. All-in-all, the
table reveals that half of the data references are servigéesb than 1% of all residencies, in

15 of the 20 benchmarks inspected.

The disparity is less apparent in benchmarks that are wellvkrfor their poor cache uti-
lization such asncf art, swimandlucas For example almost 96% afcf's residencies consist

of no more than 5 references, but still they account for 00é of the references. This is man-
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Figure 3.3:Mass-count disparity plots fanstruction memory accesses in select SPEC2000
benchmarks. The arrows demonstrate Whg,, joint-ratio, andN, ,, metrics of mass-count
disparity. Note that thencf code is so dense that it has no residencies shorter~t58000
references.

ifested in a joint ratio of 33/66, and relatively higt, , and N, , values — the weight of half
the residencied¥ ») is ~25% of the mass, and thel7% longest residencies are required for
half the mass, ;). However, since the longest 3% of the residencies stillpasa 30% of

the massicf still exhibits some degree of disparity.

Evident in instruction streams as well, the mass-countadigpis not unique do data
streams. Figure 3.3 shows the mass-count disparity plotthéinstruction streams corre-
sponding to Figure 3.2. We can see that the benchmarks gy e 1, » values of~11%

and less, indicating that the short residencies only sewitraction of all references. Further-
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more, theN, , values are generally even lower, indicating the long resiaes dominate the
reference stream, and that the major bulk of the refereneedigected at a small fraction of
the working set. The only exception to this is thg/, value formcf which stands at-10%.
But this actually stems frommcf’s exceptional code density that results in a very small nermb
of distinct instruction blocks accessed throughout thecetien, which in turn yields a small
number of very long residencies — the shortest of which issuesl at~10° references, as
shown in Figure 3.3. Isis the small number of residenciesstkewsmcf’s statistics. Allin all,
the benchmarks enjoy joint ratios ef75/25 and up, suggesting that even these points — rep-
resenting an equilibrium between short and long resideneteshow a clear separation of the
mass and the count distributions. The mass-count dispadiitipited by the instruction streams
is in fact a manifestation of the well-known “rule-of-thuirtly which programs spend most of
the time executing a small fraction of their code (descriagdhe 90/10 rule by Hennessy and

Patterson [27]).

These results demonstrate the existence of a mass-copatitystemming from the skewed
distributions of memory accesses, for both data and insbrustreams. While only select
benchmarks are discussed here individually, this phenomenindeed consistent for all 20
SPEC2000 benchmarks analyzed. For completeness, all ledans’ mass-count disparity
plots are shown in Figure 3.4, and are accompanied by Tatléis3ing the corresponding
values of the different mass-count metrics. Figure 3.5 aatnlel'3.2 show the same for the

instruction streams.

Although only figures for residencies in a direct-mappedheare discussed here, the mass-
count disparity phenomenon is practically oblivious totemassociativity. Figure 3.6 and the
corresponding metrics’ values listed in Table 3.3 show tispatity observed for residencies
in a 16K 4-way set-associative caches is very similar to thwserved on similar size direct-
mapped caches. This similarity repeats for the 4-way ssiestive instruction stream results,

as shown in Figure 3.7 and its corresponding metrics’ vdigesd in Table 3.4.

Temporal locality of reference is one of the best-known pimeena in computer workloads

[18, 32, 27], and is the foundation around which the compaiteemory hierarchy is designed
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[32, 27]. But mass-count disparity plots show that suchliycas actually the result of two
distinct properties: that references to the same addredgdecome in batches, and that some
addresses are much more popular than others [35]. The pdgatks are manifested by the
long residencies that service the majority of referencggpdsite, most short residencies are not
degenerate and still have a noticeable length (albeit ofadl smamber of references) indicating
that even accesses to a transient blocks are batched togstheburst of activity. Had these
accesses not been bursty in nature, the block would havedweted before it is reused and
the residency length would have degenerated.

The existence of mass-count disparity demonstrates thatanking set is not evenly used
but is rather focused aroundcare These more popular addresses can be grouped together to
form thecore working set— a subset of the Denning’s classic working set definitior {i8ose
cache residencies naturally serve the majority of referenthis has important consequences
regarding random sampling. Specifically, if you pick a resicy at random, there is a good
chance that it is seldom referenced. That is why random cepiant is a reasonable eviction
policy, as has been observed many times [67, 70]. But if yok @ireferenceat random, there
is a good chance that this reference refers to a block thatesenced very many times, thus
belonging to theore of the working set.

Identifying thecore working setan improve the efficiency of the caching mechanism, and

the nature of this core allows it to be identified using rand@ampling.
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Figure 3.4: 16KB Data cache, direct-mapped A general overview of the mass and count
distributions for thedata streams of all 20 SPEC2000 benchmarks reviewed. Togethietha
data from Table 3.1, this figure demonstrates that the masstclisparity exists in practically
all data streams.
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Table 3.1:16KB Data cache, direct-mapped The N, , andW, , metrics values for L Hata
streams of the 20 SPEC2000 benchmarks used.

Benchmark W1/2 Wl/g@ N1/2 Nl/g@ JR JRQ

164.9zip 3.80 0.60] 230]|87/13 8
175.vpr 7.60 1.71| 72|80/20 8
176.gcc 11.68 0.27| 3826|79/21 8
181.mcf 24.77 16.79 3|67/33 1
186.crafty | 4.39 0.69| 169|86/14 8

197.parser 4.48
253.perlbomk| 2.29
255.vortex 3.25
256.bzip2 1.83
300.twolf 7.34
168.wupwise| 3.59
171.swim 38.98
172.mgrid 5.34
177.mesa 2.01
178.galgel | 11.12
179.art 21.69
187.facerec | 3.41
188.ammp 5.88
189.lucas 18.24

0.67 336|85/15 9
0.93 731|88/12 25
0.65 517| 87 /13 15
0.10| 3247|90/10 24
4.39 42| 78122 9
1.07 804 | 84/16 32
10| 56/ 44 10
10.41 30| 77/23 17

0.20| 3886|90/10 20

6.44 20| 78/22 8
16.52 3|67/33 2

2.32 104 | 80/20 16

1.85 96 |81/19 12
11.44 8|67/33 8

( =
NWFROWNNNWNOOWRER WWNRERONPR
w
\l
N
oo

301.apsi 4.81 0.26 396|89/11 6
Average 9.33 3 5.74 726180/20 | 12.3
Median 5.34 1.71 169 | 81/ 20 0

* Median Joint-Ratio values are independent and thus mayunoup to 100%.
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Figure 3.5: 16KB Instruction cache, direct-mapped A general overview of the mass and
count distributions for thénstruction streams of all 20 SPEC2000 benchmarks reviewed. To-
gether with the data from Table 3.2, this figure demonsttatgthe mass-count disparity exists

in practically all data streams.
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Table 3.2:16KB Instruction cache, direct-mapped The N, ,, andW,,, metrics values for
L1 instruction streams of the 20 SPEC2000 benchmarks used.

Benchmark Wl/g Wl/g@ Nl/g Nl/g@ JR JRQ
164.9zip 2.20| 16 0.00| 7.2e+5 90/10 | 123
175.vpr 1.43| 16 0.00| 2.5e+7 93/7 | 144
176.gcc 274 13 0.05| 5.4e+4 89/11 | 59
181.mcf 6.50| 1.46e+8| 10.69| 1.0e+9 74/26 | 2.5e+8
186.crafty 11.21| 15 3.72| 112 76/24 | 24

197 .parser 3.16| 16 0.00| 7.2e+5 89/11 | 48
253.perlomk| 5.91| 12 1.48| 858 84/16 | 30
255.vortex | 11.33| 13 4.34| 96 76/24 | 20
256.bzip2 0.19| 7.5e+4| 5.22| 1.2e+7 82/18 | 4.3e+6
300.twolf 6.32| 16 191 416 81/19 | 64
168.wupwise, 0.65| 16 0.00| 2.6e+7 95/5 |512
171.swim 0.01| 11 0.46| 3.5e+6 99/1 6.7e+5
172.mgrid 0.00| 11 1.03| 1.8e+6 95/5 2.0e+5
177.mesa 465 11 0.02| 3.0e+4 87/13 | 32
178.galgel 0.06| 2.7e+5| 5.33| 1.6e+8 88/12 | 8.6e+6
179.art 0.00| 16 0.04| 1.1e+8 971/3 6.4e+4
187.facerec | 0.01| 16 0.28| 4.6e+6 97/3 1.8e+5
188.ammp 1.02| 16 0.00| 1.3e+7 94/6 | 448
189.lucas 0.00| 20 3.94| 8.4e+6 80/20 | 4.2e+6
301.apsi 7.57| 32 1.41| 384 79/21 | 86
Average 3.25| 7.3e+6| 2.00| 7.0e+7 87/13 | 1.7e+7
Median 2.20| 16 1.03| 3.5e+6 89/12 | 448

* Median Joint-Ratio values are independent and thus mayunoup to 100%.
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Figure 3.6: 16KB Data cache, 4-way set-associativéA general overview of the mass and
count distributions for thelata streams of all 20 SPEC2000 benchmarks reviewed. Together
with the data from Table 3.3, this figure demonstrates thamtass-count disparity exists in
practically all data streams.
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Table 3.3:16KB Data cache, 4-way set-associativ@he N, ,, andW, ,, metrics values for L1
data streams of the 20 SPEC2000 benchmarks used.

Benchmark Wl/g Wl/g@ Nl/g Nl/g@ JR JRQ
164.g2ip 3.0 1] 0.02] 6005/89/11| 8
175.vpr 4.41 3| 0.09 1606| 84/ 16 11
176.gcc 12.40 8| 0.01 24085| 80/ 20 8
181.mcf 24.47 1] 16.00 3|67/33 1
186.crafty 2.49 2| 0.14 1932| 90/10 11
197.parser 3.21 3| 0.10 3441| 88/12 14
253.perlbmk| 1.83 5| 0.52 2277|90/10 45
255.vortex 1.75 4| 0.20 25281 91/9 26
256.bzip2 1.35 1| 0.00 527571 91/9 32
300.twolf 6.79 3| 1.79 60| 79/21 10
168.wupwise| 4.45 16| 0.00| 11565917 85/15 32
171.swim 39.50 10| 37.81 10| 56/44 10
172.mgrid 11.51 10| 14.55 32| 71/29 21
177.mesa 1.51 16| 0.36 13377, 93/7 124
178.galgel 11.99 2| 061 198| 80/20 2
179.art 21.75 2| 15.74 3|67/33 3
187.facerec | 2.30 2| 0.05 17920| 83/17 16
188.ammp 5.17 3| 0.25 4441 82/ 18 14
189.lucas 21.92 81| 10.24 16| 67 /33 8
301.apsi 3.04 1| 0.07 22321 91/9 9
Average 9.25 5| 4.93 584742| 81/19 20
Median 4.45 3| 0.25 2232|8417 11

* Median Joint-Ratio values are independent and thus mayunoup to 100%.
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Figure 3.7: Instruction cache, 4-way set-associativeA general overview of the mass and
count distributions for thénstruction streams of all 20 SPEC2000 benchmarks reviewed. To-
gether with the data from Table 3.4, this figure demonsttatgthe mass-count disparity exists
in practically all data streams.
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Table 3.4:16KB Instruction cache, 4-way set-associativeThe N, , and\W, ,, metrics values
for L1 instruction streams of the 20 SPEC2000 benchmarks used.

Benchmark Wl/g Wl/g@ N1/2 Nl/g@ JR JRQ
164.9zip 0.02| 25e+4| 4.58| 6.0e+7 85/15| 2.3e+7
175.vpr 0.00| 144 4.73| 3.8e+7 85/15| 9.9e+6
176.gcc 263| 14 0.02| 8.4e+4 89/11| 65
181.mcf 6.50| 146e+8| 10.69| 1.0e+9 74/26| 2.5e+8
186.crafty 8.81| 16 3.83| 190 78/22| 36
197.parser 0.05| 108 0.14| 2.6e+6 94/6 | 3.1et4d
253.perlomk| 4.32| 14 1.81| 1.2e+3 86/14| 52
255.vortex 8.08| 16 1.29| 405 80/20| 32
256.bzip2 0.15| 6.9e+4| 7.04| 1.0e+7 82/18| 4.9e+6
300.twolf 1.68| 18 0.00| 5.2e+6 91/9 | 176
168.wupwise 2.45| 1.0e+6| 5.66| 4.2e+7 82/18| 1.3e+7
171.swim 0.01| 14 0.89| 3.5e+6 98/2 | 1.1let6
172.mgrid 0.00| 14 1.39| 1.8e+6 93/7 | 2.0e+5
177.mesa 0.30| 27 0.35| 4.2e+4 93/7 | 4.5e+3
178.galgel 0.06| 2.7e+t5| 5.33| 1.6e+8 88/12| 8.6e+7
179.art 0.01| 4.4e+3| 1.75| 1.1e+8 87/13| 1.6e+7
187.facerec | 0.00| 45 1.24| 9.8e+6 92/8 | 3.9e+5
188.ammp 0.19| 3.8e+4| 1.50| 1.5e+7 89/11| 1.0et+6
189.lucas 0.00| 42 5.14| 4.2e+6 78/22| 4.2e+6
301.apsi 10.17| 32 2.93| 208 76/24| 72
Average 227 7.4e+6| 3.02| 7.5e+7 86/14| 2.1e+7
Median 0.19| 45 1.81| 5.2e+6 87/14| 1.0e+6

* Median Joint-Ratio values are independent and thus mayunoup to 100%.
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Chapter 4

Core Working Sets: Capturing the Dual

Nature of Memory Workloads

Locality is usually regarded as a combination of two digtproperties — locality in time and
locality in space. But it is also a manifestation of the skendestribution of thepopularity of
different memory blocks, where some blocks are accessed fremuently than others. In fact,
as shown below, it may be possible to partition the workingrge two sub-sets: those data
items that are very popular and accessed at a very high radehase that are only accessed
intermittently. This distinction is antithetical to Demgy's definition which puts all items in a
working set on an equal footing, and lies at the heart of tli@itien of the core of the working

set.

