
Leveraging Modern Interconnects for

Parallel System Software

Thesis submitted for the degree of

“Doctor of Philosophy”

by

Eitan Frachtenberg

Submitted to the Senate of the Hebrew University

December 2003

2

This work was carried out under the supervision of
Dr. Dror Feitelson

3

i

Abstract

The use of clusters of independent compute nodes as high capability and capacity computers is rapidly

growing in industry, academia, and government. This growth is accompanied by fast-paced progress in

cluster-aware hardware, and in particular in interconnection technology. Contemporary networks offer

not only excellent performance as expressed by latency and bandwidth, but also advanced architectural

features, such as programmable network interface cards, hardware support for collective communication

operations, and support for modern communication protocols such as MPI and RDMA.

The rapid progress in cluster hardware and usage is unfortunately not matched by similar progress in

system software. This software consists of the middleware: the operating system, user libraries, and utilities

that interface between the hardware and the user applications, allowing them to make use of the machine’s

resources. In fact, most of these clusters use common workstation operating systems such as Linux running

on each of the cluster’s nodes, with a collection of loosely-related libraries, utilities, and scripts to access

the cluster’s resources. Such solutions are hardly adequate for large-scale clusters and/or high-performance

computing applications. The problems they cause include (but are not limited to): (1) poor performance and

scalability of applications and system software; (2) reduced utilization of the machine due to suboptimal

resource allocation; (3) reliability problems caused by the multitude of independent software modules, and

the redundancy in their operation, and (4) difficulty in operating and making full use of these machines.

The premise behind this dissertation is that system software can be dramatically improved in terms of

performance, scalability, reliability, and simplicity by making use of the features offered by modern inter-

ii

connects. Unlike single-node operating systems, most of a cluster’s system software tasks involve efficient

global synchronization of resources. As such, parallel system software can be designed to benefit from the

novel hardware features offered by contemporary interconnection technology. This dissertation promotes

the idea of treating a cluster’s operating system as any other high-performance parallel application, and

increasing its reliance on synchronization abilities while reducing its per-node complexity and redundancy.

This dissertation makes the following primary contributions. First, a set of necessary network mecha-

nisms to support this system software model is described. A prototype implementation of system software

based on these mechanisms is then discussed. This system currently tackles three main aspects of parallel

computers: resource management, communication libraries, and job scheduling methods. This model was

implemented on three different cluster architectures. Extensive performance and scalability evaluations

with real clusters and applications show significant improvements over previous work in all three areas.

In particular, this research focuses primarily on job scheduling strategies, and demonstrates that through

advanced algorithms, the system’s throughput and responsiveness can be improved over a wide spectrum

of workloads.

iii

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Scope of Work . 2
1.3 Research Goals . 3
1.4 Methodology . 5
1.5 Organization . 6

2 Modern Interconnects 8
2.1 Overview . 8
2.2 Hardware Features . 9

2.2.1 Elan . 9
2.2.2 Elite . 10

2.3 Programmability and Libraries . 12
2.3.1 Elan3lib . 13
2.3.2 Elanlib and Tports . 14

2.4 Performance Evaluation . 14
2.4.1 Point-to-Point Messages . 15
2.4.2 Collective Communication . 16

3 Base Mechanisms 20
3.1 Motivation . 20
3.2 Related Work . 20
3.3 Challenges in the Design of Parallel System Software . 21
3.4 Core Primitives . 26
3.5 Matching with System Software . 27

4 Resource Management 31
4.1 Background . 31

4.1.1 Problem Description . 31
4.1.2 Research Aims . 32
4.1.3 The STORM Approach . 32

4.2 STORM architecture . 33
4.2.1 Process Structure . 33
4.2.2 Running a Job . 35
4.2.3 I/O Bypass . 36

4.3 Analysis . 37
4.3.1 Job Launching Time . 38
4.3.2 Scalability and Job Launch Analysis . 40
4.3.3 Multiprogramming Performance . 49

4.4 Related Work . 52
4.4.1 Job Launching . 52
4.4.2 Process Scheduling . 55

iv

5 Communication Library 57
5.1 Background . 57
5.2 The BCS-MPI Model . 58
5.3 BCS-MPI Design and Implementation . 59

5.3.1 BCS-MPI Design . 59
5.3.2 Processes and Threads . 61
5.3.3 Global Synchronization Protocol . 62
5.3.4 Point-to-point . 63
5.3.5 Collective Communication . 63

5.4 Experimental Results . 65
5.4.1 Synthetic Benchmarks . 65
5.4.2 NAS Benchmarks and Applications . 68
5.4.3 Blocking vs. Non-blocking Communications . 70

6 Job Scheduling 71
6.1 Background . 71
6.2 Related Work . 72

6.2.1 Flexible Coscheduling . 74
6.2.2 Buffered Coscheduling . 76

6.3 Static Workload Evaluation . 77
6.3.1 Methodology . 77
6.3.2 Synthetic benchmarks . 77
6.3.3 MPI Applications . 84

6.4 Dynamic Workload Evaluation . 85
6.4.1 Background and Methodology . 85
6.4.2 Effect of Multiprogramming level . 88
6.4.3 Effect of Time Quantum . 90
6.4.4 Effect of Load . 92

6.5 Resource Overlapping . 95

7 Continuing and Future Work 98

8 Concluding Remarks 101
8.1 Summary of Research Contributions . 101

8.1.1 Interconnection Scalability Analysis . 101
8.1.2 Network Mechanisms for System Software . 101
8.1.3 Resource Management . 102
8.1.4 Communication and Fault Tolerance . 102
8.1.5 Job Scheduling . 103

v

List of Figures

2.1 Elan Functional Units . 9
2.2 Packet Transaction Format . 11
2.3 Elan3 programming library hierarchy . 12
2.4 Unidirectional Ping performance with QsNet . 16
2.5 Uniform Traffic Scalability with QsNet . 17
2.6 Broadcast bandwidth and barrier latency of QsNet on ASCI Q 18

3.1 Simplified system software model . 25

4.1 Running a job in STORM . 35
4.2 I/O bypass mechanism . 36
4.3 Pipelining of I/O read, hardware multicast, and I/O writes 37
4.4 Send and execute times for a

�����
, �
���

, and ���
���

file on an unloaded system 39
4.5 Send and execute times on a CPU-loaded system . 40
4.6 Send and execute times on a network-loaded system . 41
4.7 Send and execute times for a �	�

���
file under different loading scenarios 41

4.8 Read bandwidth for different files systems and buffer locations (���
���

file) 42
4.9 Transmission pipeline . 45
4.10 End-to-end flow control in the QsNet network . 46
4.11 The ASCI Q machine at LANL . 47
4.12 Measured and estimated launch times . 49
4.13 Effect of time quantum with MPL 2 on 32 nodes (Crescendo) 50
4.14 Context switch scalability on Crescendo with MPLs 1 & 2 51
4.15 Effect of multiprogramming level on SWEEP3D run time (64 PEs) 52
4.16 Measured and predicted performance of various job launchers 55
4.17 Normalized performance of Cplant, BProc, and STORM 56

5.1 Blocking and Non-Blocking Scenarios . 61
5.2 BCS-MPI architecture . 62
5.3 Global synchronization protocol . 63
5.4 Send/Receive with BCS-MPI . 64
5.5 Broadcast with BCS-MPI . 66
5.6 BCS-MPI Synthetic Benchmarks . 67
5.7 Benchmarks and Applications . 68
5.8 SAGE performance . 69
5.9 SWEEP3D Performance . 70

6.1 Decision tree for FCS process classification . 75
6.2 One iteration of the “building-block” job . 78
6.3 Compute time for one iteration of two basic jobs . 78
6.4 Two load-imbalanced jobs . 79
6.5 Complementing jobs . 80
6.6 Mixed jobs . 82
6.7 Comparative performance across scheduling algorithms and workloads 83

vi

6.8 Effect of MPL with dynamic workload . 89
6.9 Response time distribution as a function of time quantum (log scale) 91
6.10 Bounded slowdown distribution as a function of time quantum (log scale) 92
6.11 Job number in the system over time and different loads with GS 93
6.12 Response time and bounded slowdown as a function of offered load 94
6.13 Cumulative distribution of response times at � ��� load and FCS scheduling. 94
6.14 Run times of SAGE and filler application with BCS . 97

vii

List of Tables

1.1 Main experimental platforms . 6

2.1 Collective operations portability and performance for � nodes 19

3.1 System tasks in workstations and clusters . 22
3.2 Base mechanisms’ usage for system tasks . 30

4.1 STORM dæmons . 33
4.2 Legend of terms used in the scalability model . 46
4.3 Bandwidth scalability for different cable lengths . 47
4.4 A selection of job-launch times found in the literature . 54
4.5 Extrapolated job-launch times . 54

5.1 Application slowdown of BCS-MPI compared to Quadrics MPI 69

6.1 Balanced workload performance comparison . 78
6.2 Two load-imbalanced jobs performance comparison . 80
6.3 Complementing jobs performance comparison . 81
6.4 Mixed jobs performance comparison . 82
6.5 BCS performance with asynchronous communication . 84
6.6 Completion time (sec) of ASCI applications with different algorithms and workloads . . . 85

7.1 Network bandwidth for various applications and data sets in
�������

, �
�

timeslice 100

viii

List of Publications

1. Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, Juan Fernandez, Eitan Frachtenberg. On the
Feasibility of Incremental Checkpointing for Scientific Computing. To appear in Proceedings of the
International Parallel and Distributed Processing Symposium IPDPS’04, Santa Fe, NM, April 2004

2. Juan Fernandez, Eitan Frachtenberg, Fabrizio Petrini. BCS MPI: A New Approach in the System
Software Design for Large-Scale Parallel Computers. In Proceedings of the IEEE/ACM Confer-
ence on Supercomputing SC’03, Phoenix, AZ, November 2003.

3. Fabrizio Petrini, Juan Fernandez, Eitan Frachtenberg, Salvador Coll. Scalable Collective Com-
munication on the ASCI Q Machine. In Proceedings of the 11th Hot Interconnects conference
HOTi11, Stanford University, Palo Alto, CA, August 2003.

4. Eitan Frachtenberg, Dror G. Feitelson, Juan Fernandez, Fabrizio Petrini. Parallel Job Scheduling
under Dynamic Workloads. In Proceedings of the 9th Workshop on Job Scheduling Strategies for
Parallel Processing JSSPP’03, In Conjunction with HPDC12 / GGF8, Seattle, WA, June 2003.

5. Fabrizio Petrini, Eitan Frachtenberg, Adolfy Hoisie, Salvador Coll. Performance Evaluation of the
Quadrics Interconnection Network. In Journal of Cluster Computing, 6(2): 125–142, April 2003.

6. Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, Leonid Gurvits. Using Multi-
rail Networks in High-Performance Clusters. In Concurrency and Computation: Practice and
Experience, 15(7-8): 625–651, April 2003.

7. Eitan Frachtenberg, Dror Feitelson, Fabrizio Petrini, Juan Fernandez. Flexible CoScheduling:
Dealing with Load Imbalance and Heterogeneous Resources. In Proceedings of the International
Parallel and Distributed Processing Symposium IPDPS’03, Nice, France, April 2003. Best Paper Award

8. Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin, Salvador Coll. STORM: Lightning-
Fast Resource Management. In Proceedings of the IEEE/ACM Conference on Supercomputing
SC’02, Baltimore, MD, November 2002.

9. Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Salvador Coll. Scalable Resource Manage-
ment in High-Performance Computers. In Proceedings of the IEEE International Conference on
Cluster Computing CLUSTER’02, Chicago, IL, September 2002.

10. Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, Eitan Frachtenberg. The Quadrics
Network (QsNet): High-Performance Clustering Technology. In IEEE Micro, 22(1): 46–57,
February 2002.

11. Salvador Coll, Fabrizio Petrini, Eitan Frachtenberg, Adolfy Hoisie. Performance Evaluation of
I/O Traffic and Placement of I/O Nodes on a High Performance Network. In Proceedings of
the Workshop on Communication Architecture for Clusters CAC’02, In conjunction with the Interna-
tional Parallel and Distributed Processing Symposium IPDPS’02, Fort Lauderdale, FL, April 2002.

12. Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, Adolfy Hoisie. Hardware- and Software-
Based Collective Communication on the Quadrics Network. In Proceedings of the 1st IEEE
International Symposium on Network Computing and Applications NCA’01, Boston, MA, October
2001.

ix

13. Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, Leonid Gurvits. Using Multirail
Networks in High-Performance Clusters. In Proceedings of the IEEE International Conference on
Cluster Computing CLUSTER’01, Newport Beach, CA, October 2001.

14. Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll, Wu-chun Feng. Gang Scheduling with Lightweight
User-Level Communication. In Proceedings of the Workshop on Scheduling and Resource Man-
agement for Cluster Computing SRMCC’01, In conjunction with the International Conference on
Parallel Processing ICPP’01, Valencia, Spain, September 2001.

15. Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, Eitan Frachtenberg. The Quadrics
Network (QsNet): High-Performance Clustering Technology. In Proceedings of the 9th Hot
Interconnects conference HOTi9, Stanford University, Palo Alto, CA, August 2001.

16. Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin. STORM: Scalable Resource
Management for Large-Scale Parallel Computers. Submitted to ACM Transactions on Computer
Systems.

17. Juan Fernandez, Eitan Frachtenberg, Fabrizio Petrini, Jose Carlos Sancho. An Abstract Interface
for System Software on Large-Scale Clusters. Submitted to Journal of Parallel Computing

x

1 Introduction

1.1 Problem Description

Large-scale clusters and loosely-coupled high-performance computing (HPC) systems are growing both in

size and prevalence. These machines are used for a variety of complex computations and simulations, and

many scientific, governmental, financial and commercial institutes are turning to clusters as a solution for

their demanding computational needs. The hardware capabilities of these systems, as expressed by their

processor and network performance, number of processors, etc., grows at an exponential rate [122].

Nevertheless, some of the main metrics used for evaluating HPC systems, such as sustained perfor-

mance and utilization, show a comparatively slower growth. Furthermore, clusters become increasingly

harder to manage than sequential systems. This growing gap stems partly from hardware constraints, such

as the increasing imbalance between different components’ performance. Still, a significant factor of this

gap is the result of software deficiencies, and in particular, the system software, which comprises of all

the software other than the user programsq. These deficiencies include uneven usage of resource (load-

imbalance) or suboptimal usage of system resources such as the network, processors, I/O, etc., which leads

to wasted idle time. While many applications can sometimes be optimized and tuned for specific architec-

tures or load-balancing scenarios, often these optimizations are limited and/or prohibitively costly (see for

example [61]). Moreover, since many workloads are quite complex, no single application can optimize the

system performance as a whole.

Many of the large scale clusters use commodity system software, such as Linux and MPI [60]. Such

software, although sometimes optimized for a given hardware platform or application, is typically too gen-

eral to address the needs of large scale machines and applications. Many of these software packages were

designed with a single node or small clusters in mind, and scale poorly to thousands of nodes. Many of

the systems needs, such as efficient resource management and allocation, job scheduling, parallel file sys-

tem, transparent fault tolerance, high performance communication libraries, and monitoring services are

not adequately addressed by a collection of commodity software modules. Furthermore, the combination

of separate, often ad-hoc, system programs to address these needs often involves inefficiency and redun-

dancy, such as when different modules implement their own communication protocols to meet the same

1

requirements. Noise created by independent, node-based system dæmons that are not coscheduled to run

together, often creates a domino effect that severely affects applications’ performance [88]. The quality

of the system software not only affects application performance, but also the cost of ownerships of these

machines.

1.2 Scope of Work

Since system software for large-scale machines consists of many complex tasks, we set out to focus on

some of the more important aspects of system software. In this work, we explore several aspects of system

software, and how they can be viewed and implemented as a parallel application in their own sake. The

main research emphasis of this work is in the field of job scheduling, and the efficient execution of multiple

jobs under many, sometimes conflicting, constraints. Some related subjects are also discussed, such as

resource management (the accounting and allocation tasks of resources in a large parallel machine), dealing

with load-imbalance, workload analysis, user-level communication libraries, and fault tolerance. Much of

the previous work in system software research for parallel and distributed systems focused on particular

aspects of the problem domain. There is a wide body of work on the specific issues listed above, but to the

best of our knowledge, no previous work has tried to generalize all aspects of parallel system software in a

single, simplified view emerging from the capabilities offered by advanced interconnects. In the following

chapters, we will survey significant related work that pertains to each respective subject.

This work offers several contributions to the areas of parallel system software. Most of the in-depth

contributions are in the field of parallel job scheduling, and an improvement of system utilization and

responsiveness through job scheduling techniques. We demonstrate the feasibility and benefits of novel job

scheduling strategies for running realistic, complex workloads on large-scale machines. More generally,

this thesis promotes the notion of a global, cohesive parallel operating system that is adequate for loosely-

coupled large scale systems such as commodity clusters. It is based on the idea that system software is

essentially a parallel, synchronized, high-performance application in itself, and thus should benefit from the

advances in modern interconnect technology. We identify an abstract layer incorporating a set of advanced

and yet portable network primitives, on which an entire foundation for system software can be erected.

Using extensive modeling and performance evaluation, we also demonstrate the feasibility of relying on

this layer to develop a system infrastructure, where various important tasks are simplified, converged, and

yet offer unprecedented performance and scalability. Through implementation of experimental system

software on several hardware platforms, the arguments laid above are translated into an actual proof of

concept.

The machines discussed in this work include clusters of workstations and SMPs, constellations, and

other loosely-coupled configurations characterized by relatively independent compute nodes connected by

2

an interconnection network1. Tightly-coupled systems, characterized by compute nodes that do not run

independent OSs, are for the most part not covered in the scope of this work. By means of a unified, high-

performance system software, we hope to bring the management and performance model of tightly-coupled

systems closer to clusters.

1.3 Research Goals

The problems described in Section 1.1 above are made more challenging by the constant growth of clusters.

One of the main goals in this work was to try to answer the following question: What hardware features, and

thus which abstract interface, should the interconnection network provide to the system software designers?

Once this layer is defined, we set out to use it in a system-centric approach that strives to solve application

problems at operating-system level, so that the preexisting investment in application development can be

kept. The vision behind this work of that of a global, cohesive OS, that like any other HPC application can

leverage advanced interconnect technology, to offer an order of magnitude improvement in performance

and scalability over the current predominant solutions, namely, the use of a collection of loosely-coupled

single node operating systems.

To this end, we set out to investigate the following questions:

1. What are the properties of modern interconnects that are conducive to our vision?

2. How can a system infrastructure be based on a small set of network mechanisms?

3. Can we build upon such an infrastructure to address the various requirements of a global, parallel

operating system, and in particular, for advanced job scheduling?

For the first question, we used the QsNet network as a case study, due to its high performance, advanced

design, extensive programmability, and relative prevalence in high-end machines [122]. These features

include not only raw performance but also hardware support for communication collectives and pro-

grammable NICs. Such novel features are also being introduced in other state of the art interconnects such

as Myrinet, BlueGene’s network and Infiniband, and serve an important role in the scheduling methods we

propose.

To address the second question, we set out to build a complete resource management system proto-

type, based on a small set of network primitives. Many extensive performance and scalability tests were

performed on this platform, and are described in Chapter 4.

Finally, the bulk of this research was dedicated to exploring various aspects of system software, and

in particular those of job scheduling. To this end, we implemented several job scheduling algorithms,

including various forms of batch scheduling, gang scheduling (GS), buffered coscheduling (BCS), flexible

coscheduling (FCS), and implicit coscheduling (ICS).
1We refer collectively to these machines as clusters, for brevity.

3

Since an important difference between a parallel and a serial or distributed application is its communi-

cation requirements, we believe our operating system should be able to monitor and control the commu-

nication behavior of applications and even of its own management tasks. In our implementations of FCS

and BCS, the system monitors the communication behavior and requirements of applications and uses this

information to make informed scheduling decisions for improving resource utilization and load-balancing.

Since global coordination can be beneficial for a cluster operating system and is required for FCS and

BCS, the system should be able to support this need scalably and efficiently. HPC applications are often

also more sensitive than serial application to the balance between architectural components such as CPU

speed, memory bandwidth, I/O, etc. The subject of improved in-node utilization is also addressed in this

thesis. The field of parallel job scheduling is still in its growth, and there are many factors and interactions

that are still not well understood. One of the goals of this thesis is to expand on experimental methods in

this field, and shed some light on some of the associated intricacies.

Realizing a full blown operating system at kernel level is a tedious task, and unnecessary to show

the feasibility of our abstract layer and its usage. Instead, we chose to focus on user-level code with some

additional code running on the NIC thread processor, more like a regular parallel application. This approach

possibly comes at some performance loss, but offers significant gains in simplicity and portability.

The big picture

In a broad view, this thesis is part of a larger vision for cluster middleware. Typical clusters today use

commodity operating systems that are optimized for a single node (e.g., Linux, AIX, Windows NT, etc).

We believe that a cluster operating system should be regarded as a parallel application in itself, with its

own communication infrastructure. As such, it should assume the traditional roles of an operating system

— scheduling, resource management, security, etc. — with a cluster-wide view. In this work we focus

mainly on the job scheduling aspects of such an OS, but we believe that the principles that are developed

and explored, namely the use of advanced interconnects for global OS coordination, can be generalized to

most of the other roles.

This work set out with the goal of advancing our knowledge and suggesting innovative answers to

several research questions:

� Better understanding of modern interconnect features

� How such features can be used for scalable resource management

� The study of state-of-the-art job scheduling algorithms in a realistic hardware and software environ-

ment

� The development of useful benchmarks for job scheduling algorithms

4

� How job scheduling algorithms can be improved and extended by using advanced network features,

and by incorporating active information about the applications’ communication characteristics

� Advancing the state-of-the art in job scheduling in the areas of load balancing, resource utilization

and achievable throughput

� Opening the door for novel applications of global resource coordination

1.4 Methodology

This study involves many different factors of high complexity, such as operating systems, hardware archi-

tectures, network protocols, parallel applications and dynamic workloads. Many of these factors and their

interactions are not yet completely understood, making a theoretical model analysis largely impractical and

unrealistic. The most common approach for research in this field is to implement detailed simulations of

systems and workloads. However, we believe that such simulations cannot encapsulate all the complex-

ities involved, and thus often make simplifying assumptions that fail to consider all the factors. Instead,

the results presented in this work are based on experimental data garnered from actual parallel programs

running on various cluster architectures. We tested our new concepts by developing a prototype platform

for system software research, allowing the study of aspects ranging from user-level communication li-

braries to resource management and job scheduling. To this end, most of this study was conducted at the

CCS-3 group of Los Alamos National Laboratory (LANL), where the facilities offer several state-of-the

art hardware platforms. This study was mostly carried on three cluster architectures:

1. Wolverine: An Alpha EV6-processor based cluster with 256 PEs (4 per node) connected by two

independent QsNet networks (rails). This cluster was initially ranked 83rd on the top500 list.

2. Accelerando: An Itanium-2 (McKinley) based cluster with 64 PEs (2 per node) connected by two

QsNet rails.

3. Crescendo: A Pentium-III based cluster with 64 PEs (2 per node) connected by one QsNet network.

This platform was dedicated to our experiments and was thus used to obtain most of our results.

Table 1.1 summarizes the main features of these clusters. We were also able to obtain a few performance

numbers on the ASCI-Q cluster, ranking no. 2 at the top 500 list [122]. Chapter 2 describes in detail the

Quadrics network architecture, that is shared by all these machines.

We developed a comprehensive software platform to study job scheduling and resource management

algorithms called STORM, described in Chapter 4. STORM allows running arbitrary MPI programs on the

cluster while making measurements on their communication patterns and performance. For this study, we

mostly made use of two LANL applications, SAGE and SWEEP3D, as well as several applications from

the NAS benchmark [4, 123].

5

Component Feature Crescendo Accelerando Wolverine

Node Nodes � PEs
� � � � � � � � � � � �

Memory ��� � ��� � ��� �

I/O buses 2 � PCI 2 � PCI-X 2 � PCI
Model Dell 1550 HP Server rx2600 AlphaServer ES40

OS RH Linux 7.3 RH Linux 7.2 RH Linux 7.1
CPU Type Pentium-III Itanium-II Alpha EV68

Speed �����
	 �����
	 � ��� � �
	
I/O bus Type 64bit � ��� � �
	 64bit � � ��� � �
	 64bit � ��� � ��	

Network NICs � � Elan3 � � Elan3 � � Elan3
Compiler maker/version Intel v.5.0.1 Intel v.7.1.17 Compaq

Table 1.1: Main experimental platforms

SWEEP3D [53] is a time-independent, Cartesian-grid, single-group, discrete ordinates, determinis-

tic, particle transport code taken from the ASCI workload. SWEEP3D represents the core of a widely

used method of solving the Boltzmann transport equation. Estimates are that deterministic particle trans-

port accounts for
���� ��� % of the execution time of many realistic simulations on current DOE systems.

SWEEP3D is characterized by a fine computational granularity and a nearest-neighbor communication

stencil.

SAGE (SAIC’s Adaptive Grid Eulerian hydrocode) is a multidimensional (1D, 2D, and 3D), multima-

terial, Eulerian hydrodynamics code with adaptive mesh refinement (AMR) [61]. The code uses 2nd order

accurate numerical techniques. SAGE comes from the LANL Crestone project, whose goal is the investi-

gation of continuous adaptive Eulerian techniques to stockpile stewardship problems. SAGE has also been

applied to a variety of problems in many areas of science and engineering including water shock, stemming

and containment, early time front design, and hydrodynamics instability problems.

To simplify some of the modeling and evaluation, we also use a synthetic application we developed to

produce a wide spectrum of workloads and job mixes. Like SAGE and SWEEP3D, it assumes the bulk-

synchronous parallel model (BSP), where a parallel applications basically consists of a loop or several

loops involving a computation phase followed by a communication or synchronization phase. Our syn-

thetic application uses MPI calls and CPU-intensive “computation” code. It allows the precise controlling

of many parameters, such as the computation granularity, the communication pattern, and the amount of

variability (heterogeneity and load-imbalance) to induce on different processes. The main difference be-

tween the synthetic application and real applications is that it exerts almost no cache or memory pressure,

since it performs no useful computation.

1.5 Organization

The next chapters follow a bottom-up structure, and correspond to a large extent to the work done in

chronological order. We start by reviewing the state of the art in modern interconnects, and in particular

6

we focus on the Quadrics QsNet network. This network became the primary platform for our research and

was studied extensively. The following chapter describes in detail the various architectural properties and

performance features that make novel networks such as QsNet suitable for system software advances.

The next natural step is the identification and analysis of a minimal set of network mechanisms that

can support the needs of a global system software. To this end, we study various system needs in Chapter

3 and derive the required mechanisms. Based on these mechanisms, we developed a research prototype of

an advanced resource management system, as the first step toward global, scalable system software. This

system, called STORM (Scalable TOol for Resource Management) is described and studied extensively

in Chapter 4. Other than advancing the state of the art in various aspects of resource management, it also

provides a flexible infrastructure for evaluating different parallel job scheduling algorithms on a real cluster

implementation.

Another important aspect of system software, the user-level communication library, is discussed in

Chapter 5. We have implemented our own version of the MPI library based on the BCS model. While

similar in performance to the Quadrics production-level MPI, it offers a much simpler design, and the

potential for significant benefits that arise from the globally-deterministic nature of BCS.

The focal point of this thesis is the improvement of system performance using job scheduling tech-

niques. Several previously-studied scheduling algorithms were implemented, as well as two new algorithm

implementations, FCS and BCS. We compare these algorithms under various scenarios in Chapter 6. In

particular, we were interested in the properties of different scheduling policies when running long, dy-

namic workloads with communicating programs, that are more representative of real world usage of HPC

computing centers. This is a relatively new, complex area of study with a large number of parameters and

feedback effects that are still not completely understood. Our work on parallel job scheduling sheds some

new light on a few of these issues, and contains the bulk of the innovation in this dissertation.

One potential benefit from our deterministic communication approach is transparent fault tolerance,

using automatic incremental checkpointing that remains consistent along the entire cluster. We intend to

pursue this venue in future research, and discuss it briefly along with other future directions in Chapter 7.

Finally, the last chapter offers a summary of the main contributions of this work.

7

2 Modern Interconnects

2.1 Overview

With the increased importance of scalable system-area networks for cluster computers, web-server farms,

and network-attached storage, the interconnection network and its associated software libraries and hard-

ware have become critical components in achieving high performance. Such components will greatly

impact the design, architecture, and use of the aforementioned systems in the future.

Key players in high-speed interconnects include Gigabit Ethernet (GigE) [99], GigaNet [117], SCI [50],

Myrinet [69], Quadrics’ QsNet [87] and GSN (HiPPI-6400) [114]. These interconnects differ from one an-

other with respect to their architecture, programmability, scalability, performance, and ease of integration

into large-scale systems. While GigE resides at the low end of the performance spectrum, it provides a low-

cost solution. GigaNet, GSN, QsNet, Myrinet, Infiniband and SCI add programmability and performance

by providing communication processors on the network interface cards and implementing various types of

user-level communication protocols. Infiniband [3] has been recently proposed as a standard for communi-

cation between processing nodes and I/O devices as well as for interprocessor communication, offering an

integrated view of computing, networking and storage technologies. The Infiniband architecture is based

on a switch interconnect technology with high speed point-to-point links and offers support for Quality of

Service (QoS), fault-tolerance, remote direct memory access, etc.

In this dissertation we focus on the Quadrics network (QsNet) as a case study for advanced intercon-

nects. QsNet provides a number of innovative design features, some of which are very similar to those

defined by the Infiniband specification. Some of these salient aspects are the presence of a programmable

processor in the network interface that allows the implementation of intelligent communication protocols,

fault-tolerance, and RDMA. In addition, QsNet integrates the local virtual memory into a distributed virtual

shared memory. At the time of writing, QsNet is used as the interconnect of 6 of the 10 most powerful

supercomputers worldwide [122].

This chapter provides an overview of QsNet’s advanced architecture and features, and in particular

those that can be used for advancing the state of the art in parallel system software and job scheduling.

8

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

Figure 2.1: Elan Functional Units

2.2 Hardware Features

QsNet is based on two building blocks, a programmable network interface called Elan [95] and a low-

latency high-bandwidth communication switch called Elite [96]. Elites can be interconnected in a fat-tree

topology [67]. The network has several layers of communication libraries that provide trade-offs between

performance and ease of use. Other important features are hardware support for collective communication

and fault-tolerance.

2.2.1 Elan

The Elan1 network interface links the high-performance, multi-stage Quadrics network to a processing node

containing one or more CPUs. In addition to generating and accepting packets to and from the network,

the Elan NIC also provides substantial local processing power to implement high-level message-passing

protocols such as MPI. The internal functional structure of the Elan, shown in Figure 2.1, centers around

two primary processing engines: the microcode processor and the thread processor.

The 32-bit microcode processor supports four separate threads of execution, where each thread can

independently issue pipelined memory requests to the memory system. Up to eight requests can be out-

standing at any given time. The scheduling for the microcode processor is lightweight, enabling a thread

to wake up, schedule a new memory access on the result of a previous memory access, and then go back to
1This dissertation refers to the Elan3 version of the NIC. Elan and Elan3 will be therefore used interchangeably.

9

sleep in as few as two system-clock cycles.

