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Abstract

Program comprehension is the process of building a mental model of a given

source code. It lies at the basis of any software maintenance activity such as

fixing bugs and adding new features.

Maintenance is important because it consumes a large part of the resources

allocated along a software lifecycle. Therefore, program comprehension is also

important not only for the fact that it is a preliminary vital step in maintenance,

but also for its criticality for the success of this activity. In particular, the better

the code is understood the more likely the maintenance will be successful.

However, comprehension is directly affected by complexity; the less complex

is the code the easier a programmer can understand it. For example, nesting

and non-linear flow are factors that affect complexity and probably make code

harder to comprehend. Therefore, we wish to enhance comprehension by making

programs less complex. This would be feasible if we could measure the complex-

ity of programs. As summarized by H.James Harrington, “measurement is the

first step that leads to control and eventually to improvement. If you cannot

measure something, you cannot understand it. If you cannot understand it, you

cannot control it. If you cannot control it, you cannot improve it.”

Over the years very many complexity metrics have been suggested. The

large number of complexity metrics is probably an indication of a real difficulty

in defining an ideal metric that is capable of reflecting complexity by providing

one simple number.

The key problem of many existing metrics is that they estimate complexity

by analyzing code syntax. For example, the McCabe’s cyclomatic complexity

(MCC) is based on the number of independent execution paths in the code,

which is equivalent to the number of conditions plus one. This metric is the

most widely used since its introduction in 1976. Despite its popularity, it has

been criticized over the years especially for the fact that it discards data flow
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and focuses on just counting program elements without paying attention to their

context in the code.

The dissatisfaction with the state of the practice leads to the research ques-

tion of why MCC and other metrics are not good enough to reflect effective

complexity? what do these metrics miss and what is needed to define better

metrics?

In this thesis, we introduce regularity as an additional factor that affects

complexity. Specifically, regular code has many repetitions of a pattern, and

successive instances become easier to comprehend given the experience with

previous ones.

The innovation of regularity is introducing context awareness and sensitivity:

a piece of code can have different complexity depending on neighboring code.

Interchangeably, code complexity is no longer absolute but depends on the con-

text. In particular, in regularity, the initial instances of some patterns have

higher complexity than those that appear later in the code as the effective com-

plexity of the repeated instances is reduced due to leveraging the understanding

gained in the initial instances.

Conversely, the current metrics, including MCC, unconsciously neglect code

context. Specifically, they simply count code elements. For example, the lines

of code (LOC) metric count lines and MCC counts conditions.

It is important however to adopt an empirical approach to explore what

effects exist in practice. In particular, we conducted a family of diverse exper-

iments that encompass a wide range of experiments starting with a very basic

subjective ranking up to very sophisticated eyetracking based experiments. The

results show that subjects sometimes estimated functions with very high cyclo-

matic complexity as not complex. Moreover, they performed comprehension

tasks and achieved better results in regular code (despite having higher cyclo-

matic complexity) when compared with its non-regular counterpart.

Beyond the immediate effects we already presented, our empirical investiga-

tion revealed more insights about reading in general and reading regular code

in particular. Specifically, the results show that code reading is very non-linear

as opposed to reading in natural language text. As for regular code, it seems

that it is not read completely where parts of it are only scanned.

Having considered the way programmers read regular code, this led to an

event-based framework for analyzing code reading. In particular, we extended

the set of events (e.g, reading, scanning) that have been suggested in previous

studies and suggested a way of coding these events for further analysis.
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It is true that in this work we introduce a new property that affects complex-

ity and challenges existing metrics, but regularity is just an example of such a

factor and does not solve everything. It introduces new and wider considerations

that can serve as good guidelines for investigating new factors.

This thesis is structured as a collection of papers that introduced and ana-

lyzed the above ideas. The first paper examines the state of the practice of real

functions with very high cyclomatic complexity and it serves as a motivation

paper for further work in the same direction [1]. This work was extended to

a journal paper where the same idea was examined in more real systems try-

ing to draw a general picture [2]. As high cyclomatic functions are also very

long we suggested a visualization tool that helps among others in regularity

identification [3].

The next step was to investigate the effect of regularity on comprehension

by experimentally comparing regular and non-regular implementations of the

same real problem. The results show that regular code is easier to comprehend

despite being longer and more complex (according to it cyclomatic complexity)

[4].

Another significant aspect we have examined is the way programmers read

regular code. This yielded a model that reflects the decreasing invested effort in

regular code [5]. Moreover, in its extended journal version we argue that code

reading is largely different from natural language reading [6].

Finally, we suggested a way to measure regularity by means of compression.

It is a report that was not published yet [7].
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1 Introduction

Program comprehension is the process of building a mental model of a given

source code. It lies at the basis of any software maintenance activity such as

fixing bugs and adding new features.

Maintenance is important because it consumes a large part, up to 70% as

reported by [1], of the resources allocated along a software lifecycle. There-

fore, program comprehension is also important not only for the fact that it

is a preliminary vital step in maintenance, but also for its criticality for the

success of this activity. In particular, the better the code is understood the

more likely the maintenance will be successful.

However, comprehension is closely related to complexity and directly af-

fected by it [2]; the less complex is the code the easier a programmer can

understand it. For example, nesting and non-linear flow are factors that af-

fect complexity and probably make code harder to comprehend. Therefore,

we wish to enhance comprehension by making programs less complex. This

improvement would be feasible if we could measure the complexity of pro-

grams. As summarized by H. James Harrington, “measurement is the first

step that leads to control and eventually to improvement. If you cannot

measure something, you cannot understand it. If you cannot understand it,

you cannot control it. If you cannot control it, you cannot improve it.”

Over the years very many complexity metrics have been suggested. These

metrics capture varied aspects in the code. The lines of code (LOC) is the

simplest and it reflects size. The McCabe’s cyclomatic complexity (MCC)

counts the number of decision points in the code and by this it is a con-

trol flow metric [3]. Similarly Npath counts the number of acyclic execution

paths in the code [4]. The software science metrics of Halstead measure pro-

gramming effort by a formula based on counting operators and operands [5].

Data-flow metrics include Dep-Degree [6] and Lifespan [7] where both are

based on program element counting. There have been attempts to define

cognitive metrics, such as CFS [8], that went beyond simple counting and
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provided different weights to different constructs. However, these weights

were simplistic and did not reflect real complexity as perceived by program-

mers.

The large number of complexity metrics is probably an indication of a real

difficulty in defining an ideal metric that is capable of reflecting complexity

by providing one simple number. This primarily stems from the inherent

problem of defining the term complexity and quantifying it [9, 10]. This

leads to a lack of consensus in the community on a precise definition of the

term comprehension [11].

The key problem of many existing metrics is that they estimate com-

plexity by analyzing code syntax. For example, the McCabe’s cyclomatic

complexity (MCC) is based on the number of independent execution paths

in the code, which is equivalent to the number of conditions plus one. This

metric is the most widely used since its introduction in 1976. Despite its

popularity, it has been criticized over the years especially for the fact that

it discards data flow and focuses on just counting program elements without

paying attention to their context in the code [12, 13].

The dissatisfaction with the state of the practice leads to the research

question of why MCC and other metrics are not good enough to reflect

effective complexity? what do these metrics miss and what is needed to

define better metrics?