The notion of a core leads to the realization that not all elet® of the working set are
equally important. The elements in the working set are noés®ed in a homogeneous manner.
Thus treating all the elements of the working set equally feag to sub-optimal performance.
Rather, it may be beneficial to try to identify the more impaitcore elements, and give them

preferential treatment.

A striking manifestation of a “hot” core within the workingtscan be seen when exploring
the stack depths accessed in a set-associative cacheargktaore specifically as the fraction

of references serviced by the cache sets’ most recently(Mfed) blocks. Figure 4.1 presents
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Figure 4.1:Fraction of accesses serviced by the most recently used ROk in a cache’s
sets for various cache configurations. The top axis showizke$4-way set-associative cache
(with 64B cache lines) corresponding to each number of $&sults are shown as an average
over all SPEC2000 benchmarks surveyed.

the fraction of memory references serviced by the MRU blankihe cache sets for various
cache configurations. This is achieved by simply varyingrieabers of cache sets examined
(the metric is oblivious to the cache’s exact associatiagyt only examines MRU accesses).
The X axis in the Figure indicates a number of sets in the gaah@ the box-plots represent
the MRU access statistics for all SPEC2000 benchmarks givepecific number of cache
sets — where each box-plot shows the 25-75 percentiles,,mami and maximum values,
median and the average (marked with a circle) over all beacksn The Figure shows that
as the number of cache sets increases, more references\aced®dy the MRU block in the
referenced set: for caches with at least 128 sets an averaggb8o of all memory references
(data and instructions) are serviced by the MRU blocks, envgn the 25th percentile crossing
the 80% threshold. When the number of sets doubles to 256 Rig Mts reach~90% of all
references. The reason for the dependence on the numbes af $ee cache is the small set
of blocks servicing the majority of references, and how distributed among the cache sets:

as the number of cache sets increases the number of mappifigtsdoetween the core blocks
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decreases, thus enabling this small set of blocks — the ddh=avorking set — to be evenly
distributed between the different sets. When the numbeet$sffices, each set contains on
average at most a single block from the working set’s coreth@<ore is accessed repeatedly,

its blocks maintain their MRU positions.

The Figure also shows the size of a 4-way set-associativeecamrresponding to the num-
ber of cache sets displayed. Interestingly, modern processich as the Intel Core product
series [29] and AMD Phenom series [1] use 32K and 64K L1 cadespectively, thereby
serving an average 6¥90% of all memory references from the sets’ MRU positionstalt,
since the AMD Phenom uses a 64K 2-way set-associative cédiees double the number of
sets than a similar size 4-way set-associative cache — thjogieg an even highex95%

MRU hits.

This chapter introduces a formal framework that extendsrefides Denning’s definition
of a working set, enabling designers to explicitly exprdssrtperception of which blocks in
the working set are considered important. This framewodsusgical predicates to distin-
guish between the important subset — the core — and the ramgaiiocks. An example of a
predicate that can be used to identify the core is “the bledccessed at least 16 times when
brought into the cache”. The extraction of an explicit poadle enables qualitative comparison
between different caching mechanisms and implementatibmgarticular, it decouples the

notionof the working set’s core from the actuzdching mechanismsed to implement it.

While the core working set framework is aimed for use with aaghing mechanism, this
exploration is focused on the synergy between the skewedbdison of memory references
and dual cache structures. Defining the core based on thesityteof memory references
naturally leads to a dual design, where one part of the cacheeid for the core data, while the
more transient data is served by another part. In effectfilttess non-core data and prevents

them from polluting the cache structure used for core data.
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4.1 Definition of Core Working Sets

Denning’s definition of working sets [17] is based on the gipie of locality, which he de-
fined to include three components [19]: a nonuniform poptylaf different addresses, a slow
change in the reference frequency to any given page, andelaion between the immediate
past the near future. Our data strongly supports the firsjppoment, that of non-uniform ac-
cess. But it casts a doubt on the other two, by demonstrdtmgdntinued access to the same
high-use memory objects, while much of the low-use data g accessed for very short and
intermittent time windows. In addition, transitions beemephases of the computation may
be expected to be sharp rather than gradual, and moreoegrwili probably be correlated
for multiple memory objects. This motivates a new definittbat focuses on the persistent
high-usage data in each phase, namely the core working set.

The definition of a working set by Denning is the seatfdistinct blocks that were accessed
within a window of T’ instructions [17]. This set will denoted &%,(¢), to mean “the Denning
working set at time using a window size of . Our findings imply that this definition is
deficient in the sense that it does not distinguish betweshelavily used items and the lightly
used ones.

As an alternative, we define there working seto be those blocks that appear in the
working set and are reused a significant number of times. Wilie denoted”r p(t), where
the extra paramete? reflects a predictor used to identify core members; the prexdwill be
expressed as a predicate that evaluates to “true” for conglraes, and “false” for other blocks.
This is a generalization of the Denning working set, which sianply be expressed as the core

working set with a predicate that is always true:

Dy (t) = Crtruelt)

The predicate” is meant to capture reuse of memory. In the context of vinoinory,
temporal locality has been used to justify page replaceaigotithms such as LRU or the clock

algorithm. In particular, Belady emphasized the imporéant use bits to identify recently
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used data that should be retained [6]. Our reuse predictorbe seen as an extension of this
practice. The generality of core working sets can also beotisinated by its applicability
to block prefetchers: at any time a prefetcher would estimate the core at a future time

n. Therefore, the prefetcher’s core can be described;as(t + n), where P represents the

predicate best describing the prefetcher designer’s peoteof the important subset of blocks.

The simplest reuse predictor is based on counting the nuafloeferences to a given block
(or the number of references during a residency). Beepresent a block of words. Letw;,
i=1,...,k be the words in blocl3. Letr(w) be the number of references to wardvithin
the window of interest. Using this, we can define the predigBtthat evaluates to true if block

B was referenced times or more:
k
nB=>Y r(w)>n
=1

For example, the predicate 3B identifies those blocks that weferenced a total of 3 times or

more.

ThenB predicates are meant to identify a combination of spatidf@ temporal locality,
without requiring either type explicitly. Alternativelye can write a temporal-locality predi-

cate that requires that some specific wardh block B was referenced times or more:
nW=3weB st r(w)>n

We can also write a predicate that requires a certain nunflzstinct words to be referenced,

to express spatial locality.

An example of a more complicated predicate is the ST predicate, which is meant to
identify a non-uniform strided reference pattern with eeuBhis predicate is designed to filter
out memory scans that use strided access, even if they mcipdon accesses to the same
memory location within the scan. This is done by tabulatireglast few accesses, as illustrated

by the following pseudocode (where addr is the address seddast):
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if (prev_addr == addr)repeat++}
else{prev.stride = stride; stride = addr - preaddr; repeat = 0,

prev.addr = addr;

using this data, a block is considered in the core if it wagssed with inconsistent strides, or

if a single word was referenced more thatimes in a row. Formally, this is written as
n x ST = (repeat > n) V (stride # prev_stride)

These examples only demonstrate the richness of the pteslickesign space. But given
the rich set of possible predicates, the question is howlexsene that captures the notion
of a core working set. Based on the discussion about theyboegtire of access patterns
(Section 3.2), it seems advisable to require a significanther of references. In particular, we
have found 16B to be a promising predicate.

The effect of this definition is illustrated in Figure 4.2.ibig the SPEQccbenchmark as
an example, the top graph simply shows the access pattene ttata. Below it we show the
Denning working seDq(?) (i.e. for a window of 1000 instructions) and the core worksed
Chooo.165(t). As we can easily see, the core working set is indeed mucHemtgipically being
just 10—-20% of the Denning working set. Importantly, it ahiates all of the sharp peaks that
appear in the Denning working set. Nevertheless, as showeilbottom graph, it routinely

captures about 60% of the memory references.

4.2 Core Working Sets and Dual Cache Structures

We have established that memory blocks can be roughly dividi® two groups: theore
working set, which includes a relatively small number ofdi® that are accessed a lot, and the
rest, which are accessed only a few times in a bursty manhergiiestion then is how this can
be put to use to improve caching.

The principle behind optimal cache replacement is very Bmmhen space is needed,
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Figure 4.2: Examples of data memory access patterns and the resultingiigeand core
working sets. The bottom plot shows that while the 16B corekmg set is composed of only
~20% of the blocks in Denning’s working set, it still servicasne~60% of its references.
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replace the item that will not be used for the most time in tharke (or never) [6]. In particular,

it should be noticed that it is certainly possible that theropl algorithm will decide to replace

the last item that was brought into the cache, if all other items wél dccessed before this
item is accessed again. This would indicate that the itemamisinserted into the cache as
part of the mechanism of performing the access; it was netted into the cache in order to
retain it for future reuse. Such blocks were appropriatelyotibed as dead-on-arrival (DOA)
by Qureshi et al. [54].

By analyzing the reference streams of SPEC2000 benchntaskgassible to see that this
sort of behavior does indeed occur in practice. For exanydefound that if the references
of the gcc benchmark were to be handled by a 16 KB fully-associativlaea80% of inser-
tions would belong to this class; in other benchmarks, we reswlts ranging from 13% to a
whopping 86%. Returning tgcg if the cache is 4-way set associative the placement of new
items is much more restricted, and a full 60% of insertionsilde immediately removed
by the optimal algorithm. These results imply that the comvamal wisdom favoring the LRU
replacement algorithm is of questionable merit.

It is especially easy to visualize why LRU may fail by considg transient streaming data.
When faced with such data, the optimal algorithm would datei@ single cache line for all
of it, and let the data stream flow through this cache line.oftller cache lines would not be
disturbed .Effectively, the optimal algorithm thus partitions the badnto the main cache (for
core non-streaming data) and a cache bypass for the strepoomponent (non-core)The
LRU algorithm, by contradistinction, would do the opposited lose all the cache contents.

The aforementioned benefits of using a cache bypass can bendrated formally using
a simple, specific example cache configuration. Assume aecaith »> + n cache lines,
organized into sets whose size is eitheror n+ 1 cache lines each. In either case, the address
space is partitioned inte equal-size disjoint partitions (assumings a power of 2) using the

memory address bits. The two organizations are used asvillo

Set associative: there aren sets ofn + 1 cache lines each, and each serves a distinct partition

of the address space. This is the commonly used approach.
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Bypass: there aren sets ofn cache lines each, and each serves a distinct partition afitheess
space, as in the conventional approach. The remainiogche lines are grouped as a
disjoint set (which we will call the “extra” set), and can eptany address and serves as

a bypass!

These two designs expose a tradeoff: in the set associasigrg each set is larger by one,
reducing the danger of conflict misses. In the bypass detlignextra set is not tied to any
specific address, increasing flexibility.

Considering these two options, it is relatively easy to $ext the bypass design has the

advantage. Formally this is shown by two claims.

Claim 1 The bypass design can simulate the set associative design.

Proof: While each cache line in the extra set can hold any addresstfie address space, we
are not required to use this functionality. Instead, we @auit kach cache line to one of the
partitions in the address space. Thus the effective spaatalble for caching each partition

becomes: + 1, just like in the set associative design. [

The conclusion from this claim is that the bypass design memer suffer more cache
misses than the set associative design. At the same timeawethe following claim that

establishes that it actually has an advantage.

Claim 2 There exist access patterns that suffer arbitrarily morehmamisses when served by

the set associative design than when served by the bypagsdes

Proof: An access pattern that provides such an example is the folljpwepeatedly accegs
addresses from any single address space patrtition in & egelnnern times. When using the
set associative design, only a single set witbache lines will be used. At best, an arbitrary
subset ofn — 1 addresses will be cached, and the other 1 will share the remaining cell,

leading to a total of)(nm) misses. When using the bypass design, on the other harith all

IFor simplicity, the claims assume the bypass buffer coattlie same number of ways as sets in the main
cache — but obviously these numbers need not be the same.
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addresses will be cached by using the original set and tina s&t. Therefore only the initial
2n compulsory misses will occur. In this sense, a bypass méstacan potentially relieve
pressure on specific cache sets resulting from bursty conflgses. By extending the length

of this pattern (i.e. by increasing) any arbitrary ratio can be achieved. [

An example of a dual-cache design that extends a simplessetiative cache is théctim
Cacheproposed by Jouppi [37]. The victim cache includes a smédly-associative buffer
into which all memory blocks evicted from the direct-mappedin cache (the “victims”) are
inserted. Jouppi showed that many of the blocks evicted tremain cache will be requested
again within a short period of time, and should therefore dyat kn an auxiliary cache and be
given a chance for re-insertion. In that sense, the auyibaffer — called thevictim buffer—
serves as an extension to the main cache. The myriad of dehkcstructures proposed in the
literature are discussed in Chapter 7.