The four microcode threads are described below:

1. inputter thread: Handles input transactions from the network.

2. DMA thread: Generates DMA packets to be written to the network, prioritizes outstanding DMAs,

and time-slices large DMAs so that small DMAs are not adversely blocked.

3. processor-scheduling thread: Prioritizes and controls the scheduling and descheduling of the thread

processor.

4. command-processor thread: Handles operations requested by the host processor at user level.

The thread processor is a 32-bit RISC processor used to aid the implementation of higher-level messaging

libraries without explicit intervention from the main CPU. In order to better support such an implemen-

tation, the thread processor’s instruction set was augmented with extra instructions that construct network

packets, manipulate events, efficiently schedule threads, and block-save and restore a thread’s state when

scheduling.

The Elan contains routing tables that translate every virtual process number into a sequence of tags

that determine the network route. Several routing tables can be loaded in order to have different routing

strategies. The link logic transmits and receives data from the network and outputs 9 bits and a clock signal

on each half of the clock cycle. The flit (flow-control digit) encoding scheme allows data and command

tokens to be interleaved on the link and prevents a corrupted data word being interpreted as a token or a

token being interpreted as another token. Each link provides buffer space for two virtual channels with a

128-entry, 16-bit FIFO RAM for flow control.

2.2.2 Elite

The other building block of the QsNet is the Elite switch. The Elite provides the following features: (1)

8 bidirectional links supporting two virtual channels in each direction, (2) an internal � � � � full crossbar

switch2, (3) a nominal transmission bandwidth of
� ��� ��� � �

on each link direction and a flow through

latency of
�
 � � , (4) packet error detection and recovery, with routing and data transactions CRC protected,

(5) two priority levels combined with an aging mechanism to ensure a fair delivery of packets in the same

priority level, (6) hardware support for broadcasts, (7) and adaptive routing.

The Elite switches are interconnected in a quaternary fat-tree topology, which belongs to the more gen-

eral class of the
�

-ary � -trees [89, 90]. A quaternary fat-tree of dimension � is composed of
���

processing

nodes and ���
�����
	

switches interconnected as a delta network, and can be recursively built by connecting

4 quaternary fat trees of dimension � � � .
2The crossbar has two input ports for each input link, to accommodate the two virtual channels.

10

transaction type

context

memory address

data

CRC

CRC

routing tags

packet header

route one or more transactions EOP token

Figure 2.2: Packet Transaction Format

2.2.2.1 Packet Routing and Flow Control

Each user- and system-level message is chunked in a sequence of packets by the Elan. An Elan packet con-

tains three main components. The packet starts with the (1) routing information, that determines how the

packet will reach the destination. This information is followed by (2) one or more transactions consisting

of some header information, a remote memory address, the context identifier and a chunk of data, which

can be up to 64 bytes in the current implementation. The packet is terminated by (3) an end of packet

(EOP) token, as shown in Figure 2.2.

Transactions fall into two categories: write block, and non-write block transactions. The purpose of

the former is to write a block of data from the source node to the destination node, using the destination

address contained in the transaction immediately before the data. A DMA operation is implemented as a

sequence of write block transactions, partitioned into one or more packets (a packet normally contains 5

write block transactions of 64 bytes each, for a total of 320 bytes of data payload per packet).

The non-write block transactions implement a family of relatively low level communication and syn-

chronization primitives. For example, non-write block transactions can atomically perform remote test-

and-write or fetch-and-add and return the result of the remote operation to the source, and can be used as

building blocks for more sophisticated distributed algorithms.

Elite networks are source-routed. The routing information is attached to the header before injecting the

packet into the network and is composed by a sequence of Elite link tags. As the packet moves inside the

network, each Elite removes the first routing tag from the header, and forwards the packet to the next Elite

in the route or to the final destination. The routing tag can identify either a single output link or a group of

adjacent links for adaptive routing purposes.

The transmission of each packet is pipelined into the network using wormhole flow control. At link

level, each packet is partitioned in smaller units called flits [21] of 16 bits. The header flit opens a circuit

between source and destination, and this path stays in place until the destination sends an acknowledgment

to the source. At this point, the circuit is closed by sending and End Of Packet (EOP) token. It is worth

11

elan kernel commssystem callskernel space

user space

User Applications

tport

mpishmem

elan3lib

elanlib

Figure 2.3: Elan3 programming library hierarchy

noting that both acknowledgment and EOP can be tagged to communicate control information. So, for

example, the destination can notify the successful completion of a remote non-write block transaction

without explicitly sending an extra packet.

Minimal routing between any pair nodes can be accomplished by sending the message to one of the

nearest common ancestors and from there to the destination. That is, each packet experiences two routing

phases, an adaptive ascending phase to get to a nearest common ancestor, followed by a deterministic

descending phase. The Elite switches can adaptively route a packet picking the least loaded link.

2.3 Programmability and Libraries

The Elan network interface can be programmed using several programming libraries [94], as outlined in

Figure 2.3. These libraries trade speed with machine independence and programmability. Starting from

the bottom, Elan3lib is the lowest programming level available in user space which allows the access to

the low level features of the Elan3 NIC. At this level, processes in a parallel job can communicate with

each other through an abstraction of distributed virtual shared memory. Each process in a parallel job

is allocated a virtual process id (VPID) and can map a portion of its address space into the Elan. These

address spaces, taken in combination, constitute a distributed virtual shared memory. Remote memory (i.e.,

memory on another processing node) can be addressed by a combination of a VPID and a virtual address.

Since the Elan has its own MMU, a process can select which part of its address space should be visible

across the network, determine specific access rights (e.g. write- or read-only) and select the set of potential

communication partners.

Elanlib is a higher level layer that frees the programmer from the revision-dependent details of the Elan,

and extends Elan3lib with point-to-point, tagged message passing primitives (called Tagged Message Ports

or Tports) and support for collective communication. Standard communication libraries as such MPI-2

[46] or Cray Shmem are implemented on top of Elanlib.

12

2.3.1 Elan3lib

The Elan3lib library supports a programming environment where groups of cooperating processes can

transfer data directly, while protecting process groups from each other in hardware. The communication

takes place at user level, with no data copying, bypassing the operating system. The main features of

Elan3lib are: (1) event notification, (2) memory mapping and allocation, and (3) RDMA transfers.

2.3.1.1 Event Notification

Events provide a general purpose mechanism for processes to synchronize their actions. The mechanism

can be used by threads running on the Elan and processes running on the main processor. Events can

be accessed both locally and remotely. Thus, processes can be synchronized across the network, and

events can be used to indicate the end of a communication operation, such as the completion of a remote

DMA. Events are stored in Elan memory, in order to guarantee the atomic execution of the synchronization

primitives3. Processes can wait for an event to be triggered by blocking or polling. In addition, an event

can be tagged as being a block copy event. The block copy mechanism works as follows. A block of

data in Elan memory is initialized to hold a predefined value. An equivalent sized block is located in main

memory, and both are in the user’s virtual address space. When the specified event is set, for example when

a DMA transfer has completed, a block copy takes place. That is, the block in Elan memory is copied

to the block in main memory. The user process polls the block in main memory to check its value, (for

example, bringing a copy of the corresponding memory block into the L2 cache) without having to poll for

this information across the PCI bus. When the value is the same as that initialized in the source block, the

process knows that the specified event has ocurred.

2.3.1.2 Memory Mapping and Allocation

The MMU in the Elan can translate between virtual addresses written in the format of the main processor

(for example, a 64-bit word, big Endian architecture as the AlphaServer) and virtual addresses written in

the Elan format (a 32-bit word, little Endian architecture). For a processor with a 32-bit architecture, a one-

to-one mapping is all that is required4. Using allocation functions provided by the Elan library, portions

of virtual memory (1) can be allocated either from main or Elan memory, and (2) the MMUs of both main

processor and Elan can be kept consistent. For efficiency reasons, some objects can be located on the Elan,

for example communication buffers or DMA descriptors which the Elan can process independently of the

main processor.
3The PCI bus implementations cannot guarantee atomic execution, so it is not possible to store events in main memory.
4Details on the mapping for a 64-bit processor can be found in [87].

13

2.3.1.3 Remote DMA

The Elan supports RDMA transfers across the network, without any copying, buffering or OS intervention.

The process that initiates the DMA fills out a DMA descriptor, which is typically allocated on the Elan

memory for efficiency. The DMA descriptor contains the VPIDs of both source and destination, the amount

of data, the source and destination addresses, two event locations (one for the source and the other for the

destination process) and other information used to enhance fault tolerance. A step-by-step description of

RDMA operations can be found in [87].

2.3.2 Elanlib and Tports

Elanlib is a machine-independent library that integrates the main features of Elan3lib with Tports. Tports

provide basic mechanisms for point-to-point message passing. Senders can label each message with a tag,

the sender identity and the size of the message. This is known as the envelope. Receivers can receive their

messages selectively, filtering them according to the identity of the sender and/or a tag on the envelope.

The Tport layer handles communication via shared memory for processes on the same node. It is worth

noting that the Tports programming interface is very similar to MPI [102].

Elanlib provides support for collective communication operations (those that involve a group of pro-

cesses). The most important collective communication primitives implemented in Elanlib are: (1) the

barrier synchronization and (2) the broadcast. We explore the special role these collectives can play in

system software in the following chapters.

2.4 Performance Evaluation

The performance of interconnection networks and, in particular, switch-based wormhole networks has been

extensively analyzed by simulation in the literature [14, 69, 77]. Since performance is strongly influenced

by the load, it is important to evaluate QsNet under varied traffic patterns to get a complete view of the

network behavior. The patterns considered here are representative of real scientific applications in use at

LANL. One example of workload analysis is presented in [61] for SAGE (see Section 1.4). In this chapter,

we focus on the most relevant point-to-point and collective communication patters for system software and

LANL’s applications. More extensive studies and results for other benchmarks and network aspects can

be found in [16, 17, 41, 73, 82, 83, 84, 85, 86, 87]. Unless otherwise stated, the communication buffers

are allocated in Elan memory in order to isolate I/O bus-related performance limitations, except for the

ping tests, whose goal is to provide basic performance results that are a reference point for the following

experiments. These measurements were taken on Wolverine.

14

2.4.1 Point-to-Point Messages

2.4.1.1 Unidirectional Ping

We analyze the latency and bandwidth of the network by sending messages of increasing sizes. In order

to identify bottlenecks, the communication buffers are placed either in main or in Elan memory, using the

allocation mechanisms provided by Elan3lib described in Section 2.3.1.

At Elan3lib level the latency is measured as the elapsed time between the posting of the RDMA request

and the notification of completion at the destination. The unidirectional ping tests for MPI are implemented

using matching pairs of blocking sends and receives.

Figure 2.4(a) shows the bandwidth of the unidirectional ping. The peak bandwidth of
���
 ��� � �

is

obtained when both source and destination buffers are placed in the Elan memory. The maximum amount

of data payload that can be sent by the current Elan implementation in a packet is 320 bytes, partitioned in

five low-level write-block transactions of 64 bytes. For this packet format, the overhead is 58 bytes, for the

message header, CRCs, routing info, etc. This implies that the delivered peak bandwidth is approximately
��� � ��� � �

, or
��� �

of the nominal bandwidth (
� ��� ����� �

).

However, the asymptotic bandwidth for main memory to main memory communication is only ����� ����� �

for both Elan3lib and MPI. These results show that the PCI interface running at 33MHz on Wolverine is

the bottleneck for this type of communication.

Figure 2.4(b) shows the latency for messages in the range � ������� �	� ��
 . With Elan3lib the basic latency

for a zero-byte message is only ��� ��
 � and remains nearly constant at ��� �
 � for messages of up to 64 bytes.

We note an increase in the latency at the MPI level, from � ��
 � to
��
�
 � , due to additional software layers

tag matching overhead.

Bidirectional Ping analysis can be found in [87]. The main difference with unidirectional Ping is that

bidirectional Ping is much more sensitive to the implementation of the PCI bus. QsNet is designed to handle

bidirectional communication nearly as fast as unidirectional one. However, bandwidth for messages that

reside in main memory (and thus require transfer through the PCI bus) suffer a significant performance

degradation if the PCI bus cannot interleave bidirectional communication successfully.

2.4.1.2 Uniform Traffic

The uniform traffic is one the most frequently used traffic patterns for evaluating the network performance.

With this pattern each node randomly selects its destination for each message. This distribution provides

what is likely to be an upper bound on the mean inter-node distance because most computations exhibit

some degree of communication locality [23, 61].

The results obtained for the uniform traffic pattern with ��
�� � �
messages are shown in Figures 2.5(a)-

(c) for 16, 32 and 64 nodes configurations. The maximum sustained bandwidth versus the network size is

depicted in Figure 2.5(d).

15

0

50

100

150

200

250

300

350

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Ping Bandwidth

MPI
Elan3, Elan to Elan
Elan3, Main to Main

(a)

2

4

6

8

10

12

14

16

18

20

22

24

0 1 4 16 64 256 1K 4K

La
te

nc
y

(µ
s)

Message Size (bytes)

Ping Latency

MPI
Elan3, Elan to Elan
Elan3, Main to Main

(b)

Figure 2.4: Unidirectional Ping performance with QsNet

In the experiments we consider uniform and exponential distributions for both message size (identified

by the tag S in the figures) and inter-arrival time (tag T). The results show that small network configurations

are somewhat sensitive to these distributions, providing better results when both message size and inter-

arrival times are uniformly distributed. This performance gap narrows with larger configurations and is

much smaller with 64 nodes.

In Figure 2.5(d) we can see that the uniform traffic performance does not scale well with the network

size. For example, with 64 nodes the asymptotic bandwidth is less than �	��� ��� � �
, only

�
�
�

of the maxi-

mum bidirectional bandwidth, which is an upper bound for uniform traffic. This performance degradation

is caused by the flow-control algorithms. Each packet keeps an open circuit between source and destination

until the packet is successfully delivered, which increases the probability of having other packets blocked

waiting for an available path. This problem is partially alleviated by the two virtual channels, that offer an

escape path when one of the channels is busy, but they are not enough to guarantee scalability over a large

number of nodes. Still, if we replace all the global communication with collectives operations instead of

using the traditional point-to-point messages, significantly better scalability is obtained, as shown in the

next section.

2.4.2 Collective Communication

We describe the mechanisms and performance for two basic collective communication operations which

we deem as critical for system software: barrier synchronization and multicast/broadcast. For a realistic

assessment of the network’s scalability on very large scale clusters, these experiments were run on a 1,024-

node (4,096 PE) segment of the ASCI-Q cluster at LANL.

16

20

40

60

80

100

120

140

160

50 100 150 200 250 300 350 400

A
cc

ep
te

d
Lo

ad
 (

M
B

/s
)

Offered Load (MB/s)

Traffic pattern: uniform - 16 Nodes

T-uniform, S-uniform
T-uniform, S-exponential
T-exponential, S-uniform

T-exponential, S-exponential

(a)

30

40

50

60

70

80

90

100

110

120

130

140

50 100 150 200 250 300 350 400

A
cc

ep
te

d
Lo

ad
 (

M
B

/s
)

Offered Load (MB/s)

Traffic pattern: uniform - 32 Nodes

T-uniform, S-uniform
T-uniform, S-exponential
T-exponential, S-uniform

T-exponential, S-exponential

(b)

30

40

50

60

70

80

90

100

110

120

50 100 150 200 250 300 350 400

A
cc

ep
te

d
Lo

ad
 (

M
B

/s
)

Offered Load (MB/s)

Traffic: uniform - 64 Nodes

T-uniform, S-uniform
T-uniform, S-exponential
T-exponential, S-uniform

T-exponential, S-exponential

(c)

110

120

130

140

150

160

170

180

4 8 16 32 64

M
ax

im
um

 B
an

dw
id

th
 (

M
B

/s
)

Number of Nodes

Traffic: uniform - 256k messages

T-uniform, S-uniform
T-uniform, S-exponential
T-exponential, S-uniform

T-exponential, S-exponential

(d)

Figure 2.5: Uniform Traffic Scalability with QsNet

2.4.2.1 Broadcast

QsNet provides hardware support in both the NICs and the switches to implement scalable collective com-

munication. Multicast packets can be sent to multiple destinations using either the hardware multicast

capability of the network or a software tree implemented with point-to-point messages exchanged by the

Elans without interrupting their processing nodes. These mechanisms constitute the basic blocks to imple-

ment collective communication patterns such as barrier synchronization, broadcast, reduce and allreduce.

The implementation of the hardware multicast is detailed in [85]. For a multicast packet to be success-

fully delivered, a positive acknowledgment must be received from all the recipients of the multicast group.

The Elite switches combine the acknowledgments, as pioneered by the NYU Ultracomputer [91], returning

a single one to the source. Acknowledgments are combined in a way that the ‘worst’ ACK wins (a network

error wins over an unsuccessful transaction, which in turn wins over a successful one), returning a positive

ACK only when all the partners in the collective communication complete the distributed transaction with

success. This operation can be generalized so that a positive acknowledgment can only be received if all

the nodes meet a certain condition, such as reaching a barrier point, or other binary queries on a variable.

17

140

160

180

200

220

240

260

2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Network Size (nodes)

(a)

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(µ
s)

Network Size (nodes)

HW Barrier
SW Barrier

(b)

Figure 2.6: Broadcast bandwidth and barrier latency of QsNet on ASCI Q

The network hardware guarantees the atomic execution of the multicast: either all nodes successfully

complete the operation or none. It is worth noting that the multicast packet opens a set of circuits from the

source to the destination set, and that multiple transactions (up to 16 in the current implementation) can

be pipelined within a single packet. For example, it is possible to conditionally issue a transaction based

on the result of a previous transaction. This powerful mechanism allows the efficient implementation of

sophisticated collective operations and high-level protocols [35, 44].

The broadcast bandwidth seen at the source node is shown in Fig. 2.6(a). To compute the aggregate

bandwidth, we multiply this value by the number of nodes. In the largest configuration, the total bandwidth

is �
� � ������� � � ��� ��� �

� ��� ����� . The performance degradation experienced when we increase the

number of nodes is mostly due to the delays of the communication protocol, and reflects the number of

levels in the fat tree. In fact, a multicast packet is blocked until all of its children send an acknowledgment,

and is therefore very sensitive to even minor delays and noise created by various system activities [88].

2.4.2.2 Barrier Synchronization

A barrier synchronization is a logical point in the control flow of a parallel program at which all processes

in the group must arrive before any of the them is allowed to proceed. Typically, a barrier synchronization

involves a logical reduce operation followed by a broadcast.

If all the nodes in the barrier synchronization set are contiguous, it is possible to use the hardware

multicast. When the barrier is performed, all processes in the group write a barrier sequence number in

a memory location and wait for a global ‘go’ signal (e.g., polling on a memory location). The master

process within the root node (the one with the lowest ID) uses an Elan thread to send a special test-and-

set multicast packet. This packet spans all the processes and checks if the barrier sequence value in each

process matches with its own sequence number (it does if the corresponding process reached the barrier).

18

Network Global Comparison (
 s) Multicast (MB/s)

Gigabit Ethernet [101]
� � �����

� Not available
Myrinet [8, 12, 13] ��� �����

� ���
 �
Infiniband [3, 69] ��� �����

� Not available
QsNet [83, 85, 87, 124] � ��� � ��
�� �

BlueGene/L [49] � � � �����

Table 2.1: Collective operations portability and performance for � nodes

All the replies are then combined by the Elite switches on the way back to the root node which receives

a single acknowledgment. If all the nodes are ready, an end-of-packet token is sent to the group to set

an event or write a word to wake up the processes waiting in the barrier. This mechanism is completely

integrated into the network flow control and is expected to give the best performance when processes enter

the barrier fairly close together, otherwise it backs off exponentially (to stop flooding the network with

test-and-set multicast packets).

The software algorithm based on point-to-point messages uses a balanced tree to send the ‘ready’ signal

to the lowest-id process. Each process waits for ‘ready’ signals from its children, and when it receives all

of them sends its own signal up to the parent process. When the root process receives all its signals, it

performs a broadcast using point-to-point messages to send the ‘go’ signal with the same tree structure.

The results for both the hardware- and software-based barrier synchronization are shown in Fig. 2.6(b).

As expected, the hardware-based multicast is faster than the software mechanism that uses point-to-point

messages. In both cases the latency for the largest configuration is remarkable: ����
 � for the hardware

barrier and
� ��
 � for the software one. The network is capable of synchronizing 1,024 nodes with a la-

tency comparable to that of a single point-to-point communication in most contemporary networks [9].

We were also able to run these measurements on the Pittsburgh Supercomputing Center’s Alpha-based

supercomputer, obtaining a similar barrier synchronization time of � ���
�
 � on 768 nodes [44].

2.4.2.3 Comparative Evaluation

As described in the next chapter, the premise in this dissertation is that most, if not all, of the traditional

system software tasks for parallel machines can be expressed as collective communication operations. As

such, they stand to benefit considerably from the advent of modern interconnects with hardware support for

collective operations. In table 2.1 we discuss the known and expected performance of two such critical op-

erations on several advanced interconnects: the latency of performing a global comparison/synchronization,

and the bandwidth of a multicast. All values are given as a function of the number of nodes, to asses the

network’s scalability for the operation5. A detailed analysis of how these two mechanisms scale with QsNet

in the context of resource management tasks is presented in Section 4.3.2.

5For GigE and Infiniband, reliable bandwidth numbers could not be obtained at the time of this writing.

19

3 Base Mechanisms

3.1 Motivation

Scalable management of distributed resources is one of the major challenges when building large-scale

clusters. Among these tasks, we can find transparent fault-tolerance, efficient deployment of resources, and

support for all the needs of parallel applications: parallel I/O, deterministic behavior and responsiveness.

These challenges may seem daunting with commodity hardware and operating systems, since they were

not designed to support a global, single management view of a large-scale system. An important premise

in this thesis is that most of these tasks have many elements in common, and in particular they share the

same needs of many HPC applications for high performance communication and synchronization. In the

previous chapter we reviewed some of the main features of advanced interconnects that can be exploited to

facilitate the implementation of a simple yet powerful global operating system. We now turn to identify a

minimal set of network mechanisms that can offer enough functionality and performance to serve as a basis

for such an operating system. In our model, the system software is a tightly-coupled parallel application that

operates in coordination on all nodes. If the hardware support for this layer is both scalable and efficient,

the system software inherits these properties. Such software is not only relatively simple to implement, but

can also provide parallel programs with most of the services they require to make their development and

usage efficient and more manageable.

3.2 Related Work

Interconnection network and system software designers of HPC clusters traditionally rely on a common

abstract machine that clearly separates their territories. Moreover, many actual and research implementa-

tions seperated the communication layers for management and applications, and concentrated mostly on

one of the two. The abstract machine sees the network as a medium that can move information from one

processing node to another, with a given performance expressed by latency and bandwidth. This functional

interface is simple and general enough to develop most system software, and can be implemented in sev-

eral different ways, giving way to explore multiple hardware designs. The success of this interface also

20

relies on the implicit assumption that any performance improvement in both latency and bandwidth can be

directly inherited by the system software. In [36] and summarized in this chapter, a new abstraction layer

for large-scale clusters is proposed.

Abstract interfaces can slowly evolve over time, when new factors come into play. For example, in

the last decade this basic abstract interface has been augmented with the presence of a distributed, shared

memory. In such a global address space, a chunk of data is moved from a source to a destination address.

This approach was initially pioneered by communication layers such as Active Messages [118], that em-

ulated a virtual address space on top of physically addressed network interfaces. Active Messages proved

that the availability of a global shared memory was able to greatly simplify the communication library and

increase its performance. This successful experience was able to influence the design of the Cray T3D [19]

and the Meiko CS-2 [72], that provided RDMA. A global, virtually addressed shared memory is nowadays

a common feature in networks as QsNet [83] or Infiniband [69].

In this chapter, we review some of the important challenges faced by an operating system for large-scale

clusters. We then suggest a small, scalable, and portable set of mechanisms (or primitives) to address these

needs, and describe how these mechanisms can be used in each case. The following chapters offer a more

detailed evaluation for three system tasks, namely, resource management, user level communication, and

job scheduling.

3.3 Challenges in the Design of Parallel System Software

Many of today’s fastest supercomputers are composed of COTS workstations connected by a fast intercon-

nect [106, 122]. These nodes typically use commodity operating systems to provide a hardware abstraction

layer to programmers and users. As discussed in the introduction, these operating systems are quite ade-

quate for the development, debugging and running of applications on independent workstations and small

clusters. However, such a solution is often insufficient for running demanding HPC applications in large

clusters.

Common cluster solutions include middleware extensions on top of the workstation operating system,

such as the MPI communication library [102] to provide some of the functionality required by these ap-

plications. These components tend to have many dependencies and their modular design may lead to

redundancy of functionality. For example, both the communication library and the parallel file system used

by the applications implement their own communication protocols. Even worse, some desired features

such as multiprogramming, garbage collection or automatic checkpointing are not supported at all, or are

very costly in terms of both development costs and performance hits.

Consequently, there is a growing gap between the services expected on a workstation, and those pro-

vided to HPC users, forcing many application developers to complement these services in their application.

Table 3.1 overviews several of these gaps in terms of the basic functionality required to develop, debug,

21

Characteristic Workstation Cluster

Job launching Operating system (OS) Scripts, middleware on top of OS
Scheduling Timeshared by OS Batch queued or gang scheduled with large

quanta (seconds to minutes)
using middleware

Communication OS-supported standard IPC calls
and shared memory

Message Passing library (MPI) or Data-Parallel
Programming (e.g. HPF)

Storage Standard file system Custom parallel file system
Debuggability Standard tools (most

software is deterministic)
Parallel debugging tools (non-determinism)

Fault tolerance Little or none Application / application-assisted checkpointing
Garbage collection Run-time environment such as Java

or Lisp
Global GC difficult due to nondeterminism of
data’s live state [58]

Table 3.1: System tasks in workstations and clusters

and effectively use parallel applications. Let us discuss some of these gaps in detail.

Job Launching

Virtually all modern workstations allow simple and quick launching of jobs, thus enabling interactive tasks

such as debugging sessions or visual applications. In contrast, clusters offer no standard mechanism for

launching parallel jobs, which entails the dissemination of programs and data to the compute nodes, and

their subsequent coordinated execution. Typical cluster solutions rely on scripts or particular middleware

modules. Job launching times can range from seconds to hours and are usually far from interactive [37].

Many solutions were suggested in the past to this problem, ranging from the use of generic tools such as

rsh and NFS [107, 108], to sophisticated programs such as RMS [42], GLUnix [47], Cplant [11, 97], BProc

[52], SLURM [57], and RDGM [59]. Some of these systems use tree-based communication algorithms to

disseminate binary images and data to compute nodes, which can shorten job-launch times significantly.

However, with larger clusters (of thousands of nodes), these systems are expected to take many seconds or

minutes to launch parallel jobs, due to their reliance on software mechanisms.

Job Scheduling

In the workstation world, it is taken for granted that several applications can be run concurrently using

time sharing, but this is rarely the case with clusters. Most middleware used for parallel job scheduling use

simple versions of batch scheduling (or gang-scheduling at best). This affects both the user’s experience

of the machine, which is less responsive and interactive, and the system’s utilization of available resources.

Even systems that support gang scheduling typically revert to relatively high time quanta, in order to hide

the high overhead costs associated with context switching a parallel job in software.

The SCore-D and ParPar schedulers uses a combination of software and hardware to perform the global

context switch relatively efficiently [24, 54, 55]. A software multicast is used to synchronize the nodes and

22

force them to flush the network state, to allow each job the exclusive use of the network for the duration of

its time slice. The flushing of the network context and the use of software multicast can have a detrimental

effect on the time quanta when using a cluster of more than a few hundreds of nodes. In the SHARE gang

scheduler of the IBM SP2 [45], network context is switched by the software, where messages that reach

the wrong process are simply discarded. This incurs significant overhead, as processes need to recover

lost messages. The CM-5 had a gang-scheduling operating system (CMOST) and a hardware support

mechanism for network preemption called All-Fall-Down [113]. In this system, all pending messages at

the time of a context switch fall down to the nearest node regardless of destination. This creates noticeable

delays when the messages need to be re-injected to the system. Even more significantly, this implies that

message order and arrival time are completely unpredictable, making the system hard to debug and control.

Other machines such as the Makbilan with its common processor bus also had some hardware support

for context-switching [22]. However, these specialized machines cost more and did not scale as well as

contemporary COTS clusters.

Communication Libraries

User processes running in a workstation communicate with each other using standard interprocess com-

munication mechanisms provided by the OS. While these may be rudimentary mechanisms that provide

no high-level abstraction, they are adequate for serial and coarse-grained distributed jobs, due to their

low synchronization requirements. Unlike these jobs, HPC applications require a more expressive set of

communication tools to keep the software development at manageable levels.

The prevailing communication model for modern HPC applications is message passing, where pro-

cesses use a communication library to send synchronous and asynchronous messages. Of these libraries,

the most commonly used are MPI [102] and PVM [110]. These libraries offer standard interfaces that fa-

cilitate portability across various cluster and MPP architectures. On the other hand, much effort is required

for the optimization and tuning of the libraries to different platforms, in order to improve the latency and

bandwidth for single messages. Another problem is that these libraries offer low-level mechanisms that

force the software developer to focus on implementation details, and makes modeling application perfor-

mance difficult. In order to simplify and abstract the communication performance of applications, several

models have been suggested.

The well-known LogP model [20], developed by Culler et al., focuses on latency and bandwidth in

asynchronous message passing systems. A higher-level abstraction is the Bulk-Synchronous Parallel (BSP)

model introduced by Valiant. in [115]. Computation is divided into supersteps so that all messages sent

in one superstep are delivered to the destination process at the beginning of the the next superstep. All the

processes synchronize between two consecutive supersteps. This model constitutes the first attempt to opti-

mize the communication pattern as a whole rather than optimizing single-message latency and bandwidth.

In our view, optimizing latency, bandwidth, or synchronization speed should not be the focal point of

23

the underlying communication layer and model. The cost of developing, maintaining, and operating HPC

software in a large-scale environment is more significant than another slight improvement in latency. Rather

than modeling, we should strive to reduce the “noise” in the global state of the machine (without hurting

performance), in order to reduce complexity, facilitate debuggability and reduce non-determinism. The

Buffered Coscheduling (BCS) model, presented in detail in Chapter 5, is a methodology that tries to do just

that by controlling the communication in the system and coordinating the state of network traffic globally

[81]. Communication is only performed at given intervals, after exchanging information on communication

requests, scheduling messages accordingly, and sending them in a controlled manner. While this can in

some cases hurt the latencies of messages, it converts the on-line problem of managing traffic to an offline,

planned solution. As we show in Chapter 5, in most cases this does not hinder application performance in

any significant way.

Determinism

Serial applications are much easier to debug compared to their parallel counterparts. This is due mainly to

their inherent determinism, making most problems easy to reproduce. Parallel programs are often virtually

impossible to trace repeatedly: the independent nature of the system’s components – nodes, operating

systems, processes and network components – add up to an inherent non-deterministic behavior.

With the approach we present in Chapter 5, the global synchronization of all system activities facili-

tates the global scheduling of computation and communication resources. Thus, if the scheduling algorithm

generates the same sequence of decisions, the behavior of the system will become significantly more pre-

dictable allowing for simpler debugging and tracing of parallel programs.