In this thesis, we introduce regularity as an additional factor that affects

complexity [14]. Specifically, regular code has many repetitions of a pattern,

and successive instances become easier to comprehend given the experience

acquired with previous ones. Listing 1 is an example of a C language function

which is highly regular. In this function regularity occurs in lines 5–8, 9–

12, 13–16, 17–20, 21–24, 25–28, 29–32, and 33–36. Similar and even more

regular functions exist in real systems such as Linux but we do not provide

an example here due to space limitations as such functions are generally very

long [15].
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The innovation of regularity is introducing context awareness and sensi-

tivity: a piece of code can have different complexity depending on neighboring

code. Interchangeably, code complexity is no longer absolute but depends

on the context. In particular, with regularity, the initial instances of some

patterns have higher complexity than those that appear later in the code as

the effective complexity of the repeated instances is reduced due to leverag-

ing the understanding gained in the initial instances to ease understanding

in the later successive ones [14, 16].

Conversely, the current metrics, including MCC, unconsciously neglect

code context. Specifically, they simply count code elements. For example,

the lines of code (LOC) metric count lines and MCC just counts conditions.

This simple counting approach has led to complexity thresholds that do

not reflect real complexity and as a result they are not good discriminators of

complex and non-complex programs. Evidently, real software systems have

many functions that are classified as very complex (according to these tradi-

tional metrics because their complexities are much higher than the suggested

thresholds) while in practice they are not [15].

It is important however to adopt an empirical approach to explore what

effects exist in practice. In particular, we conducted a family of diverse

experiments starting with a very basic subjective ranking up to very so-

phisticated eyetracking based experiments. The results show that subjects

estimated some functions with very high cyclomatic complexity as not com-

plex. Moreover, they performed comprehension tasks and achieved better

results in regular code (despite having higher cyclomatic complexity) when

compared with its non-regular counterpart.

Beyond the immediate effects we already presented, our empirical inves-

tigation revealed more insights about reading code in general and reading

regular code in particular. Specifically, the results show that code reading

is very non-linear as opposed to reading natural language text. As for reg-

ular code, it seems that it is not read completely where parts of it are only
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1 void func6(int ∗∗mat, int rs, int cs) {
2 int i, j, ii, jj, x, msk[9];
3 for (i = 0; i < rs; i++) {
4 for (j = 0; j < cs; j++) {
5 if (i >= 1 && j >= 1)
6 msk[0] = mat[i − 1][ j − 1];
7 else
8 msk[0] = 0;
9 if (i >= 1)

10 msk[1] = mat[i − 1][j];
11 else
12 msk[1] = 0;
13 if (i >= 1 && j < cs − 1)
14 msk[2] = mat[i − 1][j + 1];
15 else
16 msk[2] = 0;
17 if (j >= 1)
18 msk[3] = mat[i][j − 1];
19 else
20 msk[3] = 0;
21 if (j < cs − 1)
22 msk[4] = mat[i][j + 1];
23 else
24 msk[4] = 0;
25 if (i < rs − 1 && j >= 1)
26 msk[5] = mat[i + 1][j − 1];
27 else
28 msk[5] = 0;
29 if (i < rs − 1)
30 msk[6] = mat[i + 1][j];
31 else
32 msk[6] = 0;
33 if (i < rs − 1 && j < cs − 1)
34 msk[7] = mat[i + 1][j + 1];
35 else
36 msk[7] = 0;

38 msk[8] = mat[i][j];

40 for (ii = 0; ii < 5; ii++)
41 for (jj = 0; jj < 9 − ii − 1; jj++)
42 if (msk[jj] > msk[jj + 1]) {
43 x = msk[jj];
44 msk[jj] = msk[jj + 1];
45 msk[jj + 1] = x;
46 }
47 printf(”%d”, msk[4]);
48 }
49 printf(”\n”);
50 }
51 }

Listing 1: An example of a highly regular function in C language.
Taken from [14].
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scanned [16].

Having considered the way programmers read regular code, this led to

an event-based framework for analyzing code reading. In particular, we ex-

tended the set of events (e.g, reading, scanning) that have been suggested

in previous studies and suggested a way of coding these events for further

analysis [16].

It is true that in this work we introduce a new property that affects

complexity and challenges existing metrics, but regularity is just an example

of such a factor and does not solve everything. It introduces new and wider

considerations that can serve as good guidelines for investigating new factors.

This thesis is structured as a collection of the papers that introduced and

analyzed the above ideas. The papers are described in the following sections.

1.1 High-MCC functions in the Linux kernel

1.1.1 Authors

Ahmad Jbara - Adam Matan - Dror G. Feitelson

1.1.2 Status

• Conference - published at ICPC 2012.

• Journal - extended invited version was published in Empirical Software

Engineering.

1.1.3 Full Citation

• Ahmad Jbara, Adam Matan, and Dror G. Feitelson. High-MCC func-

tions in the Linux kernel. In Proceedings of the 20th IEEE International

Conference on Program Comprehension, ICPC 2012., Jun 2012
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• Ahmad Jbara, Adam Matan, and Dror G. Feitelson. High-MCC func-

tions in the Linux kernel. Empirical Software Engineering, 19(5):1261–

1298, 2014

1.1.4 Summary

In spite of the large number of metrics that have, over the years, been pro-

posed to measure program complexity, there is still no metric, including the

most popular one of McCabe, that effectively measures complexity. More-

over, even a combination of these metrics is not sufficient. This motivates us

to examine the state of the practice of real functions complexity and compare

it to the state of the art of complexity metrics.

In particular, we applied the most widely used complexity metric of Mc-

Cabe on functions of the Linux kernel. The results show that the practice

as reflected in the very long and complex functions diverges from the com-

mon wisdom as reflected by the thresholds suggested and used for measuring

their cyclomatic complexity. Especially, we found functions with very high

MCC (up to 620 which is many times the highest threshold ever suggested).

However, some of these functions seem to be well structured and are not as

complex as their MCC value suggests. A close examination of their structure

reveals quiet a flat and sometimes regular structure.

We focused on regularity as one possible structural property that enabled

an extensive evolution of the supposed high complexity of these functions. In

addition, a very initial subjective ranking experiment showed that subjects

tend to rank such regular functions as not complex.

To draw a wider picture we investigated, in an extended journal paper,

the same ideas in more software systems from varied domains. The results

confirmed the insights and in some cases they were even stronger. For ex-

ample, the highest MCC value we found in Linux was ten times the highest

threshold ever defined, and in the new systems we found functions more than

twenty times this value.
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We conclude that high MCC does not necessarily mean high complexity.

Specifically, simple syntactic metrics cannot capture all program aspects to

reflect effective complexity. For example, regularity is one factor that needs

a context-aware metric to be captured.

1.2 JCSD: Visual support for understanding code con-

trol structure

1.2.1 Authors

Ahmad Jbara - Dror G. Feitelson

1.2.2 Status

Conference - published at ICPC 2014.

1.2.3 Full Citation

Ahmad Jbara and Dror G. Feitelson. JCSD: Visual support for understanding

code control structure. In Proceedings of the 22nd International Conference

on Program Comprehension, ICPC 2014, pages 300–303, New York, NY,

USA, 2014. ACM

1.2.4 Summary

As the functions we investigate have high cyclomatic complexity values and

many works have shown that this metric positively correlates with lines of

code (LOC), it turns out that these functions are generally very long.

One way to see the whole structure of a given long function is to visualize

it. In a previous work we proposed CSD (control structure diagram). In this

diagram each construct type receives a different geometric shape. The size of

the shape reflects the code block controlled by a specific construct. A level

in the diagram represents nesting in the code.
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This diagram is good, among other things, to clearly identify structural

properties in the code such as regularity.