The definition ofcore working setshus extends the classic working set definition by Den-
ning to capture the dual nature of memory workloads, anctyreorresponds with the dual-
cache paradigm. While the paradigm itself is not new, then&dization of core working sets is
novel. Core working sets thus enable cache designers taflyraescribe, compare and con-
trast dual-cache designs in a natural way — thereby addisgfaltool to the cache designer’s

toolbox.

38



Chapter 5

Cache Filtering Through Probabilistic

Prediction of Temporal Locality

The existence of lengthy cache residencies is a directtresi@imporal locality — as discussed
in Section 3.1 — since frequent accesses to a block previeahitbeing replaced in a standard
LRU based set-associative cache. But even long residem@esometimes terminated in favor
of shorter residencies, when a more popular block is eviatéa/or of a less popular one. This
is commonly caused by changes in a program’s memory worklioaidincrease the number
of cache misses (and therefore cache insertions) momigngard mainly affects caches with
a relatively low degree of associativity that cannot effesdy sustain a sudden burst of cache
insertions. Although frequently accessed blocks will bekjy re-inserted into the cache, the
first access after the eviction will incur a high latency eafiss. This is in fact the rationale

behind thdeast-frequently-usefL.FU) replacement policy.

Alternatively, these inefficient replacements can be aaioy employing @ache insertion
policy that will prevent transient blocks from being inserted totein the first place — be-
cause such blocks effectively just pollute the cache. Thgtleof a cache residency can thus
serve as a metric for cache efficiency, with longer residenaidicating better efficiency, as
the initial block insertion overhead (latency and powernsortized over many cache hits. A

simple filter can therefore be based on a residency lengthgboe that will be used to predict
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whether inserting a block into the cache would be benefitidhe insertion is not beneficial,
references to the block can be served from an auxiliary husfebypass the cache altogether
(these two alternatives are effectively equivalent siheelatter can be seen as using an auxil-
iary buffer containing a single block).

However, the definition of a “beneficial insertion” is nowtal, and is tightly coupled with
the specifics of the cache design. Therefore, the discussiarsidency length prediction
(or rather whether a residency should be characterized asgadne) is separated from the

proposed cache design (discussed in Chapter 6).

5.1 Onthe Non-Feasibility of an Optimal Insertion Policy fa

Dual-Cache Structures

Caches are commonly evaluated using their achievablenatsger hit-rate), which, for simple
associative cache structures, can be minimized using Bslagtimal replacement policy [6].
Using an insertion policy however, implies a dual-cacheditire since the block selection can
be effectively viewed as making a decision whether to inertblock into the cache itself, or
rather into an auxiliary buffer. Although in general the éiaxy buffer can contain only one
block — thus effectively implementing a cache bypass — issumed here that the auxiliary
buffer contains more than one block.

Dual-cache structures are not addressed by Belady’s o@lgaithm which only accounts
for a replacement policy, and not a cache/buffer arbitrapolicy. Moreover, Brehob et al.
showed that optimal cache replacement is NP-Hard for daeth&s in which one component is
fully-associative and the other is either set-associatidirect-mapped [7]. This result can be
extended to show that even if both caches are set-assedmatiwith different numbers of sets,
the problem is still NP-Hard — thereby removing the requieeirthat one of the components

is fully-associative:

Claim 3 An optimal replacement algorithm for a dual-cache, in whipgith components are
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set-associative with different number of sets, is NP-H#rtd i

e the numbers of sets in both components are powers of 2.

e the address bits used to map addresses to sets in the compameaining the smaller

number of sets, is a subset of the mapping bits in the othepcoant.

Proof: Consider a dual-cache containing two set-associative ooB1gs, where component 1
is of size B, blocks and associativity od; (such that it is not fully-associative, i.el; < By),
and where component 2 is of siZg and associativityl, (such thatd, < B,). Component 1
therefore contain§; = % disjoint sets, and component 2 contalfys—= % sets. Based on the
precondition,S; # Ss.

Now, let us assume (without loss of generality) that compb&econtains more sets than
component 1, i.eS, > S;. We can therefore divide the entire reference streamSitdis-
joint reference sub-streants - - - Rg,, where each sub-streafR) is mapped to, and uniquely
serviced by, a single set in component 1. In addition, bexthesaddress bits used in mapping
addresses to cache sets in component 1 are said to be sutbsefised in componentR; is
also mapped to, and uniquely serviced by, exa%}l;sets in component 2. Furthermore, based
on the precondition thaf; and.S, are distinct powers of 2, it is guaranteed tlé?ﬁs a natural
number.

The entire dual-cache can thus be regardes} alisjoint dual-cache§’; - - - C's,, each con-
taining a single set from component 1 a%dsets from component 2 — with each servicing
only part of the entire reference stream, namelyRhsub-stream. But eadl); is effectively a
dual-cache composed of a fully-associative structuregihgle set from component 1), and a
set-associative cache of degréeand sized, x g—f — a design for which an optimal replace-
ment policy is NP-Hard according to Brehob et al.

The result is that no feasible optimal replacement algorigxists for each of the sub-
streams, based on the proof by Brehob et al. [7]. But becdwessub-streams use disjoint

sub-structures of the entire dual-cache, a block from obestteam cannot replace a cached

1Since the two preconditions are in fact common practicesahe design, they do not effectively hinder the
breadth of the claim.
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block from another sub-stream. Thusglabal optimal replacement algorithm for the entire

dual-cache must be NP-Hard as well. '

This lack of a feasible optimal cache insertion policy sigjga need for a different strategy
to evaluate such policies. Moreover, using a strategy thaiptetely ignores the underlying
caching mechanism is impossible when dealing with cachdersies, since the definition of

a residency depends on the cache parameters — such as tkeestarhnd its eviction policy.

5.2 Identifying An Effective Subset of Blocks

The lack of an optimal replacement algorithm for dual-cackeggests a different strategy
should be used to evaluate cache filtering. It is therefoggested to approach this problem
from a cost/gain perspective, trying to create a minimateeorking set of residencies that will
effectively maximize gain — where tleostis defined as the fraction of all residencies included
in the core working set, and tlyain defined to be the fraction of all references composing the
residencies in the core. Effectively, the cost of the coreking set can also be regarded as
the size of the cache needed to accommodate all the resedesaliected, and the gain as the
hit-rate achieved.

The conflict between theostand gain here is obvious: on one hand, inserting all resi-
dencies to the core will service all references from the cbu will also represent a cache
of infinite size. On the other hand, leaving the core empty mihimize the number of resi-
dencies included in the core (none), but will serve no rewiges from the core as well. The
need to balance the two opposite goals indicates the syrabemyld employ a threshold param-
eter determining the minimal length of a residency that &hbe considered part of the core.
Although maximizing the gain in lieu of a cost metric is triéaially addressed by finding a
threshold that maximizes the average gﬁﬁ, this strategy will not work here. In the case
at hand, this method would try to identify a residency lentiteshold that would maximize
the average core residency definedcggrelerences __ \which would simply set the threshold

core-residencies

to be the length of the longest residency, thus inserting tirdt single residency into the core
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Figure 5.1: Demonstration of the maximal effectiveness pointvortex On the left is the
original mass-count plot, and on the right is the same datigal as a function of the residency
index in the sorted list of all residencies. The double ardmmonstrate the point where the
difference between the mass and count is maximal in whi@¥ of all residencies serve84%
of all references. It occurs for a residency length of 23refees, and requires oyt x 10°
residencies out of a total 8f38 x 10° residencies.
working set.

The strategy proposed is therefore to identify a resideeogth threshold (the minimal
length of core residencies) that maximizes thiferencebetween the fraction of all refer-
ences composing the core, and the fraction of all residenom®uded in the core — namely

core-re ferences—core-residencies. All residencies whose length is longer than the threshold

are considered part of the core working set.

Claim 4 The threshold that maximizes the difference between tlutidraof all references
composing the core, and the fraction of all residenciesudet in the core, is the average

residency length.

Proof: Given R the total number of reference® the total number of residencies, we can
sort the residencies according to length, such that eadteresy is attributed with an index

in the rangdl... B]. len(i) is defined as length of thi¢h shortest residency, and the sorted
residencies indicate th&tn (i) < len(i + 1) for all i. Mass-count disparity plots can then be

plotted as a function of the residencies’ indices, as shawfigure 5.1. In this plot style, the
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count cumulative probability value at thih residency is

and its mass cumulative probability is

mass(i) = XZ: lm;(‘j)

j=1

This means that théth residency adds; to the count distribution, an&”? to the mass.
Therefore, given tha@ is monotonically non-decreasing (&%:.(i) < len(i + 1)), the gap
between the two distributions grows whﬂ?é;@ < %, narrows wheﬁ%(i) > %, and peaks at

len(i) 1
R B

= len(i) ~

& =

which is the average residency length. But since the avesage necessarily integral, whereas
a residency length is integral by definition, the feasibkeshold is simply the integral part of

the average:
R
threshold = | —=
resho LBJ
Furthermore, because the residencies’ lengths are madoalignnon-decreasinden (i) <
len(i + 1), the slope of the mass distribution’s cumulative functisrguaranteed to never
decrease, and the gap between the mass and the count willdezvease as well. This assures

that the threshold does not represent a local maxima, therréte global one. 1

The floor value of the average residency length thus reptesamnque equilibrium point
that maximizes the effectiveness of the core working se: difierent proposed subset of
residencies will inevitably replace a block in the core wotle not belonging to the core, and
will thus replace a long residency with shorter one — therellyicing the number of references
that will be served by the core. Since the number of referefarea specific stream is constant,

this in turn will reduce the difference between the cost aaid,ghus reducing the effectiveness
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of the core.

Selecting a threshold requires future knowledge about timeber of references issued by
the program and the number of residencies exhibited by tbieecfpbtained by pre-executing
the program at hand). Once a threshold is selected thougtktan be theoretically classi-
fied at runtime by maintaining a reference counter for eaokkl This selection algorithm is
equivalent to the definition of a core working set with a pecatiénB, described in Section 4.1.
The predicate evaluates tiaue for each residency longer tharreferences, which in this case
will be the predetermined threshold.

In practice, the counter-based approach cannot be impleché@nhardware because it re-
quires maintaining a counter per memory block. A viable mted can therefore only approx-
imate this counter-based approach using a feasible casignde

Interestingly, the counter-based algorithm presented hedaxes the requirements from a
residency length predictor, as it does not have to predectttiual length of a residency, but
rather produce a binary prediction stating whether thelezgiy is likely to be longer than the
threshold, or not. Therefore, rather than focusing on aiipelesreshold, a generic evaluation
of residency length predictor focuses on the ability to agjpnate any given threshold.

The following section thus presents a probabilistic resayelength predictor that uses a
probabilistic parameteP. This predictor is then evaluated in Section 5.4 by exptptime
relationship between the probabilistic parameteand the threshold parameter used by the

counter-based algorithm.

5.3 Probabilistic Residency Length Predictor

The probabilistic residency predictor harnesses the skeligtributions characterized by the
mass-count disparity phenomenon (discussed in Chapt&éh8)phenomenon shows that while
most residencies are short, most references are servicgtbbyg residency. Therefore, select-
ing a memory reference at random by executing a Bernoudli tnh each memory reference

is likely to identify a reference that is part of a long residg Thus, if the trial’'s outcome is
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true, the rest of the residency is considered to be part of theworking set. When sampling
references uniformly with a relatively low probabilify, short residencies will have a very low
probability of being selected. But given that a single sampknough to classify a residency as
belonging to the core, the probability that a residencyassified as core after references is
1— (1 — P)". This converges exponentially to 1 for largeln practice, the selection need not
even be random, and periodic selection achieves resultastmthose obtained with random

selection. For consistency though, only results for randelaction are shown.

The definition of a core working set presented in Chapter 4direg the formalization of a
predicate capturing the core blocks. GivBrihe entire working set of a program abldck (i)
the block accessed in thith memory reference, and given a uniformly distributed candit
stream with a success probabiliywhoseith bit is randp (i) (bit values are referred to here
by their boolean equivalents, such that bit value 1 cornedpdo boolean “true”, and bit value

0 corresponds to boolean “false”), the predicatedomcorep describing the core blocks is:

randomcorep = (b € B |3i s.t. block(i) = b Arandp(i) = true)

Importantly, implementing such a predictor does not rezjgavingany state information
for the blocks, since every selection is independent ofrgésiecessors. The hardware required
to implement the selection mechanism is trivial — randorec@&n requires a pseudo random
number generator, which can be implemented using a simpdatifeedback shift register,
whereas periodic selection simply requires a saturatingies [81]. This also enables easy
integration with other predictor types, such as those adiing memory level parallelism and

the criticality of specific references for performance [55]

The core working sef'r andomeore (t) thus represents the core selected using the random
sampling algorithm presented above. Note that the formfatitien of the predicate describes
the set of blocks that should be treated preferentially mting to the algorithm, but does
not mandate any specific implementation. This is a strikiag@le of how core working sets

offer the decoupling of a cache designer’s perception ointip@rtant blocks, from any caching
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mechanism or implementation based on this perception

5.4 Evaluating the Probabilistic Predictor

The evaluation of the probabilistic predictor is done agithe counter-based algorithm pre-
sented in Section 5.1. In order for the results to be oblwitmuany specific residency length
threshold, the evaluation focuses on the relationship &etvthe parameters of the two meth-
ods — the residency length threshold used in the countexebagproach, and the Bernoulli
trial success probability used in the probabilistic preatic

The counter-based approach essentially relies on achidwiateresis of N levels (using
alg(NV)-bit saturating counter), which can be approximated usisgrées of Bernoulli trials
with a success probabilit%}—K, whereK is the number of successful trials needed to approxi-
mate counter saturation [58]. The correlation sought iscioee between the residency length
thresholdV and the Bernoulli success probabili®& Specifically, as the simplicity of the pre-
dictor is crucial for the feasibility of its implementatipthe predictor can only be viable if a
single Bernoulli trial is sufficient for block selection. &lgoal is therefore to evaluate relative
performance of probabilistic selection with probabilfyand counter-based selection with a
target count ofV = .