Fault Tolerance

The same non-determinism also makes fault tolerance using checkpointing so challenging, since the appli-

cation is rarely in a known steady state where all processes and in-transit messages are synchronized. Fault

tolerance on workstations is not considered a major problem, and thus rarely addressed by the OS. On large

clusters however, where the high number of components results in a low mean time between failures and

the amount of computation cycles invested in the program is considerable, fault tolerance becomes one of

the most critical issues. Still, there is no standard solution available, and many of the existing solutions

rely on some application modifications.

Bosilca et al. introduced a system called MPICH-V to address some of these problems [10]. Their

implementation of MPI uses uncoordinated checkpoint/rollback and distributed message logging to conva-

lesce in case of a network fault. MPICH-V requires a rather complex runtime environment, partly due to

messages in transit that need to be accounted for. The performance of MPICH-V varies with the applica-

tion characteristics, sustaining a slowdown of up to ����� � or more in some cases. To amortize some of this

overhead, the authors use a checkpoint interval of � � � � .

24

Core Primitives

File System
Management

Resource Communication
Libraries

Figure 3.1: Simplified system software model

We believe that with some minimal support from the hardware, a relatively simple fault-tolerant system

software can be implemented with much smaller overhead and checkpoint interval. To achieve this, we

rely on global synchronization and scheduling of all system activities. In that case, there are points along

the execution of a parallel program in which all the allocated resources are in a steady state. Therefore, it

is relatively straightforward to implement an algorithm to checkpoint the job in a safe way.

Toward a Global Operating System

The design, implementation, debugging, and optimization of system middleware for large-scale clusters is

far from trivial, and potentially very time and resource consuming [63]. System software is required to deal

with parallel jobs comprising of thousands of processes each. Furthermore, each process may have several

threads, open files, and outstanding messages at any given time. All these elements result in a large and

complicated global machine state which in turn increases the complexity of the system software. The lack

of global coordination is a major cause of the non-deterministic nature of parallel systems. This behavior

makes both system software and user-level applications much harder to debug and maintain. The lack

of synchronization also hampers application performance, e.g. when non-synchronized system dæmons

introduce computational holes that can severely skew and impact fine-grained applications [88].

To address these issues, we promote the idea of a simple, global cluster OS that makes use of advanced

network resources, like any other HPC application. Our vision is that a cluster OS should behave like a

SIMD (single-instruction-multiple-data) application, performing resource coordination in lockstep. The

basic model is that of a unified set of services, all based on a small set of core network primitives (Fig.

3.1). We argue that performing this task scalably and at sub-millisecond granularity requires hardware

support, represented in a small set of network mechanisms. Our goal in this study is to identify and

describe these mechanisms. Using a prototype system on a network that supports most of these features, we

present experimental results that indicate that a cluster OS can be scalable, powerful, and relatively simple

to implement. We also discuss the gaps between our proposed mechanisms and the available hardware,

suggesting ways to overcome these limitations.

25

3.4 Core Primitives

We can now characterize precisely the primitives and mechanisms that we consider essential in the devel-

opment of system software for large-scale clusters.

Our set of support mechanisms consists of just three hardware-supported network primitives:

XFER-AND-SIGNAL Transfer (PUT) a block of data from local memory to the global memory of a set

of nodes (possibly a single node). Optionally signal a local and/or a remote event upon comple-

tion. By global memory we refer to data at the same virtual address on all nodes. Depending on

implementation, global data may reside in main or network-interface memory.

TEST-EVENT Poll a local event to see if it has been signaled. Optionally, block until it is.

COMPARE-AND-WRITE Compare (using ¿ , ¡ ,
�

, or ��) a global variable on a node set to a local value.

If the condition is true on all nodes, then (optionally) assign a new value to a (possibly different)

global variable.

Note that XFER-AND-SIGNAL and COMPARE-AND-WRITE are both atomic operations. That is, XFER-

AND-SIGNAL either PUTs data to all nodes in the destination set (which could be a single node) or (in

case of a network error) no nodes. The same condition holds for COMPARE-AND-WRITE when it writes a

value to a global variable. Furthermore, if multiple nodes simultaneously initiate COMPARE-AND-WRITEs

with identical parameters except for the value to write, then when all of the COMPARE-AND-WRITEs have

completed, all nodes will see the same value in the global variable. In other words, XFER-AND-SIGNAL

and COMPARE-AND-WRITE are sequentially consistent operations [65]. TEST-EVENT and COMPARE-

AND-WRITE are traditional, blocking operations, while XFER-AND-SIGNAL is non-blocking. The only

way to check for completion is to TEST-EVENT on a local event that XFER-AND-SIGNAL signals. These

semantics do not dictate whether the mechanisms are implemented by the host CPU or by a network co-

processor. Nor do they require that TEST-EVENT yield the CPU (although not yielding the CPU may

adversely affect system throughput).

Implementation and Portability

The three primitives presented above assume that the network hardware provides global, virtually address-

able shared memory and RDMA. These features are present in several state-of-the-art networks like QsNet

and Infiniband and their convenience has been extensively studied [69, 83]. In QsNet however there is a

simple 1:1 mapping between these mechansims and hardware primitives, exposed by the Elan3Lib API.

Some or all of these mechanisms have already been implemented in several other interconnects as well, as

shown in Section 2.4.2.3. Their design was originally meant to improve the communication performance

of user applications. To the best of our knowledge, their usage as an infrastructure for system software was

not explored before this work.

26

Hardware support for multicast messages sent with XFER-AND-SIGNAL is convenient in order to guar-

antee scalability for large-scale systems. Software approaches, while feasible for small clusters, do not

scale to thousands of nodes. In our case, QsNet provides hardware-supported PUT/GET operations and

events so that the implementation of XFER-AND-SIGNAL is straightforward.

COMPARE-AND-WRITE assumes that the network is able to return a single value to the calling process

regardless of the number of queried nodes. Again, QsNet includes a hardware-supported global query

operation that allowed us to implement COMPARE-AND-WRITE.

Table 2.1 demonstrates the expected performance of the mechanisms that are already implemented by

several interconnect technologies. This table shows that our small set of mechanisms is actually not that

far-conceived and is portable to many clusters. While several networks already support at least some of

these mechanisms (which attests to their portability), we argue that they should become a standard part

of every large-scale interconnect. We also stress that their implementation must emphasize scalability and

performance (in terms of bandwidth and latency) for them to be useful to the system software.

3.5 Matching with System Software

We now explain how these mechanisms can be used to tackle the main problems discussed above.

Job Launching

The traditional approach to job launching, including the dissemination of executable and data files to cluster

nodes, is a simple extension of single-node job launching: data is disseminated using a network file system

such as NFS, and jobs are launched with scripts or simple utilities such as rsh or mpirun. These methods

obviously do not scale to large machines, where the load on the network file system and the time it would

take to serially execute a binary on many nodes make it impractical. To perform this task scalably, a smarter

mechanism must be used to disseminate the data efficiently. Several solutions have been proposed for this

problem, all of them focusing on software tricks to reduce the dissemination time. For example, Cplant

and BProc both use their own tree-based algorithm to disseminate data with latencies that are logarithmic

in the number of nodes [11, 52]. While more portable than relying on hardware support, these solutions

are significantly slower and are not always simple to implement [44].

If we break down job launching to simple sub-tasks, we can find that little is required to make it work

effectively and scalably:

� Binary and data dissemination are simply a multicast of packets from a file server to a set of nodes

that can be implemented using XFER-AND-SIGNAL. We also use COMPARE-AND-WRITE for flow

control purposes in order to prevent the multicast packets from overrunning the available buffers.

� Actual launching of a job can again be achieved simply and efficiently by multicasting a control

27

message to all the nodes that are allocated to the job by using XFER-AND-SIGNAL. The system

software on each node would fork the new processes upon receipt of this message, and wait for their

termination.

� The reporting of job termination can incur much overhead if each node sends a single message for

every process that terminates. This problem can be solved by ensuring that all the processes of a job

reach a common synchronization point upon termination (using COMPARE-AND-WRITE) before

delivering a single message to the resource manager (using XFER-AND-SIGNAL).

Job Scheduling

Interactive response times from a time-sharing scheduler are required to make a parallel machine as us-

able as a workstation. This in turn implies that the system should be able to perform preemptive context

switching with the same latencies we have come to expect from single nodes, in the order of magnitude

of a few milliseconds. Such latencies however are virtually impossible to achieve without hardware sup-

port: the time required to coordinate a context switch over thousands of nodes can be prohibitively large

in a software-only solution. A good example for this is shown in the work on the SCore-D software-only

gang scheduler. In [55], Hori et al. report that the time for switching the network context on a relatively

small Myrinet cluster is more than two thirds of the total context switch time. Furthermore, the context

switch message is propagated to the nodes using a software-based multicast tree, increasing in latency as

the cluster grows. SCore-D has four separate, synchronized phases for each context switch, requiring about

������� � context-switch granularity to hide most of the overhead in a 64-node cluster. Finally, even though

the system is able to efficiently context switch between different jobs, the coexistence of application traffic

and synchronization messages in the network at the same time could eventually make the latter go unat-

tended for some time. If this happens even on a single node and even for a few milliseconds, it will have a

detrimental effect on the responsiveness of the entire system [88].

To overcome these problems, the network should offer some capabilities to the software scheduler to

elide these delays. The ability to maintain multiple communication contexts alive in the network securely

and reliably, without kernel intervention, is already implemented in some state-of-the-art networks like Qs-

Net. Job context switching can be easily achieved by simply multicasting a control message or heartbeat

to all the nodes in the cluster using XFER-AND-SIGNAL. One obvious solution to guarantee quality of ser-

vice between application and synchronization messages is prioritized messages. The current generation of

many networks, including QsNet, does not yet support prioritized messages in hardware, so a workaround

must be found to keep the system messages’ latencies low.1 In our case, we exploit the fact that some of

our clusters have dual networks (two rails), and used one rail exclusively for system messages, so that they

do not have to compete with application-induced traffic on the same network.
1The latest version, QsNet II, already supports prioritized messages

28

Determinism and fault tolerance

Hori et al. (and the CM-5 before that) proposed a mechanism called network preemption to facilitate tasks

such as maintaining a known state of the cluster and context switching [56]. We believe this mechanism

is certainly necessary for an efficient solution to this problem, but not sufficient. Even when a single

application is running on the system (so there is only one network context, and no preemption), messages

can still be en-route at different times, and the system’s state as a whole is not deterministic.

When the system globally coordinates all the application processes, parallel jobs can be led to evolve

in a controlled manner. Global coordination can be easily implemented with XFER-AND-SIGNAL, and

can be used to perform global scheduling of all the system resources. Determinism can be significantly

increased by taking the same scheduling decisions between different executions, as is discussed in Chapter

5. At the same time, the global coordination of all the system activities may help to identify the steady

states along the program execution in which it is safe to checkpoint the status.

Communication

Most of MPI’s, TCP/IP’s, and other communication protocols’ services can be reduced to a rather basic set

of communication primitives, e.g. point-to-point asynchronous messages and multicasts. If the underlying

primitives and the protocol reductions are implemented efficiently, scalably, and reliably by the hardware

and cluster OS, the higher level protocol can also inherit the same benefits of scalability, performance

and reliability. In many cases, this reduction is very simple and can eliminate the need for many of the

implementation quirks of protocols that need to run on a variety of network hardware.

To illustrate this strategy, we have implemented a small subset of the MPI library, called BCS-MPI

[35], which is sufficiently large to support real applications. As is shown in Chapter 5, these applications

have similar performance with our and the production-level version of MPI, but have the potential to benefit

from the increased determinism and resource-overlapping advantages of BCS-MPI.

A summary of these mechanisms’ usage for the system software needs is shown in Table 3.2. The next

chapters delve into a detailed evaluation of some of the more important aspects of system software, and

their implementation using these mechanisms.

29

Characteristic Requirement Solution

Job Launching Data dissemination XFER-AND-SIGNAL

Flow control COMPARE-AND-WRITE

Termination detection COMPARE-AND-WRITE

Job Scheduling Heartbeat XFER-AND-SIGNAL

Context switch responsiveness Prioritized message or
multiple rails

Communication PUT XFER-AND-SIGNAL

GET XFER-AND-SIGNAL

Barrier COMPARE-AND-WRITE

Broadcast XFER-AND-SIGNAL and
COMPARE-AND-WRITE

Storage Metadata / file data transfer XFER-AND-SIGNAL

Debuggability Debug data transfer XFER-AND-SIGNAL

Debug synchronization COMPARE-AND-WRITE

Fault Tolerance Fault detection COMPARE-AND-WRITE

Checkpoint synchronization COMPARE-AND-WRITE

Checkpoint data transfer XFER-AND-SIGNAL

Garbage Collection Live state synchronization Determinism and
COMPARE-AND-WRITE

Table 3.2: Base mechanisms’ usage for system tasks

30

4 Resource Management

4.1 Background

4.1.1 Problem Description

As discussed in the introduction, cluster hardware is increasingly improving in terms of price and perfor-

mance, while cluster usability remains poor. The primary cause of this gap is the system software, which

tends to consist of a commodity operating system (frequently Linux [125]) running on each node, a batch

scheduler (e.g. PBS [51, 126]), and a collection of handcrafted scripts for most of the remaining cluster

management. Ideally, a large cluster should be as easy to develop for, use, and manage as a desktop com-

puter. In practice, this is not the case. Table 3.1 contrasts desktops and clusters in terms of a few usability

characteristics. In addition to these differences, desktop nodes are also characterized by faster response

times, quicker job launching, and seamless multiprogramming, making desktop systems more comfortable

to use than clusters. None of the cluster’s shortcomings, however, are inherent; they are an artifact of

limited resource management (RM) software.

The reason that RM software tends to perform inefficiently is that it has not previously been important

to make it efficient. Small clusters have statistically few user-visible failures per unit time, and the global

operations needed to launch and schedule applications can be performed quickly even with linear-time

algorithms. As a result, more emphasis has been given to making applications run fast than to making

RM tools more efficient. However, with cluster sizes reaching almost 10,000 processors [1, 84], resource

management can no longer be ignored. Even a small amount of wasted wall-clock time translates to a

massive amount of wasted total CPU time. Furthermore, slow or non-scalable RM functions must be

amortized by calling them as infrequently as possible. This degrades response time and hinders the usage

of interactive jobs.

In this chapter, we describe a scalable solution based on the mechanisms described in Chapter 3 that

addresses some of the more important RM issues.

31

4.1.2 Research Aims

The underlying goal in this chapter is the design and implementation of a scalable, high performing, and

simple RM infrastructure. This system, called STORM (Scalable TOol for Resource Management) was

also designed to be flexible enough so that it can later be used as a testbed for job scheduling research.

Although many functions lie beneath the umbrella of “resource management,” we believe that the

small set of mechanisms that was described in Chapter 3 can be used as building blocks to construct a wide

variety of RM functions. The intention is that an efficient implementation of these few mechanisms should

automatically translate into an efficient implementation of all RM functions implemented on top of them.

The RM functions that we considered important and chose to implement include the following:

1. Efficient dissemination of global data to nodes, including binary and data files for parallel programs

2. Responsive (in desktop terms) job launching and termination

3. Responsive (in desktop terms) and low-overhead global context switching

4. Quick detection and isolation of faults

5. Seamless incorporation of various time- and space-sharing scheduling algorithms.

For all these goals, scalability to many thousands of processors was explicitly added as a required feature.

Another prominent issue that was considered for STORM was portability, and indeed the system was

successfully ported and implemented on several clusters and three different microchip architectures (x86,

IA64, and Alpha). STORM was implemented over two interchangeable network layers, QsNet’s Elanlib,

and generic MPI (which can run on any MPI architecture). For obvious performance reasons, all the tests

were run on the lower-level Elanlib implementation.

The results presented below aim to demonstrate that by implementing RM in a manner that is both fast

and scalable to large numbers of nodes, clusters can approach the usability of a desktop machine.

4.1.3 The STORM Approach

STORM was developed to provide RM mechanisms that are scalable, high-performance, and lightweight,

and to support the implementation of most current and future job scheduling algorithms. We used a com-

mon structure for similar RM systems, that is based on a central system dæmon on a management node and

helper dæmons on each compute node. Unlike most similar systems, the emphasis in STORM is moved

to the network level, stemming from the premise that RM tasks are essentially global communication

problems. Thus, all the RM functionality in STORM is reduced to our set of core mechanisms, allowing

them to inherit the scalability and performance of these mechanisms’ implementation by the network layer.

STORM’s dæmons communicate with extremely fast messages and collective operations. Coordination of

32

Dæmon Number Location
MM (Machine Manager) One per cluster Mngmnt. node
NM (Node Manager) One per compute node Compute nodes
PL (Program Launcher) One per potential process (# of compute Compute nodes

nodes � # of processors per node �
desired level of multiprogramming

Table 4.1: STORM dæmons

the dæmons is done through scalable strobes (heartbeat messages) that are implemented with an efficient

hardware multicast.

4.2 STORM architecture

As discussed above, STORM is made up of different types of dæmons running in a client-server config-

uration. Each of these dæmons is a user-level process in charge of specific RM tasks. Connecting these

processes is a thin software layer in charge of all the communication between the server and the clients.

This layer abstracts RM messages such as “send this binary to all nodes” and “notify server of termina-

tion of user process”. This abstract layer is simple enough that it can be implemented in few hundreds

of lines. Underlying this level, we have implemented two interchangeable communication modules. The

first uses generic MPI calls, and is useful to port STORM to new network architectures that support MPI,

but performs relatively poorly. The second uses our three network mechanisms as described in Chapter 3,

which in turn are implemented on top of the QsNet mechanisms. As is shown below, The direct reliance

on scalable network mechanisms for RM tasks, using a relatively simple reduction, translates to scalable

RM performance. The detailed implementation and algorithms for these tasks can be found in [43].

4.2.1 Process Structure

STORM consists of three types of dæmons that handle job launching, scheduling, and monitoring: the

Machine Manager (MM), the Node Manager (NM), and the Program Launcher (PL). Table 4.1 lists the

number and location of each of these dæmons.

The MM is in charge of resource allocation for jobs, including both space and time resources. Whenever

a new job arrives, the MM enqueues it and attempts to allocate processors to it using a DHC algorithm [27,

30, 32, 127]1. If the scheduling policy allows for multiprogramming (e.g. GS), the processors are allocated

in a time slot that has enough resources available. After a successful allocation, the MM broadcasts a

job-launch message to all the NMs, and those NMs on nodes that are allocated to the job launch it when its
1The allocation algorithm is implemented in an independent and easily-replaceable module.

33

time slot arrives.2 The MM mode of operation is clock-based, operating only at regular ticks, and sleeping

or busy-waiting throughout the period of time between ticks, called a timeslice. During its wakeup time,

the MM proceeds through its chores, including checking for incoming messages and jobs to execute.

When launching a parallel application, the MM first transfers the binary image of the program to each

node’s local file system (using each node’s NM) and then instructs the PLs (again, via the NMs) to launch

the application from the local file system. This procedure exploits XFER-AND-SIGNAL in both cases,

which can disseminate a file of several megabytes in a fraction of a second to all the nodes, instead of using

a slower and less-scalable shared file system, such as NFS [100]. When the job terminates, the MM notes

the re-availability of the time/space resources occupied by that job. More details about the termination

notification algorithm can be found in [43]. Note that even though we used a centralized approach, which

is susceptible to scalability problems, in reality no bottleneck situation is created. This is a direct result of

using the scalable network mechanisms described in Chapter 3 for all the global management operations,

while the local operations – accepting a new process, allocating resources to it, and receiving process-

termination notifications—are rare and lightweight. In fact, if the MM’s node is also configured as compute

node, the MM sleeps between timeslice intervals to maximize CPU availability and only performs its

operations when a new time slot is due.

NMs are responsible for managing resources on a single node (which is many times an SMP). NMs

work asynchronously by responding to the following types of events:

Job launch If the job pertains to the NM’s node, the NM finds available PLs and sends them the job

information.

Job caching The binary image is read from the communication layer and stored in a file, preferably in a

RAM-disk file to avoid unnecessary I/O.

Heartbeat/strobe The NM checks in its local data structures, for every PE, whether another process

occupies the next time slot. If so, it deschedules the current process (using UNIX’s SIGSTOP [107])

and resumes the next one.

Process termination The NM keeps track of whether all of its PLs have terminated. When they have,

the NM sets a flag to notify the MM.

At all other times, the NMs block, leaving the CPU to the application processes. Note that some scheduling

algorithms require that the NMs make their own local scheduling decisions. As a trivial example, in

local scheduling, the NM ignores context-switch messages, as the UNIX scheduler handles all scheduling

decisions. In algorithms such as FCS [39], BCS [81] or ICS [2], the NM might deschedule a process that

is blocked for communication before the expiration of the time slot and schedule another process instead,

in order to increase resource utilization.
2On QsNet, it is simpler—and just as fast—to broadcast to all NMs using XFER-AND-SIGNAL, and discard unnecessary messages,

than to define a multicast group for every combination of NMs.

34

AP

PL

AP

PL

AP

PL

AP

PL

Node 0

NM

7

NM

3

4

2

NM

3

4

2

NM

Node 1 Node 2 Node 3

NETWORK

1

2

3

45

2

6 3

4

2

MM

File
Workload

Figure 4.1: Running a job in STORM

Each PL has the relatively simple task of handling an individual application process for the NM. A PL

sleeps until it receives a program execution message from the NM. It then proceeds to fork a new process,

set up the network initialization procedures for the application process (AP), redirect standard output and

error to the console that launched STORM, and execute the AP. It then blocks with the wait() system

call until the AP terminates. Finally, it notifies the NM when this happens and returns to sleep.

The PL may seem redundant, since all of its tasks can be performed by the NM. In fact, we plan to

eliminate the PL in a future version of STORM, but it is currently required due to a limitation in the QsNet

capability creation process.

4.2.2 Running a Job

Figure 4.1 illustrates the process of running a job with STORM. This example shows a management node

and four SMP nodes with two PEs each. The arrows represent information flow (with dashed lines repre-

senting network messages and solid lines representing shared-memory communication), and the numbers

on the arrows indicate the order of the events, based on the following key:

1. The MM receives the job information and queues it according to its given arrival time and resource

availability. STORM can receive the job interactively or via a workload file, to facilitate complex

evaluations (as shown in Fig. 4.1).

2. When the job’s time to run has come, and resources have been allocated, the MM broadcasts the job

information (possibly with the binary image if not locally available) to all of the NMs. It is worth

noting that this multicast (using XFER-AND-SIGNAL) is performed by a thread in the Elan NIC so

as not to interrupt the CPU. Furthermore, the multicast uses an I/O bypass mechanism, as described

in Section 4.2.3 below.

35

NIC

BinS

PE

BinR

PE

BinR

PE

kernel_open
kernel_write+
kernel_close

kernel_open
kernel_write+
kernel_close

kernel_open
kernel_read+
kernel_close

Write

ELAN
Buffer

Trap

EventSend Bcast

Write

ELAN
Buffer

Trap

Event

Node i
Node j

NETWORK

HW Bcast

MM

NIC NIC

Read

ELAN
Buffer

Trap

Source

File File

Destination

File

Destination

Figure 4.2: I/O bypass mechanism

3. NMs on participating nodes identify the appropriate PLs (according to the job’s allocation). The

NMs then communicate the job information to the PL using shared memory.

4. The PLs execute the APs, as described in Section 4.2.1.

5. When an AP terminates, the PL receives a notification from the operating system.

6. The PLs then proceed to notify the NM of the termination of the AP.

7. Finally, the NMs send an asynchronous point-to-point message to the MM, which inspects these

messages before issuing the next strobe and deallocating resources. This can be a collection of

point-to-point messages (as depicted) or a global check using COMPARE-AND-WRITE.

4.2.3 I/O Bypass

One of the major bottlenecks associated with program launching is the interaction with the I/O subsystem.

To alleviate this bottleneck, we implemented a mechanism for streamlining the I/O associated with program

and data dissemination. We specifically make use of the threads in the Elan NIC, which can issue system

calls (using a kernel helper thread) that operate on the file system, such as opening, reading, writing, and

closing files. The relevant phases of the I/O bypass protocol during the launch of a job are listed below and

shown in Figure 4.2. Note that kernel read+ and kernel write+ indicate sequences of kernel reads and

writes. BinS and BinR are the binary sender and binary receiver threads running on the Elan NIC.

1. The MM sends a DMA message to a thread in the local Elan NIC with the source file name and a

remote destination path.

2. The sender thread uses kernel traps to open and read the source file. These traps go through the

kernel but require very little CPU intervention. Compute-bound processes running on the host are

36

File Chunk

File Chunk

iNode

Node j

ELAN Buffer

Read HW Bcast

ELAN Buffer

File Chunk

File Chunk

File Chunk

File Chunk

Write

. . .

ELAN Buffer

File Chunk

File Chunk

File Chunk

File Chunk

Write

. . .

MM

Source

File

Destination

File

Destination

File

Figure 4.3: Pipelining of I/O read, hardware multicast, and I/O writes

not noticeably affected.

3. The file is read in chunks directly into a communication buffer that can be efficiently accessed by the

Elan DMA engine. The file is then sent to a peer thread on all of the compute nodes using QsNet’s

hardware multicast.

4. The sender thread uses a double-buffering scheme to pipeline the reading and multicast operations,

so that while one buffer is being read, the other is concurrently being sent, as shown in Figure 4.3.

5. The destination threads on the compute nodes queue the incoming chunks and write them to the

destination path using a flow control protocol to avoid buffer overflows. File system writes and

incoming multicasts can proceed in parallel.

6. When all of the chunks have been sent and written to their respective local files (or conversely, if an

error occurred), the MM is notified.

7. When the MM decides to launch the job (after successfully sending the binary and allocating re-

sources to it), it uses the new remote path name in the job-launch message.

4.3 Analysis

In this section, we analyze STORM’s performance. In particular, we:

37

1. Measure the costs of launching jobs in STORM, and

2. Test various aspects of the gang scheduler (effect of the timeslice quantum, node scalability and

multiprogramming level).

the job launching experiments were carried out on the Wolverine cluster, which at the time of the mea-

surements was ranked no. 83 at the top500 list [122]. Since we could not access it for the other series of

experiments, they were performed on the other two clusters.

4.3.1 Job Launching Time

In this set of experiments, we study the overhead associated with launching jobs with STORM and analyze

its scalability with the size of the binary and the number of PEs. We use the approach taken by Brightwell

et al. in their study of job launching on Cplant [11], viz. we measure the time it takes to run a do-nothing

program of sizes 4MB, 8MB, or 12MB that terminates immediately.3

4.3.1.1 Launch times in STORM

STORM logically divides the job-launching task into two separate operations: The transferal (reading+broadcasting+

writing+notifying the MM) of the binary image, and the actual execution which includes sending a job-

launch command, forking the job, waiting for its termination, and reporting back to the MM. In order to

reduce non-determinism, the MM can issue commands and receive the notification of events only at the

beginning of a timeslice. Therefore, both the binary transfer and the actual execution take at least one

timeslice. To minimize the MM overhead and expose maximal protocol performance, we use a relatively

short timeslice value of � �
�

in the following job-launching experiments.

Figure 4.4 shows the time needed to transfer and execute a do-nothing application of sizes
�����

,

�
���

, and �	�
���

on 1–256 processors. Observe that the send times are proportional to the binary size but

grow only slowly with the number of nodes. This can be explained by the highly scalable algorithms and

hardware broadcast that are used for the send operation. On the other hand, the execution times are mostly

independent of the binary size but grow more rapidly with the number of nodes. The reason for this growth

is the skew that is accumulated by the processes in the job. The main cause of this skew is the overhead

of the operating system and its asynchronous dæmons [88]. In the largest configuration tested, a ���
���

file can be launched in � ����� � , a remarkably low latency. In this case, the average transfer time is
� � � �

(a protocol bandwidth of ����
 ����� �
per node, with an aggregate bandwidth of ��� ��� � � � � on 63 nodes4),

The average job execution time is �
�
�
�
. In Section 4.3.2.2, we analyze in depth the specific effects and

scalability of each of these two components: transfer and launch.
3The program contains a static array, which pads the binary image to the desired size. Note that this is equivalent to sending a fixed

binary file with different data sets.
4The binary transfer does not include the source node.

38

1 2 4 8 16 32 64 128 256

Processors

0

25

50

75

100

125

150

T
im

e
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

Figure 4.4: Send and execute times for a
�����

, �
���

, and �	�
���

file on an unloaded system

4.3.1.2 Launching on a loaded system

To test how a heavily-loaded system affects the launch times of jobs, we wrote two programs that artificially

load the system in a controlled manner. The first program performs a tight spin-loop, which introduces CPU

contention. The second program repeatedly issues point-to-point messages between pairs of processes,

which introduces network contention. Both programs are run on all 256 processors. We measured the

same experiments as those used in Section 4.3.1.1, but with either the CPU-consuming program or the

network-bandwidth-consuming program simultaneously running on all nodes of the cluster.

Figure 4.5 shows the results of launching the same three do-nothing binaries while the CPU-consuming

program is running in the background. Note the different scale on the � axis from that in Figure 4.4. In this

scenario, STORM is required to deschedule the CPU-consuming program, run the application, repeatedly

reschedule the CPU-consuming program or application on every timeslice, and finally notify the MM when

the benchmark application terminates. This experiment shows that a CPU load exacts a significant price

in both send time and execution time. The combined launch and execution time is now close to �
�

in the

largest configuration tested and with a ���
���

binary. This large increase in time is due to the interference of

the computation with the I/O activities (reads and writes). Elan-induced I/O is implemented via a user-level

lightweight process running on the host. This lightweight process is subject to the same local scheduling

policies as any other UNIX process. Since STORM’s dæmons, the application, and the CPU-consuming

program all utilize all four CPUs, there are no CPUs remaining to service QsNet’s lightweight I/O-handling

process. The result is an increased sensitivity to CPU load. We suspect we may decrease this sensitivity by

moving some of STORM’s functionality into the kernel.

The second load-inducing program is designed to stress the network by pairing all of the processors

39

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

T
im

e
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

Figure 4.5: Send and execute times on a CPU-loaded system

and continuously sending long messages back and forth between them. This test is particularly relevant to

STORM in this implementation, since we have seen in Section 2.4.2 that a heavily-loaded network has an

adverse effect on collective communications in the QsNet interconnect (see also [84, 85]). In Figure 4.6,

we can see how running the network-loading program in the background affects the launch time of the test

binaries (again, note the different scale used on the � axis.) The execution part does increase to ������� �

in the worst case, due mostly to the increased delays in the collection of the termination info. However,

it increases less than in the previous experiment. In contrast, the send operation is considerably slower

than on a CPU-loaded or unloaded system. This agrees with our previous results, as the send operation is

implemented using XFER-AND-SIGNAL, on top of a QsNet collective.

Figure 4.7 summarizes the difference among the launch times on loaded and unloaded systems. In this

figure, the send and execute times are shown under the three loading scenarios (U – unloaded, C – CPU

loaded, and N – network loaded), for the �	�
���

file only. Note that even in the worst scenario, with a

network-loaded system, it still takes only 1
	

� seconds to launch a �	�
���

program on 256 processors.

4.3.2 Scalability and Job Launch Analysis

We now turn to list the different components involved in STORM’s job launching, and present an analytical

model showing how its performance is expected to scale to cluster configurations with thousands of nodes.