In this short paper we implemented CSD (control structure diagram) as

a tool in a development environment to help developers capture the whole

function’s structure at a glace.

1.3 On the effect of code regularity on comprehension

1.3.1 Authors

Ahmad Jbara - Dror G. Feitelson

1.3.2 Status

Conference - published at ICPC 2014.

1.3.3 Full Citation

Ahmad Jbara and Dror G. Feitelson. On the effect of code regularity on

comprehension. In Proceedings of the 22nd International Conference on Pro-

gram Comprehension, ICPC 2014, pages 189–200, New York, NY, USA, 2014.

ACM

1.3.4 Summary

The real difficulty in defining the term complexity is a barrier that makes

the measurement of code complexity problematic. However, due to its high

importance very many attempts have proposed complexity metrics such as

MCC and LOC.

As we have shown, these metrics fail in reflecting effective complexity

primarily for their syntactic nature. In particular these metrics have pro-

vided false positive answers where functions should have been ranked as not

complex.
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We have suggested regularity as an additional factor that affects compre-

hension and even reduces effective complexity. This factor could explain the

high values that are falsely given by MCC.

To show the effect of regularity on complexity we conducted controlled

experiments where participants performed different comprehension tasks on

two implementations of the same program. One version is regular and the

other is not. As expected the regular versions are longer and ranked as

more complex than their non-regular counterparts, according to the syntactic

metrics.

The results show that subjects achieved better scores in the regular ver-

sions despite being longer and more complex. This shows that regularity

reduces complexity as opposed to the syntactic metrics.

The explanation for this effect is the fact that in regular code the code

segments repeat themselves and therefore understanding the initial segments

helps in understanding the other ones. This explanation was subjectively

verified by a post-experiment question.

A wider aspect that captures regularity but is ignored by syntactic metrics

is context. In particular, conventional syntactic metrics treat all instances of

the same construct or block as if they have the same complexity. However, as

regularity suggests the complexity is reduced as we progress to new instances

of a block we already read and understood.

1.4 How programmers read regular code: A controlled

experiment using eye tracking

1.4.1 Authors

Ahmad Jbara - Dror G. Feitelson

1.4.2 Status

• Conference - published at ICPC 2015.
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• Journal - extended invited version at Empirical Software Engineering.

under review.

1.4.3 Full Citation

• Ahmad Jbara and Dror G. Feitelson. How programmers read regular

code: A controlled experiment using eye tracking. In Program Compre-

hension (ICPC), 2015 IEEE 23rd International Conference on, pages

244–254, May 2015

• Ahmad Jbara and Dror G. Feitelson. How programmers read regular

code: A controlled experiment using eye tracking. Empirical Software

Engineering, 2015. under review

1.4.4 Summary

We have shown that regular code has an effect on code comprehension. In

particular, we showed that a regular implementation of the same problem

is as easy to understand as its non-regular version, and in some cases even

absolutely easier. This is achieved despite the fact that regular code is longer,

and supposed to be more complex than its non-regular counterpart.

Our speculation was that subjects leverage their understanding of the

initial instances of the the repeated pattern to make it easier to comprehend

the other later instances.

To verify this conjecture we conducted an eyetracking based experiment

to learn about the way subjects read and comprehend regular code. The

results show that subjects indeed invest more time and effort in the initial

instances as opposed to the later ones. In particular their efforts decay as

they progress towards later segments and this behavior is governed by an

exponential/cubic model.

This result again emphasizes the importance of context in complexity

metrics. Specifically, two similar segments are treated as having the same
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complexity by the syntactic metrics, where regularity reveals that complexity

in such cases is not additive.

The study of the way programmers read regular code led to the investiga-

tion of their scanpaths. In particular we developed an event-based framework

for analyzing code reading. In this framework we extended the set of events

(e.g, reading, scanning) that have been suggested in previous studies and

proposed a way for coding these events for further analysis [16].

In addition we concluded that code and in particular regular code are far

from being linearly read as in natural language text.

1.5 Quantification of code regularity using preprocess-

ing and compression

1.5.1 Authors

Ahmad Jbara - Dror G. Feitelson

1.5.2 Status

Manuscript, 2014.

1.5.3 Full Citation

Ahmad Jbara and Dror G. Feitelson. Quantification of code regularity using

preprocessing and compression. Manuscript, Jan 2014

1.5.4 Summary

We have suggested regularity as an additional factor that affects comprehen-

sion by reducing complexity of functions that otherwise would be ranked as

very complex.

As regularity is based on repetitions it is reasonable to think that the

more repetitions a function has the more regular it is. To measure the extent

12



of repetition (regularity) we use compression. The higher the compression

ratio the more regular is the code.

In this context we had to cope with two questions. Which compression

scheme should be used? and what parts of the code should be compressed?

To answer these questions we examined different well known compression

schemes and applied them on different preprocessing levels of the code. This

yielded many combinations of compression scheme and preprocessing level.

To select the best combination out of the 20 we had we required that

a good combination should meet three design criteria: good discrimination,

successfully handling small functions, and correlation with complexity as

perceived by humans.

The results showed that the recommended combinations are gzip or bicom

schemes applied on a code skeleton that contains keywords and formatting.
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Abstract McCabe’s Cyclomatic Complexity (MCC) is a widely used metric for the
complexity of control flow. Common usage decrees that functions should not have an
MCC above 50, and preferably much less. However, the Linux kernel includes more
than 800 functions with MCC values above 50, and over the years 369 functions have
had an MCC of 100 or more. Moreover, some of these functions undergo extensive
evolution, indicating that developers are successful in coping with the supposed high
complexity. Functions with similarly high MCC values also occur in other operating
systems and domains, including Windows. For example, the highest MCC value in
FreeBSD is 1316, double the highest MCC in Linux. We attempt to explain all
this by analyzing the structure of high-MCC functions in Linux and showing that
in many cases they are in fact well-structured (albeit we observe some cases where
developers indeed refactor the code in order to reduce complexity). Moreover,
human opinions do not correlate with the MCC values of these functions. A survey
of perceived complexity shows that there are cases where high MCC functions were
ranked as having a low complexity. We characterize these cases and identify specific
code attributes such as the diversity of constructs (not only a switch but also ifs)
and nesting that correlate with discrete increases in perceived complexity. These
observations indicate that a high MCC is not necessarily an impediment to code
comprehension, and support the notion that complexity cannot be fully captured
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using simple syntactic code metrics. In particular, we show that regularity in the code
(meaning repetitions of the same pattern of control structures) correlates with low
perceived complexity.

Keywords Software complexity · McCabe cyclomatic complexity · Linux kernel ·
Perceived complexity · Code regularity

1 Introduction

Mitigating complexity is of pivotal importance in writing computer programs. Com-
plex code is hard to write correctly and hard to maintain, leading to more faults
(Lanning and Khoshgoftaar 1994; Binkley and Schach 1998). As a result, significant
research effort has been expended on defining code complexity metrics and on
methods to combine them into effective predictors of code quality (Ohlsson and
Alberg 1996; Denaro and Pezzè 2002; Olague et al. 2007). Industrial testimony
indicates that using complexity metrics provides real benefits over simple practices
such as just counting lines of code (e.g. Jones 1994; Curtis et al. 1979; Koziolek et al.
2010; Schneidewind and Hinchey 2009).