Figures 5.2 and 5.4 compare the probabilistic runtime ptedivith the counter-based se-
lection, for residencies generated using direct-mappedamnay set-associative 16K L1 data
caches, respectively. The figures show the percentageidéreses classified as core (bottom
lines) and the references they service (top lines). Comgahtimg results for the instruction
streams are shown in Figures 5.3 and 5.5 (direct-mapped -aval 4et-associative, respec-
tively). As a unified scale, the X-axis equates a samplindg@bdity of P with a counting
threshold of%. When analyzing the percent of references serviced by tiqior's selected
core, we see a very good correlation to those serviced byaheter-based predictor, at least
for P up to 0.01. For example, when runniggafty with a direct-mapped data cache (Fig-

ure 5.2) and using a selection probability 8f = 0.01, the sampling predictor covers some
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52% of all memory references, constituting over 90% of thenber of references covered
by the counter-based predictor. This result is fairly cstesit for all benchmarks, using resi-
dency traces generated on both direct-mapped and 4-wagsetiative caches, with the only

exceptions beingwim artandmcf benchmarks, notorious for their poor temporal locality.

When observing the number of residencies selected by bethqtors, we see that the prob-
abilistic predictor may select more residencies than thet@y-based one, but for probabilities
lower thanP = 0.01 for data streams an®® = 0.001 for instruction streams, the difference
is up to a few percents. This good correlation stems from dlee that both predictors only
select a very small percentage of the residencies, usuwetyajfew percents. But wheh is
relatively high, too many false positives — or transienidescies — are classified as core
(residencies shorter than 15 references constitutes sO6Peo® all residencies in the bench-
marks shown in Figure 3.2). These extra residencies ardla@s@ason why the probabilistic

sampling predictor sometimes seems to serve more referémae the counter-based predictor.

Tables 5.1 through 5.4 show how many residencies are clbsii core and how many
references they service: the first two tables show the stati®r 16K direct-mapped data and
instruction streams, respectively, and the other two tabl®w the corresponding results for
4-way set-associative residencies’ traces. When sumnviegadl the residencies experienced
by a 16K direct-mapped data cache, sampling only 0.01% oti#lta references selects an
average~7.39% of the residencies, while covering over 45% of theregfees 8% of res-
idencies and-59% of the references for 4-way set-associative data caclhesthe average
is highly affected by benchmarks known for their poor tengpdocality, such aswim art,
andmcf, the median values are shown as well, demonstrating a ageefaver 50% of direct-
mapped data references (over 70% for 4-way set-assoditiaecaches). The coverage is even
better for both direct-mapped and 4-way set-associatsteuation cache (Tables 5.2 and 5.4,

respectively).

Overall, these results imply that executing Bernoullilsriwith success probabilities of
P = 0.01 for data streams an&® = 0.001 for instruction streams are good operating points

— a result that is consistent for all benchmarks analyzede foHowing chapter describes a
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Table 5.1: Data cache, 16KB direct-mapped Percents of residencies (insertions) classified
as core and the references they servicepPfer 0.001, P = 0.01 andP = 0.05.

P =0.001 P =0.01 P =0.05

Benchmark | %Ins | %Refs|| %Ins | %oRefs| %lIns | %Refs
164.gzip 0.90 | 31.91 5.77| 56.63 | 16.89| 75.64
175.vpr 0.90 | 13.86 6.24| 41.09 | 21.35| 61.33
176.gcc 1.30 | 45.53 8.38| 65.26 || 31.77| 74.72
181.mcf 0.20 | 1.32 1.87| 8.12 8.43| 20.68
186.crafty 0.83 | 27.34 5.49| 52.29 || 17.39| 70.98
197.parser | 1.11 | 27.15 6.62| 56.86 | 20.99| 73.73
253.perlbmk | 2.39 | 35.55 || 11.40| 69.55 | 29.57 | 84.86
255.vortex | 1.53 | 33.80 8.36| 64.28 || 24.01| 80.32
256.bzip2 1.23 | 54.96 7.22| 73.83 | 20.22| 85.94
300.twolf 0.94 | 5.98 7.22| 28.79 | 23.38]| 55.70
168.wupwise 2.63 | 33.60 || 13.28| 66.83 || 37.70| 81.92
171.swim 1.13 | 0.88 || 10.62| 7.49 | 42.60| 28.77
172.mgrid 1.08 | 5.72 8.72| 25.08 || 28.56| 52.86
177.mesa 1.63 | 58.75 8.21| 79.39 || 24.47| 88.20
178.galgel | 0.67 | 4.36 5.61| 20.54 || 20.06| 45.51
179.art 0.28 | 3.19 2.53(14.51 | 11.24| 26.93
187.facerec | 1.81 | 17.56 || 11.43| 48.20 | 33.02| 71.29
188.ammp | 1.16 | 17.60 7.90| 44.56 | 25.40| 65.81
189.lucas 0.84 | 13.97 6.99| 28.73 | 27.81| 45.62
301.apsi 0.68 | 34.82 3.90| 62.80 || 12.01| 78.04
Average 1.16 | 23.39 7.39| 45.74 || 23.84| 63.44
Median 1.11 | 27.15 7.22|52.29 || 24.01| 71.29

dual-cache design based on the probabilistic predictgpqeed in this chapter, and details a

thorough exploration of specific probabilities suitabletfte design.
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Figure 5.2:Data cache, 16KB direct-mapped Fraction of blocks sampled by the probabilistic
predictor and the percent memory references they serwigepared to those of the counter-
based predictor.
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Table 5.2: Instructions cache, 16KB direct-mapped Percents of residencies (insertions)
classified as core and the references they servicé’ for0.001, P = 0.01 andP = 0.05.

P =0.001 P =0.01 P =10.05
Benchmark | %lns | %Refs| %lns | %Refs| %lIns | %Refs
164.9zip 450| 82.34| 28.23| 89.06| 63.50| 95.27
175.vpr 3.49| 88.40|| 21.98| 92.77| 54.96| 96.53
176.gcc 2.86| 77.19| 18.89| 85.06| 51.61| 92.17
181.mcf 100.00| 100.00(| 100.00| 100.00| 100.00{ 100.00
186.crafty 2.63| 26.64| 18.42| 49.17| 52.56| 72.16

197.parser 2.80| 80.93| 20.20| 86.34| 56.79| 92.63
253.perlomk| 3.80| 36.18| 17.90| 70.17| 48.61| 84.44
255.vortex 254 18.84| 17.27| 45.44| 49.92| 69.73
256.bzip2 67.70) 99.97| 78.71| 100.00|| 88.40| 100.00

300.twolf 456| 41.09| 26.51| 66.08|| 61.12| 84.99
168.wupwise  5.49| 91.69| 22.64| 96.61| 54.45| 98.43
171.swim 5.12| 99.87| 15.21| 99.96| 42.76| 99.98
172.mgrid 16.03| 99.74| 27.17| 99.96| 51.02| 99.98
177.mesa 2.13| 73.08| 15.66| 80.39| 49.67| 88.07
178.galgel 80.95| 100.00| 89.29| 100.00|| 92.86| 100.00
179.art 27.01 99.91| 38.87| 99.99| 67.99| 100.00

187.facerec | 24.49| 99.51| 49.91| 99.90| 60.68| 99.98
188.ammp 8.22| 88.96| 30.93| 95.88| 67.30| 98.28
189.lucas 36.24| 99.99| 44.83| 100.00|| 65.27| 100.00

301.apsi 5.54| 46.07| 33.79| 67.31| 72.45| 86.56
Average 20.30| 77.52| 35.82| 86.20|| 62.60| 92.96
Median 5.49| 88.96| 27.17| 95.88| 60.68| 98.28
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Figure 5.3:Instruction cache, 16KB direct-mapped Fraction of blocks sampled by the prob-
abilistic predictor and the percent memory references #egyice, compared to those of the
counter-based predictor.
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Table 5.3:Data cache, 16KB 4-way set associativ€ercents of residencies (insertions) clas-
sified as core and the references they servicelPfer0.001, P = 0.01 andP = 0.05.

P =0.001 P =0.01 P =10.05

Benchmark | %lns| %Refs| %lIns | %Refs|| %lns | %oRefs
164.9zip 0.69 | 55.30 494 68.51 || 15.29| 81.28
175.vpr 0.88 | 49.99 6.18| 65.10 || 22.66| 75.45
176.gcc 1.13 | 62.95 9.04| 70.49 | 35.14| 78.00
181.mcf 0.19 | 6.86 1.76| 14.51 8.10| 24.67
186.crafty 1.02 | 51.57 5.60| 73.68 || 17.03| 84.66
197.parser | 1.15 | 55.95 6.90| 73.81 | 23.04| 83.23
253.perlomk | 3.05 | 53.74 || 13.67| 79.43 || 34.79| 89.96
255.vortex | 2.20 | 57.92 9.97| 81.15 || 27.01| 90.20
256.bzip2 1.15 | 68.91 7.41| 80.12 || 20.91| 89.24
300.twolf 1.05 | 25.88 7.67| 46.52 || 26.20| 64.89
168.wupwise 1.64 | 76.67 || 14.45| 79.70 | 49.03| 86.79
171.swim 1.12 | 3.34 | 10.68| 8.91 | 43.20| 29.28
172.mgrid 1.57 | 17.30 || 12.99| 32.08 | 43.71| 56.16
177.mesa 4,73 | 77.62 | 19.20| 90.99 | 49.67| 95.53
178.galgel | 0.58 | 19.16 3.86| 46.61 | 14.57| 61.35
179.art 0.24 | 19.89 2.38| 22.35 || 11.27| 29.53
187.facerec | 1.17 | 62.60 9.45| 70.22 || 31.92| 80.67
188.ammp | 1.01 | 42.49 7.40| 58.11 | 25.60| 72.17
189.lucas 0.79 | 31.02 7.44| 35.72 | 30.82| 48.91
301.apsi 0.74 | 55.15 4.15| 74.99 | 12.88| 85.12
Average 1.31 | 44.72 8.26| 58.65 || 27.14| 70.35
Median 1.12 | 53.74 7.44| 70.22 | 26.20| 80.67
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Figure 5.4:Data cache, 16KB 4-way set-associativ&raction of blocks sampled by the prob-
abilistic predictor and the percent memory references #egyice, compared to those of the
counter-based predictor.
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Table 5.4: Instructions cache, 16KB 4-way set associativePercents of residencies (inser-
tions) classified as core and the references they service, ¥00.001, P = 0.01 andP = 0.05.

P =0.001 P =0.01 P =10.05
Benchmark | %lns | %Refs| %lns | %Refs| %lIns | %Refs
164.9zip 86.56| 99.99| 94.62| 100.00| 96.77| 100.00
175.vpr 51.50| 99.99| 64.97| 100.00| 79.04| 100.00
176.gcc 3.09| 77.80|| 20.25| 85.53| 53.46| 92.69
181.mcf 100.00| 100.00(| 100.00| 100.00| 100.00{ 100.00
186.crafty 3.67| 23.10|| 22.13| 53.96| 56.07| 77.61

197.parser 32.11| 98.79| 57.35| 99.79| 77.05| 99.94
253.perlomk| 5.46| 42.20|| 22.31| 76.55| 54.87| 88.94
255.vortex 3.45| 38.35|| 21.06| 62.73|| 56.15| 80.93
256.bzip2 65.94| 99.97| 75.96| 100.00| 88.56| 100.00
300.twolf 5.93| 81.32|| 30.44| 90.49|| 64.16| 96.16
168.wupwise 87.60| 99.99| 92.56| 100.00| 95.45| 100.00
171.swim 10.35| 99.85|| 24.90| 99.96| 56.13| 99.98
172.mgrid 21.62| 99.71| 34.67| 99.95|| 57.71| 99.99
177.mesa 14.24| 92.29|| 37.99| 97.97| 68.36| 99.30
178.galgel 80.95| 100.00|| 86.90| 100.00|| 91.67| 100.00
179.art 093.98| 99.99| 98.80| 100.00|| 99.40| 100.00
187.facerec | 38.34| 99.88| 52.35| 99.98| 70.79| 100.00
188.ammp 59.06| 99.92| 67.65| 99.99|| 82.37|100.00
189.lucas 40.97| 99.98| 49.82| 100.00| 71.15| 100.00

301.apsi 5.35| 41.85| 34.95| 62.32|| 75.86| 84.33
Average 40.51| 84.75| 54.48| 91.46| 74.75| 95.99
Median 38.34| 99.88| 52.35| 99.98|| 75.86| 100.00
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56



Chapter 6

A Random Sampling L1 Cache Design

Based on the principles described in the previous chaptéss¢chapter introduces a novel L1
cache design that uses Bernoulli trials to distinguish lesidencies from short, transient ones.
As the long residencies represent a small subset of the mgpdat that service the majority of
references, by identifying these residencies and seryittiem using power-efficient, direct-
mapped L1 caches, we can potentially increase CPU perfaenamd at the same time reduce

the power consumption.