4.3.2.1 Performance Analysis

The time needed to launch a parallel job can be broken down into the following components:

Read time This is the time taken by the management node to read the application binary from the file sys-

40

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800
T

im
e

(m
s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

Figure 4.6: Send and execute times on a network-loaded system

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(m

s)

U U U U U U U U U

Execute (unloaded)
Send (unloaded)

C C C C C C C C C

Execute (CPU loaded)
Send (CPU loaded)

N N N N N N N N N

Execute (network loaded)
Send (network loaded)

Figure 4.7: Send and execute times for a ���
���

file under different loading scenarios

41

11.4

31.5

120

11.2

30.5

218

NFS Local (ext2) RAM (ext2)

Filesystem

0

50

100

150

200

250

R
ea

d
ba

nd
w

id
th

 (
M

B
/s

) Elan memory
Main memory

Figure 4.8: Read bandwidth for different files systems and buffer locations (�	�
���

file)

tem. The image can be read from a distributed filesystem such as NFS [100], from a local hard disk,

or from a RAM disk.5 In the case of Wolverine, the NIC can read a file directly from the RAM

disk at � � �
����� �

. Figure 4.8 shows the bandwidth achieved when the NIC—with assistance from

a lightweight process on the host—reads a �	�
���

file from various types of filesystems into either

a host- or NIC-resident buffer. As the figure shows, in the slow cases (NFS and local disk), it makes

little difference whether the target buffers reside in main memory or NIC memory. However, when

reading from a (fast) RAM disk, the data clearly show that keeping data buffers in main memory

gives the better performance.

Broadcast time This is the time to broadcast the binary image to all of the compute nodes. If the file is

read via a distributed filesystem like NFS, which supports demand paging, the distribution time and

the file read time are intermixed. The total launch time in a pipelind implementation of the slowest of

read, write, and broadcast times. QsNet’s hardware broadcast is both scalable and extremely fast. On

the ES40 Alphaserver, the performance for a main-memory-to-main-memory broadcast is therefore

limited by the PCI I/O bus. As was shown in [44], the hardware broadcast on 64 nodes can deliver
� �	� �������

when the buffers are in NIC memory but only � ��
 ��� � �
when the buffers are placed in

main memory.

Write time We are concerned primarily with the overhead component of the write time. It does not

matter much if the file resides in the buffer cache or is flushed to the (RAM) disk. A number of

experiments—for brevity, not reported here—show that the read bandwidth is consistently lower than

the write bandwidth. Thus, the write bandwidth is not the bottleneck of the file-transfer protocol.
5A RAM disk is a segment of RAM that has been configured to simulate a disk filesystem. This provides better performance than

mechanical media but at increased cost, as DRAM is more expensive than disk media for a given capacity.

42

Execution overhead Some of the time needed to launch a job in STORM is spent waiting for a time

slot in which to run the job and collect the termination information in the management node. In our

experiments the execution overhead is approximately ����� � .

Timeslice overhead In addition, events such as process termination are collected by the MM at heart-

beat intervals only, so a delay of few time slots can be suffered while the MM processes requests.

The overall launch time
������� ���
	 can be expressed by the following equation

������� ���
	 ����
���� ������� ����� �
����� ����
���� ��� ��� �
� (4.1)

Where
�
���� ������� � represents the binary transfer delay,

� ������� the execution overhead and
�
���� ��� ��� �
� the

overhead induced by STORM’s scheduling mechanisms.

Our implementation tries to pipeline the three components of file-transfer overhead—read time, broad-

cast time, and write time—by dividing the file transmission into fixed-size chunks and writing these chunks

into a remote queue that contains a given number of slots. In order to optimize the overall bandwidth of the

pipeline,
�! "
��#� ���$��� � , we need to maximize the bandwidth of each single stage.

�! %
���� ������� � is bounded

above by the bandwidth of the slowest stage of the pipeline:

�&
��#� ���$��� �('*),+�-/. �& � � �1032 �! 54 ��6��10 � � �
#2 �! 87 �9��
 �1: �),+�-;. �! � � �<032 �! 54 ��6��10 � � �
 : (4.2)

As previously stated, the buffers into which data is read and from which data is broadcast can reside in

either main memory or NIC memory. We have seen that reading into main memory is faster, while broad-

casting from NIC memory is faster. The preceding inequality dictates that the better choice is to place the

buffers in main memory, as
)&+�-/. �! 5� � �10 2 �& 4 �#69�<0 � � �
 : �)&+�-/. � � � ������� 2 � ��
 ������� : � � ��
 �������

when the buffers reside in main memory, versus
),+�-;. �! %� � �10 2 �! 4 ��6��10 � � �
 : �),+�-/. �	��� ������� 2 � ��� ��� � � : �

�	��� ��� � �
when they reside in NIC memory.

We empirically determined the optimal chunk size and number of multi-buffering slots (i.e. receive-

queue length) for our cluster in [44]. The communication protocol is largely insensitive to the number of

slots, and the best performance is obtained with two slots of
 ��� � � . Increasing the number of slots does

not provide any extra performance, because it generates more TLB misses in the NIC’s virtual memory

hardware.

Figure 4.4 showed that the transfer time of a �	�
���

binary is about
� ��� � . Of those

� � � � , � � � are

owed to skew caused by the OS overhead [88] and the way that STORM dæmons act only on heartbeat inter-

vals (� �
�
). The remaining

� � � � is determined by a file-transfer-protocol bandwidth of about � � � �������
.

The gap between the previously calculated upper bound, � ��
 ��� � �
, and the actual value of � � � ��� � �

is

due to unresponsiveness and serialization within the lightweight process running on the host, which ser-

43

vices TLB misses and performs file accesses on behalf of the NIC. Future versions of the QsNet software

libraries are supposed to address this problem.

Figure 4.9 illustrates the steps involved in the file-transfer protocol and shows the performance of each

stage of the pipeline. The file transfer protocol is initiated by the master node, which broadcasts a descriptor

containing information about the data size, destination filename and directory, access rights, etc. At this

point, the master opens the source file in read mode and each slave opens the destination file in write mode

(“Open file” in Figure 4.9). In the main loop, the master reads a file chunk from the filesystem (“Read

chunk”), waits until all the slaves are ready to accept it (“Await space”), multicasts the chunk to all of the

slaves (“Send chunk”), and waits for an acknowledgment from the network (“Await sent”). Note that the

master overlaps the sending of one chunk with the reading of the subsequent chunk. The slaves perform

the complementary operations from the master; they repeatedly wait for a chunk from the master (“Await

received”) and write it to disk (“Write chunk”). The filesystem is the bottleneck in the file transfer. All of

the network operations (communication and flow control) take microseconds to complete, while most of

the filesystem operations have latencies measured in milliseconds.

4.3.2.2 Scalability Analysis

Because all of STORM’s functionality is based on three mechanisms, the scalability of these primitives

determines the scalability of STORM as a whole. In fact, TEST-EVENT is a local operation, so scalability

is actually determined only by the remaining two mechanisms.

Scalability of COMPARE-AND-WRITE Figure 2.6(b) shows the scalability of QsNet’s hardware barrier

synchronization (on which COMPARE-AND-WRITE is based [82]) on the ASCI Q supercomputer [84]. We

can see that the latency approximately doubles for an increase of 1024X in the number of nodes, and still

remains at a very low number of � ����
 � . This is a reliable indicator that COMPARE-AND-WRITE, when

implemented with the same hardware mechanism, will scale as efficiently.

Scalability of XFER-AND-SIGNAL In order to determine the scalability of XFER-AND-SIGNAL to a

large number of nodes, we need to carefully evaluate the communication performance of the hardware

broadcast, consider details of the hardware flow control in the network, and take into account the wire and

switch delays. QsNet transmits packets with circuit-switched flow control. A message is chunked into

packets of 320 bytes of payload, and the packet with sequence number � can be injected into the network

only after the successful reception of the ACK token of packet ��� � . On a broadcast, an ACK is received by

the source only when all of the nodes in the destination set have successfully received packet � � � . Given

that the maximum transmission unit of the QsNet network is only 320 bytes6, in the presence of long wires
6This limitation does not apply to the latest version 2 of QsNet, which allows packets of variable length.

44

TRANSFER-FILE

ENQUEUE

TEST-EVENT

AWAIT-SPACE XFER-AND-SIGNAL

ENQUEUE

TEST-EVENT

AWAIT-SPACE XFER+SIGNAL

Master

Slaves

Send file info

Await sent

Open file Read chunk

Await space

Send chunk

Read chunk

Await written

Close file

Await space

Send chunk

Await sentAwait sent

Await receivedAwait received

Open file Write chunk Close file

Await received

Write chunk

file size/chunk size-1 iterations

108 us 2.3 ms
(218 MB/s)

3.8 ms/iteration
(131 MB/s)

5 us 3,1 ms
(162 MB/s)

5 us 74 us

108 us 74 us2.8 ms
(181 MB/s)

file size/chunk size-1 iterations

File

Comm.

Flow
control

File

Comm.

2.8 ms/iteration
(181 MB/s)

TRANSFER-FILE

TEST-EVENT TEST-EVENT

Local file operation

Network activity

Dependency

Initialization Steady state Final iteration

Figure 4.9: Transmission pipeline

45

NIC
Source Destination

NIC
Network

ack
(a) The destination NIC sends an acknowledgment after receiving the header of the packet.

NIC
Source

ack

Destination
NIC

Network

(b) If the acknowledgment arrives at the source when the packet is still injected, there is no performance degradation.

Destination
NIC

Network
NIC

Source

ack

gap

(c) therwise the protocol introduces a gap in the transmission.

Figure 4.10: End-to-end flow control in the QsNet network

Component Description Value
Cable Maximum cable length between any pairs of nodes input parameter
Switches Maximum number of switches crossed by a packet input parameter
Packet Size Maximum packet size 320 bytes��� � ���1�
 Minimum packet delay at peak bandwidth

�
 � � �� 4 � ��� Base delay for packet processing
 ����� �� � � 4 � � Cable delay per meter
� � � � � � � �� � 7 ��
 �
	 Sum of the forward data delay and ACK delay � � � �

Table 4.2: Legend of terms used in the scalability model

and/or many switches, the propagation delay of the acknowledgment token can introduce a bubble in the

communication protocol’s pipeline and hence a reduction of the asymptotic bandwidth.

Figure 4.10 describes QsNet’s end-to-end flow-control algorithm. The destination NIC sends an ac-

knowledgment token immediately after receiving the packet header (Figure 4.10(a)). If the token arrives at

the source NIC while the packet body is still being transmitted (Figure 4.10(b)), the next packet in the se-

quence can proceed without delay. Otherwise, the protocol introduces a transmission gap before injecting

the following packet (Figure 4.10(c)).

Equation 4.3 describes the asymptotic bandwidth of QsNet as a function of the maximum cable length

and the number of switches that a packet must traverse in the worst case. The equation distinguishes the

case where the protocol can pipeline packets without interruptions, thus delivering the peak bandwidth, and

the other case, in which the combination of wire and the switch delays introduces communication gaps.

�! �� ��� �
<.	��

�����32 ��� ��� ����� � : � �
�� � � � � � 	 �)�����. ���<� ���1�
 2 � 4 � ��� � � ���

����� � � � � 4 � � � � �! � ��� ����� � � � � 7 ��
 �
	 :
(4.3)

Table 4.2 describes the components of Equation 4.3 and provides an estimate of their values. This

46

Nodes Processors Stages Switches � � � ����� � ��� � ���
���� ����� � ��� ��� � � � �
4 16 1 1 320 320 320 315 291 271 253 238 224

16 64 2 3 320 319 295 274 256 240 226 213 202
64 256 3 5 298 277 258 242 228 215 204 194 184

256 1024 4 7 261 244 230 217 206 195 186 177 170
1024 4096 5 9 232 219 207 197 187 178 171 163 157
4096 16384 6 11 209 198 188 180 172 164 158 152 146

Table 4.3: Bandwidth scalability for different cable lengths

Figure 4.11: The ASCI Q machine at LANL

analytical model was used in the procurement of the ASCI Q machine [1] at LANL and has been validated

on several network configurations with a prediction error of less than
 � . Table 4.3 shows the asymptotic

bandwidth
�! �� ��� �
 for networks with up to 4,096 nodes and physical diameters of up to

� � � .

To make
�! �� ��� �
 (and consequently

�& 54 �#69�10 � � �
) dependent upon only the number of nodes, we

compute a conservative estimate of the diameter of the floor plan of the machine, which approximates

the maximum cable length between two nodes. We assume that computers in the cluster are arranged in

a square. Considering that with current technology (see Fig. 4.11) we can stack between four and six

ES40 Alphaserver nodes in a single rack with a footprint of � �
�

, we estimate the floor space required

by four nodes to be
�
�

�

(� �
�

for the rack surrounded by
�
�

�

of floor space). The following equation

therefore provides a conservative estimate of the diameter in meters as a function of the number of nodes:

�
�
 � � � ��� ���

� � ����� � � (4.4)

In a quaternary fat tree, the maximum number of switches traversed by a packet, as a function of the

47

number of nodes is:

 � � � ��� � � . ����� � � : � . � � � � ��� .
����� � � :9: � � (4.5)

By replacing the cable length and the number of switches in Equation 4.3, we obtain the asymptotic

bandwidth
�! � ��� �
 as a function of the number of nodes:

�! � ��� �
 . ����� � � : � �
 � � � � � � 	 �)�� ��. ��� � ���1�
 2 � 4 � ��� � � � � � � ����� � � � � � � 4 � � � � . � � � � ��� .
����� � � :9: � �

 � � � 7 ��
 �
	 :
(4.6)

Scalability of the Binary Transfer Protocol We now consider a model of the launch time for a

binary of ���
���

. The model contains three parts. The first part represents the actual transmission time and

is inversely proportional to the available bandwidth for the given configuration. The second part is the local

execution time of the job, followed by the notification to the MM, which is about ����� � . The third part is

the timeslice overhead, which is spent in OS overhead and waiting for the end of the STORM timeslices.

������� ���
	 . ����� � � : � ����!
��#� ������� �3. ����� � � :
��� �
����� ����
���� �$� ��� �
� (4.7)

We now apply this model to two node configurations. The first, represented by Equation 4.8, represents

our current cluster Wolverine, based on ES40 Alphaservers that can deliver at most � � � �������
over the

I/O bus, while the second configuration, Equation 4.9, represents an idealized Alphaserver cluster that

is limited by the network broadcast bandwidth (i.e. the I/O bus bandwidth is greater than the network

broadcast bandwidth).

�& ����
���
��#� ���$��� � . ����� � � : �),+�-/. � � � 2 �! 54 ��6��10 � � �
�. ����� � � :$: (4.8)

�! � 0 � �#�
���� ������� � . ����� � � : � �! 4 ��6��10 � � �
 . ����� � � : (4.9)

Figure 4.12 shows measured launch times for network configurations up to 64 nodes and estimated

launch times for network configurations up to 16,384 nodes. The model shows that in an ES40-based

Alphaserver, the launch time is scalable and only slightly sensitive to the machine size. A �	�
���

binary

can be launched in � �
 � � on 16,384 nodes. The graph also shows the expected launch times in an ideal

machine in which the I/O bus is not the bottleneck (and in which a lightweight processes on the host can

responsively handle the requests of the NIC). Both models converge with networks larger than 4,096 nodes,

because for such configurations they share the same bottleneck, which is the network broadcast bandwidth.

48

1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

16384

Nodes

0

50

100

150

L
au

nc
h

ti
m

e
(m

s)

Measured
Modeled, ES40
Modeled, ideal I/O bus

Figure 4.12: Measured and estimated launch times

4.3.3 Multiprogramming Performance

Although STORM supports a variety of process scheduling algorithms we conducted a scheduling perfor-

mance and overhead test specifically with gang scheduling [22, 31, 78], which is one of the simplest and

most popular coscheduling algorithms. The following are the issues we address regarding gang scheduling:

Effect of timeslice on overhead Smaller timeslices yield better response time at the cost of decreased

throughput (due to scheduling overhead that cannot be amortized). In Section 4.3.3.1, we evaluate

STORM’s scheduling overhead and show it to be low enough to support workstation time quanta

with virtually no performance penalty.

Scalability Because gang scheduling requires global coordination, the cost of enacting a global decision

frequently increases with the number of processors. Section 4.3.3.2 demonstrates that by using

scalable network primitives, STORM exhibits such low overhead that applications running on large

clusters can be coscheduled about as rapidly as on small clusters or workstations.

Effect of MPL The multiprogramming level (MPL) is the amount of over-subscription of processors to

processes. Ideally, if there are � processes per processor (i.e. MPL
� �), the turnaround time

should be � times what it would be with a single process per processor (i.e. MPL
�

�). In practice,

schedulers require a certain amount of time to switch processes, which causes performance degra-

dation. In addition, context switches often flush the working set that resides in the cache memory,

further hampering the applications. We evaluate these effects in Section 4.3.3.3, and provide data

showing that application performance under STORM is robust to increased MPL.

49

0.1 1 10 100 1000 10000

Time quantum (ms)

0

10

20

30

40

50

60

70

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

(2ms, 49s)

Sweep3D (MPL=1)
Sweep3D (MPL=2)
Synthetic computation (MPL=2)

Figure 4.13: Effect of time quantum with MPL 2 on 32 nodes (Crescendo)

The application we use for our experiments in this section is SWEEP3D, which is described in Section 1.4.

In tests that involve a multiprogramming level (MPL) of more than one, we launch all the jobs at the same

instant—even though this may not be a realistic scenario—to further stress the scheduler.

4.3.3.1 Effect of Time Quantum

As a first gang-scheduling experiment, we analyze the range of usable timeslice values to better understand

the performance limits of STORM’s coordinated scheduling capabilities. Figure 4.13 shows the average

run time of the jobs for various timeslice values, from
� ����
 � to �

�
, running on the Crescendo cluster

with 32 nodes/64 PEs (points represent measured data). The shortest timeslice that the NM can handle in

Crescendo is
� ����
 � , below which it cannot process the incoming strobe messages at the rate they arrive.

Even more significant is the fact that with a timeslice as small as � �
�
, STORM can run multiple instances

of a parallel application with little performance degradation compared to a single instance of the applica-

tion.7 This timeslice is an order of magnitude shorter than the default local Linux scheduler’s quanta, and

multiple orders of magnitude better than the shortest time quanta that conventional gang schedulers can

handle with no performance penalties [42]. This allows for good system responsiveness and usage of the

parallel system for interactive jobs. Furthermore, a short quantum allows the implementation of advanced

scheduling algorithms that can benefit greatly from short time quanta, such as BCS, ICS, and periodic

boost. Because STORM can handle small time quanta with no performance penalty, we chose the value of

�� � � for the next sets of experiments, which provides a fairly responsive system.
7This result is also influenced by the poor memory locality of SWEEP3D so running multiple processes on the same processor does

not pollute their working sets.

50

1 2 4 8 16 32 64

Nodes

1

10

100

1000

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

SWEEP3D, MPL=1
SWEEP3D, MPL=2
Synthetic computation, MPL=1
Synthetic computation, MPL=2

Figure 4.14: Context switch scalability on Crescendo with MPLs 1 & 2

4.3.3.2 Node Scalability

An important metric of a resource manager is the scalability with the number of nodes it manages. To test

this, we measured the effect on application run time when running on an increasing number of nodes.

Figure 4.14 shows the results for running the programs on varying number of nodes in the range 1–64

for MPL values of 1 and 2 using a timeslice of
�� � � (Results for MPL 2 are normalized by dividing the

total runtime of all jobs by 2). The graph shows no visible increase in either the application run time or

overhead with the increase in the number of PEs.

4.3.3.3 Effect of MPL

The overhead incurred by a context-switcth operation can have a limiting effect on the scheduler’s mul-

tiprogramming ability. Context switches can cause performance degradation due to loss of cache state,

synchronization difficulties across nodes, and the need to change the communication context gracefully,

including the handling of in-transit messages8 [24]. The context-switch operation in STORM is rather

rudimentary and involves very little computation in order to determine the next process to run, suspend the

current process, and resume the next one. This is in reality less overhead than is required by most UNIX

schedulers for performing a local context switch [109]. To evaluate the overhead of the context switch

operation in STORM, we measured the effect of multiprogramming on the SWEEP3D parallel application.

Figure 4.15 shows the results of running 1, 2, 4, or 8 jobs together, with a timeslice of
�� � � , and compared

to linear slowdown. All jobs were launched concurrently and run on all of Crescendo’s 64 PEs. We can
8Context switches can improve performance in some cases. Some interconnects allow for the background processing of pending

communication while the main CPU is busy with another computation, possibly of another process altogether. This overlap of
computation and communication can thus lead to benefit from context switches and yield a super-linear speedup when multipro-
gramming parallel jobs [41, 42].

51

1 2 4 8

Multiprogramming level

0

100

200

300

400

T
ot

al
 r

un
 t

im
e

(s
)

Measured
Linear slowdown

Figure 4.15: Effect of multiprogramming level on SWEEP3D run time (64 PEs)

see no degradation in performance compared to a linear slowdown, and in fact we can observe a slight per-

formance gain, due to the overlapping of computation and communication. This effect cannot be extended

further beyond an MPL of 8 for this configuration, due to the so-called “memory wall” - more instances of

SWEEP3D would exhaust the physical memory of the machine and lead to paging and swapping.

4.4 Related Work

Although powerful hardware solutions for high-performance computing are already available, the largest

challenge in making large-scale clusters usable lies in the system software. This chapter focuses on increas-

ing the scalability and performance of job launching and process scheduling. We now examine previous

attempts at improving these two RM functions.

4.4.1 Job Launching

Many run-time environments, such as the Portable Batch System (PBS) [51], distribute executable files to

all nodes via a globally mounted filesystem, typically NFS [100]. This design, in which potentially many

clients are simultaneously accessing a single file on a single server, is inherently non-scalable. Even worse,

file servers are frequently unable to handle extreme loads gracefully; heavy loads lead to increased delays,

which induce network timeouts, which cause read failures and aborted application launches. A workaround

commonly taken by cluster administrators is to employ a simple shell script that iteratively starts processes

on each node of the cluster. While this approach reduces contention on the file server, it still has severe

performance and scalability limitations on clusters with more than several tens or hundreds of nodes. In

contrast, by implementing the STORM mechanisms in terms of a tree-based multicast, STORM overhead

52

grows logarithmically, not linearly, with the number of nodes.

The ParPar cluster environment [59] addresses the problem of the distribution of control messages from

a management node to a set of clients. ParPar utilizes a special-purpose multicast protocol, reliable data-

gram multicast (RDGM), which broadcasts UDP datagrams on the network and adds selective multicast

and reliability. Each datagram is prepended by a bit string that identifies the set of destinations, and each

node in the destination set sends an acknowledgment to the management node after the successful delivery

of the broadcast datagram. By using RDGM, a job can be launched in a few tens of seconds on a cluster

with 16 nodes and with relatively good scalability. Nevertheless, this is still significantly slower (albeit

on a slower network) than the launch time of a sequential job on an individual workstation and enough to

annoy users who are waiting for an interactive job to launch. One of the goals for STORM was to ensure

that launch times on large clusters are no slower than those on a single node. As shown in Section 4.3, an

efficient implementation of the STORM mechanisms leads to measured launch times of under � � � � � for

256 processors and predicted launch times of under � �
 � � for 16,384 processors.

GLUnix [47] is a module of operating system middleware for clusters of workstations, designed to

provide transparent remote execution, load balancing, coscheduling of parallel jobs, and fault-detection.

The creators of GLUnix note that when forking a parallel job, the overhead in the master node increases

by a small but linear amount: an average of � ����
 � per client node. Extrapolating, this implies just over

50 seconds to launch a job on 4,096 nodes (16,384 processors).

When GLUnix launches a job, remote execution messages are sent from the management node to all

the dæmons that will run the job. Each of these dæmons generates a reply message, indicating success

or failure. When performing remote execution to more than 32 nodes over switched Ethernet, the replies

from earlier dæmons in the communication schedule collide with the remote execution requests sent to

later dæmons [47]. This causes a substantial performance degradation. STORM on the other hand can

benefit from QsNet’s network conditionals, which utilize a combining tree to reduce network contention

and improve performance and scalability [83].

Scalability problems are already evident in ASCI-scale machines (with thousands of nodes). The

Computational Plant (Cplant) project [11, 97] at Sandia National Laboratories utilizes several large-scale

commodity-based clusters. In order to enhance scalability, Cplant uses a high-performance interconnect,

Myrinet [8, 12], and a custom, lightweight communication protocol based on Portals [11]. When Cplant’s

RM system launches a job, it first identifies a group of active worker nodes, organizes them into a logical

tree structure, and then fans out the executable to the nodes. Experimental results show that a large, parallel

application can be launched on a 1010-node cluster in about 20 seconds [11]. Cplant is the closest project

in spirit to STORM, in that it identifies poor RM performance as a problem worth studying and approaches

the problem by replacing a traditionally non-scalable algorithm with a scalable one. Given the same plat-

form, the STORM mechanisms would likely be implemented fairly similarly to Cplant’s. However, on

a platform such as QsNet, which boasts hardware collectives, STORM is able to exploit the underlying

53

hardware to improve job-launching performance by a hundredfold.

BProc [52], the Beowulf Distributed Process Space, takes a fairly different approach to job launching

from STORM and the other works described above. Rather than copy a binary file from a disk on the master

to a disk on each of the slaves and then launching the file from disk, BProc replicates a running process

into each slave’s memory—the equivalent of Unix’s fork() and exec() plus an efficient migration

step. The advantage of BProc’s approach is that no filesystem activity is required to launch a parallel

application once it is loaded into memory on the master. Even though STORM utilizes a RAM-disk based

filesystem, the extra costs of reading and writing to the filesystem add a significant amount of overhead

relative to BProc’s remote process spawning. STORM’s advantage over BProc is that the same functions

STORM uses to transmit executable files can also be used to transmit data files. BProc has no equivalent

mechanism, although a system could certainly benefit from BProc’s single-system-image features and from

STORM’s underlying communication protocols together.

Table 4.4 shows a sampling of job-launch times found in the literature; Table 4.5 presents the same

data extrapolated out to 4,096 nodes (twice the size of ASCI Q [1]); and Figure 4.16 graphs both the

measured and extrapolated (to 16,384 nodes) data. Although the different cluster types and sizes make the

comparison imprecise, the aforementioned tables and figures at least give a general indication that STORM

does, in fact, provide a significant performance improvement over previous works.

Table 4.4: A selection of job-launch times found in the literature

Resource manager Job-launch time

rsh
� � seconds to launch a minimal job on 95 nodes [47]

RMS
�� � seconds to launch a 12 MB job on 64 nodes [44]
GLUnix ��� � seconds to launch a minimal job on 95 nodes [47]
Cplant ��� seconds to launch a 12 MB job on 1,010 nodes [11]
BProc ��� � seconds to launch a 12 MB job on 100 nodes [52]
STORM ��� � � seconds to launch a 12 MB job on 64 nodes

Table 4.5: Extrapolated job-launch times

Resource manager Job-launch time extrapolated to 4,096 nodes

rsh
� ��� ��� � � seconds for 0 MB

. � � � � ��� � � � ��� ����� :
RMS

� � �	� � � seconds for 12 MB
. � � ��� � � � � � ��� � � � :

GLUnix
� � � � � seconds for 0 MB

. � � ��� � ��� � � ��� � � � :
Cplant � � � � � seconds for 12 MB

. � � ��� � � � � �
�
� ��� � � � :

BProc
� � � � seconds for 12 MB

. � � ��� � � � � �
� � ��� � � � :

STORM ��� � � seconds for 12 MB (see Section 4.3.2.2)

To clarify the performance improvement provided by STORM, Figure 4.17 renormalizes the extrap-

olated Cplant and BProc data to the extrapolated STORM performance, which is defined as 1.0. Cplant

and BProc are the two pieces of related work that, like STORM, scale logarithmically, not linearly, in the

number of nodes. The figure shows a decrease in the Cplant and BProc slowdown at 4,096 nodes. This is

54

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K

Nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

)

rsh (measured)r
rsh (t = 0.934n + 1.266)
RMS (measured)R
RMS (t = 0.077n + 1.092)
GLUnix (measured)G
GLUnix (t = 0.012n + 0.228)
Cplant (measured)C
Cplant (t = 1.379 lg n + 6.177)
BProc, measuredB
BProc, (t = 0.413 lg n - 0.084)
STORM (measured)S
STORM (modeled; see text)

r

r

R R
R R R

R R

G

G

C C C C C C C C C C C

B B
B

BB B B BBBBBBB

S S S S S S S

Figure 4.16: Measured and predicted performance of various job launchers

an artifact of the conservative performance model we used for STORM in Section 4.3.2.2, which indicates

decreased network bandwidth as cluster sizes—and hence, cable lengths—increase. We extrapolated the

performance of Cplant, BProc, and all of the other job-launchers presented in Table 4.4, Table 4.5, and

Figure 4.16 under the unrealistic assumption that network performance scales indefinitely. Nevertheless,

even though STORM’s model is more conservative than the others, the crossover point between BProc and

STORM is expected to be on a system of approximately 1 billion nodes, and the crossover point between

Cplant and STORM is expected to be on a system containing approximately 17 billion nodes.

4.4.2 Process Scheduling

Many recent research results show that good job scheduling algorithms can substantially improve scalabil-

ity, responsiveness, resource utilization, and usability of large-scale machines [2, 31]. Unfortunately, the

body of work developed in the last few years has not yet led to many practical implementations of such

algorithms on production machines. Arguably, one of the main reasons for this is the lack of flexible and ef-

ficient run-time systems that can support the implementation and evaluation of new scheduling algorithms,

in order to convincingly demonstrate their superiority over today’s entrenched, space-shared schedulers.

Its flexibility positions STORM as a suitable vessel for in vivo experimentation with alternate scheduling

algorithms, so researchers can determine the best way to manage cluster resources.

As far as traditional gang-schedulers are concerned, the SCore-D scheduler [55, 56] is one of the fastest.

55

C
C

C
C

C
C

C
C

C
C

C
C

C C

C

B B B B B B B B B B B B B B

S S S S S S S S S S S S S S S
1

2
4

8
16

32
64

128
256

512
1K

2K
4K

8K
16K

Nodes

0

50

100

150

200

250

F
ac

to
r

of
 S

T
O

R
M

 t
im

e
Cplant (t = 1.379 lg n + 6.177)C C
BProc, (t = 0.413 lg n - 0.084)B B
STORM (modeled; see text)S S

Figure 4.17: Normalized performance of Cplant, BProc, and STORM

By utilizing the messaging layer, PM [112], SCore-D is able to force communication into a quiescent state,

save the entire global state of the computation, and restore another application’s global state with only

� 2% overhead when using a � ����� � time quantum. While this is admirable performance, STORM is able

to do significantly better. Because the STORM mechanisms can be written to exploit QsNet’s process-to-

process communication (versus PM/Myrinet’s node-to-node communication), STORM does not need to

force the network into a quiescent state before freezing one application and thawing another [42]. As a

result, STORM can gang-schedule applications with no noticeable overhead when using quanta as small as

� �
�

on Wolverine (on Accelerando, where the network is somewhat slower and the processors are faster,

higher time quanta may be required to hide the context switch overhead).