One early metric that has been used in many studies is McCabe’s Cyclomatic
Complexity (MCC; McCabe 1976). This metric essentially counts the number of
linear paths through the code (the precise definition is given below in Section 2).
In the original paper, McCabe suggests that procedures with an MCC value higher
than 10 should be rewritten or split in order to reduce their complexity, and other
somewhat higher thresholds have been suggested by others (e.g. MSDN 2008;
Foreman et al. 1997; Stamelos et al. 2002; VerifySoft Technology 2005; Curtis et al.
2011). In general, proposed thresholds are typically well below 50, and there appears
to be some agreement that procedures with much higher values are extremely
undesirable.

Nevertheless, in the context of a study of Linux evolution, we have found functions
with MCC values in the hundreds (Israeli and Feitelson 2010). This chance discovery
led to a set of research questions:

1. What are the basic characteristics of high-MCC functions? Specifically,

1.1 How common are such high-MCC functions? In other words, are they
just a fluke or a real phenomenon reflecting the work practices of many
developers?

1.2 What causes the high MCC counts? One may speculate that they are the
result of large flat switch statements, that do not reflect real complexity.
But if other more complex and less regular constructs are found this raises
the question of how developers cope with them.

1.3 Does MCC correlate with other metrics, as has been shown in the past? Or
does it provide independent complexity information?

2. Do high-MCC functions evolve with time? If these functions are “write once”
functions that serve some fixed need and are never changed, then nobody except
the original author really needs to understand them. But if they are modified
many times as Linux continues to evolve, it intensifies the question of how do
the maintainers cope with the supposedly high complexity.
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3. What influences the perception of complexity? Specifically,

3.1 Does a high MCC correlate with perceived complexity? In other words,
does MCC indeed capture the essence of complexity?

3.2 Can we find discrete elements of complexity? In other words, can we
point out specific code attributes that, if present, make a function appear
more complex? This is an extremely important question with respect to
complexity metrics, as an affirmative answer may indicate that complexity
is an additive property of code attributes.

3.3 Is a visual representation of high-MCC functions better than code listings?

4. What other ingredients of complexity may be missing from MCC? In particular,
in our work we found that some high-MCC functions have a very regular struc-
ture. This raised the question whether regularity may counteract the supposed
complexity reflected by the high MCC.

5. Are all the high-MCC functions we found really required, or can some of
this code be replaced or refactored? This issue reflects the tradeoff done by
developers, where sometimes allowing additional code with high complexity
metrics is nevertheless considered better than trying to minimize it.

6. Are the high-MCC functions unique to Linux, or do they also appear in other
operating systems and domains?

7. Altogether, do the high-MCC functions indicate code quality problems with the
Linux kernel?

To gain insight into these issues we analyzed the functions in Linux kernel version
2.6.37.5 that have MCC ≥ 100, which turn out to have MCC values ranging up
to 587—way above the scale that is considered reasonable. We also analyzed the
evolution of all 369 functions that had MCC ≥ 100 in any of the Linux kernel
versions released since the initial release of version 1.0 in 1994 (more than a
thousand versions). In addition we examined three other operating systems and
three systems from different domains—Windows Research Kernel, OpenSolaris,
FreeBSD, GCC, Firefox, and OpenSSL—and found that they also contain similar
high-MCC functions. The highest MCC values were 246, 506, 1316, 1301, 699, and
371 respectively.

In a nutshell, we found that (in Linux) the most common source of high MCC
counts is large trees of if statements, although several cases are indeed attributed
to large switchs. 33 % of the functions do not change, but the others may change
considerably. About 5 % of the functions exhibit extreme changes in MCC values
that reflect explicit modifications to their design, indicating active work to reduce
complexity. We speculate that the ability to work with these functions stems from
the fact that switchs and large trees of ifs embody a separation of concerns, where
each call to the function only selects a small part of the code for execution. This
is especially true if they are nested in each other, rather than coming one after the
other, so this explanation is especially relevant for the deeply-nested functions. On
the other hand we also observed some cases of spaghetti-style gotos, which are not
directly measured by MCC. Such observations motivate studying alternative ways in
which code structure may be analyzed when assessing the resulting complexity. In
particular, we suggest code regularity as an important attribute that may compensate
for complexity.
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The remainder of the paper is structured as follows. In the next section we
define MCC and review its use. We characterize high-MCC functions in the Linux
kernel in Section 3, and their evolution in Section 4. Results of the survey of
perceived complexity are presented in Section 5, and the relationship with regularity
in Section 6. Section 7 discusses the possibility of reducing high-MCC code. High-
MCC functions in other operating systems and domains are examined in Section 8.
Discussion, significance of our findings, and further research directions are presented
in Section 9. This paper is an extended version of a previous conference paper
(Jbara et al. 2012). The main additions are added experimentation (more subjects
and additional experiments), the definition of a metric for code regularity and its
effect, an examination of evidence for cloning, and showing that high-MCC functions
exist also in other operating systems and domains.

2 McCabe’s Cyclomatic Complexity

McCabe’s cyclomatic complexity (MCC) is based on the graph theoretic concept of
cyclomatic number, applied to a program’s control-flow graph. The nodes of such
a graph are basic blocks of code, and the edges denote possible control flow. For
example, a block with an if statement will have two successors, representing the
“then” option and the “else” option. The cyclomatic number of a graph g is

V(g) = e − n + 2p

where n is the number of nodes, e the number of edges, and p the number of
connected components. (In a computer program, each procedure would be a separate
connected component, and the end result is the same as adding the cyclomatic
numbers of all of them.) McCabe suggested that the cyclomatic number of a control-
flow graph represents the complexity of the code (McCabe 1976). He also showed
that it corresponds to the number of linearly independent code paths, and can
therefore be used to set the minimal number of tests that should be performed.

Another way to characterize the cyclomatic number of a graph is related to the
notions of structured programming, where all constructs have single entry and exit
points. The control-flow graph is then planar, and the cyclomatic number is equal
to the number of faces of the graph, including the “outside” area. McCabe also
demonstrated a straight-forward intuitive meaning of the metric: it is equal to the
number of condition statements in the program plus 1 (if, while, etc.). If conditions
are composed of multiple atomic predicates, we could also count them individually;
this is sometimes called the “extended” MCC (Myers 1977). Note that MCC counts
points of divergence, but not joins. It is thus insensitive to unconditional jumps such
as those induced by goto, break, or return.

2.1 Thresholds on MCC

In principle MCC is unbounded, and intuition suggests that high values reflect
potentially problematic code. It is therefore natural to try and define a threshold
beyond which code should be checked and maybe modified. McCabe himself, in
the original paper which introduced MCC, suggests a threshold of 10 (McCabe
1976), and this is also the value used by the code analysis tool sold by his company
today (McCabe Software 2009). The Eclipse Metrics plugin also uses a threshold
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of 10 by default, and suggests that the method be split if it is exceeded (Sauer
2005). VerifySoft Technology suggest a threshold of 15 per function, and 100 per
file (VerifySoft Technology 2005). Logiscope also uses a threshold of 15 (Stamelos
et al. 2002). The STAN static analysis tool gives a warning at 15, and considers values
above 20 an error (Mens et al. 2008). The complexity metrics module of Microsoft
Visual Studio 2008 reports a violation of the cyclomatic complexity metric for
values of more than 25 (MSDN 2008). The Carnegie Mellon Software Engineering
Institute defined a four-level scale as part of their (now legacy) Software Technology
Roadmap (Foreman et al. 1997). High risk was associated with values of MCC above
20, and very high risk with values larger than 50. Heitlager et al. used these risk levels
and suggested a complexity rating scheme based on the percentage of LOC falling
within each risk level (Heitlager et al. 2007).