Direct-mapped caches are faster and consume less energgdhassociative caches typ-
ically used in L1 caches [28, 38]. However, they are more eisiole to conflict misses than
set-associative caches, thus suffering higher miss-eagschieving lower performance [32].
This deficiency led to abandoning direct-mapped L1 cachéms/or of set-associative ones in
practically all but embedded processors. The ability tdifi@n the reference stream into long
and short residencies, enables to serve only the small sehgfresidencies from the direct-
mapped cache, thus harnessing its power and performaritse Wwhile dramatically reducing

the number of cache conflicts.

The use of a direct-mapped cache for servicing the core isastgnl by Figure 4.1, which
demonstrates how modern set-associative caches servgtafribe references from the cache
sets’ MRU position, thus acting as de-facto direct-mappa&ches, but with set-associative

access times and power consumption. This phenomenon waeepmited by Flautner et al.
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[21] to reduce the power consumption of set-associativeedy putting the non-MRU line
into a low power / longer latency state.

The rest of this chapter proposes a design for a random sagnpdiche based on dual-
cache paradigm, that employs a direct-mapped structurerte she core working set, and a
fully-associative structure acting as filter serving ttasient residencies. It is shown that such
a design offers both better performance as well as reducegrpmonsumption compared to

common cache structures.

6.1 Proposed Design

The proposed design, based on the dual cache paradigm,icsedkeim Figure 6.1. It consists
of a direct-mapped cache preceded by a small, fully-asteeidter. When a memory access
occurs, the data is first searched in the cache proper, and tmt misses the filter is searched.
If the filter misses as well, the request is sent to the nexd keache. In our experiments we have
used 16K and 32K (common L1 sizes) for the direct-mappede;antd a 2K fully-associative
filter (all structures use 64B lines).

Each memory reference that is serviced either by the filtbydine next level cache initiates
a Bernoulli trial with a predetermined success probabiktyto decide whether it should be
promoted into the cache proper. Note that this enables & lf&iched from the next level
cache to skip the filter altogether and jump directly into ¢hehe. This decision is made by
the memory reference sampling uiRSU) which performs the Bernoulli trials, and writes
the block to the cache if selected. In case the block is nettad, and was not already present
in the filter, the MRSU inserts it into the filter.

The MRSU can in fact perform the sampling itself even befbeedata is fetched, enabling
it to perform any necessary eviction (either from the cactoper of the filter) beforehand,
thus overlapping the two operations. Section 6.2.1 expltirte probabilistic design space for a
suitable Bernoulli success probability.

For a desired threshold probabilify we pre-calculate a consta@t such that§—§ ~ P.
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Figure 6.1:Design of a random sampling filtered cache.

Given a source of random bits, the MRSU generates a randegeantin the range{l . .QK).

Therefore, the result of the comparisor< C'p yieldstrue with probability~ P.

Although such a mechanism is easy to implement (e.g. usimgartfeedback shift register
[81]) and consumes negligible power, we also experimeniddnaive periodic sampling, us-
ing a period proportional te; (possibly implemented usinglag, (%)-bit saturating counter).
This achieved results similar to those of random sampling.tNérefore only show the results

for random sampling.

To reduce both time and power overheads associated witlssingethe fully-associative
filter, we have augmented the classic CAM / SRAM design [14w8th a wordline look-aside
buffer (WLB) that caches recent lookups to the fully-associatiuéfds, thus eliminating re-
peating fully-associative lookups and saving the powefdpmance cost associated with them.
The WLB is a small direct-mapped cache structure mappingkitiags directly to the filter’'s
SRAM based data store, thus avoiding the majority of thelgd3AM lookups, while still
maintaining fully-associative semantics. Section 6.2 msffa detailed description of the WLB

design, and an analysis of the WLB performance to deterrhmeamber of entries it requires.
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Dual caches, and specifically filtered caches have been gedgn various contexts in the
past, using various filtering metrics [37, 64, 63, 46, 62, Bpwever, none of the aforemen-
tioned studies offer such a simple categorization mechatodistinguish between frequently
used and transient memory blocks using random samplingjredting the need to maintain
any per-block reuse history information. This work is comgaband contrasted with such al-

ternatives in Chapter 7.

6.2 The Effects of Random Sampling

Random sampling of memory references can be viewed as thiéquang of the reference
stream into two components — one consisting of long residsnand the other consisting of
short transient residencies. This partitioning enableatitng each component of the workload
using a special caching structure that is better suitedrtacgethe blocks (and thereby residen-
cies) composing that component. The number of referencigedqaently used blocks are nu-
merous, but involve only a relatively small number of distiblocks. This reduces the number
of conflict misses, enabling the use of a low-latency, lowrgy, direct-mapped cache struc-
ture. On the other hand, transient residencies composedjwity of residencies, but naturally
have a shorter cache lifetime. Therefore, they can be séywadmaller, fully-associative (and
costly) structure.

The filtering rate and probability therefore poses a daditaning knob: aggressive filtering
might be counter-productive, since too many blocks may gniaing served by the filter and
not promoted to the cache proper, making the filter a bottlened degrade performance. On
the other hand, loose filtering may promote too many blockkeeanain direct-mapped cache,
thereby saturating the direct-mapped structure, inangatsie number of conflict misses and
degrading its performance.

This section is therefore dedicated to evaluate the effentiss of probabilistic filtering,
while exploring the statistical design space. The selegggdmeters are then used to evaluate

performance and power consumption in Section 6.4.
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6.2.1 Impact on Miss-Rate

First, we address the effects of filtering on the overall anégds in order to determine the
Bernoulli probabilities that yields best cache performenigure 6.2 shows the distributions
of the miss-rate achieved by a filtered 16K direct-mappededfraction of blocks missed
by both the cachand the filter) compared to that achieved by a regular 16K dineapped
cache, for various Bernoulli success probabilities (lovadues indicate a decreased miss rate).
The data shown for each combination are a summary of thesxsehange in miss rate over
all benchmarks simulated: the distribution’s middle ra(@8%—75%), average, median and
min/max values. An ideal combination would yield maximaéwl miss-rate reduction with
a dense distribution, i.e. a small differences between 896-25% percentiles and min—max
values, as a denser distribution indicates more consisteualts over all benchmarks.

The figure shows that the best average reduction in datanatis$s~25%, and is achieved
for P values 0f0.05 to 0.1. Moreover, this average improvement is not the result ohglei
benchmark skewing the distribution: when comparing thdeseof these distributions — the
25%—-75% box — we can see the entire distribution is moved d@was. The same can be
said about the miss-rate reduction in the instruction strefar which selection probabilities
of 0.01 to 0.0001 all achieve an average improvement-a$0%. In this case as well the best
averages are achieved for probabilities that shift theedistribution downwards.

The fact that a similar improvement is achieved over a rarfgerababilities, for both
data and instruction, indicates that using a static selegirobability is a reasonable choice,
especially as it eliminates the need to add a dynamic tunechamism.

We therefore chose sampling probabilities)dis and0.0005 for the data and instruction
streams, respectively, for the 16K cache configuration. &malar manner, probabilities of
0.1 and0.0005 were selected for the data and instruction streams, regelctfor the 32K
configuration.

Interestingly, the data and instruction stream requirkedéht Bernoulli success probabili-
ties — with two orders of magnitude difference! The reasarttics is the fact that the instruc-

tion memory blocks are usually accessed over an order of @gnmore times compared
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Figure 6.2:Comparison of SPEC2000 instruction and data miss-ratgliisbns, using vari-
ous sampling probabilities, for a 16K-DM cache. The boxgsagent the 25%—75% percentile
range, and the whiskers indicate the min/max values. Intsiddox are the average (circle)
and median (horizontal line).

to data blocks. In the benchmarks shown in Figure 3.2, 50%efiata memory blocks are
accessed 1-2 times while in the cache, whereas the samafileroé instruction blocks are
accessed 10-15 times. This difference is mainly attribtdete fact that instruction memory

blocks are mostly read sequentially as blocks of instrastio

6.2.2 Impact on Reference Distribution

As noted above, random sampling is aimed at splitting theregices stream into two com-
ponents — one consisting of long cache residencies, anth@nodnsisting of short transient

ones. In this section we conduct a qualitative analysis®@gtfectiveness of random sampling
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Figure 6.3:Comparison of the data references’ mass distributionsgfiltiered cache structure
and the regular cache structure for select SPEC2000 bemksimsing the ref input, for both
data (top) and instruction (bottom). The horizontal arr@hew the median-to-median range,
and the vertical arrows show the falsequilibrium point.

in splitting the distribution of memory references.

Figure 6.3 compares distributions of reference masses -fatigon of references serviced
by each residency length — of the filtered 16K cache and thginai 16K direct-mapped
cache. Results are shown for select SPEC2000 benchmaitk®Beinoulli probabilities of
0.05 for data streams an@0005 for instruction streams. The probability selection is lobse
the analysis described in Section 6.2.1.

Each plot shows three lines: the distributions for the direapped cache and fully-associative
filter for the filtered design, and the original distribution a conventional direct-mapped cache
— which is the combination of the first two (this is the samdribstion as the one shown in
Figure 3.2). The distributions for the filter and the cacheoaat for residencies that are split

because the block was promoted to the cache — references tadbk serviced while the
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block was in the filter are counted as an individual filter desicy, whereas the references
serviced from the cache itself after the block was promotedcaunted as a separate cache
residency. The median value of the two filtered distribugigmarked with a down pointing
arrow. Invariably, the distributions show that the majpadft references directed at the filter are
part of residencies much shorter than those in the diregiped cache proper, which in turn
serve the majority of the references. (Figures 6.4 and 8@aly the naked data and instruction

distributions, respectively, for all SPEC2000 benchmaskgewed).

The qualitative difference between the two resulting istions is estimated using two
intuitive metrics: median ratio (marked with a horizontaldle arrow) and false-equilibrium
(marked with a vertical double arrow). Tables 6.1 and 6.2tlhie two metrics’ values for all

SPEC2000 benchmarks data and instruction streams, reghgct

The first metric is the ratio between the median values of #vbe and filter distributions:
ratio = chft’;jﬁ% This metric is used to quantify the distinction betweentthe distribu-
tions, thereby evaluating the effectiveness of randontseteto distinguish shorter residencies
— which should stay in the filter — from longer ones that shdagdoromoted into the cache
proper.

The median ratios for all benchmarks’ data streams are megs150 — 10%, with an
average ratio o~~320 (median~180), with the instruction streams’ median ratio averaging
at ~50,000 (median-4,400). In practice, this result indicates that the med&sidency in
the direct-mapped cache is several orders of magnitudestahgn the median residency in

its corresponding fully-associative for filter, demonsirg the effectiveness of the design in

splitting the original reference (mass) distribution.

The second metric is denoted as faksex equilibrium, and is an estimate of false predic-
tions: Any given residency length threshold we choose in$ight will show up on the plot as
a vertical line, with a fraction of the cache’s distributints left indicating the false-positives
(short residencies promoted to the cache), and a fractioedfilter’s distribution to its right
indicating the false-negatives (long residencies remgim the filter). Obviously, choosing

another threshold will either increase the fraction ofdgh®sitivesand decrease the fraction
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of false-negatives, or vice versa. The faisequilibrium is a unique threshold that if chosen,
generates equal percentages of false-positives andrfatgives, thereby serving as an upper
bound for the overall percentage of false predictions.

For example, if we examineortexs data stream we see that the false-* equilibrium point
stands at a residency length-020 and generates6% false predictions«{3% for the instruc-
tion stream). The false prediction rate for the cache undiiigmcf data stream was found to
be ~22%, which although tolerable was among the highest valbssreed. This is caused
by the large number of short residencies in the originalrezfee stream — which is actually
dominated by these residencies. These short residencassthe filter causing a dual effect:
the short residencies push blocks whose residencies cant@adty grow to be long out of the
filter, while the random sampling algorithm statistical®fexts more short residencies because
of their sheer number. The result is consistent with otheheainfriendly benchmarks such
asswim (over 40% false predictions) arait (over 20% false predictions). Still, the overall
average percentage of false predictions for the data strea®s found to be-13%, with~2%
for the instruction streams — a fairly good upper bound abersng it is based on stateless

random sampling.
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Table 6.1:L1 data cache, selection probability = 0.05: Median/Median ratios and false-
equilibrium values for all SPEC2000 benchmarks reviewed.