56

5 Communication Library

5.1 Background

As described in the introduction, system software for large-scale parallel machines is undergoing an in-

creasing rise in complexity and requirements. System software consists of various components, including

communication libraries, resource management (the software infrastructure in charge of resource alloca-

tion and accounting), services for parallel file system, and fault tolerance. The current state of the art is

to design these components separately, in order to have a modular design and allow different developers

to work concurrently while limiting cross-dependencies. Some of these components have many elements

in common, such as communication mechanisms, that are implemented and re-implemented several times

over. In some cases the lack of a single source of system services is also detrimental to performance: most

parallel systems cannot guarantee quality of service (QoS) for user-level traffic and system-level traffic in

the same interconnection network. Low-priority, best-effort traffic generated by the parallel file system can

interfere with higher-priority, latency-sensitive traffic generate at user level. As another example, system

dæmons that perform resource management can introduce computational “holes” of several hundreds of ms

that can severely impact fine-grained scientific simulations, since they are not coordinated with the commu-

nication library’s activities [88]. In this chapter we promote the idea of using the same basic mechanisms

that we use for resource management and scheduling purposes to simplify the communication layer, based

on the Buffered Coscheduling (BCS) model.

BCS [25, 35, 80, 81] is a new design methodology proposed by Petrini et al. for the system software

that attempts to tackle both problems: the complexity of a large-scale parallel machine and the redundancy

of its software components. The vision behind BCS is that both size and complexity of the system software

can be substantially reduced by using a common and coordinated view of the system. BCS tries to globally

organize all the activities of such machines at a fine granularity, (a few hundreds of
 �). In a sense, BCS

represents an effort to implement a SIMD global OS at a granularity coarser than the single instruction,

and yet fine enough so as not to harm application performance. Both computation and communication

are globally scheduled at regular intervals, and the scheduling decisions are taken after exchanging all the

required information. The separate operating systems of each node are coalesced into a single system view,

57

without incurring any significant performance penalty.

We argue that the core primitives laid out in Chapter 3 are on the one hand general enough to cover

many of the requirements of system software, including the application communication layer, and yet on

the other hand, close enough to the hardware layer to exploit the highest level of performance. Chapter

4 demonstrates that it is possible to implement a scalable resource management system that is orders of

magnitude faster than existing production-level software, by using these core primitives.In this chapter we

extend and generalize our research to another aspect of system software, the communication library. We

have chosen to implement a variant of the popular MPI library, called BCS-MPI. BCS-MPI is designed

following the BCS methodology. It is hierarchically built on top of our core primitives and its scheduling

decisions are globally coordinated.

Related Work The LogP model developed by Culler et al. [20] uses four parameters, (computing band-

width, communication bandwidth, communication delay and the efficiency of coupling communication

and computation) to model asynchronous message passing. This model encourages the programmer to

optimize single point-to-point communications while our approach tries to optimize the global state of the

machine in order to reduce the non-determinism. The Bulk-Synchronous Parallel (BSP) model was intro-

duced by Valiant in [115] (described in Section 3.3). This model constitutes a first attempt to optimize

the entire application performance rather than latency or bandwidth for single point-to-point messages.

Buffered Coscheduling (BCS), as proposed by Petrini et al. in [26] is the methodology for time-sharing

communicating processes on which this study is based.

The advent of programmable network interface cards enables the offloading of a considerable part of

the communication protocol to the NIC [12, 13, 101]. However, most of the previous work in this area tends

to be focused on optimizing latency and bandwidth performance. To the best of our knowledge, BCS-MPI

is the first attempt to globally synchronize all the system activities in order to schedule communications.

5.2 The BCS-MPI Model

The main research trend in the design of communication libraries over the past decade has been to mini-

mize the point-to-point latency by removing kernel overhead [6, 18, 79, 93, 102, 112, 118]. Libraries such

as Active Messages or Fast Myrinet attempt to move the data communication handling into the user level

. BCS-MPI follows a different path: rather than optimizing the single point-to-point communication in

isolation, it tries to optimize the entire communication pattern. Communication is scheduled globally by

dividing time into short slices, and using a distributed algorithm to schedule the point-to-point communi-

cation that will occur at each time slice. Communication is scheduled only at the beginning of a time slice

and performed at kernel level [15]. The shortest latency that a message will experience will be at least one

time slice, which is in the order of few hundreds of
 � with current technology. On the other hand, we

58

gain better ordering and determinism of the communication behavior, which can have significant benefits.

For example, the fact that the communication state of all processes is known at the beginning of every time

slice facilitates the implementation of checkpointing and debugging mechanisms.

The primary contribution here is in demonstrating that a constrained communication library such as

BCS-MPI provides approximately the same performance of a production-level version of MPI on a large

set of scientific applications, but with a much simpler software design. In fact, BCS-MPI is so small that

it runs almost entirely on the network interface processor, and its activity is completely overlapped with

the computation of the processing node. We also discuss the importance of non-blocking communication

compared to blocking communication and how minor changes in the communication pattern (e.g. replacing

blocking calls with non-blocking counterparts) can substantially improve the application performance.

BCS-MPI’s simplified design relies on the primitives described in Chapter 3, which in turn rely on

advanced networks’ features. In some of these networks (Gigabit Ethernet, Myrinet and Infiniband) these

primitives need to be emulated through a thin software layer, while in other networks there is a one-to-

one mapping with native hardware mechanisms. We argue that in both cases – with or without hardware

support – these primitives represent an ideal abstract machine that can export the raw performance of the

network, while still providing a general-purpose basis for designing simple and efficient system software.

5.3 BCS-MPI Design and Implementation

To evaluate and validate the framework proposed in the previous section, we developed a fully functional

version of BCS-MPI and incorporated it with STORM. For quick prototyping and portability, BCS-MPI is

initially implemented as a user-level communication library, and some typical kernel level functionalities

such as process scheduling are implemented with STORM’s dæmons. This user-level implementation is

expected to be slower than a kernel-level one, albeit at increased flexibility and ease-of-use. One of our

future goals is migrating the performance-sensitive parts of STORM and BCS-MPI to the kernel.

The communication library is hierarchically designed on top of a small set higher-level primitives (the

BCS API [35]), which are in turn based on the three network primitives (Figure 5.2(a)). This approach

greatly simplifies the design and implementation of BCS-MPI in terms of complexity, maintainability and

extensibility. BCS-MPI is built on top of the BCS API by simply mapping MPI calls to BCS calls1.

5.3.1 BCS-MPI Design

Unlike typical implementations of MPI, BCS-MPI globally schedules the system activities on all the nodes:

a synchronization broadcast message or global strobe – implemented with XFER-AND-SIGNAL – is sent

to all nodes at regular intervals or timeslices. Thus, all the system activities are tightly coupled since

they occur concurrently on all the nodes. Both computation and communication are scheduled and the
1The details of the BCS API are shown in [35].

59

communication requests generated by each application process are buffered. At the beginning of every time

slice a partial exchange of communication requests – implemented with XFER-AND-SIGNAL and TEST-

EVENT – provides information to schedule the communication requests issued during the previous time

slice. Subsequently, all the scheduled communication operations are also performed using the primitives

XFER-AND-SIGNAL and TEST-EVENT.

The BCS-MPI communication protocol is implemented almost entirely on the NIC. This enables BCS-

MPI to overlap the communication with the computation executed on the host CPUs. The application

processes interact directly with threads running on the NIC. When an application process invokes a com-

munication primitive, it posts a descriptor in a region of NIC memory that is accessible to a NIC thread.

Such a descriptor includes all the communication parameters that are required to complete the operation.

The actual communication will be performed by a set of cooperating threads running on the NICs involved

in the communication protocol. In the QsNet network these threads can directly read/write from/to the ap-

plication process memory space so that no copies to intermediate buffers are needed. The communication

protocol is divided into micro-phases within every time slice and its progress is also globally synchro-

nized, as described in Section 5.3.3. To better explain how BCS-MPI communication primitives work, two

possible scenarios for blocking and non-blocking MPI point-to-point primitives are described below.

5.3.1.1 Blocking Send/Receive Scenario

In this scenario, a process � 	 sends a message to process � � using MPI Send and process � � receives a

message from � 	 using MPI Recv (see Figure 5.1(a)):

1. � 	 posts a send descriptor to the NIC and blocks.

2. � � posts a receive descriptor to the NIC and blocks.

3. The transmission of data from � 	 to � � is scheduled since both processes are ready (all the pending

communication operations posted before time slice � are scheduled, if possible). If the message

cannot be transmitted in a single time slice, then it is chunked and scheduled over multiple time

slices.

4. The communication is performed (all the scheduled operations are performed before the end of time

slice �
�
�).

5. � 	 and � � are restarted at the beginning of time slice �
�
� .

6. � 	 and � � resume computation.

Note that the delay per blocking primitive is 1.5 time slices on average. However, this performance penalty

can be alleviated by using non-blocking communication (see Section 5.4.3) or by scheduling a different

parallel job in time slice i+1 .

60

P2

P1

∆1 ∆2 ∆3

MPI_Recv

Transmission

MessasgeMessasge

Scheduling

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

NIC1

NIC2

1

2

3

3 4

MPI_Send

4

5

5
5

Computation

4

5

P2

P1

∆1 ∆2 ∆3

MPI_Irecv

Transmission

MessasgeMessasge

Scheduling

Computation

Computation

NIC1

NIC2

1

2

3

3

MPI_Isend

4

Computation

MPI_Wait

MPI_Wait

(a) Blocking MPI Send/MPI Recv (b) Non-blocking MPI Isend/MPI Irecv

Figure 5.1: Blocking and Non-Blocking Scenarios

5.3.1.2 Non-Blocking Send/Receive Scenario

In this scenario, a process � 	 sends a message to process � � using MPI Isend and process � � receives a

message from � 	 MPI Irecv (see Figure 5.1(b)):

1. � 	 posts a send descriptor to the NIC.

2. � � posts a receive descriptor to the NIC.

3. The transmission of data from � 	 to � � is scheduled since both processes are ready (all the pending

communication operations posted before time slice � are scheduled if possible).

4. The communication is performed (all the scheduled operations are performed before the end of time

slice �
�
�).

5. � 	 and � � verify that the communication has been performed and continue their computation.

Here the communication is completely overlapped with the computation with no performance penalty.

5.3.2 Processes and Threads

With the current user-level implementation, the BCS-MPI runtime system consists of STORM’s dæmons

and a set of threads running on the Elan NIC. The processes and NIC threads that constitute the BCS-MPI

runtime system are shown in Figure 5.2(b). As described in Chapter 4, the Machine Manager (MM), runs

on the management node. This dæmon coordinates the use of system resources issuing regular heartbeats

and controls the execution of parallel jobs. The Strobe Sender (SS) is a NIC thread forked by the MM that

implements the global synchronization protocol as described in Section 5.3.3. The Node Manager (NM)

dæmons run on every compute node. This process executes all the commands issued by the MM, manages

the local resources, and schedules the execution of the local processes. The Strobe Receiver (SR), the

61

BCS API

BCS MPI

Quadrics Network

qsnetlib

MPI User Applications

Core primitives

MM

SS NIC Thread

AP1 APp-1AP0

SR BS BR DH CH RH

Management Node Compute Node

M
ai

n
 M

em
o

ry
E

L
A

N
 M

em
o

ry

M
ai

n
 M

em
o

ry
E

L
A

N
 M

em
o

ry

ProcessNM . . .

(a) Library Hierarchy (b) Processes and threads

Figure 5.2: BCS-MPI architecture

Buffer Sender (BS), the Buffer Receiver (BR), the DMA Helper (DH), the Collective Helper (CH) and the

Reduce Helper (RH) are all NIC threads forked by the NM in each compute node. The SR is the counterpart

of the SS in the compute nodes and coordinates the execution of all the local threads. The BS and the BR

handle the descriptors posted by the application processes whenever a communication primitive is invoked,

and schedule the point-to-point and collective communication operations. The DH carries out the actual

data transmission for the point-to-point operations. Finally, the CH and the RH perform the barrier and

broadcast operations, and the reduce operations, respectively.

5.3.3 Global Synchronization Protocol

The BCS-MPI runtime system globally schedules all the computation, communication and synchroniza-

tion activities of the MPI jobs at regular intervals. Each time slice is divided into two main phases and

several micro-phases, as shown in Figure 5.3. The two phases are the global message scheduling and

the message transmission. The global message scheduling phase schedules all the descriptors posted to

the NIC during the previous time slice. A partial exchange of control information is performed during

the descriptor exchange micro-phase (DEM). The point-to-point and collective communication operations

are scheduled in the message scheduling micro-phase (MSM) using the information gathered during the

previous micro-phase. The message transmission phase performs point-to-point operations, barrier and

broadcast collectives, and the reduce operations, respectively, during its three micro-phases.

To execute the global synchronization mechanism, the SS and the SR threads synchronize at the be-

ginning of every micro-phase with a micro-strobe (using XFER-AND-SIGNAL). The SS checks whether

all the nodes have completed the current micro-phase (using COMPARE-AND-WRITE) and, if so, sends a

micro-strobe to all the SRs. The SR running on every node subsequently wakes up the relevant local NIC

thread(s) for the new micro-phase. The BS and the BR run during the descriptor exchange micro-phase to

process the descriptors and during the message scheduling micro-phase to schedule the messages. The DH,

the CH and the RH run during the point-to-point, the broadcast and barrier, and the reduce micro-phases,

respectively, to perform all the operations scheduled for execution in the global message scheduling phase.

62

Global
Message

Scheduling
Phase

Message
Transmission

Phase

NIC

Time slice i

Descriptor
Exchange

MicroPhase
(DEM)

Message
Scheduling
MicroPhase

(MSM)

Point-to-point
MicroPhase

(PM)

Broadcast
and Barrier
MicroPhase

(BBM)

Reduce
MicroPhase

(RM)

Figure 5.3: Global synchronization protocol

5.3.4 Point-to-point

Every time a user process invokes a point-to-point MPI primitive, it initializes a descriptor in a region

of memory accessible to the NIC threads which will initiate the operation on its behalf (Figure 5.1). All

the descriptors for either blocking or non-blocking send-operations are posted to the BS thread while all

the descriptors for either blocking or non-blocking receive-operations are posted to the BR thread. Each

application process involved in the communication protocol is suspended only if the invoked primitive is

blocking. All the descriptors posted during time slice i-1 will be scheduled for execution, if possible, at

time slice � as follows (see also Figure 5.4).

Descriptor Exchange Microphase The BS delivers each send descriptor posted in time slice i-1 to

the BR running on the destination node.

Message Scheduling Microphase The BR matches the remote send descriptor list against the local

receive descriptor list. For each matching pair, the BR builds a descriptor with the information

required to complete the data transfer, and schedules the operation for execution. If the message is

too large and cannot be scheduled within a single time slice, the BR splits it into smaller chunks. The

first chunk of the message is scheduled during the current time slice and the remaining chunks in the

following time slices. In the current implementation, these two phases take approximately �	��
�
 � .
Point-to-point Microphase For each matching descriptor created in the previous micro-phase by the

BR, the DH performs the real data transmission. Note that no intervention from the two application

processes involved is required.

5.3.5 Collective Communication

Every time a user process calls a collective MPI function such as MPI Barrier, MPI Broadcast, MPI Reduce

or MPI Allreduce, BCS-MPI posts a descriptor to the BR thread, which in turn initiates the operation on

63

ListThreadNode Process

Matching

Start MSM

SendD

SendL

APS

RecD

RecL

DH

SendD

2

4

6

9

5

8

3

7

1

Compute NodeCompute Node
Node

Management
S R

MatchD

MatchD

RSendL

DMAL

DMAL

SendD

SendL

MM SS

Send Strobe

Send Ds

SR BS RAP SR BR

Start MSM

SendD

Match Ds

Process Ds

DMA

MatchD

tim
e

Start DEM Start DEM

Start PM Start PM

Figure 5.4: Send/Receive with BCS-MPI
(1) The sender process posts a descriptor to the BS (2) The receiver process posts a descriptor to the
BR (3) SS sends a micro-strobe to signal all the SRs the beginning of the Descriptor Exchange Micro-
phase (DEM) (4) BS sends the descriptor to the BR running on the receiving end (5) SS sends a micro-
strobe to signal the beginning of the Message Scheduling Micro-phase (MSM) (6) BR matches the remote
send and the local receive descriptors (7) SS sends a micro-strobe to signal the beginning of the Point-to-
point Micro-phase (PM) (8) BR schedules the operation for execution (9) DH performs the get (one-sided
communication).

64

its behalf, and blocks. The BR preprocesses all the collective descriptors. If all the local processes of a

parallel job have invoked the collective primitive, a local flag for that job is set. Following that, all the

collective descriptors except for those corresponding to the job master processes, are discarded. All the

descriptors posted during time slice i-1 will be scheduled, if possible, in time slice i as follows:

Message Scheduling Microphase For each collective descriptor corresponding to a job master pro-

cess, the BR tests if all the application processes of that MPI parallel job had invoked the collective

primitive in all nodes. In order to accomplish this, the BR issues a query broadcast (using COMPARE-

AND-WRITE) message that checks the flag for that job. If the flag is set on all nodes, the collective

operation is scheduled for execution.

Broadcast and Barrier/Reduce Microphase The scheduled broadcast operations are performed by

the CH broadcasting the data to all the processes of the MPI parallel job. The barrier operation is a

special case of a broadcast operation with no data. The scheduled reduce operations are carried out

by the RH on the NIC by using a binomial tree to gather the partial reduce results. The Elan NIC

has no floating-point unit. Hence, an IEEE compliant library for binary floating-point arithmetic has

been used to compute the reduce in the NIC (SoftFloat [128]). Since most applications reduce over

a very small number of elements [73, 116], computing the reduce in the NIC is faster than sending

the data through the PCI bus to perform the operation in the host [73].

Figure 5.5 illustrates the execution of a broadcast operation. The MPI program in this example is

composed of four processes running on two different nodes.

5.4 Experimental Results

In this section we analyze the results of running BCS-MPI synthetic applications, as well as SAGE,

SWEEP3D, and several NAS-benchmark applications. All the results were obtained on Crescendo with

a
�����
 � timeslice.

5.4.1 Synthetic Benchmarks

Many scientific codes display a bulk-synchronous behavior [115] and can be characterized by a nearest-

neighbor communication stencil, optionally followed by a global synchronization operation such as barrier,

broadcast or reduce [53, 61]. Therefore, we designed two synthetic benchmarks that represent this pattern

(see Section 1.4) to compare our experimental BCS-MPI with the production-level Quadrics MPI.

In the first synthetic benchmark, every process computes for a parametric amount of time and barrier-

synchronizes with all the other processes in a loop. The slowdown of BCS-MPI in relation to Quadrics

MPI for different computational granularities is shown in Figure 5.6(a) . As expected, the slowdown

decreases as we increase the computational granularity since the effect of the delay introduced by the barrier

65

0
AP1

F=T

Start MSM

SendL

BcastD

SendL

BcastD

BcastD

ColL

AP
0

AP1
AP

ThreadNode Process

BS

Start DEM

F=T?

F=TF=T

2

3

1

5

6

9

7

8

10

MatchD
BcastD

BcastD

PColL

PColL

BcastD

4

B0 B1

BcastD

ColL

BcastD

SendL

F=T

Compute Node Compute Node

tim
e

Node
Management

SRSSMM

G0 G1

0BR

G2 G3

SR BS

BcastD

BcastD

BcastD

Send Strobe

CH

BcastD

SendL

DMA DataDMA Data DMA Data

Start MSM

Start DEM

Start BBMStart BBM

Send Ds Send Ds

Match Ds

Process Ds

List

Figure 5.5: Broadcast with BCS-MPI
(1) Application Process (AP) �

�
posts a descriptor to the local BS. �

�
is the master process and its descrip-

tor is copied to the Collective List (2) ��� posts a descriptor to the local BS. The descriptor is processed
and discarded (3) � � posts a descriptor to the local BS. The descriptor is processed: all the local processes
have reached the barrier and Flag F is set to True. Descriptor is discarded (4) �

�
posts a descriptor to the

local BS. The descriptor is processed: all the local processes have reached the barrier and Flag F is set
to True. The descriptor is discarded (5) The SS sends a micro-strobe to signal all the SRs the beginning
of the Descriptor Exchange Micro-phase (DEM) (6) SS sends a micro-strobe to signal the beginning of
the Message Scheduling Micro-phase (MSM) (7) BR checks whether all the processes are ready (8) BR
schedules the broadcast operation for execution (9) SS sends a micro-strobe to signal the beginning of the
Broadcast and Barrier Micro-phase (BBM) (10) CH performs the broadcast.

66

5 10 20 30 40 50

Granularity (ms)

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Barrier

2 4 8 16 32 48 62

Number of Processes

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Barrier

(a) Barrier synchronization: 62 processes (b) Barrier synchronization: � � � � granularity

‘

5 10 20 30 40 50

Granularity (ms)

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Point to point

8 16 32 48 62

Number of Processes

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Point to point

(c) Nearest-neighbor synchronization: (d) Nearest-neighbor synchronization:
62 processes, 4 neighbors, 4KB messages � � � � granularity, 4 neighbors, 4KB messages

Figure 5.6: BCS-MPI Synthetic Benchmarks

synchronization is amortized. The figure shows that the slowdown is less than ���
 � with a computation

granularity of � ��� � when we run this benchmark on the entire cluster. Figure 5.6(b) shows the slowdown

of BCS-MPI versus Quadrics MPI as a function of the number of processes. In this case, the results indicate

that BCS-MPI scales well for barrier synchronization operations, and it is almost insensitive to the number

of processors.

In the second synthetic benchmark, every process computes for a parametric amount of time, exchanges

a fixed number of non-blocking point-to-point messages with a set of neighbors, and waits for the comple-

tion of all the communication operations in a loop. The slowdown for different computational granularities

is shown in Figure 5.6(c). Like the previous scenario, the slowdown decreases as the computational gran-

ularity increases, remaining below �
�

for granularities larger than ����� � . Finally, from Figure 5.6(d) we

can observe that BCS-MPI scales well with point-to-point operations as well.

67

SW
EEP3D

SAGE IS EP
MG CG LU

Application

10

100

1000
R

un
tim

e
(s

ec
on

ds
)

Quadrics MPI
BCS-MPI

Figure 5.7: Benchmarks and Applications

5.4.2 NAS Benchmarks and Applications

In this section we use the NAS Parallel Benchmarks (NPB 2.4) [4, 123], SWEEP3D and SAGE (SAIC’s

Adaptive Grid Eulerian hydrocode) [61]. The NAS Parallel Benchmarks are a set of eight programs de-

signed to help in evaluating the performance of parallel supercomputers. The suite, which is derived from

computational fluid dynamics (CFD) applications, consists of five kernels and three applications. Since

BCS-MPI does not support MPI groups yet, we were only able to use four kernels and one application:

Integer Sort (IS), Embarrassingly Parallel (EP), Conjugate Gradient (CG), Multigrid (MG) and LU solver

(LU). All programs are written in Fortran 77 (except for IS which is written in C) and use MPI for inter-

processor communications. All the benchmarks were compiled for the class C workload.

SAGE and SWEEP3D (described in Section 1.4) are part of LANL’s Crestone project, whose goal is

the investigation of continuous adaptive Eulerian techniques to stockpile stewardship problems. SAGE is

characterized by a nearest-neighbor communication pattern that uses non-blocking communication opera-

tions followed by a reduce operation at the end of each compute step. The timing.input data set was used

in all the experiments. SWEEP3D is characterized by a fine granularity (each compute step takes � � �
 � �

on Crescendo) and a nearest-neighbor communication stencil with blocking send/receive operations.

For each of these applications we compare the runtime of BCS-MPI to that of Quadrics MPI, and

analyze the results. The final runtime was computed as the average of five executions.

The application run times for both Quadrics MPI and BCS-MPI are shown in Figure 5.7. The slow-

down of BCS-MPI in comparison to Quadrics MPI is computed in Table 5.1. All NPB benchmarks (except

68

Application Slowdown

SAGE � � � � � �
SWEEP3D � ��� � � �

IS � � � � ���
EP
�� �
 �
MG

� � � � �
CG � � � � � �
LU ��
�� � ���

Table 5.1: Application slowdown of BCS-MPI compared to Quadrics MPI

4 16 32 48 62

Number of Processes

100

105

110

115

120

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI
BCS-MPI

Figure 5.8: SAGE performance

LU) and SAGE perform reasonably well with BCS-MPI. The NPB programs are coarse-grained bulk-

synchronous applications that show an expected moderate slowdown of up to �
�

, as discussed in Sec-

tion 5.4.1. However, three programs do not meet the expectations. IS takes approximately only � �	�
�

to run in this configuration and consequently pays a relatively high price for the overhead of initializing

the BCS-MPI runtime system. CG and LU use several consecutive blocking calls inside a loop which

introduce a considerable delay, since no overlap between computation and communication is possible for

several time slices. This problem can be reduced by using non-blocking communication, as described in

the context of SWEEP3D in Section 5.4.3 below.

SAGE is a medium-grained application and the non-blocking communications mitigate the perfor-

mance penalty of the global synchronization operation performed at the end of each compute step. The

slight performance improvement is obtained thanks to the negligible overhead of the non-blocking calls,

that only initialize a communication descriptor. We repeated the SAGE measurements with various cluster

sizes, and the results (shown in Figure 5.8) indicate that BCS-MPI scales similarly to Quadrics’ MPI for

this application. The performance of SWEEP3D is discussed in the next section.

69

4 9 16 25 36 49

Number of Processes

30

40

50

60

70

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI (Blocking)
BCS-MPI (Blocking)

4 9 16 25 36 49

Number of Processes

30

40

50

60

70

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI (Non-blocking)
BCS-MPI (Non-blocking)

(a) Blocking calls (b) Non-blocking calls

Figure 5.9: SWEEP3D Performance

5.4.3 Blocking vs. Non-blocking Communications

As stated in the previous section, bulk-synchronous applications with non-blocking or infrequent block-

ing communications run efficiently with BCS-MPI. However, fine-grained applications that use blocking

communications or applications that group blocking communications are expected to perform poorly with

BCS-MPI. The delays introduced by the blocking communications can considerably increase the applica-

tions’ run time. Two approaches can alleviate this problem. The simplest option is to schedule a different

parallel job whenever the application blocks for communication, thus making use of the CPU. This ad-

dresses the problem without requiring any code modification, but is not always practical due to memory

and performance considerations. Alternatively, we have empirically seen that in such cases it is often fea-

sible to transform the blocking communication operations into non-blocking ones, with a few simple code

modifications.

To illustrate the second technique, we look at the SWEEP3D application [53]. Figure 5.9(a) shows the

run time of SWEEP3D for both Quadrics MPI and BCS-MPI as a function of the numbers of processes.

The slowdown amounts to approximately
� � � in all configurations. Each process exchanges four messages

with its nearest neighbors on every compute step using blocking send/receive operations. This communi-

cation pattern combined with the relatively fine granularity incurs a high overhead. On every compute step,

the process blocks for 1.5 timeslices on average for every blocking operation. To eliminate this delay, we

replaced every matching pairs of MPI Send/MPI Recv with MPI Isend/MPI Irecv and added MPI Waitall

after the four calls. That involved changing less than fifty lines of source code and improved dramatically

the application performance, as shown in Figure 5.9(b). In this case, the overlapping of computation and

communication along with the minimal overhead of the MPI calls allow BCS-MPI to slightly outperform

Quadrics MPI.

70

6 Job Scheduling

6.1 Background

Job scheduling is arguably one of the least understood areas of parallel system software, and yet one that has

a profound effect on the usability and productivity of these systems. The rapid evolution in supercomputing

hardware and capabilities was not matched by a similar progression in production job schedulers [105]. In

fact, most of the widely-used job schedulers are based on batch scheduling methods, which date back to

the early supercomputers [28]. While these resource management systems and others incorporate some

modern features such as load-balancing, process migration and checkpointing [5], little attention has been

given so far to advances in job scheduling techniques outside academia. In particular, it has been shown

that various methods of coscheduling (running several globally-coordinated jobs, time-sharing the same

computation resources) can be used to increase overall system performance and utilization [31, 48]. Yet,

many supercomputing centers still do not use these techniques despite their potential benefits, due to various

reasons, including implementation difficulties, performance, and scalability issues.

The main goal of this dissertation is to demonstrate that through the use of modern interconnect features,

the design and implementation of advanced job scheduling techniques can be simplified immensely, while

still striving for high performance and scalability. In addition, by implementing and refining two novel

job scheduling techniques, FCS and BCS, we lay out the foundations for several important techniques

and innovations in parallel system software, such as dynamic monitoring of processes’ scheduling require-

ments, load balancing in homogeneous and heterogeneous environments, deterministic scheduling of user

and system activities and communication, and transparent fault tolerance. Another important contribution

of this work is the analysis of complex, dynamic workloads under varying offered loads and scheduling

algorithms. While this area of job scheduling research is still poorly understood, we offer several new

methodologies, metrics, and insights on the subject.

The complexity inherent to such parallel systems and job scheduling leads many studies of the field to

make simplifying assumptions and use various kinds of simulations. This work stresses the importance of

realistic experimentation in job scheduling studies to promote reliable, reproducible results. We therefore

implemented and refined several job scheduling algorithms on real clusters, using actual MPI applications.

71

We were thus able to evaluate issues such as scalability, performance, and responsiveness directly, without

having to make any assumptions on the myriad known and unknown system parameters. The dynamic

workloads did rquire a few assumptions however, since workloads and applications vary from site to site.

Another important aspect of parallel job scheduling that we chose to focus on is load imbalance. One

source of load imbalance is heterogeneous architectures, such as computational grids and networks of

workstations (NOWs), where different nodes can have different computation capabilities, different memory

hierarchy properties or even a different number of PEs per node. Another factor is application load im-

balance, that occurs when different parallel computation threads require different computation resources,

and take varying times to complete. These can occur either as a result of poor programming, or more

typically, by a data set that creates uneven loads on the different computation threads. Even when using

homogeneous architectures and well-balanced software, load imbalance might show up. This can happen

for instance when the compute nodes are not dedicated entirely to a single parallel computation, and may

be used for other programs as well. This uneven taxing of resources again creates a situation where some

of the parallel program processes run slower than others, and a load imbalance occurs.

Load imbalances have a marked detrimental effect on many parallel programs. Many HPC applications

behave in a bulk-synchronous parallel (BSP) model (see Section 3.3 and [33, 62, 115]). A load imbalance

can harm the performance of the parallel application because each computation thread requires a different

amount of time to complete, but the entire program must wait for the slowest thread before it can syn-

chronize. Since these computation/synchronization cycles are potentially executed many times throughout

the lifetime of the program, the cumulative effect on the application run time and the system resource

utilization can be quite high.

This chapter is dedicated to the comparative evaluation of several scheduling algorithms on a wide

spectrum of workload parameters, with an emphasis on actual implementation and applications. In most

experiments we use the following scheduling algorithms: first-come-first-serve (with or without backfill-

ing), gang scheduling, spin-block, flexible coscheduling and buffered coscheduling. In the next section, we

describe these algorithms and other relevant work in the field. The following sections describe and analyze

various aspects of job scheduling, including static workload performance and load-balancing capabilities,

dynamic workloads and scheduling metrics, and overlapping of system resources.