All the above thresholds consider functions in isolation. VerifySoft also suggests
a threshold on the sum of all functions in the same file. An alternative approach is
to consider the distribution of MCC values. The Gini coefficient, used to measure
inequality in economics, was used by Vasa et al. to characterize the distribution of
different metrics including MCC (Vasa et al. 2009); he found that the distribution
was highly skewed, as we do too. Stark et al. propose a decision chart that plots the
cumulative distribution function (CDF) of MCC values on a logarithmic scale, and
if the CDF falls below a certain diagonal line then the project as a whole should be
reviewed (Stark et al. 1994); in brief, this line requires 20 % of the functions to have
an MCC of 1, allows about 60 % to be above 10, and dictates an upper bound of 90.
However, it seems that this was not picked up by others, and using simple thresholds
remains the prevailing approach.

2.2 Critique of MCC and Correlation with LOC

It should be noted that MCC is not universally accepted as a good complexity metric,
and it has been challenged on both theoretical and experimental grounds.

Perhaps the most common objection to using MCC as a complexity metric is its
strong correlation with lines of code (LOC) (Shepperd 1988; Shepperd and Ince 1994;
Herraiz and Hassan 2011). This correlation has been demonstrated many times, and
indeed, we find that also in the Linux kernel the correlation coefficient of MCC and
LOC is a relatively high 0.88. But if we focus on only the high-MCC functions, the
correlation is much lower. We revisit this issue in Section 3.4.

Ball and Larus note that with n predicates there can be between n + 1 and 2n

paths in the code, so the number of paths is a better measure of complexity than the
number of predicates (Ball and Larus 2000). Others show that MCC only measures
control flow complexity but not data flow complexity and has additional deficiencies
(Shepperd 1988; Shepperd and Ince 1994). In particular, MCC is intrinsic to code, so
it does not admit the possibility that code fragments interact with each other to either
increase or decrease the overall complexity (Weyuker 1988). Finally, Nagappan et al.
have shown that while MCC is a good defect predictor for some projects, there is no
single metric (including MCC) that is good for all projects (Nagappan et al. 2006).

There is, however, no other complexity metric that enjoys wider acceptance and
is free of such criticisms, so MCC remains widely used to this day. Oman’s ‘main-
tainability index’ includes MCC as one of its components (Oman and Hagemeister
1994), and Baggen et al. recently used thresholds on MCC in the context of creating
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a certification mechanism for maintainability (Baggen et al. 2012). Curtis et al. use
a criterion of MCC above 30 to identify ‘highly complex components’, and find that
MCC is one of the four most frequent violations of good architectural or coding
practice over different languages (Curtis et al. 2011). The ‘weighted method count’
metric for object-oriented software is usually interpreted as the sum of the MCC over
all methods in a class. Recently, Capiluppi et al. used MCC to evaluate the change
in complexity of successive revisions of the same file in the Linux kernel (Capiluppi
and Izquierdo-Cortázar 2013), and Soetens et al. used it to check the assumption
that refactoring reduces complexity (as it turns out, most refactoring does not affect
MCC) (Soetens and Demeyer 2010). Thus, given its wide use and availability in
software development and testing environments, MCC merits an effort to understand
it better.

2.3 Distribution of MCC in Linux

Our research question 1.1 concerned the prevalence of high-MCC functions. In
a previous study of the Linux kernel we found that the distribution of MCC is
very skewed, with many thousands of functions with extremely low MCC and few
functions with extremely high MCC (the highest value observed was 620) (Israeli and
Feitelson 2010). In addition, we found that the distribution has a heavy tail, namely
one that decays according to a power law.

It is especially interesting to observe how this distribution has changed with time.
Such a study reveals two seemingly contradictory findings (Israeli and Feitelson
2010). First, it was found that the absolute number of high-MCC functions is growing
with time: in version 1.0 in 1994 there were only 15 functions with MCC of 50 or
more, and in 2008 there were more than 400 such functions. At the same time it was
also found that the distribution as a whole is shifting towards lower MCC values: In
1994 the median MCC was 4 and the 95th percentile was 20, but by 2008 the median
was 2 and the 95th percentile was down to 13. This means that the number of low
MCC functions is growing at a higher pace than the number of high-MCC functions.

In this paper we focus on the tail of the distribution, namely the functions with the
highest MCC values. This is the interesting part of the distribution, because functions
with such high MCC values are thought to be too complex and should not exist.

3 Analysis of High-MCC Functions in Linux

When studying the evolution of the Linux kernel, and in particular how various code
metrics change with time, we found that some Linux kernel functions have MCC
values in the hundreds (Israeli and Feitelson 2010). Here we focus on high-MCC
functions in version 2.6.37.5, released on 23 March 2011, as well as on the evolution
of high-MCC functions across more than a thousand versions released from 1994 to
2011.

3.1 Data Collection

To calculate the MCC we use the pmccabe tool (Bame 2011). This tool also calculates
the extended MCC, i.e. it also counts instances of logical operators in predicates
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(&& and | |). We use the extended version, in order to avoid the confounding effect
of coding style (where a programmer uses either nested conditionals or a logical
operator to achieve the same effect).

Our scripts parse all the implementation files of each Linux kernel, and collect
various code metrics for functions with MCC above 100. However, in some cases
the parsing is problematic. In particular, the Linux kernel is littered with #ifdef
preprocessor directives, that allow for alternative compilations based on various
configuration options (Liebig et al. 2010). As we want to analyze the full code base
and not just a specific configuration, we ignore such directives and attempt to analyze
all the code. As the resulting code may not be syntactically valid, the pmccabe tool
may not always handle such cases correctly. Consequently a small part (around 1 %)
of the source code is not included in the analysis. (Jbara and Feitelson (2013), As a
side note, the conditional compilation itself may also add to the complexity of the
code, but we discuss this issue in another paper).

3.2 Description of High-MCC Functions

The functions with MCC values of 100 or more in Linux kernel 2.6.37.5 have values
ranging up to 587. 104 of these functions come from the drivers subdirectory, with
others coming from arch (12 functions), fs (12 functions), sound (5 functions), net (3
functions), lib (1 function) and crypto (1 function). The sources of all 369 functions
with MCC≥100 that ever appeared in Linux are tabulated in Table 1. We manually
examined a few of the top functions in the drivers subdirectory and found them
dominated by switch statements of symbolic constants. These constants essentially
represent ioctl codes for devices, different modes for emulations, and usage tables of
different human interface devices.

Our research question 1.2 concerns the origin of high MCC counts. A high MCC
can be the result of any type of branching statements: cases in a switch, if statements,
or the loop constructs while, for, and do. But in the high-MCC functions of Linux
the origin is usually multiple if statements or cases in a switch statement, as shown
in Fig. 1. These can be nested in various ways. Somewhat common structures are a
large switch with small trees of ifs in many of its cases, or large trees of ifs and elses.
Logical operators, which can also be considered as branch points due to short-circuit
evaluation, also make some contribution. Loops are quite rare.

Apart from the highest-MCC function, which is an obvious outlier, the rest of the
distribution shown in Fig. 1 is seen to decline rather slowly. Indeed, in this version
of Linux there were 138 functions with MCC ≥ 100, and 802 with MCC ≥ 50. Thus
high-MCC functions are not uncommon (albeit they are a very small fraction of the
total functions in Linux—those with MCC of 50 or more constitute just 0.3 %).