Benchmark | Med-to-Med ratio| Falsex Equ. | Falsex @
164.gzip 840| 6/94 23
175.vpr 90| 12/88 12
176.gcc 480| 11/89 8
181.mcf 26|22/78 2
186.crafty 350| 5/95 19
197.parser 240| 8/92 16
253.perlbmk 240| 5/95 24
255.vortex 270 6/94 22
256.bzip2 1900| 5/95 25
300.twolf 29| 14/86 11
168.wupwise 180| 8/92 20
171.swim 1.1|43/57 8
172.mgrid 3.6|12/88 14
177.mesa 600 5/95 32
178.galgel 57|15/85 10
179.art 140 23/77 3
187.facerec 48| 15/85 16
188.ammp 58| 12/88 14
189.lucas 41|26/74 8
301.apsi 840| 6/94 16
Average 320| 12/87 15
Median 180 | 12 /89 16

* Average and median Falseequilibria values are calculated
independently and thus may not sum up to 100%.
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Cummulative Probability (CDF)
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Table 6.2:L1 instruction cache, selection probabilify = 0.0005: Median/Median ratios and
falsex equilibrium values for all SPEC2000 benchmarks reviewed.

Benchmark | Med-to-Med ratio| Falsex Equ. | Falsex @
164.9zip 55e+3 3/97 9715
175.vpr l.4e+4 2/98 10298
176.gcc 2.2e+4 3/97 2438
181.mcf 8e+h 0/100 29946
186.crafty 1.7e+3 1/99 320
197.parser | 4.3e+2 6/94 7995
253.perlbmk | 6.3e+2 6/94 1327
255.vortex | 1.6e+3 3/97 655
256.bzip2 7.3e+3 0/100 9591
300.twolf 1.7e+3 2/98 1429
168.wupwise 9.5e+3 1/99 11865
171.swim 1.6e+3 0/100 19332
172.mgrid 2.1e+3 0/100 13748
177.mesa 2.1e+3 9/91 5918
178.galgel | 6.5e+4 0/100 23124
179.art 4.6e+4 0/100 11266
187.facerec | 4.4e+3 0/100 12051
188.ammp |5.9e+3 6/94 8462
189.lucas 2.7e+3 0/100 31174
301.apsi 1.8e+3 3/97 1307
Average 5e+4 2197 10598
Median 4.4e+3 2/99 9715

* Average and median Falseequilibria values are calculated
independently and thus may not sum up to 100%.
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Cummulative Probability (CDF)
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Figure 6.6: Percent of references serviced by the cache vs. the pertéidaks transferred
from the filter into the cache for varying sampling probalah (averages over all benchmarks).
The horizontal lines near the top of the figure indicate therggotic maximum of references
serviced by the cache. Cache size was 16K, with a 2K filter.

Another aspect of the reference distributions is the nurobegferences in each distribu-
tion, compared with the number of residencies served by dlobecand the filter. Figure 6.6
shows the percentage of references serviced by the cacmpaced with the percentage of
blocks promoted into the cache, for various probabiliti€snsidering the mass-count dispar-
ity we expect that promoting frequently accesbé&utksinto the cache will result in a substan-
tial increase in the number oéferencest will service, and that promoting not-so-frequently
used blocks have a smaller impact on the number of referesem@gced by the cache. This
is indeed evident in Figure 6.6: when increasing the suqoedsabilities we see a distinctive
increase in the number of references serviced by the cantiesame level — indicated by the
horizontal line — where this increase slows dramaticallg promoting more blocks into the

cache hardly increases the cache’s hit-rate. In our cases#iiiration occurs d@ = 0.2 for
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the data and® = 0.05 for the instructions. Beyond these probabilities the praddlocks are
mostly transient blocks and we start experiencing dimingheturns. Specifically, the chosen
probabilities insert an average of onhB83% of the data blocks into the cache proper, servicing
~T77% of the data references85% /~92% for instructions streams).

In summary, we see that random sampling is very effectiveplitting the distribution of
references into two distinct components — one composedIynairfrequently used blocks,

and the other of transient ones.

6.3 The Wordline Look-aside Buffer

A fully-associative caching element like the filter, intcoxs long access latencies and in-
creased power consumption that are mostly caused by tlyedsdiociative block lookup. Such
an element is commonly implemented using content-addoessaemory (CAM) serving as a
tag-store, and whose wordline are connected to the wositihen SRAM block, serving as the
data-store [14, 81], as shown in Figure 6.7 (left). Temploredlity only aggravates its impact
on performance as it suggests the expensive fully-assaeiaokups may be frequently re-
peated for a specific block. We therefore proposealline look-aside buffefWWLB) to cache
recent lookup results. The design is shown in Figure 6.1{)ig

The WLB consists of a direct-mapped structure, mapping tddtter-resident blocks to
their location in the fully-associative buffer's SRAM stture. The data contained in the WLB
for each tag is a bitmap whose width is similar to the numbédmes in the filter — 32 lines
for a 2K filter. This allows for each WLB output bit to be dirgctonnected to an SRAM
word-line without a decoder, offering a fast, low-powerltag of CAM results. In fact, the
WLB structure is efficient enough to be accessed in paraliél the cache on every access,
eliminating the need for a costly CAM lookup on most filter egses. If the WLB misses, the
CAM is accessed, and the result is fed back to the WLB durirgetiisuing SRAM access,
hiding the WLB update latency. Furthermore, the number triesin the WLB can be much

smaller than the number of filter lines, as temporal locallgp exists in the filter. This section
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Figure 6.7:A common design of a fully associative buffer using a CAM lba-store and a
SRAM data-store (left), and the design augmented with a WHdgh({) to cache the mappings
of recent lookups.
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Figure 6.8:Distributions of filter access depth for all SPEC2000 bermitks) and the average
distribution. Note that the vast majority of accesses acased around the MRU position. The
benchmarks are not individually marked as their specifiabeh is irrelevant in this context,
except for the three unclustered plots which representt@dyottom)swim, crafty, andart

explores the WLB design space.

A basic question when exploring the design space of the WLiB tetermine what may
be an effective size for the buffer. Figure 6.8 shows thekstipth distributions of filter ac-
cesses, for the different SPEC2000 benchmarks, as welleagvétrage distribution over all
benchmarks. The various benchmarks are not individuallgkethas only the clustering of
distributions matters in this context, but it is interegtio note that the three benchmarks that
fall below the main cluster awvim art, andcrafty. While the first two benchmarks are known

for their poor temporal locality, it seems the filtered desgjvery effective at splittingrafty's
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workload so the vast majority of blocks in the filter exhibgtry poor locality (the design in fact
reducegcrafty's miss-rate by~50%). Still, it is clear that overall the vast majority of asses
pertain to recently used blocks — in fact, on avera@d% of data accesses are to stack depths
of 8 or less, out of a total of 32 lines in the filter. But a WLB egsting of 8 entries may
not be sufficient to simulate a stack depth of 8 accessesubedthe WLB is a direct-mapped
structure, and is thus susceptible to conflicts. A WLB cdmgisof NV entries can therefore
only approximatea stack of depthV. For this reason we have explored WLB sizes of 8 and
16 entries. In our experiments, we have found that using anr§ /LB achieves an average
of ~78% hit-rate for the data stream83% median) and over 97% for the instruction stream
(~97% median) for a 2K filter. Doubling the WLB size to 16 entroedy improves the average
data hit-rate to~84% (~89% median) and-99% for the instruction stream-©Q9% median),
but increased the dynamic power consumptiondd¥)% and the leakage by50% (with simi-

lar results for the 32K configuration). The conclusion waat #ithough an 8-entry WLB loses
performance to cache conflicts, its hit-rate is still goapezially given that doubling the size

of the WLB to 16 entries only increases its hit-rate by a fewcpats.

We have therefore used an 8 entry WLB in our power and perfoceavaluation, elimi-
nating almost 80% of the costly filter CAM lookups for the datehe, and 98% of those in
the instruction cache. Given that the hit-rate for the maiche stands at almost 80% for the
data stream and over 90% for the instruction stream (Se6t@2), these results yield that on
average only~4% of the data references anrd.1% of the instruction references still initi-
ate expensive fully-associative lookups. Furthermore,sitmall size of the WLB results in a
negligible power consumption, and since its access timeddgear than that of the main direct-
mapped cache, the WLB can be accessed in parallel to the raele creducing the average

fully-associative filter’s latency even further.

The WLB thus demonstrates that harnessing temporal lgcaétcan dramatically reduce
a fully-associative filter's power consumption, while iroping its performance — without

losing the fully-associative semantics.
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IL1/DL1 cache micro-architecture
size 16/32 K | fetch/issue / decode 4
line size 64 B functional units 4
assoc. DM window size 128
latency 1lcy: | Load/Store queue 64
filter branch predictor

entries 32 meta-predictor with 64K-entry
assoc. full bimodal and gshare, and a
latency 5cy. | similar size meta table.
CAM lat. 3cy. | 4K branch target buffer (BTB).
SRAM lat. 1lcy. L2 cache
WLB lat. lcy. | design unified
WLB entries 8 size 512K
WLB line 32b line size 64 B

memory assoc. 8
latency 350cy. | latency 16 cy.

Bernoulli probabilities

Size | Data | Instruction
16K P =0.05 P =0.0005
32K P=01 P =0.0005

* L1 latency is 2 cycles for set-associative and fully-asside caches

Table 6.3:micro-architecture and cache configurations used in th@batder simulations.

6.4 Impact on Power and Performance

The reduced miss-rate achieved by the random samplingrdesighbined with a low-latency,
low-power, direct-mapped cache, potentially offers batiprioved performance and reduced
power consumption. Augmenting the fully-associative ffiteth a WLB reduces the overhead
incurred by the filter, further improving efficiency.

Using the SimpleScalar toolset [4] for out-of-order sintidias we have compared the per-
formance achieved by direct-mapped filtered caches againsus set-associative caches. Our
micro-architecture consisted of a 4-wide superscalagaesihose parameters are listed in Ta-
ble 6.3. Timing estimates are based on the CACTI 4.1 timindehdhe direct-mapped cache’s
hit latency was set to 1 cycle, as is the lookup latency in thdB\\as well as the SRAM access
time. The latency of a CAM lookup is estimated at 3 cycles.

Figure 6.9 shows the timing diagram of the different compdsién the proposed cache
design. The main cache and WLB are searched in parallelgltinm first cycle. If the main

cache misses, the result of the WLB lookup determines tteg fdokup path: if the requested
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Figure 6.9: Timing diagram of the cache design, based on the microaatbital parameters
listed in Table 6.3. Down pointing arrows indicate lookugshwhile up pointing arrows indi-
cate lookup misses. Based on the results described in 8éc8palmost 96% of all L1 hits are
resolved within 2 cycles.

block is found in the WLB then no CAM lookup is necessary, teasbling a fast path by
accessing the SRAM directly, and resulting in a 2 cycled fdtar latency. Only if both the
direct-mapped main cacladthe WLB miss, the filter’s slow path is needed and the CAM is
looked up.

In addition, the hit latency incurred by set-associativehes was set to 2 cycles. For fully-
associative caches we used an unrealistically fast 2 catdmdy — same as set-associative
— placing both on a similar baseline, thus focusing on theiced miss-rates achieved by
fully-associative caches.

Figure 6.10 shows the IPC improvement achieved by a randowpls#y cache over a sim-
ilar size 4-way associative cache, for the SPEC2000 bendism&he figure shows consistent
improvements (up te-35% for a 16K configuration ane28% for 32K one), with an average
IPC improvement of just over 10% for both 16K and 32K configiora

While the results are consistent, it is clear that benchmauffering from conflict misses
enjoy better performance gains. This is most pronouncedgsithat includes a large portion
of short residencies — over 70% of all residencies consist sihgle reference, as shown in

Figure 3.4. Supporting this is the fact that doubling theneagize to 32K — thus reducing con-
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Figure 6.10:IPC improvement for direct-mapped random sampling cachgisg a 2K filter)
over similar size 4-way caches.
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Figure 6.11:Average IPC improvement for 16K and 32K direct-mapped Bitlecaches over
common cache configurations.

flicts by increasing the number of sets — decreases the peafore gains for this benchmark,

while other benchmarks remain largely unaffected.

Figure 6.11 compares the average performance achieved @ktland 32K random sam-
pling caches to that of common cache structures. It showsthaect-mapped random sam-
pling filtered cache achieves significantly better perfarogathan a similar size set-associative
cache. Moreover, a random sampling cache can even gainr begtgall performance than
larger, more expensive caches: a 16K-DM random samplingecg®lds~5% higher IPC
than a 32K-4way cache, and a 32K configuration outperforndkadvay by over 7%. Like-

wise, using the extra 2K for a filter yields better performatian using them as a victim buffer,
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indicating that even such a relatively large victim buffemynbe swamped by transient blocks.

Interestingly, the IPC improvement is similar when compgrihe 16K-DM random sam-
pling cache to both a regular 16K-DM cache and a 16K-4wayssbciative cache, indicating
similar performance achieved by the latter two. The reasoritis similarity is that while
the direct-mapped cache suffers from a higher miss-ratgaoed to the 4-way set-associative
cache, it compensates with its lower access latency. Thigis more evident when considering
the larger 32K and 64K caches, where the direct-mapped eoafign takes the lead. When
doubling the cache size from the 32K to 64K the number of caelt® doubles, thus reducing

the number of conflicts and allowing the direct-mapped cadbwer latency to prevail.