6.2 Related Work

Many previous studies have also proposed to increase parallel systems and applications performance by

using job scheduling techniques. Traditional job allocation and scheduling methods such as those employed

in PBS [51], NQS [64] and LSF [121] use space sharing, wherein every job receives a dedicated partition

of nodes. While this allocation is preferable from the application’s point of view, it often exposes various

performance problems that lead to wasted system resources. Furthermore, it reduces system responsiveness

72

since jobs often have to wait in queues before they can be allocated a dedicated partition.

To address the responsiveness problem, Ousterhout first suggested in [78] a method to share machine

resources over time as well as space (generally called coscheduling jobs). Perhaps the simplest approach to

time sharing is local scheduling, where each node’s operating system schedules processes as it sees fit, with

no attempt of global coordination whatsoever. This approach was shown to be very detrimental to parallel

application performance [22, 39]. Another approach, called Gang Scheduling (GS) partitions time into

slots, so that each job runs in one timeslot1, and thus receives the service of a dedicated virtual machine,

but without having to wait for all the previous jobs to terminate. This offers users similar advantages to

those of multiprogramming on a single machine – namely improved responsiveness, but also incurs higher

memory pressure and job turnaround time. The main problem with this approach is resource fragmentation,

as discussed in Section 6.5. Another limitation with most existing implementations of GS is that context-

switching between jobs can be both costly in overhead and non-scalable due to the requirement of a central

synchronization signal.

Some contemporary approaches to job scheduling try to avoid this limitation by eliminating the global

synchronization. All these approaches try to coschedule synchronizing processes without explicit coordina-

tion messages by taking scheduling decisions locally on every node. One approach, called Demand-Based

Coscheduling (DCS) [103, 104], tries to synchronize processes by giving an immediate priority boost to

any process for which an incoming message arrives. This causes a context-switch to the prioritized pro-

cess, which in many cases is a desired effect, (since its communication peer is also scheduled at this time

with a high probability), but can also cause fairness and overhead problems. Implicit Coscheduling (ICS)

[2] methods try to coschedule communication processes with a different approach, by using a spin-block

(SB) mechanism. Processes that perform blocking (synchronous) communication try to actively wait (spin)

for a given interval before blocking while waiting for the call to complete. Thus, processes tend to self-

synchronize and be coscheduled, completing their communication calls before the blocking time. In [76],

a comparative study presents an elaborate taxonomy and comparison of implicit coscheduling algorithms,

and also suggests some new schemes based on periodic rescheduling. These methods, called Periodic Boost

(PB), are based on boosting the priority of communicating processes on a periodic basis, thus eliminating

the need for an interrupt on communication events.

While all these methods can be effective in coscheduling regular applications, they have no special

provisions for irregular applications, such as load-imbalanced jobs or jobs requiring gang-scheduling due

to strict synchronization needs. Lee et al. suggested in [66] that a scheduler should gather meaningful

statistics about the running processes, and adapt the scheduling to the processes’ specifics requirements.

Based on this idea, we developed and implemented a first version of such a scheduler, called FCS [38].

FCS combines the advantages of global coordination with local scheduling decisions based on gathered

process statistics and was shown to perform well in a varied range of workloads. Another scheduling
1Some versions of GS allow jobs to run on more than one time slot, if it can still run all the jobs’ processes concurrently [22].

73

algorithm that is based on both global coordination and local decisions is Buffered Coscheduling [80].

Under this method, process communication is not executed immediately but rather buffered till the next

system heartbeat, when it can be scheduled with the peers. FCS was first implemented in the author’s M.Sc

work, and was later simplified and re-evaluated for this work. BCS was simulated in previous work [80, 81],

but never implemented on a real cluster before this work. Both strategies require some support from an

advanced interconnect to perform effectively, and are described in more detail below. More information on

other job scheduling methods can be found in [28].

6.2.1 Flexible Coscheduling

Flexible Coscheduling (FCS) is a coscheduling strategy proposed by Frachtenberg and Feitelson to address

issues of load imbalance and resource fragmentation [38]. FCS has undergone several iterations of refine-

ments and simplifications since, and was shown in [39, 40] to substantially increase the resource utilization

in a cluster in several load-imbalance scenarios. The main idea behind FCS is to dynamically detect and

compensate for load imbalances. Dynamic detection of load imbalances is performed by (1) monitoring

the communication behavior of applications, (2) defining metrics for their communication performance

that try to detect possible load imbalances, and (3) classification of the applications according to these met-

rics. Using this classification, FCS attempts to coschedule processes that would most benefit from it, while

scheduling other processes to increase overall system utilization and throughput. FCS works for optimizing

the global resources of a cluster: a specific application that suffers from load imbalances will not complete

faster with this scheduler compared to other schedulers.2 Instead, FCS prevents load-imbalanced jobs from

wasting too many system resources, and thus improving the overall system efficiency and responsiveness.

Process Classification

Application processes are categorized into one of three classes (Figure 6.1):

1. CS (coscheduling): These processes communicate often, and must be coscheduled (gang-scheduled)

across the machine to run effectively, due to their demanding synchronization requirements.

2. F (frustrated): These processes have enough synchronization requirements to be coscheduled, but

due to load imbalance, they often cannot make full use of their allotted CPU time.

3. DC (don’t-care): These processes rarely synchronize, and can be scheduled independently of each

other without penalizing the system’s utilization or the job’s performance. For example, a job using

a coarse-grained workpile model would be categorized as DC.

We can also define another class, RE (rate-equivalent), for jobs that have little synchronization, but require a

similar amount of CPU time for all their processes. However, detection of RE processes cannot be made in
2Obviously, any given application receivess the best service when running by itself, as when running in batch mode.

74

RECS DC F

Granularity

Coarse
grainFine

gr
ain

Coscheduling

IneffectiveEffe
cti

ve

Req
uir

es

Load balancing

Oblivious

Figure 6.1: Decision tree for FCS process classification

run-time with local information only, so they are classified as DC instead, due to their low synchronization

needs.

Figure 6.1 shows the decision tree for process classification. Each process is evaluated at the end of

its timeslice. When a process communicates at relatively coarse granularity, it is classified DC. Otherwise,

the process is classified according to how effectively it communicates when coscheduled: if effective, it

is a CS process. Otherwise, some load imbalance prevents the process from communicating effectively,

and it is considered F. Classification is based on dynamic measurement of each process’ communication

granularity and effectiveness. To estimate the granularity and effectiveness of a process’s communication

operations, we modified the MPI library to take time measurements for blocking communication calls, and

expose these to the NM3. More details on the measurement and classification mechanisms can be found in

[39].

FCS Scheduling

The principles behind scheduling in FCS are as follows:

� CS processes should be coscheduled and should not be preempted.

� F processes should be coscheduled but can be preempted when synchronization is not effective.

� DC processes impose no restrictions on scheduling.

Another difference between a CS process and a F/DC process is that the former always block on syn-

chronous communication, while the latter performs spin-blocking. The reasoning for this is that CS pro-

cesses are known to be coscheduled, and cannot benefit from blocking, whereas other processes can yield

the CPU to other needing processes when they are waiting for their peers to communicate.
3We use some of QsNet non-intrusive mechanisms for this, to avoid interrupting the CPU.

75

The infrastructure used to implement this scheduling algorithm is based on the implementation of

STORM’s gang scheduler. The machine manager (MM) packs the jobs into an Ousterhout matrix. It

periodically sends multi-context-switch messages to the node managers (NM) instructing them to switch

from one slot to another. A crucial characteristic is that the node managers do not have to comply: they are

free to overrule the MM’s directives based on their local measurements and classifications. On each global

context switch they determine whether to run the next process exclusively (if it is CS), concurrently with

other DC processes but prioritized (if it is F), or non-prioritized (for DC processes). In practice, there are

several technical and implementation details that need to be accounted for, and can be found in [39].

6.2.2 Buffered Coscheduling

BCS is also conceptually composed of two parts: communication handling and scheduling. The communi-

cation buffering, scheduling, and execution mechanisms are described in Section 5.3. The important thing

to keep in mind is that any blocking communication prompts an immediate blocking of the communicating

process, since the actual data transfer will not occur until the next micro-timeslice. This affects the BCS

job scheduling, causing an immediate context-switch for every blocking communication call. This might

be detrimental to highly-synchronous applications’ performance, due to the context-switch overhead, or

to wasted cycles if only a single application is running. On the other hand, non-blocking applications

do not necessarily suffer from BCS when running alone (see Section 5.4.2). Furthermore, BCS offers an

opportunity for overlapping of communication and computation between different applications, since the

communication is handled entirely by the NIC, irrespective of which application is currently running.

Job scheduling in BCS, like in FCS, is based on global (gang) scheduling, with an autonomy for the

NM to make local scheduling decisions. In BCS, the MM issues both global context-switch signals like

in GS or FCS (in the order of magnitude of tens of �
�
), and micro-timeslice strobes (every few hundreds

of
 �), that signal the start of the next communication phase. The NM obeys the global context-switch

signals by switching to the appropriate task on all nodes. Whenever a process blocks for a synchronous

communication call, the NM will perform an immediate local context switch to the next runnable (non-

blocked) process, in a round-robin fashion. Thus, jobs receive a relatively fair share of the PEs and an

opportunity to coschedule asynchronous calls while they are not issuing blocking calls, but do not spend any

PE cycles waiting for communication to complete. In particular, this allows BCS to adjust very efficiently

to load-imbalances, if sufficient applications with non-blocking calls exist to use as filler for the gaps

created by load imbalance.

76

6.3 Static Workload Evaluation

6.3.1 Methodology

Before we proceed to complex and realistic scenarios, it can be productive to compare the basic properties

of each scheduler with simple scenarios that are easy to control. To this end we first evaluate and compare

different job scheduling algorithms with static workloads (i.e. with no dynamic job arrivals), using both

synthetic benchmarks, where we can control every aspect of the workload, and simple workloads of real ap-

plications that demonstrate issues of memory pressure, paging and context switch penalty. For the synthetic

benchmark, we use the simple BSP program described in Section 1.4, where the computation granularity,

type and length of communication, and load imbalance can be easily set in advance. For the application

tests, we use the ASCI-representative programs, SAGE and SWEEP3D, also described in Section 1.4.

We use two metrics to compare the performance of different scheduling algorithms [33] :

� Turnaround time is the total running time (in seconds) of the entire workload.

� Average response time is the mean time it takes a job to complete running from the time of submittal

(which is not necessarily the actual execution time).

Turnaround time is considered a system-centric metric, since it describes the reciprocal of the system’s

throughput. Response time on the other hand is more interesting to users, that would like to minimize

the time they wait for their individual jobs to complete. In practice, it is difficult to discuss these metrics

in isolation, since with real dynamic workloads, various factors and feedback effects create interactions

between the metrics [33, 40]. However, the four scenarios we describe in the next section are simple

enough to allow a comprehensive understanding of the factors involved. In fact, it is also easy to calculate

for each scenario what the optimal turnaround and response time values would be under an ideal scheduler.

We believe that this set of synthetic tests covers a wide spectrum of basic workload combinations.

6.3.2 Synthetic benchmarks

The basic “building block” application for this set of experiments is the synthetic BSP program described

in Section 1.4. We run this application on four processors (two nodes) of the Accelerando cluster (��
 � �

timeslice), with medium-fine granularity of
�
�
�

and approximately ��� � of total execution time when run

in isolation (Fig. 6.2). However, we do vary the amount of work performed in each loop for some processes

to create imbalanced scenarios. Each experiment was repeated several times and the results were averaged

(in practice, the deviation of results was limited to less than �
�

). The communication pattern used was a

nearest-neighbor ring pattern with synchronous (blocking) communication calls, which represents a worst-

case scenario for BCS. Some variations to this pattern and experimental setup are discussed in Section

77

4 processes

job 1

ru
n

tim
e

pe
r

ite
ra

tio
n

communication

phase

Figure 6.2: One iteration of the “building-block” job

4 processes

job 1

ru
n

tim
e

pe
r

ite
ra

tio
n

job 2

Figure 6.3: Compute time for one iteration of two basic jobs

Algorithm Job 1 Job 2 Turnaround Mean Response

FCFS 60.04 120.12 120.12 90.08
GS 120.08 120.00 120.08 120.04
SB 124.09 124.1 124.09 124.09

FCS 120.35 120.35 120.35 120.35
BCS 131.70 131.72 131.72 131.71

Table 6.1: Balanced workload performance comparison

6.3.2.5. An exploration of the parameter space for different choices of granularity and “noise” value is

presented in [39].

6.3.2.1 Balanced Jobs

Many HPC applications such as SWEEP3D are latency bound, in the sense that they synchronize often

with short messages [53]. These synchronous applications require that all their processes be coscheduled

to communicate effectively: if another application or system dæmon interrupts their synchronization, large

skews can develop that significantly hamper their performance [88].

In the first scenario, we emulate such situations by running two identical, medium-grained jobs concur-

rently. Figure 6.3 depicts the run time per iteration, which is balanced and equal for both jobs4. Table 6.1

presents the results for running this workload, giving the termination time in seconds for each job and for

the complete set. It also shows the total turnaround and mean response times, all in seconds.
4In this and the following figures, only the compute time per iteration is shown, omitting the communication phase.

78

4 processes

ru
n

tim
e job 1

pe
r

ite
ra

tio
n

job 2

Figure 6.4: Two load-imbalanced jobs

Since synchronous balanced jobs require a dedicated environment to proceed effectively, FCFS schedul-

ing and GS offer the best performance. SB scheduling shows some slowdown when compared to the others,

due to the lack of global coordination (SB actually performs much worse in relative terms as the granularity

becomes finer). FCS exhibits performance comparable to that of GS, since all processes are classified as

CS, and are therefore gang-scheduled. Still, total turnaround time is slightly higher than that of GS, due

to the added overhead of process classification. BCS displays a � ��� � slowdown in the turnaround time

since blocking communication calls have an average latency of ���
 micro-timeslices (
� ��
�
 � here), which

cannot always be filled by the other process.

When considering response time, batch scheduling is the only algorithm that has a significant advantage

over the other algorithms, since job 1, having run in isolation, terminates quickly and lowers the FCFS

average.

6.3.2.2 Load-Imbalanced Jobs

This scenario represents a simple load imbalance case with two complementing jobs, as depicted Figure

6.4. Processes 1 and 2 of the first job compute twice as much per iteration as the other two processes,

while the situation is reversed for the 2nd job 5. The faster processes compute the same amount as in the

previous scenario. In a sense, these workload represents the exact opposite of the previous one, where jobs

needed a dedicated partition to communicate effectively. In contrast, these unbalanced jobs are guaranteed

to waste compute resources when running in isolation. Table 6.2 shows the performance of each scheduling

algorithm.

It can be seen from the data that both FCFS and GS take almost twice as much time to run each job

(compared with the previous scenario), whereas the total amount of computation per job is only increased

by
�� � . SB does a much better job at load-balancing, since the short polling interval allows the algorithm

to yield the CPU when processes are not coscheduled, giving the other job a chance to complete its com-
5In reality, the speed ratio is slightly over 2:1, to bring the total runtime of each job to ������� . The gap is produced by the communi-

cation time, which is unchanged, requiring additional computation to increase the run time.

79

Algorithm Job 1 Job 2 Turnaround Mean Response

FCFS 111.89 231.91 239.91 179.90
GS 240.58 240.60 240.60 240.59
SB 183.34 183.43 183.43 183.38

FCS 183.49 183.62 183.62 183.56
BCS 193.69 193.84 193.84 193.77

Table 6.2: Two load-imbalanced jobs performance comparison

job 3

job 2

job 1

4 processes

ru
n

tim
e

pe
r

ite
ra

tio
n

job 4

Figure 6.5: Complementing jobs

munication and wasting little CPU time. FCS is also successful in exploiting these computational holes.

After a brief interval, it classifies the first job’s processes as DC, DC, F, and F respectively, and the second

job’s as F, F, DC, and DC. The resulting scheduling is effectively the same as SB’s, with the exception that

F processes are prioritized when their assigned slot is the active one. The total turnaround time is similar

to SB’s, and represents near-optimum resource utilization: both jobs complete after running for ���
�� � of

the time it took the previous scenario, which corresponds to the new amount of work. BCS is again paying

a price for the blocking nature of the communication patter, but still remains within � � � � of the optimal

response time and turnaround.

The response time metric again shows some preference to batch scheduling, although FCS and SB are

not far behind, due to their lower turnaround time. GS exhibits the same turnaround time as FCFS, but

since all the process terminate concurrently, the mean response time is actually higher.

6.3.2.3 Complementing Jobs

The third scenario exposes the ability of various algorithms to pack jobs efficiently in an extremely im-

balanced workload. It consists of one four-process job and three two-process non-communicating jobs

running on one node (Fig. 6.5). All the jobs running on PEs 3 and 4 compute for about ��� � , as in the

previous scenarios, but processes 1 and 2 of job 4 compute four times as much per iteration. An optimal

scheduler should pack all these jobs so that the total turnaround time does not exceed that of the first job

when run in isolation (assuming zero context-switch overhead). Table 6.3 again shows the run times for

80

Algorithm Job 1 Job 2 Job 3 Job 4 Turnaround Mean Response

FCFS 60.50 120.96 181.50 420.67 420.67 195.91
GS 241.19 241.14 241.26 423.30 423.30 286.73
SB 232.61 232.23 232.33 271.09 271.09 242.07

FCS 245.50 245.40 245.40 250.15 250.15 246.61
BCS 223.61 223.72 223.55 343.39 343.39 253.57

PBCS 240.32 240.53 240.30 270.17 270.17 247.83

Table 6.3: Complementing jobs performance comparison

each algorithm.

Once more, FCFS and GS exhibit similar turnaround time — the combined run time of all the jobs run

in isolation. The imbalance is large enough to allow SB to load-balance the jobs relatively well, resulting

in a lower turnaround time, but since it lacks a detailed knowledge of the processes requirements, it can

only go so far — Job 4 still shows a significant slowdown (� � � �) when compared to FCFS. With FCS

the situation is even better. After a short while, the scheduler classifies all the processes as DC, except for

processes 3 and 4 of job 4 which are classified as F. As such, they receive priority in their time slot, and

thus the total runtime of job 1 suffers a slowdown of only � � �
from the interference of the other jobs,

which pack neatly into the other timeslices. This reduces the turnaround of this workload to within � � �

of the optimally packed value, partly due to the initial classification delay.

While BCS exhibits some degree of load balancing, it fares much worse than FCS and SB. Jobs 1–3

benefit from the many computational “holes” provides by job 4’s frequent communication. On the other

hand, since they do not communicate, they can make full use of their own slot. The result is a significantly

reduced run time for jobs 1–3, at the cost of job 4’s run time and the overall turnaround time. Since

prioritizing job 4 proved so useful with FCS, we have implemented a variant of BCS, called PBCS, where a

higher priority can be assigned to a job, allowing it to run whenever it is ready. As Table 6.3 shows, PBCS’s

performance is more like that of FCS, losing only �
�

in the turnaround time to blocking communication

calls that could not be overlapped. Still, the prioritizing must be specified explicitly by the user, whereas

FCS automatically detects and prioritizes F processes.

The mean response time metric shows a clear preference only to FCFS in this scenario, due to the short

jobs in the first part of the workload. FCFS’ mean response time can become much worse if the job order

were reversed – around
��� � � . Time sharing algorithms however are not as sensitive to job order, which

becomes an advantage when the order is not known in advance.

6.3.2.4 Mixed Jobs

The last synthetic scenario is designed to expose the interaction between synchronous balanced and im-

balanced jobs in a mixed workload. This situation might occur whenever a machine is running more than

one type of application, or with different data sets that have different load balancing properties. Even when

81

ru
n

tim
e job 2

pe
r

ite
ra

tio
n

job 3

4 processes

job 1

Figure 6.6: Mixed jobs

Algorithm Job 1 Job 2 Job 3 Turnaround Mean Response

FCFS 60.01 179.92 299.12 299.12 179.68
GS 180.11 298.75 298.72 298.75 259.19
SB 191.14 277.31 277.11 277.31 248.52

FCS 150.59 250.32 250.18 250.32 217.03
BCS 186.12 270.97 270.94 270.97 242.67

PBCS 104.22 275.65 275.71 275.71 218.53

Table 6.4: Mixed jobs performance comparison

the workload is composed of only balanced applications, this situation can occur whenever job arrivals and

sizes are dynamic. For example, in a time sharing system, different nodes might run different numbers of

jobs, thus creating a dynamic imbalance.

We encapsulate some of this complexity in a set of three jobs. The first job is the basic, load-balanced

jobs used in Section 6.1. The last two are complementary imbalanced, and identical to jobs 1 and 2 of the

second scenario (Section 6.2). Table 6.4 shows the run time results for the four algorithms.

Once more, batch and gang scheduling perform similarly, with an advantage in response time to FCFS.

SB scheduling’s major weakness is exposed in this scenario: since it gives an equal treatment to all pro-

cesses, fine-grained jobs suffer from the interruptions incurred by other jobs. This is clearly shown in the

performance of job 1 under SB, which is worse than with any other algorithm. In contrast, FCS, which is

another loosely-coupled algorithm, identifies the special requirements of this job and classifies it as CS. As

such, it receives dedicated time slots that allow it to communicate effectively. In fact, since the CS job also

receives some CPU time in the DC time slots, it actually has a small advantage over the other two jobs,

thus completing before the expected time (as in GS). The overall result is a decrease in turnaround time

and mean response time when compared to the other algorithms.

BCS suffers from an inability to fill the computational holes efficiently in this scenario: job 1 serves as

82

Workload
Balanced Imbalanced Complementing Mixed

T
ur

na
ro

un
d

(s
ec

)

0

50

100

150

200

250

300

350

400

450

FCFS GS SB FCS (P)BCS Optimal

Workload
Balanced Imbalanced Complementing Mixed

R
es

po
ns

e
tim

e
(s

ec
)

0

50

100

150

200

250

300

FCFS GS SB FCS (P)BCS Optimal

(a) Turnaround (b) Mean response time

Figure 6.7: Comparative performance across scheduling algorithms and workloads

a poor filler on the one hand (due to its coscheduling requirement), while on the other hand, it offers little

opportunity for the two other jobs to fill holes. However, prioritizing job 1 with PBCS shows a marked

improvement, since it affords the job many more opportunities at coscheduling. While job 1 receives more

than its fair share of machine resources, its quick termination actually assists the other two jobs, when

compared to GS. In this sense, FCS shows more fairness and balancing in allocation of resources.

6.3.2.5 Discussion and Variations

Figure 6.7(a) summarizes the turnaround time performance of the different algorithms in all four scenarios

(PBCS is used instead of BCS for the last two workloads). An additional bar for each cluster shows the

performance that would be obtained by an optimal scheduler, derived analytically. Note that even overhead

resulting from context switches is not factored into the optimal figure. A clear distinction can be seen

between the rigid algorithms (FCFS, GS) and the dynamic ones for all but the balanced scenario. In

particular, FCS’s performance is always near-optimal, attesting to its ability to adapt to different balancing

requirements.

Similarly, Figure 6.7(b) compares the average response time. In the tested scenarios, response time

metric clearly favors FCFS, due to ordering shorter jobs first in the workload. In fact, using a different

ordering would raise the FCFS bar to levels at or above FCS’s response time, while no other bar would

be affected. This is an indicator of FCFS’ sensitivity to job arrival order (which is typically not tightly

controlled). Both FCS and BCS display good response time performance, which is near-optimal when the

jobs are re-ordered.

83

Workload Job 1 Job 2 Job 3 Job 4 Turnaround Mean Response

Balanced 122.64 122.65 - - 122.65 122.65
Imbalanced 188.92 188.60 - - 188.92 188.76
Complementing 247.00 246.95 246.96 252.00 252.00 248.23
Mixed 156.29 252.82 252.76 - 252.82 220.62

Table 6.5: BCS performance with asynchronous communication

To further understand the sensitivity of different algorithms to the communication mechanism used,

we repeated the experiments with two alternate mechanisms: non-blocking point-to-point followed by

an MPI Waitall in the next iteration, and barrier synchronization. As it turns out, the results for barrier

synchronization are similar across the board, varying only by a few percent from the blocking point-to-point

counterparts. Asynchronous communication on the other hand shows a slight performance improvement

for all the algorithms (and the applications, since the effective latency is reduced, as explained in Section

5.4.3). The exception is with BCS, which shows a marked performance improvement in all the workloads.

As can be seen in Table 6.5, BCS’s performance with non-blocking communication is quite similar to that

of FCS, with similar load-balancing advantages. This is due to the fact that like FCS, BCS has the ability

to coschedule jobs on their slot, while filling computational holes (unlike GS and SB).

We have repeated some of these experiments on Crescendo, to evaluate the effect of a different archi-

tecture [39]. Crescendo represents a much more balanced (albeit slower) architecture than Accelerando,

since its processors are slower but its network is faster, due to a better PCI bus implementation. Because

of this, the system has more opportunities to overlap communication and computation (which is done au-

tomatically by the QsNet NIC, even to some small extent with blocking calls [41]). This is especially

apparent with the algorithms that are not strictly coordinated, such as SB and FCS. For example, in the

most extreme case, the complementing jobs scenario, they obtain a total turnaround time of ��� ��� � � and

� � ��� � � respectively, which is approximately
 � better than on Accelerando.

6.3.3 MPI Applications

In this section we evaluate the same scheduling algorithms with simple static workloads composed of two

real applications, SAGE and SWEEP3D (see 1.4). These applications are representative of the applica-

tions that consume most of the computation cycles on the ASCI machines, including ASCI Q. We ran

SWEEP3D with � � � 2 ����� cells per PE taking up � � � ���
of main memory per process (considered re-

alistic for ASCI workloads). In this configuration, SWEEP3D exhibits a considerably fine computation

granularity of ��� �
�

with very little variability or load imbalance. For SAGE, we used the realistic input

deck “timing h.input” with
���� 2 ����� cells per PE, taking up approximately
 ��� ���
of main memory per

process. SAGE’s internal work distribution however diverges over time, resulting in varying computation

granularities for different processes and times, mostly residing in the range � � � � � � .

84

Algorithm SAGE / SAGE SWEEP3D / SWEEP3D SAGE / SWEEP3D

FCFS 224 / 448 217 / 434 223 / 444
GS 527 / 527 445 / 445 446 / 447
SB 644 / 644 593 / 594 369 / 450

FCS 553 / 554 451 / 451 473 / 472
BCS 632 / 633 563 / 563 301 / 541

Table 6.6: Completion time (sec) of ASCI applications with different algorithms and workloads

For both applications we used 49 PEs (the largest cubic configuration on Accelerando, required an

optimal data distribution for SWEEP3D), and a timeslice of ��
�� � to minimize the penalties of a context

switch (this timeslice can still be considered very responsive in human terms).

We use three simple workloads: one composed of two copies of SAGE, one with two copies of

SWEEP3D, and the last with a copy of each. Table 6.6 reports the completion time of each job for each of

the algorithms and workloads.

These fine-grained applications prove to be a worst-case scenario for multiprogramming schedulers,

and in particular the dynamic ones. The very fine granularity combined with the memory pressure created

by these programs favors dedicated or partly-dedicated (GS with a coarser time quantum) allocation of

resources. In particular, BCS and SB show considerably poor performance, the former because of the high

frequency of blocking communication calls, and the latter due to the lack of coscheduling, which is vital for

fine-grained synchronization [22]. It is interesting to note that both algorithms favor SAGE in the mixed

workload, presumably due to its coarser granularity. FCS performs somewhat similar to GS in the 2nd

workload, but does not fare as well with the other two, when SAGE is involved: that is due to the fact that

some of SAGE’s processes are classified as
�

, so coscheduling of the entire job is not always guaranteed.

These HPC applications are an example of highly optimized and even self-balancing programs that

have been tuned to maximize resource utilization, leaving little room for a scheduler to improve. However,

in many real workloads, much of the load imbalance and resource waste is not caused so much by internal

application inefficiency but rather by the dynamic nature of the workload, which creates many “allocation

holes”. The next section analyzes the ability of different schedulers to deal with more realistic workloads,

while in Section 6.5 we analyze what additional improvement in resource utilization can be extracted even

from such applications.

6.4 Dynamic Workload Evaluation

6.4.1 Background and Methodology

While the static workloads presented in the previous section serve to understand the basic properties of dif-

ferent scheduling algorithms, they are not very representative of real-world usage of supercomputers. Most

85

computing centers have a job queue (sometimes, multiple job queues) to which jobs are added dynamically,

and these jobs can have almost arbitrary time and space requirements. In order to provide a more realistic

comparative evaluation of different scheduling algorithms, dynamic workloads must be addressed.

One important aspect of real workloads is that they are dynamic: jobs arrive at unpredictable times, and

run for (largely) unpredictable times. The set of active jobs therefore changes with time. Moreover, the

number of active jobs also changes with time: at times the system may be empty, while at others many jobs

are waiting to receive service. The overall performance results are an average of the results obtained by

the different jobs, which were actually obtained under different load conditions. These results also reflect

various interactions among the jobs. Such interactions include explicit ones, as jobs compete for resources,

and implicit ones, as jobs cause fragmentation that affects subsequent jobs. The degree to which such

interactions occur depends on the dynamics of the workload: which jobs come after each other, how long

they overlap, etc. It is therefore practically impossible to evaluate the effect of such interactions with static

workloads in which a given set of jobs are executed at the same time.

Many of the supercomputer sites used batch scheduling variants. Recent research has revisited the

comparison of gang scheduling with other schemes, and has led to new observations. One is that gang

scheduling may be limited due to memory constraints, and therefore its performance is actually lower

than what was predicted by evaluations that assumed that memory was not a limiting factor. The reason

that memory is a problem is the desire to avoid paging, as it may cause some processes within parallel

jobs to become much slower than other processes, consequently slowing down the whole application. The

typical solution is to allow only a limited number of jobs into the system, effectively reducing the level

of multiprogramming [7, 120]. This hurts performance metrics such as the average response time because

jobs may have to wait a long time to run.

Another observation is that alternative scheduling schemes, such as backfilling [68] may provide similar

performance. Backfilling is an optimization that improves the performance of pure space slicing by using

small jobs from the end of the queue to fill in holes in the schedule. To do so, it requires users to provide

estimates of job runtimes. Thus it operates in a more favorable setting than GS, that assumes no such

information. Moreover, moving short jobs forward achieves an effect similar to the theoretical “shortest

job first” algorithm, which is known to be optimal in terms of average response time.

Our goal in this section is to improve our understanding of these issues, by performing an emulation-

based evaluation of several job scheduling schemes. To do so, we need also to find good values for several

parameters parameters, namely the MPL and the length of the time slicing quantum. As these parameters

are intimately related to the dynamics of the workload, the evaluation is done using a dynamic workload

model.

In this section, we evaluate the following scheduling schemes: FCFS, GS, FCS, SB, Backfilling as in

EASY, and combinations of EASY with other schemes. The first four algorithms make use of a queue

for jobs that arrive and cannot be immediately allocated to processors. The allocation of jobs from the

86

queue can be handled with many heuristics, such as first-come-first-serve, shortest-job-first, backfilling,

and several others. We chose to implement and use EASY backfilling [68], where jobs are allowed to move

forward in the queue if they do not delay the first queued job. Zhang et al. studied these issues in [120]

and found that combining backfilling with gang-scheduling can reduce the average job slowdown when the

MPL is bounded (our experiments described below agree with these results). They also point out that for

coscheduling algorithms such as GS, there is no exact way of predicting when jobs will terminate (or start),

because the effective MPL varies with load. To estimate these times, we use the method they recommend,

which is to multiply the original run time estimate by the maximum MPL.