3.3 Visualization of Constructs and Nesting Structure

High-MCC functions are naturally quite long, and include very many programming
constructs. As a result, it is hard to grasp their structural properties. To overcome this
problem and provide better insights into research question 1.2, we introduce control
structure diagrams (CSD) to visualize the control structure and nesting. These are
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Table 1 Classification of the 369 high-MCC functions according to the directories that contain them

Directory Subdirectory # high-MCC Comments
functions

Drivers Staging 65 New drivers being staged into the system
Media 35
Video 25
Sound 25
scsi 24
isdn 21
net 15
usb 14
char 14 Character device drivers e.g. ttys and mice
gpu 11
Block 9 Block device drivers like IDE disks
Others 27
Total 285

Arch m68k 6
sparc64 5
sparc 4
powerpc 4
parisc 4
x86 3
ia64 2
cris 1
mn10300 1
Total 30

Sound oss 18 Cross platform Open Sound System
pci 2
isa 1
Total 21

fs xfs 4
ext4 2
ncpfs 2
Others 9
Total 17

Net ipv6 2
ipv4 2
core 2
802 1
atm 1
ieee80211 1
inet 1
Total 10

Others – 6

somewhat similar to the diagrams used by Adams et al. (2009) to visualize patterns
of using the C preprocessor.

In these diagrams (for example Fig. 2) the bar across the top represents the length
of the function, which starts at the left and ends at the right. Below this the nesting
of different constructs is shown, with deeper nesting indicated by a lower level. Each
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control type is represented by a different shape and color. Each construct (except
large loops) is scaled so as to span the correct range of lines in the function. This helps
to easily identify the dominant control structures, which are possible candidates for
refactoring.

mxl5005s.c:MXL_TuneRF

Legend: if else switch for while
goto

Fig. 2 A function that is a largely flat sequence of ifs
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Fig. 3 A function with
irregular ifs and relatively
deep nesting

init301.c:SiS_EnableBridge

Using the CSDs we easily observe each function’s nesting structure and regularity,
which may affect the perceived complexity of the code.1 Some of the high-MCC
functions are relatively flat and regular. An example is shown in Fig. 2. This function
starts with many small ifs in sequence, and then has 9 large ifs with nested small ifs,
two of which have large else blocks with yet another level of nested small ifs. Despite
the large number of ifs this function is shallow and regular and does not appear
complicated. Other functions, like that shown in Fig. 3, include deep nesting and

1Graphs for all functions analyzed are available at www.cs.huji.ac.il/∼ahmadjbara/hiMCC.htm
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appear to be more complicated. Regularity and its effect on perceived complexity
are discussed in Section 6.

Recall that the high MCCs observed are predominantly due to if statements and
cases in switch statements. This means that the flow is largely linear, with branching
used to select the few pieces of code that should actually be executed in each
invocation of the function. Only a relatively small fraction of the functions include
loops, and in most cases these are small loops. Figure 4 shows an example of a
function that had relatively many loops, and even in this case they can be seen to
be greatly outnumbered by ifs and cases.

While most practitioners typically limit themselves to using nested structured
programming constructs, some also use goto. The goto instruction is one that breaks
the function’s structure and decreases code readability, in particular when backwards

easycap_main.c:easycap_usb_probe

Fig. 4 A function with relatively many loops
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nfs4xdr.c:nfsd4_encode_fattr

x86_emulate.c:x86_emulate_insn

Fig. 5 Examples of functions using goto

jumps occur between successive constructs (Dijkstra 1968). The CSD visualizes the
source and destination points of each goto and their relative locations within the
code. Figure 5 shows examples of two functions that use goto. In the first gotos
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Fig. 6 Correlation of MCC
with LOC for all functions in
Linux kernel 2.6.37.5
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are used only to break out of nested constructs in case of error, and go directly to
cleanup code at the end of the function. This is usually considered acceptable. But
the second uses gotos to create a very complicated flow of control, which is much
more problematic.

3.4 Correlation of MCC with Other Metrics

Research question 1.3 deals with the correlation of MCC with other metrics. Indeed,
one of the criticisms of MCC is that it does not provide any significant information
beyond that provided by other code metrics, notably LOC (lines of code). The claim
is that longer code naturally has more branch points, and thus LOC and MCC are
correlated. Indeed, when comparing the MCC and LOC of all the functions in the
Linux kernel, a significant correlation is observed (Fig. 6). The correlation coefficient
is 0.88, and the regression line indicates that on average there are 3.8 lines of code for
every branch (unit of MCC). However, there is some variability, with a few functions

0

 500

 1000

 1500

 2000

 2500

 3000

 100  200  300  400  500  600

LL
O

C

MCC

0

 500

 1000

 1500

 2000

 2500

 3000

 100  200  300  400  500  600

P
LO

C

MCC

Fig. 7 Correlation of MCC with LLOC and PLOC



1274 Empir Software Eng (2014) 19:1261–1298

1

2

3

4

5

6

7

8

9

 100  200  300  400  500  600

A
ve

ra
ge

 in
de

nt
at

io
n

MCC

CC=0.041

1

2

3

4

5

6

7

8

9

 100  200  300  400  500  600

A
ve

ra
ge

 n
es

tin
g

MCC

CC=0.032

Fig. 8 Correlation of MCC with indentation and nesting

where the LOC outstrips the MCC by a factor of 30 or more (to the left of the top
line in the figure).

But if we focus on the high-MCC functions, the picture is somewhat different.
The results are shown in Fig. 7, with a distinction between LLOC, the non-comment
non-blank lines of code, and PLOC, the total number of lines. The Spearman’s
rank correlation coefficients are 0.586 and 0.507, respectively, indicating a moderate
degree of correlation; and indeed some functions have a relatively low MCC but high
LOC, or vice versa. We used Spearman’s coefficient rather than Pearson’s because it
is more sensitive to correlations when the relationships are not linear.

Another question is whether MCC is correlated with other complexity metrics.
As an example, we checked the correlation of MCC with levels of indentation and
nesting, based on the premise that indentation reflects levels of nesting and higher
complexity (Hindle et al. 2008). Note that this has to be done carefully so as to
avoid artifacts resulting from continuation lines where indentation does not reflect
the structure of the code.

The results are shown in Fig. 8. Obviously there is almost no correlation of
MCC with the average level of indentation or nesting in each function (verified
by calculating the correlation coefficient). This reflects our findings that high-MCC
functions could be either flat switchs and sequences of ifs, or else deep trees of nested
ifs, so a high MCC can come with either high or low nesting.

4 Maintenance and Evolution of High-MCC Functions

Linux is an evolving system (Israeli and Feitelson 2010). It has shown phenomenal
growth during the 17 years till the time the kernel we studied was released in 2011:
version 1.0 had 122,442 lines of actual code, and version 2.6.37.5 had 9,185,179 lines,
an average annual growth rate of 29 %. This testifies to Lehman’s law of “continuing
growth” of evolving software systems (Lehman and Ramil 2003). Obviously, most of
the functions in the current release didn’t exist in the first release—they were added
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Fig. 9 The distribution of new
high-MCC functions (defined
as those with MCC > 100) in
Linux series. Note that the
duration of the 2.6 series is
much longer than the previous
ones
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at some point along the way. And there were also functions that were part of the
kernel for some time and were later removed.