Next, we compare the power consumption of the random samplche with that of the
other configurations. Using independent random samplimgirghtes the need to maintain
any previous reuse information, reducing the power consiemgalculation to averaging the
energies consumed by the combination of a direct-mappdtecadully-associative filter, and
a small, direct-mapped WLB. All power consumption estirsaee based on the CACTI 4.1

power model [75] (which models CAMs for fully-associativeustures).

The average dynamic energy consumption is simply the agtgemergy — the sum of

number of accesses X access energy

for each component — divided by the overall number of hiterEsimpler, the leakage power
consumed by the random sampling cache is the sum of leakager ponsumed by all com-

ponents.

Figure 6.12 shows both dynamic read energy and leakage mmwmsumed by the random
sampling cache, compared to common cache configurationse(aa those in Figure 6.11).
Obviously, the power consumed by the random sampling cachgher than that of a simple
direct-mapped cache, because of the fully-associatiee:filip to~~30% more dynamic energy
and under 15% excess leakage power for a 16K random samplahg ¢and just over half that

for a 32K cache). However, when comparing a random samphkgte to a more common
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Figure 6.12:Relative power consumption of the random sampling cachapaoed to common
cache designs (lower is better), for a 70nm process.

4-way associative cache of a similar size, the 16K randonpiagicache design consumes
70%—-80% less dynamic energy, with onhp% more leakage power. The 32K configuration
yields 60%-70% reduction in dynamic energy, with no incesiadeakage.

However, the main contribution of a random sampling cacheparent when compared
to a set-associative cache double its size: both the 16K @kdr@ndom sampling caches
consume 70%-80% less dynamic energy, and 40%-50% lessgledkan 32K and 64K 4-
way set-associative caches, respectively, while stikraffy better performance, as shown in
Figure 6.11.

In summary, this chapter shows that a random sampling dinagiped cache backed up by
a fully-associative filter, offers performance superiothat of a double sized set-associative
cache, while consuming considerably less power — both dymand static. This suggests that
adding just a small buffer and a trivial insertion policy i®ma efficient than blindly doubling

cache size.
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Chapter 7

Related Work

The concepts presented in this work cover a variety of rebdaapics covered by the different
subsections in this review. The detailed review is precdzjed general overview of the work

and its related topics.

The fundamental base of the research presented in thistisesie identification of the
Mass-Count Disparitphenomenon in L1 workloads, and its implications — the skdis-
tributions of memory access patterns, and specifically grétpning of the reference stream
into two parts, with the minor part addressing short cackaencies, and the major part ad-
dressing long cache residencies. But the phenomenon iswitptaito cache workloads, and in

fact present in different scientific disciplines, discusseSection 7.1.

The partitioning of the reference stream into frequentidusiocks (long cache residencies)
and transient blocks that experience short term burstysaquatterns (short cache residencies)
suggests that reference streams commonly experienceahyai frequency vs. recency. The
observation that memory access patterns may display eliffeypes of locality, possibly war-
ranting different types of caching policies, has alreadyivated studies that tried to identify
the frequently used blocks. This duality is manifested g/ db-existence of two disjoint re-
placement policies, namely theast-recently-use(L.RU) and thdeast-frequently-useflLFU)
policies [32]. Attempts to combine characteristics fromltiple replacement policies normally

yield more complex policies, but a recent study showed algim@thod to combine multiple
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separate replacement policies into a single meta-poletydhooses the best single policy for a
momentary workload. Qureshi et al. explored several vianatonCache Set Duelingvhere

a small number of cache sets are allocated as placebo grea@s,managed by a different
replacement policy [55, 56, 54]. The cache controller tsalokw each of the placebo groups
performs, and switches the remaining bulk of cache sets @oatg using the best performing
policy. Although this adaptive mechanisms is currentlyyauitable for L2 caches because of

its associated overheads, such meta-policies holds pedorisuture cache designs.

Interestingly, combining different replacement polidies been attempted in other caching
disciplines, such as the software-based caching that ésinsgperating systems’ buffer-caches
[68]. Such software-based designs have the advantage g lable to incur a much more
substantial runtime overhead. This advantage in fact makisr-cache studies an interesting
source through which one can gain new insights and perspsaibout caching. Section 7.2

reviews several buffer cache replacement algorithms.

The extremely skewed access distributions described adrmadgles probabilistic sampling
to be successfully employed in this work as an easy-to-implg mechanism that can success-
fully separate short and long term cache residencies, altpthhem to be served by different
cache structures using the dual-cache paradigm. Usingpilatic sampling for cache filter-

ing is a new idea, and two studies published in recent yearsearewed in Section 7.3.

But probabilistic filtering is only one possible method tatpegon the memory reference
stream. A myriad of techniques to partition the memory efee stream have been proposed
in the past, tuned to different types of locality — with maatgeting dual-cache designs [65].
Different partitioning methods are reviewed in Section. 7Hbwever, it is important to note
that all the reviewed methods rely on maintaining block eemormation, which in turn war-
rants designing a special hardware mechanism to storenfloatiation, thereby incurring both
energy and space overheads. In contradistinction, theapiiidtic partitioning proposed here
is completely stateless, and does not depend on maintaaningeuse information.

Finally, the cache design presented above makes use of bettt-chapped and fully-

associative structures. Direct-mapped caches are knowthdo low-latency and low-power
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characteristic, but also for their susceptibility to cartftnisses. The opposite can be said about
fully-associative caches, which suffer no conflicts (anddeelower miss-rates) at the cost of
increased latency and power overheads. These combinatiotigated many researchers to
overcome the two structures’ inherent deficiencies in aimget the best of both worlds. These

designs are reviewed in Section 7.5.

7.1 Mass Count Disparity

The mass-count disparitphenomenon identified above in L1 cache workloads is sumgtis
not uncommon, and is an artifact of heavy-tail distribusio&vidence of inverse correlations
between the popularity of object sizes and their dominandke aggregate size of the sample
space have been reported in various fields of study. One @ifsheeports was made by Lorenz
in 1905, when he described inequalities in the distributibwealth [43], in which most people
are poor, but the rich govern the majority of the wealth. Thisw) well-known economical
phenomenon was thus used to explain mass-count dispafitigapter 3. More relevant to this
research, inverse correlations were reported in sevepaicés of computer systems. Among
others, Irlam showed most files on UNIX file systems to be smath most disk space occu-
pied by a small number of very large files [30]; Broido et apaded several different inverse
correlations in IP traffic, such as that only a fraction oflatiernet service providers (ISPs)
are involved in up to 90% of the routes observed, and thataidra of all autonomous ad-
ministrative systems may contribute up to 95% of the traffi@dink [8]; Harchol-Balter and
Downey found UNIX processes to be mostly short, but that mbshe CPU time goes to a
small number of long-lasting processes [26].

Somewhat surprisingly, it was not until recent years thaséhsupposedly disjoint occur-
rences of inverse correlations were characterized andrglezesl as a single statistical phe-
nomenon. The two seminal papers describingNtess-Count Disparityphenomenon were
published by Crovella [16] and Feitelson [20]. Crovellantied that several supposedly dis-

joint examples of inverse correlations are in fact occuresrof a single statistical phenomenon,
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and coined the ternvass-Count Disparityo describe it. Feitelson developed this concept by
introducing quantitative metrics to evaluate the dispafihese metrics, described in Chapter 3
include thelV, , metric that evaluates the aggregate mass of the smalleohtieé samples;
the NV, , metric evaluating the fraction of samples dominating hathe aggregate mass; and
the Joint-Ratiometric as a generalization of the proverbial 80/20 rule #stitmates the equi-
librium between the count and mass distributions (bothrija0] and Broido et al. [8] in fact

used a similar metric, referred to in the latter asarassover point

7.2 Strategies for Operating Systems’ Buffer Caches

An operating system’s buffer cache [68] shares similar g@ath a hardware cache, e.g. to
cache items that are likely to be used in the near future, deroto eliminate long-latency
accesses to a secondary storage. Despite different stia@tges, buffer cache replacement
policies can inspire hardware cache replacement poliesggcially given their relaxed timing
requirements. Therefore, reviewing some of the buffer eaeplacement policies proposed is
useful to gain some insights about caching in general.

Most notable of these is thedaptive replacement cacl{@RC) by Megiddo and Modha
[45]. ARC combines the frequency and recency of reuse nsetriaised in the LFU and LRU
eviction policies, respectively, and common in cache desiginto a single mechanism. By
managing two lists, one for each metric, this approach gi@ldlynamic partitioning of the
buffer cache between LRU and LFU.

Lee et al. show the correlation between frequency and rgcand the probability that
a buffer is re-accessed, and build an analytical model féfebveplacement, using a weight
function to weigh each buffer’s reuse probability [42]. Tdteservations on which this policy
is based are that a buffer might have been used frequentheinecent past, but a change in
the working set deems it unnecessary, thus making the LFUiagraiunter-productive. On
the other hand, a buffer might have been accessed receutlgnlby once and is not to be

accessed again, in contradiction with the rationale bebRid. The proposed weight function
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thus utilize a combined recency and frequency metric thagheeeach previous access to a
buffer with its age. The authors show that this weight fumtitan model both LFU and LRU,
and a variety of algorithms in between.

Tomkins et al. advocate informed buffer prefetching by ggmmogrammer hints to know
which pages to prefetch [77]. The authors try to combine @dB2 [51] and LRU-SP [11]
algorithms and overcome what seems to be the major drawldakach — the aggressive
prefetching of LRU-SP that sometimes fetches pages thattwemeeded, and the limited
prefetching horizon of TIP2 which limits the number of ptefeed pages to the number of
"hits” spent by a single "miss”.

Jiang and Jhang tried to balance frequency and recency ibhehst Inter-Reference Set
(LIRS) buffer cache policy [34]. LIRS tries to improve thensmon LRU by accounting for
access frequency. This is achieved by measuring how mamg tother buffers were accessed
between each two consecutive accesses to a certain buffezfired as thenter-reference
recency(IRR) metric. The buffers that were accessed more frequentl.e. ones with a low
IRR count — are not considered for eviction.

As noted above, although these policies target a softwaredeache whose requirements
are much more relaxed than a hardware based cache. The mdppeviormance achieved
by these policies demonstrates the promise of combiningieggolicies tuned to different
types of locality, and thus motivate further exploratiomad towards lowering their overheads,

making them feasible for use in processor caches.

7.3 Probabilistic Filtering

Skewed distributions, such as those described by mass-daparity, naturally lend them-
selves to the design of probabilistic sampling algorithm&amely, when the distribution is
skewed, randomly selecting elements from the sample spiéioguickly identify the element
groups dominating the distribution. Although the simpli@f such designs is appealing, only

two other cases are known to the author in which sampling wad to enhance performance
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of hardware caches.

Behar et al. employed this same principle to reduce the pspent on trace generation
by using periodic trace sampling [5]. This was based on theendation that the majority
of execution time is spent executing a small number of trgttes proverbial 90/10 rule for
instructions traces [27]), thereby generating only evi®th trace is sufficient to quickly find
the most useful traces. The 90/10 effect described by tHeesibnly demonstrates that the
mass-count disparity is also common in trace generation.

Qureshi et al. observed that most L2 blocks are never reaseldsuggested inserting most
blocks into the LRU position (rather then to the MRU as comiyppnacticed), and infrequently
select a random block insertion to be inserted into the MR&ltfmm [54].

Skewed distributions can therefore be used in differeneetspof hardware caching to im-
prove performance and save power. The application of pibsadsampling to filter a work-
load that exhibits mass-count disparity — presented inrdgsarch — was in fact inspired by
the study conducted by Behar et al. Nevertheless, the ussngdlsg is the only commonality
between the two studies, as the current study focuses offeaedhf workload and emphasizes
the reasoning behind the effectiveness of sampling — wighctbmbination of the two traits
warranting a completely different design. Furthermoreramsvn examples for the use of sam-
pling in processor caches have only been published in regeams, it is the author’s hope that
this principle will gain more popularity in the coming yearnecdotally, probabilistic sam-
pling has already been used in software-based web cachatgges: Starobinski and Tse use

probability to decide whether to promote or demote a docurnethe cache [73].

7.4 Partitioning the Reference Stream

Dual-caches have been extensively studied in the past asigndmncept that can be used to
accommodate different types of locality. Such designsediffiainly in the types of locality
examined (temporal vs. spacial, popular blocks vs. tramsiees, etc.), and the corresponding

criteria used to partition the reference stream [65]. Thigisn therefore surveys several such
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designs.

Gonzalez at al. suggested that the cache be partitionethntparts, one each for handling
data that exhibit spatial and temporal locality [23]. Basadrevious reuse information, their
predictor classifies memory accesses to either scalarenefes (temporal locality) or vectors
references (spatial locality).

The work of Sahuquillo and Pont involves a filter used to opeérthe hit ratio of the
cache [64, 63]. The authors associate a reference courtteeach cache line promoting the
most popular blocks into a small LO cache. A similar mechanis proposed by Rivers and
Davidson in theimon-temporal streamingNTS) cache, which also base caching decisions in
a dual-cache structure on a reference count [59].

Kin et al. focused on reducing cache power consumption, aed an LO structure to ac-
commodate the most popular blocks while maintaining therl_lbw-power mode [40]. The
power reduction is in fact traded off for performance as thiehhs to be re-powered on every
access. In a followup work by Memik and Mangione-Smith, thering takes place between
the L1 and L2 caches [46].