BCS was excluded from this evaluation due to a bug in Elanlib that prevented running BCS with a large

number of jobs6. All the experiments described below were run using 32 processors on the Crescendo

cluster (see Table 1.1).

Workload

The results of performance evaluation studies may depend not only on the system design but also on the

workload that it is processing [29]. It is therefore very important to use representative workloads that have

the same characteristics as workloads that the system may encounter in production use.

The two common ways to evaluate a system under a dynamic workload are to either use a trace from

a real system, or to use a dynamic workload model. While traces have the benefit of reflecting the real

workload on a specific production system, they also risk not being representative of the workload on other

systems. We therefore use a workload model proposed by Lublin [70], which is based on invariants found

in traces from three different sites, and which has been shown to be representative of other sites as well

[111]. This also has the advantage that it can be tailored for different environments, e.g. systems with

different numbers of processors.

While the workload model generates jobs with different arrival times, sizes, and runtimes, it does not

generate user estimates of runtimes. Such estimates are needed for EASY backfilling. Instead of using the

real runtime as an estimate, we used loose estimates that are up to 5 times longer. This is based on results

from [75], which show that overestimation commonly occurs in practice and is beneficial for overall system

performance.

Using a workload model, one can generate a workload of any desired size. However, large workloads

will take a long time to run. We therefore make do with a medium-sized workload of 1000 jobs, that arrive

over a period of about 8 days. The job arrivals are bursty, matching observations from real workloads, and

most jobs sizes tend to be small (with the median here at just under 4 PEs), and biased toward powers of

two. Some statistical properties of the workload can be found in [40].

To enable multiple measurements under different conditions, we reduce time by a factor of 100. This

means that both runtimes and inter-arrival times are divided by a factor of 100, and the 8 days can be
6This problem is expected to be fixed in a future release of Elanlib.

87

emulated in about 2 hours. Using the raw workload data, this leads to a very high load of about
� � � of

the system capacity. To evaluate lower loads we divide the execution times by another factor, to reduce the

jobs’ run time and thus reduce the load.

Another simplifying assumption was made regarding the application to run. Different sites use a wide

spectrum of applications, with different scalability, communication, and memory properties. Instead of

trying to model a selection of applications, we use a more general approach. Since a large part of HPC

software can be modeled using the BSP model, we chose to use a synthetic test application based on this

model, where it is easy to control important parameters, such as execution time, computation granularity

and pattern, and so forth. We use the same synthetic application from the previous section, which consists

of a loop that computes for some time, and then exchanges information with its nearest neighbors in a

ring pattern. The amount of time it spends computing in each loop (the computation granularity) is chosen

randomly with equal probability from one of three values appropriate for Crescendo: fine-grained (
 � �),
medium-grained (
���� �), and coarse-grained (
���� � �).

Metrics

STORM produces log files of each run, containing detailed information on each job (e.g. its arrival, start,

and completion times, as well as algorithm-specific information). A set of scripts is used to analyze these

log files and calculate various metrics. we focus on average response time (defined as the difference

between the completion and arrival times) and average bounded slowdown. The bounded slowdown of

a job is defined in [34], and we modified it to make it suitable for time-sharing environments by using:

� ��� ��� � � � � � � � � � �)�� ���������	��
�
����� ����� ��� 2 ���
Where:

�
� 7

is the time the job spends in the queue.

�
� �

is the time the job spends running.

�
��0

is the time the job spends running in dedicated (batch) mode.

��� is the ”short-job” bound parameter. We use a value of 10 seconds of real time (0.1 sec emulated).

In some cases, we also divide the jobs into two halves: “short” jobs, defined as the 500 jobs with the

shortest execution time, and “long” jobs — the complementing group. For this classification, we always

use the execution time as measured with FCFS (batch) scheduling, so that the job groups remain the same

even when job execution times change with different schedulers.

6.4.2 Effect of Multiprogramming level

The premise behind placing a limit on the MPL is that scheduling algorithms should not dispatch an un-

bounded number of jobs concurrently. One obvious reason for this is to avoid exhausting the physical

88

0

50

100

150

200

250

1 2 3 4 5 6

R
es

po
ns

e
tim

e
(s

ec
)

MPL

1st half mean
2nd half mean
Overall mean

Overall median

0

200

400

600

800

1000

1 2 3 4 5 6

B
ou

nd
ed

 s
lo

w
do

w
n

MPL

1st half mean
2nd half mean
Overall mean

Overall median

(a) Response time with backfilling (b) Bounded slowdown with backfilling

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6

R
es

po
ns

e
tim

e
(s

ec
)

MPL

1st half mean
2nd half mean
Overall mean

Overall median

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

B
ou

nd
ed

 s
lo

w
do

w
n

MPL

1st half mean
2nd half mean
Overall mean

Overall median

(c) Response time, no backfilling (d) Bounded slowdown, no backfilling

Figure 6.8: Effect of MPL with dynamic workload

memory of nodes. We define the MPL to be the maximum allowable over-subscription of processors.

Naturally, the MPL for FCFS is always one, whereas for coscheduling algorithms it can be higher.

We set out to test the effect of the MPL on GS, with two goals in mind: (1) obtain a better understanding

on how a limited multiprogramming level affects serving of dynamic workloads, and (2) find a good choice

of an MPL value for the other sets of experiments. In practice, the question of how the MPL affects

scheduling is sometimes moot, since often applications require a sizable amount of physical memory, which

limits the amount of jobs that can run concurrently in a node without swapping. While some applications

are not as demanding, or can be “stretched” to use a smaller memory footprint, we do accept the existence

of a memory wall. Moreira et al. showed in [74] that an MPL of 5 provides in practice similar performance

to that of an infinite MPL, so we put the bound on the maximum value the MPL can reach at 6.

For this section, we use the workload file factored to an average offered load of � � � � , chosen so

that it would stress the system enough to bring out the difference between different MPL values, without

saturating it. GS was chosen due its relative popularity and its simplicity, being the most basic coscheduling

method.

89

Figure 6.8(a) shows the effect of the MPL on response time. The average response time decreases

somewhat when changing from batch scheduling (MPL 1) to coscheduling (MPL 2 or more), and then

stays at about the same level. This improvement corresponds to an enhanced ability of the scheduler to

keep less jobs waiting in the queue. Having more available slots, the scheduler can dispatch more jobs

from the queue, which is particularly significant for short jobs: These can start running soon after their

arrival time, complete relatively quickly, and clear the system. To confirm this claim, observe that the

average response time for the shorter 500 jobs indeed decreases for higher MPLs, while that of the longer

500 jobs increases at a similar rate. Furthermore, the median response time (which is dominated by the

shorter jobs), decreases monotonically. 7

This effect becomes more pronounced when looking at the bounded slowdown (Fig. 6.8(b)). We can

clearly see that the average slowdown shows a consistent and significant decrease as the MPL increases.

This is especially pronounced for the shorter 500 jobs, that show a marked improvement in slowdown,

especially when changing from MPL 1 to MPL 2.

Still, the improvement of these metrics as the MPL increases might seem relatively insignificant com-

pared to our expectations and previous results. To better understand why this might be the case, we repeated

these measurements, but with backfilling disabled. Figures 6.8(c) and 6.8(d) show the results of these ex-

periments. Here we can observe a sharp improvement in both metrics when moving from batch to GS, and

a steady improvement after that. The magnitude of the improvement is markedly higher than that of the

previous set. This might be explained by the fact that when backfilling is used, we implicitly include some

knowledge of the future, since we have estimates for job run times. In contrast, GS assumes no such knowl-

edge and packs jobs solely by size. Our results indicate that some knowledge of the future (job estimates)

and consequently, their use in scheduling decisions as employed by backfilling, renders the advantages of

a higher MPL less pronounced. These results also agree with the simulated evaluations in [120].

Having the best overall performance, we use an MPL of 6 in the other sets of experiments, combined

with backfilling.

6.4.3 Effect of Time Quantum

Another important factor that can have an effect on a scheduling system’s performance and responsiveness

is the time quantum. In Section 4.3.3.1 it was shown that STORM can effectively handle very small time

quanta, in the order of magnitude of a few �
�
, for simple static workloads. This is not necessarily the

case for a complex dynamic workload, and a relatively high MPL value, serving to increase the load on the

system (more pending communication buffers, cache pressure, etc.).

For this set of experiments, we use again the same workload file with 1000 jobs and an average offered

load of � � � � . We ran the scheduler with different time quantum values, ranging from �
�

down to
���� � .
7Note that the mean response time of the ’short’ half of the jobs is actually higher than the median response time of all 1000 jobs, a

results which might seem counterintuitive. However the jobs are classified to either the short or long group based on their FCFS
execution time, and obviously some of the so-called ’short’ jobs actually have response times much above the median in GS.

90

Crescendo (Pentium III)

Timeslice [ms]
50 100 300 500 1000 2000

R
es

p
tim

e
[s

]

0.3

1

3

10

30

100

300

1000

Accelerando (Itanium II)

Timeslice [ms]
10 50 100 500 1000 2000

R
es

p
tim

e
[s

]

0.3

1

3

10

30

100

300

1000

Figure 6.9: Response time distribution as a function of time quantum (log scale)

Since the overhead caused by short time slices is largely affected by the specific architecture, we were also

interested in repeating these experiments on a different architecture. To that end, we also ran the same

experiment on Accelerando.

Fig. 6.9 shows the distribution of response times with different time quanta, for both architectures.

Each bar shows the median response time (central horizontal divider), the ��
 � and ��
 � percentiles (top

and bottom edges of box), and the
 � and
�
 � percentiles (whiskers extending up and down). The
 �

rank is defined by short jobs, and monotonically decreases with shorter time quanta, which confirms our

expectations. The
�
 � rank represents all but the longest jobs, and does not change much over the quanta

range, except for the
�� � � quantum on Crescendo, where response times for most jobs increase slightly,

presumably due to the overhead associated with frequent context switching. The different effect of the

quantum on the
 � and
�
 � ranks suggests that short jobs are much more sensitive to changes in the time

quantum than the rest of the jobs. The median reaches a minimum value at a time quantum of � ����� � �

on Crescendo and �
���� � on Accelerando. Running with shorter time quantum on Crescendo yields

unreliable results, with degraded performance.

Fig. 6.10 shows the distribution of slowdown for the same time quanta values. The interpretation of this

figure is reversed, since the
 � mark now represents mostly very long jobs (that have a low wait time to

run time ratio, and thus a low slowdown value). On the other end, the
�
 � mark shows the high sensitivity

of the slowdown metric to changes in the wait and run times of short jobs. Slowdown also seems to have

a minimal median value at � ����� � � on Crescendo, and
���� � (or even ����� �) on Accelerando. Based on

these results, and since we run the other experiments on Crescendo, a time quantum of � ��� � � was chosen

for the other measurements.

91

Crescendo (Pentium III)

Timeslice [ms]
50 100 300 500 1000 2000

S
lo

w
do

w
n

1

3

10

30

100

300

1000

Accelerando (Itanium II)

Timeslice [ms]
10 50 100 500 1000 2000

S
lo

w
do

w
n

1

3

10

30

100

300

1000

Figure 6.10: Bounded slowdown distribution as a function of time quantum (log scale)

6.4.4 Effect of Load

In this section we investigate the effect of load on different scheduling algorithms, and try to answer the

following questions:

� How well do different algorithms handle increasing load?

� How do different scheduling algorithms handle short or long jobs?

� How does the dynamic workload affect the scheduler’s performance?

When using finite workloads, one must be careful to identify when the offered load is actually high enough

to saturate the system. Using an infinite workload, the job queues would keep on growing on a saturated

system, and so will the average response time and slowdown. But when running a finite workload, the

queues would only grow until the workload is exhausted, and then the queues would slowly clear since

there are no more job arrivals. The metrics we measure for such a workload are therefore meaningless, and

we should ignore them for loads that exceed each scheduler’s saturation point.

To identify the saturation points, we used graphs like the one shown in Fig. 6.11. This figure shows

jobs in the system over time, i.e. those jobs that arrived and are not yet finished, in this example using GS.

It is easy to see that the system handles loads of � � � and � � � quite well. However, the burst of activity

in the second half of the workload seems to cause problems when the load is increased to � �
�

or
��� �

of

capacity. In particular, it seems that the system does not manage to clear enough jobs before the last arrival

burst at about 7300 seconds. This indicates that the load is beyond the saturation point. Using this method,

we identified and discarded those loads that saturate each scheduling scheme.

The results for this workload indicate that FCFS seems to saturate at about � � � offered load, GS and

SB at about � � � , and FCS at � �
�

.

92

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Jo
bs

 (
ru

nn
in

g
an

d
qu

eu
ed

)

Time (sec)

0.93
0.88
0.83
0.78

Figure 6.11: Job number in the system over time and different loads with GS

Figures 6.12(a) and 6.12(b) show the average response time and slowdown respectively, for different

offered loads and scheduling algorithms. The near-linear growth in response times with load is due to

our method of varying load, by multiplying run times of jobs by a load factor. Both metrics suggest that

FCS seems to perform consistently better than the other algorithms, and FCFS (batch) seems to perform

consistently worse than the others. Also, FCFS saturates at a lower load than the other algorithms, while

FCS supports a load of up to � �
�

in this setup.

To understand the source of these differences, let us look at the median response time and slowdown

(Figures 6.12(c) and 6.12(d) respectively). A low median response time suggests good handling of short

jobs, since most jobs are comparatively short. On the other hand, a low median slowdown indicates pref-

erential handling of long jobs, since the lowest-slowdown jobs are mostly long jobs, that are less affected

by wait time than short jobs. FCFS shows a high average slowdown and a low median slowdown. This

indicates that while long jobs enjoy lower waiting times (driving the median slowdown lower), short jobs

suffer enough to significantly raise the average response time and slowdown.

To verify these biases, we look at the CDF of response times for the shorter 500 jobs and longer 500

jobs separately, as defined in Section 6.4.4 (Fig. 6.13). The higher distribution of short jobs with FCS

attests to the scheduler’s ability to “push” more jobs toward the shorter response times. Similarly, FCFS’s

preferential treatment of long jobs is reflected in Fig. 6.13(b).

We believe the reason for FCS’s good performance is its ability to adapt to various scenarios that occur

during the execution of the dynamic workload [39]. In particular, FCS always coschedules a job in its first

few seconds of running (unlike SB), and then classifies it according to its communication requirements

(unlike GS). If a job is long, and does not synchronize frequently or effectively, FCS will allow other jobs

to compete with it for machine resources. Thus, FCS shows a bias toward short jobs, allowing them to clear

the system early. Since short jobs dominate the workload, this bias actually reduces the overall system load

93

20

40

60

80

100

120

140

160

180

200

220

240

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
es

po
ns

e
tim

e
m

ea
n

(s
ec

)

Offered load

FCFS
SB
GS

FCS

0

100

200

300

400

500

600

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

B
ou

nd
ed

 s
lo

w
do

w
n

(m
ea

n)

Offered load

FCFS
SB
GS

FCS

(a) Mean Response time (b) Mean bounded slowdown

0

10

20

30

40

50

60

70

80

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
es

po
ns

e
tim

e
m

ed
ia

n
(s

ec
)

Offered load

FCFS
SB
GS

FCS

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

B
ou

nd
ed

 s
lo

w
do

w
n

(m
ed

ia
n)

Offered load

FCFS
SB
GS

FCS

(c) Median response time (d) Median bounded slowdown

Figure 6.12: Response time and bounded slowdown as a function of offered load

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

C
um

m
ul

at
iv

e
di

st
rib

ut
io

n

Response time (sec)

FCFS
SB
GS

FCS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

C
um

m
ul

at
iv

e
di

st
rib

ut
io

n

Response time (sec)

FCFS
SB
GS

FCS

(a) 500 shortest jobs (b) 500 longest jobs

Figure 6.13: Cumulative distribution of response times at � � � load and FCS scheduling.

94

and allows long jobs to complete earlier than with GS or SB. The opposite can be said of the FCFS scheme,

which shows a bias toward long jobs, since they do not have to compete with other jobs.

6.5 Resource Overlapping

Resource overlapping refers in this context to the ability to improve resource utilization by exploiting

“holes” in their usage by applications. Such holes occur naturally in virtually every parallel computer, and

are caused by fragmentation in resource allocation and usage. Fragmentation can be manifested in any of

the machine’s resources, such as processors, memory, and network segments, and has two main forms.

External fragmentation occurs when not all of the available machine resources are allocated to a parallel

application, and some remain unassigned. Such fragmentation is quite typical for machines designated as

capacity engines, where many jobs of various sizes and lengths arrive dynamically at the system, making

an optimal allocation of resources to jobs all but impossible.

Internal fragmentation occurs when an application does not fully use all its allocated resources consis-

tently. This is in fact the case for almost every non-trivial computer application, including serial ones, and

much effort has been put into increasing resource utilization by overlapping resources such as I/O, CPU,

and network. Processes rarely make use of all of the available resources, and even single-node operating

systems try to exploit this fragmentation by overlapping the use of different resources by different pro-

cesses concurrently [107, 119]. The situation is exacerbated on parallel machines, since load imbalance

and synchronization requirements often lead to even more holes in resource usage, as processes depend on

continuous incoming data from their peers to perform their own computation.

We have seen the effect of external fragmentation in Section 6.4, where jobs of different sizes and

lengths arrive dynamically. In general, multiprogramming scheduling algorithms are able to improve the

system’s utilization as a whole, compared to batch scheduling variants, since the added dimension of time

gives the system software more opportunities to allocate physical resources to jobs, and fill more of the al-

location holes. While resource utilization is increased, and resources are overlapped with context-switches

among different jobs, this does not always imply that the system’s throughput will be increased, or that

users will be more satisfied. Multiprogramming algorithms increase the run time of applications by a fac-

tor that is approximately the average MPL they experience, and sometimes even much worse, as is the case

with non-coordinated algorithms such as local and SB, for fine-grained parallel jobs. On the other hand,

as shown in Section 6.4, by allowing small jobs to complete early, most multiprogramming algorithms can

actually lower the average response time for most jobs [33, 40]. Furthermore, multiprogramming allows

the single node’s system software (in our case, the NM combined with Linux), to exploit intra-node holes

in resource allocation, caused by internal fragmentation, which is typically higher for parallel jobs than it

is for serial ones. Local operating systems can exploit such holes for resource overlapping relatively well.

Parallel applications however make it much more difficult for the operating system, since if only local de-

95

cisions are employed, synchronous applications will not get coscheduled and consequently could undergo

a significant performance hit.

For simple cases, described in Section 6.3.2, we can see that the dynamic scheduling algorithms (SB,

FCS, BCS) can do relatively well in most scenarios, increasing utilization to near � ��� � in some cases.

While these synthetic examples are not entirely representative of real-world scenarios, they nevertheless

describe situations that can occur in various forms due to application-, workload-, or architecture-induced

load imbalance.

Applications such as SAGE and SWEEP3D are much harder to overlap, due to their fine granularity

and relatively fine-tuned balance (as seen in Section 6.3.3). That said, we believe there is still some signif-

icant underutilization of resources, in particular with SAGE, that can be exploited by BCS to increase the

machine’s throughput. While still maintaining explicit coscheduling, BCS spends no time at all waiting

for synchronous communications (unlike the other algorithms), but rather immediately blocks the calling

process, for at least one micro-timeslice. If another process can fill those holes effectively while the com-

munication is taken place, BCS could theoretically run both applications at approximately the same time it

takes to run the longest one in dedicated mode.

There are two prerequisites for such a successful overlap: first, there should be at least one application

that is always ready to fill the holes, and a large enough amount of holes in the main application to amortize

the cost of frequent context-switching. SAGE or SWEEP3D cannot be used as a good filler application,

since they both communicate (and therefore block) very frequently. We have therefore used the same

synthetic application from Section 6.3.1 with a relatively coarse communication granularity of ������� � . We

ran SAGE with the same input deck as in Section 6.3.3 with different numbers of processors and with the

filler application. We used PBCS and prioritized SAGE, so that it runs whenever it is not blocked. The

experiment consists of running SAGE in standalone mode in BCS (which yields results similar to those

of Quadrics’ MPI, as seen in 5.4.2), and then finding the maximum length of a filler application that does

not significantly increase the overall runtime. For example, we found that for 62 processors, SAGE runs

for � � � � in dedicated mode, and we can concurrently run a low-priority filler application that runs for
 � �

without increasing SAGE’s runtime by more than � � � � .

Figure 6.14 shows the rest of the results. The blue bar represents the run time of SAGE, while the

magenta bar represents the amount of filler that was squeezed into SAGE’s computational holes. The total

length of the stacked bars represent the time it would take to run both jobs in FCFS or GS mode. It is

interesting to note that the relative size of the usable holes increases with the machine size, probably due

to decreased SAGE scalability and increased load-imbalance. Unfortunately, Wolverine was unavailable to

us at the time of writing for evaluating this property with even larger configurations. Still, if this trend is

verified, running SAGE with other low-priority applications on large-scale machines such as ASCI-Q might

significantly increase the throughput of the machine, by exploiting fine-grained resource overlapping.

96

Processors
2 4 8 16 32 62

R
un

 ti
m

e
(s

ec
)

0

50

100

150

200

250

300

350

SAGE Filler

Figure 6.14: Run times of SAGE and filler application with BCS

97

7 Continuing and Future Work

As described in the introduction, system software encompasses many distinct issues. While many of the

important issues are addressed in this dissertation, several others remain to be explored. We continue to

develop the single system infrastructure model based on our network mechanisms. Our ongoing research

focuses on two fields: resource overlapping and fault tolerance. In the near future we also plan to address

several other remaining aspects of system software, such as I/O, quality of service, and debugging abilities.

This section expands on some of these activities and in particular on fault tolerance, where our initial results

show promise for an efficient and transparent system level checkpoint and recovery mechanism.

Fault Tolerance

Since commodity clusters are being used as high-productivity platforms, system availability and efficiency

are increasingly important requirements. The high failure rate of these systems puts more pressure on

checkpoint mechanisms. In order to meet these requirements, checkpoints should be taken frequently rel-

ative to the failure rate of the system, for example every few minutes. There is an inevitable need for

autonomic computing systems which are able to self-heal and self-repair [71]. To achieve this vision,

checkpoint and rollback recovery mechanisms must be automatic – they should work without the inter-

vention of programmers, users, or system administrators. Our first objective in tackling this task is to

answer the following question. Is it possible to implement an incremental checkpointing system that is (a)

completely automatic and user transparent, (b) minimally intrusive, and (c) feasible with current and fore-

seeable I/O technology? We provide an extensive analysis of several scientific applications in this context

in [98]. The following summarizes the main findings of this study.

to evaluate the feasibility of checkpointing, we needed to characterize scientific applications in terms

of their memory footprint and rate of change, quantify the required bandwidth for transparent checkpoint-

ing, and analyze the applications’ sensitivity to factors such as the checkpoint interval. To this end, we

implemented a user-level instrumentation library. This library is preloaded by the dynamic linker, making

application recompilation unnecessary. The library uses the memory protection mechanism of the virtual

memory system to keep track the pages written to by the process during a timeslice. The library reports the

bandwidth required to save the entire working set (full checkpointing), as well as the bandwidth required

98

for incremental checkpointing only [92]. This optimization saves only the data that has changed from the

last checkpoint interval to stable storage. Using this library, we evaluated SAGE (with various data sizes),

SWEEP3D, and several of the NAS applications on the Accelerando cluster. We have also evaluated the

intrusiveness of this measurement by calculating the application slowdown with and without monitoring,

and found it to be less than � � � in the worst case.

After initializing memory structures at the start of execution, all the tested applications display a peri-

odic behavior in their incremental working set size (IWS), i.e. the changed subset of the working set for

a given timeslice. This periodicity stems from the BSP nature of the applications. It also implies that the

applications’ communication is bursty rather than continuous, allowing time for the checkpointing traffic

in between bursts of application traffic. In fact, the maximum application bandwidth observed with this

architecture and data sets does not exceed
� � ����� �

(for NAS’s FT), and most applications average less

than ��� �������
(Table 7.1). This is far below the nominal network MPI bandwidth of � � � � ��� � �

. The

bandwidth required to transfer the changed application data (the IWS) can be significantly higher, espe-

cially for small timeslice values, but falls below ��� ����� �
for a timeslice of � � � for most applications, as

much of the same memory is overwritten in the same timeslice. The choice of timeslice determines how

far back in time a system must be restored in case of failure, and is typically in the order of magnitude

of hours on current installations. Our data suggest that current network technology combined with smart

incremental checkpointing can reduce this interval to tens of seconds or less, significantly shortening the

mean time to recovery. Even in the worst case tested, SAGE with a data set of 1GB and a timeslice of �
�
,

the overall required checkpointing bandwidth, � ��
 ����� �
(Table 7.1), falls below contemporary network

and storage devices’ bandwidth1. Furthermore, we found that as either the data set or the number of pro-

cessors used by the application is increased, both the checkpoint and application bandwidth figure per node

decrease, due to the sub-linear scaling of the application. Technological trends suggest that memory sizes,

network performance and processor count will continue to grow at a fast rate - faster than main memory’s

performance growth. These trends indicate that while already viable today, incremental checkpointing will

become even more attainable in the future.

Performance and Usability

We believe that resource overlapping approaches such as ours still hold significant unfulfilled potential for

increasing system throughput. We are currently working on a comprehensive model and set of metrics

to evaluate precisely the potential of different applications for resource overlapping in a parallel system.

This model will take into account aspects that are particular to HPC systems and applications, such as

network usage, synchronization and load balancing, and memory footprint. The latter in particular may

be regarded as a limiting factor for multiprogramming since many HPC applications demand much of a
1These bandwidth numbers increase linearly for SMPs, if more than one process per node is running. For example, on a 4-way

node the maximum checkpoint bandwidth can far exceed that of a single QsNet NIC, but can probably still be accomodated with
multiple rails or with QsNet II’s bandwidth of over ������������� .

99

Application Application bandwidth Checkpoint bandwidth
Maximum Average Maximum Average

SAGE-1000MB 17.1 4.1 274.9 78.8
SAGE-500MB 16.2 5.0 186.9 49.9
SAGE-100MB 21.8 8.6 42.6 15.0
SAGE-50MB 24.3 11.8 24.9 9.6
SWEEP3D 0.8 0.5 79.1 49.5

SP 17.5 9.7 32.6 32.6
LU 4.9 3.2 12.5 12.5
BT 5.9 3.1 72.7 68.6
FT 33.5 24.7 101.0 92.1

Table 7.1: Network bandwidth for various applications and data sets in
����� �

, �
�

timeslice

system’s physical memory. We believe however that various measures can be taken to relax this require-

ment, and in particular, applications can be “stretched” to use more nodes with a smaller memory footprint

on each node2. Such solutions are currently not practical, due to issues of reliability, load-imbalance and

utilization. However, we believe that a comprehensive solution to all these issues as the vision put forth in

this dissertation makes such an approach both feasible and highly efficient.

Quality of service in parallel systems’ network traffic can also benefit from the deterministic, globally-

synchronized view of the system. Some special-purpose systems such as BG/L simply use multiple separate

networks for different communication needs [49], but that is rarely the case with COTS clusters. By con-

trolling communication as in BCS-MPI, we can employ different communication-scheduling algorithms to

ensure that QoS and priorities are maintained on a single interconnect. As one example, we can separate

system and user traffic, prioritizing the former so that the operating system does not become unresponsive

when user applications might otherwise congest the network. Another important aspect of HPC software

is parallel I/O, which involves many challenging performance and load-balancing issues. We believe that

inter-node I/O should be treated just as any other user- or system network messages, for example using

MPI-2’s I/O primitives [46]. As such, the same communication scheduling and QoS mechanisms apply to

I/O traffic, to prevent deteriorating performance when the I/O load peaks.

Similarly, the precise controlling of communication and process scheduling globally, and the determin-

ism it implies, offers another promising venue for research, namely application development. The ability to

“freeze” applications and communication and analyze their state at fine resolutions could prove extremely

useful to the development of parallel applications. Furthermore, the increased determinism should simplify

the reproduction of bugs and race conditions that are common in these applications.

Last but not least, since we envision a simple, global cluster OS, we plan to migrate our code into the

Linux kernel. We expect this to significantly reduce the overhead observed in some scenarios of Chapter

6, as well as simplify the entire design. Conceptually, this would allow the kernel to see the entire job and

communication scheduling picture, instead of user-level dæmons with the current implementation.
2Many supercomputing installations rarely use partitions that are larger than half the total number of processors.

100

8 Concluding Remarks

The premise behind this dissertation is that virtually all system software tasks on a large-scale system

represent an HPC application with global synchronization requirements. When treated as such, and using a

basic set of modern network mechanisms, all aspects of parallel system software can be advanced to a new

level of performance and scalability. In this section we briefly describe the major research contributions of

this dissertation to each of the studied aspects, as well as the preliminary interconnection studies.

8.1 Summary of Research Contributions

8.1.1 Interconnection Scalability Analysis

We have analyzed the communication performance and scalability of advanced interconnects by using the

QsNet network as case study. This network is widely used in many of the top 500 supercomputers and offers

advanced architectural features such as its own on-board memory and processor, and support for collective

communication in hardware. In particular, QsNet was shown to provide excellent latency and bandwidth

for two important collective operations: global comparison/synchronization and multicast – ��� ��
 � and

over
� ��� ����� �

respectively on our 256-processor cluster. Several other advanced networks show similar

performance and scalability. In contrast, the point-to-point counterparts of these operations do not scale

as well. We argue that while these collective operations are basic enough to expose the performance of

the novel interconnects, they are nevertheless general enough to provide a vocabulary of communication

primitives to be used by most system software tasks.

8.1.2 Network Mechanisms for System Software

In this dissertation we propose a new abstraction layer for large-scale clusters. This layer, which can

be implemented by as few as three communication primitives in the network hardware, can immensely

simplify the development of system software for these clusters. In our model, the system software is

a tightly-coupled parallel application that operates in lockstep on all nodes. If the underlying hardware

support for this layer is both scalable and efficient, the system software inherits these properties. Such

101

software is not only relatively simple to implement, but can also provide parallel programs with most of the

services they require to make their development and usage efficient and more manageable. In particular, we

discuss how this abstraction layer and the system software can be used for the implementation of efficient,

deterministic communication libraries, workstation-class responsiveness and transparent fault tolerance.

Our experimental results demonstrate that scalable resource management and application communication

are indeed feasible while making the system behave deterministically.

8.1.3 Resource Management

While resource management (RM) is comparatively simple to do well on a small-scale cluster, it is more

challenging on a large-scale cluster. Current RM systems require many seconds to launch a large ap-

plication, and cannot react with user input with small response times. They either batch-schedule jobs—

precluding interactivity—or gang-schedule them with such large quanta as to be effectively non-interactive.