A function can achieve high MCC by incremental additions, or else a new function
may already have a high MCC when it is added. In fact, this happened in all versions
as shown in Fig. 9. (The relatively large number of new functions with MCC above
100 introduced during the 2.6 series is due to the length of this series, which was
started in December 2003.) Regarding incremental growth, note that high-MCC
functions are expected to be hard to maintain. It is therefore interesting to investigate
their trajectory and check how often they are changed, and this was our research
question 2. We did this for all Linux functions that achieved an MCC of 100 or more
in any version of the kernel. There were 369 such functions.
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Fig. 10 Left: the distribution of the coefficient of variation of the MCC of 369 high-MCC functions.
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Fig. 11 Examples of functions whose MCC changed somewhat over time: riocontrol, and ixj_ioctl

To get an initial insight about the evolution of high-MCC functions, we calculate
the coefficient of variation (CV) of the MCC of each function in different versions
of Linux. The coefficient of variation is the standard deviation normalized by the
average. Thus if a function never changes it will always have the same MCC, and the
CV will be 0. If its MCC changes significantly with time, its CV can reach a value of 1
or even more. Figure 10 shows the distribution of the calculated CVs. About 33 % of
the functions exhibit absolutely no change in the MCC across different versions of the
kernel. Note that this does not necessarily mean that the functions were not modified
at all, as we are only using data about the MCC. However it does indicate that in all
likelihood the control structure did not change. Another large group of functions
exhibit small to medium changes in MCC over time. Examples are shown in Fig. 11.2

Finally, some functions exhibited significant changes in their MCC. Examples are
shown in Fig. 12.

The degree to which the MCC changes is only one side of the story. In principle
a very large change may occur all at once, or as a sequence of smaller changes.
Therefore it is also interesting to check the number of times that the MCC was
changed relative to the previous version. This has to be done carefully, because
the Linux release scheme of using production and development versions (described
below) implies that several versions may be current at the same time. Thus when a
new branch is started, its previous version is typically near the start of the previous
branch, not at its end.

Figure 10 shows a scatter plot that compares the degree of change with the
number of changes. The correlation between these two metrics turns out to be
relatively strong, with a Spearman’s rank correlation coefficient of 0.83. This shows
that additional changes tend to accumulate. However, despite the rapid rate in which
new releases of the Linux kernel are made, the high-MCC functions do not change
often. The highest number we saw was a function whose MCC changed 50 times.

An especially interesting phenomenon is that sometimes very large changes occur
in production versions. The Linux kernel, up to the 2.6 series, employed a release

2In this and subsequent figures, we distinguish between development versions of Linux (1.1, 1.3, 2.1,
2.3, and 2.5), production versions (1.0, 1.2, 2.0, 2.2, and 2.4, shown as dashed lines), and the 2.6 series,
which combined both types. These are identified only by their minor (third) number. The X axis is
calendar years starting with the release of Linux in 1994.
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Fig. 12 Examples of functions that exhibit significant changes over time: vortex_probe1, and
st_int_ioctl

scheme that differentiated between development and production. Development
versions had an odd major number and their minor releases were made in rapid
succession. Production versions, with even major numbers, were released at a much
slower rate, and these releases were only supposed to contain bug fixed and security
patches. However, our data shows several instances of large changes in the MCC of a
function that occur in the middle of a production version (Figs. 13 and vortex_probe1
from Fig. 12). Such behavior contradicts the “official” semantics of development vs.
production versions. But at least in some of these cases the change was done in a
production version during the interval between two successive development versions.

In most functions that saw a significant change in MCC the MCC grew. But there
were also cases where the MCC dropped as shown in Fig. 14. The largest drop is
in function sys32_ioctl. This is the function with the highest MCC ever, peaking at
620 in the later parts of kernel version 2.2. At an earlier time, in version 2.3.46, it had
reached an MCC value of 563, but then in version 2.3.47 this dropped to 8. The reason
was a design change, where a large switch was replaced by a table lookup (Israeli and
Feitelson 2010). A similar change occurred in function usb_stor_show_sense, where
a large switch statement was replaced by a call to a new function implementing a
lookup table.
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Fig. 13 Examples of functions that exhibit large changes in production versions: sg_ioctl and
SiS_EnableBridge



1278 Empir Software Eng (2014) 19:1261–1298

0

 100

 200

 300

 400

 500

 600

 700

94 96 98 00 02 04 06 08 10 12

M
C

C

2.1

2.3

2.5

2.2

2.4 0

 20

 40

 60

 80

 100

 120

94 96 98 00 02 04 06 08 10 12

M
C

C

2.52.4

16 20 27 32

Fig. 14 Examples of functions that exhibit a sharp drop in MCC resulting from a design change:
sys32_ioctl and usb_stor_show_sense

However, a sharp drop in MCC value does not necessarily mean a de-
sign change which yields reduced complexity. For example, the function
isdn_tty_cmd_PLUSF_FAX had MCC 154 in version 2.2.14. In version 2.2.15 it
dropped to 3 and the original code was replaced by conditional calls to two other new
functions. One of these functions has MCC 154 exactly as the original function, and
the other has MCC 15. Thus the high-MCC code just moved elsewhere. Likewise, in
version 2.3.9 the function I2o_proc_read_lan_media_operation had MCC 102, which
dropped to 12 in version 2.3.10. The original function had two large switchs which
were cloned later in the same function. In version 2.3.10 the two switchs were
replaced by two new functions. Each of the new functions contained one of the
original switch statements and a new lookup table. The odd thing was that the
lookup tables did not replace the switch statements and were not exploited to
reduce complexity. Another example of an artificial reduction in MCC is function
fd_ioctl_trans. The original function had many long compound if statements with
heavy use of the or operator. In its reduced MCC version the logical or operator
was replaced by the bitwise or which is not counted by the MCC metric.

The above examples may leave the impression that design changes to reduce MCC
are purely technical. However, we also observed cases where the reduction resulted
from a design change requiring a good understanding of the logic of the function,
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Fig. 15 Co-evolution of two related functions
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as the changes are small and deeply interwoven within the code. An example of
such a function is main in versions 2.4.25 and 2.4.26. The chief change in MCC
resulted from defining 13 new secondary functions ranging from 1 to 50 lines of code.
While in the old version negative numbers were used to indicate an error code when
returning from a secondary function, in the new version these numbers were replaced
by positive ones. In addition, in the old version all exceptional cases were handled
locally, whereas in the new version the goto mechanism was used; upon exception
execution jumps to a label which is located at the end of the function. All these
changes require intimate understanding of the function.

Other interesting phenomena that occurred during maintenance were co-
evolution and migration. Figure 15 shows the co-evolution of two related func-
tions. These functions are do_mathemu in /arch/sparc64/math-emu/math.c, and
do_one_mathemu in /arch/sparc/math-emu/math.c. This occurs when two related
functions evolve according to a similar pattern. In many cases this happens because
one of the functions was originally cloned from the other. In the above example,
these are analogous functions in 32-bit and 64-bit architectures; when a large change
was implemented, it was done in both in parallel. Also, in both cases the change
that was initially done in a development version was soonafter propagated to the
contemporaneous production version.