Karlsson and Hagersten use a filter to audit whether a bloakdvoave been replaced
before its next access [39]. If the reuse distance is shaigim the block is promoted to
the cache. This mechanism requires keeping a last-accéssestamp for every block in the
cache, and comparing it on every replacement.

Johnson and Hwu used a bypass buffer for all blocks only atigunost frequently used
blocks into the cache proper [36]. Memory Access TabiAT) is used to group contigu-
ous memory blocks experiencing similar cache behaviors Ehquite costly in hardware as it
requires maintaining access frequency information fomaltro-blocks. Jalminger and Sten-
strom followed the same rationale, but tracked memorysecpatterns using a design inspired
by a two level branch predictor [33].

Chang et al. effectively designed an dual-cache mecharygmatitioning the cache of the
System/37CPU into an on-chip and off-chip parts, with emphasize oniced the hit latency

of the MRU block in a cache set to 1 cycle [13]. They do so byistpinformation in the TLB
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and accessing it in parallel with the cache lookup.

Rosner et al. employed the dual-cache paradigm in the destgace caches, either to filter
out infrequently used traces, or to avoid generating thetherfirst place [62]. In this paper,
the authors explore several trace filtering techniques lwaty on past block usage to predict
whether it would be beneficial to promote a trace from a fakgociative filter into the trace

cache proper.

Unlike the previous methods that characterize a memorykiddased on its address, some
studies used the program counter (PC) of the accessingatisin as a means to characterize
the memory access. Tyson et al. showed that a small fractiamemory access instructions
generate the majority of misses [79]. They therefore pregds avoid caching memory lo-
cations when accessed by these instructions. Rivers etxéénded this work to create the
program counter selectiig®CS) cache [60]. In this extension, the PC based prediiosed
to decide into which part of a dual-cache structure a memiagkishould be inserted.

In a comparative study, Tam et al. compared several appesachthe reference stream
partitioning (required for dual-cache designs), in ora@eassess their potential [74]. The tech-
niques compared were NTS [59], PCS [60], MAT [36] and gseudo-opnear-optimal re-
placement scheme for dual-caches [71]. The conclusion fhisrcomparison is that effective
address based approaches such as NTS outperform macrgbbogkng (MAT) and PC-based
(PCS) designs. Still, the authors showed that there isnstitth room for improvement as the
near optimal algorithm outperform all others by a large rimarg

Some partitioning approaches focus on partitioning the orgrolocks themselves, based
on the observation that not all words in a block necessarxihylat the same types of locality.
Fetching only partial blocks into the cache can therefove sath precious cache and memory
bandwidth resources.

Pujara and Aggarwal noticed that despite the prevalentadeth caching memory blocks
as a whole to employ spacial locality, the common accessnpabinly uses a small number of
the words in a block [53]. This effect dramatically reduceshoL1 cache and bus utilization

— defined as the ratio between the number of memory words ugégelprocessor and the
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number of words brought into the cache. The authors havedbused a mechanism that
predicts which words in a memory block are likely to be usedi anly fetches these into the
L1 cache. This predictor tracks accesses to individual wanmdhe cache, and based on the
words accessed in recently evicted blocks predicts whictdsvehould be brought into the

cache.

Park et al. used a spatial buffer to observe usage at diffgranularities [50]. Then when
a word is referenced, only a small sub-line including thigdvis promoted to the temporal

cache.

Qureshi et al. addressed a similar phenomenon in L2 cachddyave taken an opposite
approach [57]. Rather than preventing the fetching of udwserds, they introduce a mech-
anism called “Line Distillation” that identifies unused wigrin the cache and evicts them to
save cache space. Their approach however is less appeofmidil caches at it still wastes

precious bus bandwidth to fetch the full memory block.

The main problem when evaluating a dual-cache design isattiedf an optimal eviction
policy with which a design can be compared. In an effort toefilgy an optimal replacement
policy, Srinivasan and Davidson developed a near optimiaypmamedpseudo-opf71]. The
policy is based on Belady’s optimal replacement for simplehes and tries to move the blocks
that will be used farthest in the future from the main cachenéauxiliary buffer (exchanging
blocks between the two structures if needed). The autheitbe cases in which such a policy
is sub-optimal, but were not able to describe an optimalcgolA few years later, Brehob et
al. showed that an optimal replacement policy for dual caetiegere one of the components is

fully-associative and the other is not is indeed NP-Hard [7]

As described above, all the structures reviewed requirataiaing reuse information, thus
complicating the filtering hardware. In contradistinctitiee random sampling cache proposed
in this study is purely probabilistic and is therefore dtds, thus not requiring any per-block

information other than its mere presence in either the cacliee filter.
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7.5 Efficient Use of Direct-Mapped and Fully-associative Cehes

Direct-mapped caches are faster and consume less energyeihassociative caches typically
used in L1 caches [28, 38]. However, they are more susceptbtonflict misses than set-
associative caches, thus suffering higher miss-rates@re\ang lower performance [32]. On
the other hand, fully-associative caches offer lower médss but do so with increased tim-
ing and power overheads caused by the fully-associativafmocommonly performed using
content addressable memoi@AM) [81]. These issues motivate researchers to augment th
classic designs in order to overcome their deficiencies ajmyehe inherent advantages of

these diverse structures.

In one of the first attempts to overcome direct-mapped cashsseptibility to conflicts,
Jouppi presented the the victim cache and stream buffets [@Ye design includes a small
auxiliary cache used to store cache lines that were evicted the main cache. This helps
reduce the adverse effects of conflict misses, becausedtia auffer is fully associative and
therefore effectively increases the size of the most hgawsed cache sets. In this case the
added structure is not used to filter out transient data,diber to recover core data that was
accidentally displaced by transient data. By virtue of geapplied after lines are evicted, this
too avoids the need to maintain historical data. Walsh anardextended Jouppi’s victim
cache [80]. They also proposed a dual design with a diregped main cache and a small
fully-associative filter, but in their design the referedckata is first placed in the filter, and only
if it is referenced again it is promoted to the direct-mappadhe — thus avoiding polluting
the cache with data that is only referenced once. Walsh aadd®odesign can be regarded as
a degenerate version of the design presented in this th@&saper 6): our design both allows
for a block to be inserted into the cache after the first memeigrence, as well as allowing

blocks to be served from the filter for more than a single mgmefierence.

Column-associative caches presented by Agarwal and Pugaove the hit-rate of a direct-
mapped cache by using two different hash functions for nrappiocks into the cache [3].

Specifically, if a conflict exists in the original mappinguges an alternative mapping function
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and stores the block in the alternative location. Becaugheotiouble hashing, this design is
also known as a hash-rehash cache. While eliminating modlicts, this approach incurs a
timing overhead as the cache has to be accessed in two phlaseswonflict occurs. Topham
et al. used a slightly different approach that uses protstibilmapping rather than double

hashing to achieve the same goal [78].

Theobald et al. generalized some of the aforementionedanésrns that partition the cache
in order to reduce the number of conflict misses into a geffienadework namedhalf-and-half
cached76]. The authors specifically addressadtim cacheg$37], column-associative / hash-

rehash cacheR, 3] and MRU caches [13].

Another mechanism employing the dual-cache paradigm tocowge conflict misses was
theassist cacheresented by Chan et al. [12]. The function of the assiste&cto compensate
for the fact that the main cache is direct mapped, thus makindnerable to address conflicts.
Unlike the victim cache, the fully-associative assist @ighplaced between the direct-mapped
cache and the bus such that blocks are inserted into thé easie before they are moved into
the cache itself, rather than the post-eviction approael usvictim caches. This mechanism
was included in the commercial HP-PA 7220 CPU, and thereferees as a guideline for what

can be implemented in practice (fully associative buffartaming 64 lines of 32 bytes each).

A different approach to overcome conflict misses in direeppped caches was made by
Mcfarling [44], in his minimalistic, bypass-only approaallynamic exclusion cache. Here
cache lines are augmented with just two state bits, theniabtt and the sticky bit. In particular,
the sticky bit is used to retain a desirable cache line rdtiear evicting it upon a conflict; the
conflicting line is served directly to the processor withioeing cached. However, this approach
is limited to instruction streams and specifically to casbens typically only two instructions
conflict with each other.

A more recent study by Zhang presented Bi€ache addressing cache conflicts by ac-
cessing the direct-mapped cache using two decoders, onkicifi v8 programmable [82]. The
replacement algorithms utilizes the programmable dectodalieviate excess replacements on

any single cache set and distribute the load evenly amondjffieeent sets, thereby preventing
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most conflicts. The use of a programmable decoder elimitlaéaseed for accessing the cache
in two phases in the case of a conflict, as is required by thie-redsash approach.

Except for the B-Cache, all studies trying to overcome confhisses in direct-mapped
cache were performed over a decade ago, and have neverreatisne mainstream. But recent
concerns about processors’ power consumption, aggrabgteae shift towards on-chip paral-
lelism and the resulting replication of caches, brings wetkattention to power consumed by
caches relative to that consumed by the entire processthisinontext, direct-mapped caches’
low-power (and low-latency) characteristics makes thenerg attractive solution. Given an
effective partitioning of the reference stream, only theshpmpular blocks can be inserted into
the direct-mapped cache. The mass-count disparity erdilit L1 reference stream suggest
such designs will only insert a fraction of all memory bloaki® the direct-mapped cache, but
will still enjoy the low-power and low-latency traits in masemory references.

A similar problem exists on the opposite side of the cachégdespectrum, where fully-
associative caches yield fewer misses than other desigtisgpare not susceptible to conflicts
at all), but do so with increased timing and power overhedd® research presented in this
thesis addresses the issue using the wordline-lookasiffierf\WLB) that harnesses temporal
locality to avoid costly fully-associative lookups. Anethinteresting study addressed this issue
by combining both hardware and software to speed up accessetully-associative cache.
Hallnor and Reinhardt proposed using the hardware cachgstore to hold the mappings
only for cache resident block that are likely to be referehicethe near future, whereas the
rest of the mappings are stored in a list oriented, softwaaeaged map [24]. When data is
accessed, its location in the cache is first searched in tidevhee tag-store, and if that fails the
lookup continues in the software based tag-store.

The main advantages of the WLB over Hallnor and Reinhardtesie is that recent ac-
cesses do not require set-associative lookups at all (a#/tlieis direct-mapped), thus con-
suming considerably less power. In addition, if the looke@dblock has not been accessed
recently, the WLB scheme falls back to normal fully-assteglookup, whereas Hallnor and

Reinhardt’'s scheme falls back to a much slower serial soékup.
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Chapter 8

Conclusions

Processor caches have been an area of active research #oleded\Nevertheless, additional
work is still important due to the continuing gap betweengessors and memory. In fact, the
problem is expected to intensify with the advent of multeeprocessors, due to the replication

of L1 caches for each core and the increased pressure orddttacaches.

One way to continue and improve is by taking cues from wordlpatterns. This research
has shown that memory references display mass-count dyspeith a relatively small frac-
tion of memory blocks receiving a relatively large fractiointhe references. But this skewed
distribution is at odds with the classic homogeneous deimibf working sets, that puts all
memory blocks in the working set on an equal footing. The @utiherefore proposes the core
working set framework as an extension and refinement of Deysworking set. This formal
framework uses logical predicates to distinguish betwhemtore important subset of the data
and the rest. Such a distinction, in turn, motivates duaheastructures that handle core and

non-core data differently.

Harnessing the mass-count disparity phenomenon, thianaseescribes the design of a
reuse predictor that classifies cache residencies basdttimrexpected length. The predictor
uses independent random selection of references with alocgess probability, thereby mostly
selecting long residencies. The use of independent safeetiminates the need to maintain

any past-use information. This also enables easy integratith other predictor types, such as
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those addressing memory level parallelism and the critycaf specific references for perfor-
mance [55].

The reuse predictor is then used in the design of a randomlisengache, that uses prob-
abilistic sampling of theeferencedistribution to split theblock distribution into its two com-
ponents — frequently used blocks that are to be served framstalbw-power, direct-mapped
cache, and transient blocks served by a fully-associatiee, fihus preventing them from pol-
luting the cache and causing conflict misses.

After examining the design space it was found that using ateor Bernoulli success prob-
ability P per specific cache configuration is very effective for mostdhenarks, with no need
for adaptive tuning. For example, when using a 16K direcppeal cache and a 2K filter, the
valuesP = 0.05 and P = 0.0005 are found to be best choices for the data and instruction
streams, respectively.

To reduce the added overheads of using a fully-associatifferpit is shown that most
fully-associative CAM lookups can be avoided by using aaimappedvordline look-aside
buffer (WLB) that caches recent fully-associative lookups. A WLRhaonly 8 entries was
sufficient to avoic80% of the lookups for a 32 entry CAM.

The random sampling cache design was able to effectivelgeita 16K direct-mapped
structure for both L1 caches yielding up t@835% improvement in IPC, with an average of
~10% over all benchmarks — better than a double size, 4-wagssziciative conventional
cache. Moreover, this L1 design dramatically reduces tlegadvpower consumption — both
16K and 32K caches were shown to perform better than 32K aKdcédhes, respectively,
while reducing the dynamic power consumption-by0%—-80% and the leakage by over 40%.
With the ubiquitous use of set-associative L1 caches in mmopecessors the author believes
these results can contribute to future processor designnapémentation as the proposed

design offers a win-win situation — achieving better pariance while consuming less power.
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