And they make poor use of resources, because large jobs frequently suffer from internal load imbalance or

imperfect overlap of communication and computation, yet scheduling decisions are too costly to warrant

lending unused resources to alternate jobs. These problems are addressed with STORM, a lightweight,

flexible, and scalable environment for performing RM in large-scale clusters. In terms of both job launch-

ing and process scheduling, STORM is 1–2 orders of magnitude faster than the best reported results in the

literature. The key to STORM’s performance lies in its design methodology. Rather than implement heart-

beat issuance, job launching, process scheduling, and other routines as separate entities, we designed these

functions in terms of the small set of network mechanisms discussed above. We validated STORM’s per-

formance on a 256-processor cluster and demonstrated it to perform well on that cluster, and it is expected

to perform comparably well on significantly larger clusters.

An important conclusion of our work is that it is indeed possible to scale up a cluster without sacrificing

fast job-launching times, machine efficiency, or interactive response time. STORM can launch parallel jobs

on a large-scale cluster almost as fast as a node OS can launch a sequential application on an individual

workstation. And STORM can schedule all of the processes in a large, parallel job with the same granularity

and with almost the same low overhead at which a sequential OS can schedule a single process. By

improving the performance of various RM functions by two orders of magnitude, STORM represents an

important step toward making large-scale clusters as efficient and easy to use as a workstation.

8.1.4 Communication and Fault Tolerance

This dissertation discusses an alternative approach to the design of communication libraries for large-scale

parallel computers. The emphasis is moved to the optimization of the global state of the machine in order to

reduce the system software complexity. We have provided insight on the global coordination protocols used

by BCS-MPI and described a prototype implementation running almost entirely on the network interface

102

of the QsNet network.

The experimental results have shown that the performance of BCS-MPI is comparable to the production-

level MPI for most applications. The performance of some applications, as SWEEP3D, can be improved

by modifying their communication pattern from a blocking one to a non-blocking one (typically with mini-

mal changes). Such applications can actually improve their performance when compared to the production

level MPI, thanks to BCS-MPI’s low overhead in the compute nodes.

These results pave the way to future advances in the design of the communication libraries for large-

scale parallel machines, as part of the vision of a globally synchronized operating system. Such system,

which relies on scalable network primitives, schedules globally not only user-level communication, but

also I/O activities, resource management information exchange, and job scheduling. We argue that such a

design not only simplifies system software, but also improves its performance and scalability. Moreover,

a scheduled, deterministic communication behavior at system level could provide a solid infrastructure for

implementing transparent fault tolerance. Our initial results demonstrate that frequent, user-transparent,

automatic incremental checkpointing is a viable technique. We also prove that this can be achieved without

using specialized hardware and within the limitations imposed by current technology. We anticipate that

technological trends in networking and secondary storage will make these methods is more feasible.

8.1.5 Job Scheduling

The bulk of this thesis concentrates on job scheduling algorithms. We have implemented two novel such

algorithms FCS and BCS, and several traditional ones (FCFS, GS, SB, and backfilling), and evaluated

them in a comprehensive set of experiments. Unlike previous scheduling approaches that either rely solely

on global coordination or on local decisions, FCS and BCS make use of advanced network features and

performance to provide both global coscheduling for highly-synchronized jobs, and adaptiveness for im-

balanced jobs. In synthetic scenarios, this translates to an increased capacity of FCS to provide the best

scheduling for a variety of balanced and imbalanced situations, and to BCS’s ability to make use of small

internal fragmentation for increased resource utilization, even with highly-parallel jobs.

This work emphasizes realistic evaluation as a critical factor in the complex field of parallel job schedul-

ing. This translates in our case not only to a complete implementation of the various algorithms on several

cluster architectures, but also to the use of dynamic, complex workloads running communicating appli-

cations over a considerable amount of time. Through these experiments, we were able to gain insights

into the differences between job scheduling algorithms, and offer several explanations on the relationships

between workloads, scheduling algorithms, job types, and metrics. Some more general observations were

also obtained, such as the benefits of backfilling for all job scheduling algorithms, and the effect of the

multiprogramming level. The dynamic workload also confirmed the advantages of using novel scheduling

techniques such as FCS, that make use scalably both of local and global information.

Glossary

AA All-to-All (communication pattern)

API Application Programmer’s Interface

BCS Buffered Coscheduling

BSP Bulk-Synchronous Parallel

CMS Cluster Management System

Coscheduling Scheduling all processes of a job concurrently

COTS Commercial-of-the-shelf

DCS Dynamic Coscheduling

DMA Direct Memory Access

ECC Error Correcting Code

FCS Flexible CoScheduling

FCFS First-Come-First-Serve

FCFS-BF First-Come-First-Serve with backfilling

Flit Flow control digit

GS Gang Scheduling

GUI Graphical User Interface

HPC High-Performance Computing

ICN Interconnection Network

ICS Implicit Coscheduling

I/O Input/Output

IWS Incremental Working Set

Job A parallel program possibly consisting of multiple processes

LANL Los Alamos National Laboratory

LSF Load Sharing Facility

MM Machine Manager (STORM dæmon)

104

MMU Memory Management Unit

MPI Message Passing Interface library

MPL Multi-Programming Level

MPP Massively Parallel Processing

NIC Network Interface Card

NN Nearest-Neighbour (communication pattern)

NM Node Manager (STORM dæmon)

NOW Network of Workstations

NQS Network Queueing System

OS Operating System

PB Periodic Boost

PBS Portable Batch System

PE Processing Element

PID Process Identifier

PRNG Pseudo-Random Number Generator

Process A computation using a single PE

QoS Quality of Service

RAM Random Access Memorys

RDMA Remote Direct Memory Access

RMS Resource Management System

SB Spin-block

SIMD Single Instruction Multiple Data

SMP Symmetrical Multi Processing

STORM Scalable TOol for Resource Management

PL Program Launcher (STORM dæmon)

VPID Virtual Process ID

Bibliography

[1] ASCI Technology Prospectus: Simulation and Computational Science. Technical Report
DOE/DP/ASC-ATP-001, National Nuclear Security Agency (NNSA), July 2001.

[2] Andrea Carol Arpaci-Dusseau. Implicit Coscheduling: Coordinated Scheduling with Implicit Infor-
mation in Distributed Systems. ACM Transactions on Computer Systems (TOCS), 19(3), 2001.

[3] Infiniband Trade Association. Infiniband specification 1.0a, June 2001. Available from http:
//www.infinibandta.org.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weer-
atunga. The NAS Parallel Benchmarks. The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[5] Mark A. Baker, Geoffrey C. Fox, and Hon W. Yau. Cluster computing review. NPAC Technical
Report SCCS-748, Syracuse University, November 1995.

[6] Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-Net: A User-Level Net-
work Interface for Parallel and Distributed Computing. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP’95), Copper Mountain, CO, December 1995. Available
from http://www.cs.cornell.edu/tve/u-net/papers/sosp.pdf.

[7] Anat Batat and Dror G. Feitelson. Gang scheduling with memory considerations. In Proceedings
of the International Parallel and Distributed Processing Symposium 2000, IPDPS2000, number 14,
pages 109–114, May 2000.

[8] Raoul A.F. Bhoedjang, Tim Rühl, and Henri E. Bal. Efficient multicast on Myrinet using link-level
flow control. In Proceedings of the � �

 	
International Conference on Parallel Processing (ICPP’98),

pages 381–390, Minneapolis, MN, August 1998. Available from ftp://ftp.cs.vu.nl/pub/
raoul/papers/multicast98.ps.gz.

[9] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawick, Charles L. Seitz,
Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE
Micro, 15(1):29–36, February 1995. Available from http://www.myri.com/research/
publications/Hot.ps.

[10] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djailali, Gilles Fedak, Cecile Germain,
Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette, Vincent Neri, and Anton
Selikhov. MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes. In Proceedings
of IEEE/ACM Supercomputing 2002 (SC’02), Baltimore, MD, November 2002. Available from
http://www.sc2002.org/paperpdfs/pap.pap298.pdf.

[11] Ron Brightwell and Lee Ann Fisk. Scalable Parallel Application Launch on Cplant. In Supercom-
puting 2001, Denver, CO, November 2001.

[12] Darius Buntinas, Dhabaleswar Panda, José Duato, and P. Sadayappan. Broadcast/multicast
over Myrinet using NIC-assisted multidestination messages. In Workshop on Communica-
tion, Architecture, and Applications for Network-Based Parallel Computing (CANPC ’00),

106

High Performance Computer Architecture (HPCA-6) Conference, Toulouse, France, Jan-
uary 2000. Available from ftp://ftp.cis.ohio-state.edu/pub/communication/
papers/canpc00-nic-multi\%cast.pdf.

[13] Darius Buntinas, Dhabaleswar Panda, and William Gropp. NIC-based atomic operations on
Myrinet/GM. In SAN-1 Workshop, High Performance Computer Architecture (HPCA-8) Con-
ference, Boston, MA, February 2002. Available from ftp://ftp.cis.ohio-state.edu/
pub/communication/papers/san-1-atomic_oper\%ations.pdf.

[14] Helen Chen and Pete Wyckoff. Simulation studies of Gigabit ethernet versus Myrinet using real
application cores. In Proceedings of CANPC’00, Workshop of High-Performance Computer Archi-
tecture, Toulouse, France, January 2000.

[15] Giovanni Chiola and Giuseppe Ciaccio. GAMMA: a Low-cost Network of Workstations Based
on Active Messages. In Proceedings of 5th EUROMICRO workshop on Parallel and Distributed
Processing (PDP’97), London, UK, January 1997. Available from ftp://ftp.disi.unige.
it/pub/project/GAMMA/pdp97.ps.gz.

[16] Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, and Leonid Gurvits. Using Mul-
tirail Networks in High-Performance Clusters. In Proceedings of the IEEE Conference on Cluster
Computing, Newport Beach, CA, October 2001.

[17] Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, and Leonid Gurvits. Using
Multirail Networks in High-Performance Clusters. Concurrency and Computation: Practice and
Experience, 15(7-8):625–651, April 2003.

[18] Compaq, Intel, and Microsoft. The Virtual Interface Architecture (VIA) Specification. Available
Available from http://www.viarch.org.

[19] Cray Research Inc. Cray T3D System Architecture Overview, �

 	

edition, September 1993.

[20] David E. Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, San Diego, CA, May 1993.

[21] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multiprocessor Intercon-
nection Networks. IEEE Transactions on Computers, C-36(5):547–553, May 1987.

[22] Dror G. Feitelson and Larry Rudolph. Gang Scheduling Performance Benefits for Fine-Grain Syn-
chronization. Journal of Parallel and Distributed Computing, 16(4), 1992.

[23] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks: an Engineering
Approach. IEEE Computer Society Press, 1997.

[24] Yoav Etsion and Dror G. Feitelson. User-Level Communication in a System with Gang Schedul-
ing. In Proceedings of the International Parallel and Distributed Processing Symposium 2001,
IPDPS2001, San Francisco, CA, April 2001.

[25] Fabrizio Petrini and Wu-chun Feng. Scheduling with Global Information in Distributed Systems. In
Proceedings of the The 20th International Conference on Distributed Computing Systems, Taipei,
Taiwan, Republic of China, April 2000.

[26] Fabrizio Petrini and Wu-chun Feng. Time-Sharing Parallel Jobs in the Presence of Multiple Resource
Requirements. In 6th Workshop on Job Scheduling Strategies for Parallel Processing, Cancun, MX,
May 2000.

[27] Dror G. Feitelson. Packing Schemes for Gang Scheduling. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing – Proceedings of the IPPS’96 Workshop,
volume 1162, pages 89–110. Springer, 1996.

[28] Dror G. Feitelson. Job scheduling in multiprogrammed parallel systems. Research Report RC 19970,
IBM T. J. Watson Research Center, Yorktown Heights, NY, 1997. Second Revision.

[29] Dror G. Feitelson. The Forgotten Factor: Facts; on Performance Evaluation and Its Dependence on
Workloads. In Burkhard Monien and Rainer Feldmann, editors, Euro-Par 2002 Parallel Processing,
pages 49–60. Springer-Verlag, Aug 2002. Lect. Notes Comput. Sci. vol. 2400.

[30] Dror G. Feitelson, Anat Batat, Gabriel Benhanokh, David Er-El, Yoav Etsion, Avi Kavas, Tomer
Klainer, Uri Lublin, and Marc Volovic. The ParPar System: a Software MPP. In Rajkumar Buyya,
editor, High Performance Cluster Computing, volume 1: Architectures and systems, pages 754–770.
Prentice-Hall, 1999.

[31] Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsiveness with Gang Schedul-
ing. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Process-
ing, volume 1291 of Lecture Notes in Computer Science, pages 238–261. Springer-Verlag, 1997.

[32] Dror G. Feitelson and Larry Rudolph. Evaluation of design choices for gang scheduling using
distributed hierarchical control. Journal of Parallel and Distributed Computing, 35(1):18–34, May
1996.

[33] Dror G. Feitelson and Larry Rudolph. Metrics and benchmarking for parallel job scheduling. In
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing,
volume 1495 of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag, 1998.

[34] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and Parkson Wong.
Theory and Practice in Parallel Job Scheduling. In Dror G. Feitelson and Larry Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 1291 of Lect. Notes Comput. Sci., pages
1–34. Springer Verlag, 1997.

[35] Juan Fernandez, Eitan Frachtenberg, and Fabrizio Petrini. BCS-MPI: A New Approach in the Sys-
tem Software Design for Large-Scale Parallel Computers. In Proceedings of the IEEE/ACM Con-
ference on Supercomputing, Phoenix, AZ, November 2003.

[36] Juan Fernandez, Eitan Frachtenberg, Fabrizio Petrini, and Jose Carlos Sancho. An Abstract Interface
for System Software on Large-Scale Clusters. Submitted to Parallel Computing.

[37] Juan Fernandez, Eitan Frachtenberg, Fabrizio Petrini, and Jose Carlos Sancho. Architectural Support
for System Software on Large-Scale Clusters. Submitted to IPDPS’04.

[38] Eitan Frachtenberg. Flexible coscheduling, December 2001. Master’s thesis, Hebrew University,
Jerusalem, Israel.

[39] Eitan Frachtenberg, Dror Feitelson, Fabrizio Petrini, and Juan Fernandez. Flexible CoScheduling:
Dealing with Load Imbalance and Heterogeneous Resources. In ”Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS2003)”, Nice, France, April 2003.

[40] Eitan Frachtenberg, Dror G. Feitelson, Juan Fernandez-Peinador, and Fabrizio Petrini. Paral-
lel Job Scheduling under Dynamic Workloads. In Dror G. Feitelson, Larry Rudolph, and Uwe
Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Processing, volume 2862 of Lect.
Notes Comput. Sci., pages 208–227. Springer Verlag, 2003.

[41] Eitan Frachtenberg and Fabrizio Petrini. Overlapping Communication and Computation in the
Quadrics Network. Technical Report LAUR 01-4695, Los Alamos National Laboratory, August
2001.

[42] Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll, and Wu chun Feng. Gang Scheduling with
Lightweigth User-Level Communication. In Proceedings of the International Conference on Paral-
lel Processing (ICPP2001), Workshop on Scheduling and Resource Management for Cluster Com-
puting, Valencia, Spain, September 2001.

[43] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, and Scott Pakin. STORM: Scalable resource
management for large-scale parallel computers. ACM Transactions on Computer Systems (TOCS),
2003. Submitted for publication.

[44] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin, and Salvador Coll. STORM:
Lightning-Fast Resource Management. In Proceedings of the IEEE/ACM Conference on Supercom-
puting, Baltimore, MD, November 2002.

[45] Hubertus Franke, Pratap Pattnaik, and Larry Rudolph. Gang Scheduling for Highly Efficient Dis-
tributed Multiprocessor Syetems. In 6th Symposium on the Frontiers of Massively Parallel Compu-
tation (FRONTIERS ’96), pages 1–9, Annapolis, MD, October 1996.

[46] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, William Saphir,
Tony Skjellum, and Marc Snir. MPI-2: Extending the Message Passing Interface. In Second In-
ternational Euro-Par Conference, Volume I, number 1123 in LNCS, pages 128–135, Lyon, France,
August 1996.

[47] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and Amin M. Vadhar. GLUnix: a GLobal
Layer Unix for a Network of Workstations. Software - Practice and Experience, 28(9), 1998.

[48] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating system scheduling
policies and synchronization methods on the performance of parallel applications. In Proceedings
of the 1991 ACM SIGMETRICS Conference, pages 120–132, May 1991.

[49] Manish Gupta. Challenges in developing scalable scalable software for bluegene/l. In Scaling to
New Heights Workshop, Pittsburgh, PA, May 2002. Available from http://www.psc.edu/
training/scaling/gupta.ps.

[50] Hermann Hellwagner. The SCI Standard and Applications of SCI. In Hermann Hellwagner and
Alexander Reinfeld, editors, SCI: Scalable Coherent Interface, volume 1291 of Lecture Notes in
Computer Science, pages 95–116. Springer-Verlag, 1999.

[51] R. L. Henderson. Job scheduling under the portable batch system. Lecture Notes in Computer
Science, 949:279–294, 1995.

[52] Erik Hendriks. BProc: The Beowulf distributed process space. In Proceedings of the � �

 	

Annual
ACM International Conference on Supercomputing (ICS ’02), New York, NY, June 22–26, 2002.

[53] Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman. Scalability Analysis of Multidimensional
Wavefront Algorithms on Large-Scale SMP Clusters. In The Ninth Symposium on the Frontiers of
Massively Parallel Computation (Frontiers’99), Annapolis, MD, February 1999.

[54] Atsushi Hori, Hiroshi Tezuka, and Yukata Ishikawa. Overhead Analysis of Preemptive Gang
Scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, volume 1459 of Lecture Notes in Computer Science, pages 217–230. Springer-Verlag,
1998.

[55] Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. Highly Efficient Gang Scheduling Implemen-
tation. In Supercomputing 98, Orlando, FL, November 1998.

[56] Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, NoriYuki Soda, Hiroki Konaka, and Muneori
Maeda. Overhead Analysis of Preemptive Gang Scheduling. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes
in Computer Science, pages 217–230. Springer-Verlag, 1998.

[57] Morris A. Jette, Andy B. Yoo, and Mark Grondona. SLURM: Simple linux utility for resource
management. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, pages 37–51. Springer-Verlag, 2003.

[58] Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. Efficient parallel global garbage col-
lection on massively parallel computers. In G. M. Johnson, editor, Proceedings of IEEE/ACM Su-
percomputing 1994 (SC’94), pages 79–88, 1994. Available from http://citeseer.nj.nec.
com/kamada94efficient.html.

[59] Avi Kavas, David Er-El, and Dror G. Feitelson. Using Multicast to Pre-Load Jobs on the ParPar
Cluster. Parallel Computing, 27:315–327, 2001.

[60] Avi Kavas and Dror G. Feitelson. Comparing Windows NT, Linux, and QNX as the basis for cluster
systems. Concurrency & Comput.: Pract. & Exp., 13(15):1303–1332, Dec 2001.

[61] Darren Kerbyson, Hank Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey Wasserman, and Mike Git-
tings. Predictive Performance and Scalability Modeling of a Large-Scale Application. In IEEE/ACM
SC2001, Denver, CO, November 2001.

[62] JunSeong Kim and David J. Lilja. Characterization of communication patterns in message-passing
parallel scientific application programs. In Proceedings of the Workshop on Communication, Ar-
chitecture, and Applications for Network-Based Parallel Computing (CANPC), pages 202–216, Las
Vegas, NV, February 1998.

[63] Ken Koch. How does ASCI actually complete multi-month 1000-processor milestone simulations?
In Proceedings of the Conference on High Speed Computing, Gleneden Beach, Oregon, April 22–25,
2002.

[64] William T. C. Kramer and James M. Craw. Effective use of cray supercomputers. In Proceedings of
the Supercomputing 89, pages 721–731, New York, NY, 1989. ACM Press.

[65] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. IEEE Transactions on Computers, C-28(9):690–691, September 1979.

[66] Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and Larry Rudolph. Implications of
I/O for Gang Scheduled Workloads. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer Science. Springer-
Verlag, 1997.

[67] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware Efficient Supercomputing. IEEE
Transactions on Computers, C-34(10):892–901, October 1985.

[68] David Lifka. The ANL/IBM SP Scheduling System. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, pages 295–303. Springer-Verlag, 1995.
Lect. Notes Comput. Sci. vol. 949.

[69] Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang, Sushmitha Kini,
Weikuan Yu, Darius Buntinas, Pete Wyckoff, and Dhabaleswar K. Panda. Performance Comparison
of MPI Implementations over InfiniBand, Myrinet and Quadrics. In Proceedings of the IEEE/ACM
Conference on Supercomputing, Phoenix, AZ, November 2003.

[70] Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: Modeling the char-
acteristics of rigid jobs. Journal of Parallel and Distributed Computing, 63(11):1105–1122, Nov
2003.

[71] E. Mainsah. Autonomic Computing: the Next Era of Computing. IEEE Electronics Communication
Engineering Journal, 14(1):2–3, February 2002.

[72] Meiko world Inc. Meiko Computing Surface Communications Processor Overview, 1993.

[73] Adam Moody, Juan Fernández, Fabrizio Petrini, and Dhabaleswar Panda. Scalable NIC-based
Reduction on Large-scale Clusters. In Proceedings of SC2003, Phoenix, Arizona, Novem-
ber 10–16, 2003. Available from http://www.c3.lanl.gov/˜fabrizio/papers/
sc03_reduce.pdf.

[74] Jose E. Moreira, Waiman Chan, Liana L. Fong, Hubertus Franke, and Morris A. Jette. An Infras-
tructure for Efficient Parallel Job Execution in Terascale Computing Environments. In Supercom-
puting’98, Nov 1998.

[75] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads, and user run-
time estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on Parallel and
Distributed Systems, 12(6):529–543, June 2001.

[76] Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. A Closer Look At
Coscheduling Approaches for a Network of Workstations. In Eleventh ACM Symposium on Parallel
Algorithms and Architectures, SPAA’99, Saint-Malo, France, June 1999.

[77] Lionel M. Ni, Yadong Gui, and Sherry Moore. Performance Evaluation of Switch-Based Wormhole
Networks. IEEE Transactions on Parallel and Distributed Systems, 8(5):462–474, May 1997.

[78] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. Proceedings of Third Interna-
tional Conference on Distributed Computing Systems, pages 22–30, 1982.

[79] Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet. In Proceedings of IEEE/ACM Supercomputing 1995
(SC’95), San Diego, CA, December 1995. Available from http://www.supercomp.org/
sc95/proceedings/567_SPAK/SC95.PDF.

[80] Fabrizio Petrini and Wu chun Feng. Buffered coscheduling: A new methodology for multitasking
parallel jobs on distributed systems. In Proceedings of the International Parallel and Distributed
Processing Symposium 2000, IPDPS2000, volume 16, Cancun, MX, May 2000.

[81] Fabrizio Petrini and Wu chun Feng. Improved Resource Utilization with Buffered Coscheduling.
Journal of Parallel Algorithms and Applications, 2000.

[82] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachtenberg. Quadrics
Network (QsNet): High-Performance Clustering Technology. In Hot Interconnects 9, Stanford Uni-
versity, Palo Alto, CA, August 2001.

[83] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachtenberg. The
Quadrics Network: High Performance Clustering Technology. IEEE Micro, 22(1):46–57, January-
February 2002.

[84] Fabrizio Petrini, Salvador Coll, Juan Fernandez, and Eitan Frachtenberg. Scalable Collective Com-
munication on the ASCI Q Machine. In 10th Hot Interconnects conference, Stanford University,
Palo Alto, CA, August 2003.

[85] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie. Hardware- and Software-
Based Collective Communication on the Quadrics Network‘. In IEEE International Symposium on
Network Computing and Applications (NCA 2001), Boston, MA, October 2001.

[86] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie. Performance Evaluation of
I/O Traffic and Placement of I/O Nodes on a High Performance Network. In Workshop on Communi-
cation Architecture for Clusters 2002 (CAC ’02), International Parallel and Distributed Processing
Symposium 2002 (IPDPS ’02), Fort Lauderdale, FL, April 2002.

[87] Fabrizio Petrini, Eitan Frachtenberg, Adolfy Hoisie, and Salvador Coll. Performance Evaluation of
the Quadrics Interconnection Network. Journal of Cluster Computing, 6(2):125–142, April 2003.

[88] Fabrizio Petrini, Darren Kerbyson, and Scott Pakin. The Case of the Missing Supercomputer Per-
formance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In Proceedings of
the IEEE/ACM Conference on Supercompting, Phoenix, Arizona, November 10–16, 2003. Available
from http://www.c3.lanl.gov/˜fabrizio/papers/sc03_noise.pdf.

[89] Fabrizio Petrini and Marco Vanneschi.
�

-ary � -trees: High Performance Networks for Massively
Parallel Architectures. In Proceedings of the 11th International Parallel Processing Symposium,
IPPS’97, pages 87–93, Geneva, Switzerland, April 1997.

[90] Fabrizio Petrini and Marco Vanneschi. Performance Analysis of Wormhole Routed
�

-ary � -trees.
International Journal on Foundations of Computer Science, 9(2):157–177, June 1998.

[91] Gregory F. Pfister and V. Alan Norton. “Hot Spot” Contention and Combining in Multistage Inter-
connection Networks. IEEE Transactions on Computers, C-34(10):943–948, October 1985.

[92] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent Checkpointing under Unix.
In Proceedings of the Usenix Winter 1995 Technical Conference, New Orleans, Louisiana, Jan-
uary 16–20, 1995. Available from http://www.cs.utk.edu/˜plank/plank/papers/
USENIX-95W.html.

[93] Loı̈c Prylli and Bernard Tourancheau. BIP: A New Protocol Designed for High Performance Net-
working on Myrinet. In Proceedings of IPPS/SPDP’98 Workshop on Personal Computer Based
Networks of Workstations, Orlando, FL, April 1998. Available from http://ipdps.eece.
unm.edu/1998/pc-now/prylli.pdf.

[94] Quadrics Supercomputers World Ltd. Elan Programming Manual, January 1999.

[95] Quadrics Supercomputers World Ltd. Elan Reference Manual, January 1999.

[96] Quadrics Supercomputers World Ltd. Elite Reference Manual, November 1999.

[97] Rolf Riesen, Ron Brightwell, Lee Ann Fisk, Tramm Hudson, Jim Otto, and Arthur B. Maccabe.
Cplant. In Proceedings of the 1999 USENIX Annual Technical Conference, Second Extreme Linux
Workshop, Monterey, CA, June 6–11, 1999. Available from http://www.cs.sandia.gov/
˜rolf/papers/extreme/cplant.ps.gz.

[98] Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, Juan Fernandez, and Eitan Frachtenberg. On
the Feasibility of Incremental Checkpointing for Scientific Computing. Submitted to IPDPS’04.

[99] Rich Seifert. Gigabit Ethernet: Technology and Applications for High Speed LANs. Addison-
Wesley, May 1998.

[100] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck. NFS
version 4 protocol. RFC 3010, Internet Engineering Task Force, Network Working Group, December
2000. Available from http://www.rfc-editor.org/rfc/rfc3010.txt.

[101] Piyush Shivam, Pete Wyckoff, and Dhabaleswar Panda. EMP: Zero-copy os-bypass nic-driven gi-
gabit ethernet message passing. In Proceedings of IEEE/ACM Supercomputing 2001 (SC’01), Den-
ver, CO, November 10–16, 2001. Available from http://www.sc2001.org/papers/pap.
pap315.pdf.

[102] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI - The Com-
plete Reference, volume 1, The MPI Core. The MIT Press, 1998.

[103] Patrick Sobalvarro, Scott Pakin, William E. Weihl, and Andrew A. Chien. Dynamic Coscheduling on
Workstation Clusters. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, volume 1459 of Lecture Notes in Computer Science, pages 231–256. Springer-
Verlag, 1998.

[104] Patrick Sobalvarro and William E. Weihl. Demand-Based Coscheduling of Parallel Jobs on Multi-
programmed Multiprocessors. In Proceedings of the 9th International Parallel Processing Sympo-
sium, IPPS’95, Santa Barbara, CA, April 1995.

[105] L. Kent Steiner. Evolution of supercomputers. In ACM annual conference on The range of com-
puting : mid-80’s perspective, pages 112–116, Denver, CO, October 1985. Assoc. for Computing
Machinery, ACM PressNew York, NY, USA.

[106] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer. BE-
OWULF: A parallel workstation for scientific computation. In Proceedings of the 24th Interna-
tional Conference on Parallel Processing, pages I:11–14, Oconomowoc, WI, 1995. Available from
http://citeseer.nj.nec.com/sterling95beowulf.html.

[107] W. R. Stevens. Advanced Programming in the Unix Environment. Addison Wesley, June 1993.

[108] W. R. Stevens. UNIX Network Programming. Prentice Hall, 1997.

[109] Jeffrey H. Straathof, Ashok K. Thareja, and Ashok K. Agrawala. UNIX Scheduling for Large
Systems. In Proceedings of the USENIX Winter Conference, pages 111–139, Denver, CO, 1986.

[110] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency: Practice
and Experience, 2(4):315–339, December 1990.

[111] David Talby, Dror G. Feitelson, and Adi Raveh. Comparing Logs and Models of Parallel Workloads
Using the Co-Plot Method. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 43–66. Springer Verlag, 1999. Lect. Notes Comput. Sci. vol.
1659.

[112] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An Operating System Coordinated High-
Performance Communication Library. In Proceedings of High-Performance Computing and Net-
working ’97, pages 708–717, April 1997.

[113] Thinking Machines Corporation. NI Systems Programming, October 1992. Version 7.1.

[114] D. Tolmie, T. M. Boorman, A. DuBois, D. DuBois, W. Feng, and I. Philp. From HiPPI-800 to HiPPI-
6400: A Changing of the Guard and Gateway to the Future. In Proceedings of the 6th International
Conference on Parallel Interconnects (PI’99), October 1999.

[115] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of the ACM,
33(8):103–111, August 1990.

[116] Jeffrey S. Vetter and Frank Mueller. Communication Characteristics of Large-Scale Scien-
tific Applications for Contemporary Cluster Architectures. Fort Lauderdale, FL, April 2002.
Available from http://www.csc.ncsu.edu/faculty/mueller/ftp/pub/mueller/
papers/jpdc02.p\%df.

[117] Werner Vogels, David Follett, Jenwi Hsieh, David Lifka, and David Stern. Tree-Saturation Control
in the AC � Velocity Cluster. In Hot Interconnects 8, Stanford University, Palo Alto CA, August
2000.

[118] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active
Messages: a Mechanism for Integrated Communication and Computation. In Proceedings of the
19th International Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

[119] Carl A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share Resource Man-
agement. PhD thesis, Massachusetts Institute of Technology, September 1995.

[120] Yanyong Zhang, Hubertus Franke, José Moreira, and Anand Sivasubramaniam. Improving Parallel
Job Scheduling by Combining Gang Scheduling and Backfilling Techniques. In Proceedings of the
International Parallel and Distributed Processing Symposium 2000, IPDPS2000, Cancun, MX, May
2000.

[121] Songnian Zhou. LSF: load sharing in large-scale heterogeneous distributed systems. In Proceedings
of the Workshop on Cluster Computing, Tallahassee, FL, 1992.

[122] http://www.top500.org.

[123] http://www.nas.nasa.gov/Software/NPB/.

[124] http://www.quadrics.com.

[125] http://www.linux.org.

[126] http://www.openpbs.org.

[127] http://www.cs.huji.ac.il/labs/parallel/parpar.shtml.

[128] http://www.jhauser.us/arithmetic/SoftFloat.html.