An example of migration is shown in Fig. 16: the vt_ioctl function, which moved
from /drivers/char/vt.c (MCC of 159 in kernel 2.5.35) to /drivers/char/vt_ioctl.c (same
MCC of 159 in kernel 2.5.36). In fact, these two functions are indeed identical.
As another example, cpia_write_proc from /drivers/char/cpia.c, with an MCC of
226 in kernel 2.2.26, morphed into cpia_write_proc in /drivers/media/video/cpia.c,
with an MCC of 211 in kernel 2.4.0 (via the 2.3.99-prex series, where it al-
ready was 211). The change in MCC reflects some changes in the struc-
ture of the function. Much larger changes occurred when x86_emulate_memop
from /drivers/kvm/x86_emulate.c, with an MCC of 285 in 2.6.24.7, morphed into
x86_emulate_insn in /arch/x86/kvm/x86_emulate.c with an MCC of 174 in 2.6.25.
While the second function is partly based on the first, significant changes were made,
and the MCC changed considerably as well.

To summarize, high-MCC functions in the Linux kernel evolve in a variety of
ways. This includes cases where a function changes significantly over time in a series
of individual changes, and cases where functions are split or completely restructured.
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Fig. 16 Evolution of the vt_ioctl function, which migrated from one file to another
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Taken together, these observations provide evidence for the capability of developers
to handle these seemingly complex functions. In the next two sections we investigate
whether they are indeed so complex.

5 Survey of Perceived Complexity

The raison d’être of the definition of MCC is the desire to be able to identify complex
code, with the further goal of avoiding or restructuring it. This is also the reason for
specifying threshold values, and requiring functions that surpass these thresholds to
have proper justification. But the question remains whether MCC indeed captures
complexity as perceived by human programmers.

5.1 Correlation of MCC and Perceived Complexity

To gain some insight into this question, which is our research question 3.1, we
conducted a survey of the perceived complexity of high-MCC functions. The survey
included 92 high-MCC functions that had been identified at the time. It was based on
14 participants, 8 from a summer Linux kernel workshop (advanced undergraduates,
some with industrial experience, but with no prior kernel experience), and 6 that
were recruited later (all were good students after an advanced course in C program-
ming). The goal was to identify notions of perceived complexity, not to quantify the
effect of complexity on developer performance. Thus the survey was conducted in
two hour-long sessions, in which participants were required to page through each
function for one minute and then give it a grade based on how complex (hard to
understand) it looked to them. Grades where given on a personal relative scale.3

These individual scales where then linearly normalized to the range 0 to 10, and
the average and standard deviation of the grades for each function were computed.
The order in which the functions were presented was not related to MCC or any
other attribute, but all participants received the list in the same order. At the end of
the survey, participants were given an opportunity to comment in writing and some
indeed provided notes with their insights.

The results, shown in Fig. 17, indicate little correlation between MCC and
perceived complexity for high-MCC functions. In particular, some functions with
relatively low MCC (within this select set of high-MCC functions) were graded as
having either very high or very low perceived complexity. In the following we focus
on these functions that were perceived as very different but this was not reflected by
their MCC.

The functions that had very low average scores (and to a lesser degree also those
with very high scores) also had relatively low standard deviations, as indicated by the
short error bars. This is partly a result of scores having a limited range of 0–10; an
average of say 1 then implies that it is highly improbable to have any high scores.
But some of the functions with a moderate average complexity actually had both
low and high scores of perceived complexity, leading to a high standard deviation.

3This was chosen to enable them to respond to surprises. Thus if they see a function they think is
“very complex” and give it a high mark, and later another that is even much more complex, they can
still express this using a value beyond their previously used range.
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Fig. 17 Scatter plot showing relationship between measured MCC and perceived complexity. The
small markings are individual grades. The average grade for each function is marked by a larger
diamond, and the error bars denote standard deviations

This is partly due to the fact that complexity is not well defined and the grading
was subjective. For example, one very long function with high MCC value suffered a
strong disagreement among survey participants. This could be because this function
is composed of a mix of simple as well as messy segments.

5.2 Aspects of Complexity Missed by MCC

The functions that were ranked as low complexity are relatively easy to characterize.
These are generally functions dominated by a very regular switch construct, where
the cases are very small and straightforward. For example, the switch may be used
to assign error or status message strings to numerical codes, leading to a single
instruction in each case as illustrated in Fig. 18.

In addition to these single-instruction cases, survey participants noted that long
sequences of empty cases should not be counted as adding complexity; indeed, these
are equivalent to predicates in which many options are connected by logical or (and of
the tools we surveyed, VerifySoft indeed does not count empty cases). Furthermore,

Fig. 18 Example of simple
switch structure from
log_audio_status
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Fig. 19 Example of a
sequence of independent ifs
with the same structure, from
ixj_daa_write. The full
function includes 113 such ifs

repeated use of the same code template (easily identified using a CSD), e.g. in a
long sequence of small ifs that all have exactly the same structure, also reduces the
perceived complexity considerably. An example is shown in Fig. 19.

At the other end of the spectrum, functions that received very high grades for
perceived complexity tended to exhibit either of two features. One was the use of
gotos to create spaghetti-style code, in which target labels are interspersed within
the function’s code in different locations. An example was shown in Fig. 5. Note that
such a goto is deterministic, and therefore not counted by the MCC metric as a branch
point. This should be contrasted with forward gotos that are used to break out of a
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Fig. 20 Example of excessive
line breaks that seem to make
the code harder rather than
easier to understand, from
balance_leaf

complex control structure in case of an error condition. Such gotos were tolerated by
survey participants and even considered as improving structure.

The second feature that added to perceived complexity was unusual formatting.
One manifestation of such formatting was using only 2 characters as the basic unit
of indentation (instead of the common 8-character wide tab). This led to the code
looking more dense and made it harder to decipher the control structure. Another
manifestation was the use of excessive line breaks, even within expressions, as illus-
trated in Fig. 20. These observations hark back to the work of Soloway and Ehrlich
(1984), who show that even expert programmers have difficulty comprehending code
that does not conform to structural conventions. Obviously the problem could be
avoided by using a pretty-printing routine to reformat the code, but evidently this
was not done.

5.3 Comparing Functions to Identify Elements of Complexity

The functions that were found to have the lowest perceived complexity provide
an especially interesting case study. These functions are generally based on large
switch statements, and most if not all of their MCC score is derived from cases
in these switchs. We start by ranking these functions according to their perceived
complexity. By comparing neighboring functions in this ranking we can then identify
code characteristics that led to discrete increases in perceived complexity (thus
answering research question 3.2). This could be done in the first 7 functions; beyond
that, it was not possible to identify individual discrete changes any more.

The function with the lowest perceived complexity score is indeed very simple.
This function has one parameter, and its body comprises a single switch statement
with a long sequence of cases that are compared against the function’s parameter.
The values of the cases are numeric constants and their bodies are single-line blocks
that return a string value. Moreover, the cases are grouped into sets of logically
related cases. These sets are paragraphed (separated by blank lines) and headed by
a single-line comment.

The next function, which was graded as twice more complex than the first one,
accepts one non-scalar parameter, and again contains one switch statement with a
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Listing 1 Listing of the function with the lowest perceived complexity
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Listing 2 Listing of the second function with low perceived complexity
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long sequence of cases. The values of the cases are symbolic constants (except a few
cases of numeric constants) and their bodies assign string values to a shared variable
and then break. There is no paragraphing nor comments. After the switch statement
there are a very simple loop and a call to a macro. The loop references (for the first
time) a variable which was defined before the switch statement, and the macro uses
the variable which was previously assigned within the switch statement. Listings 1
and 2 represent the first and second functions.

The third and forth functions were very similar to each other and received very
close perceived complexity grades. They accept one non-scalar parameter and are
composed of many separate switch statements with paragraphing but no comments.
The values of the cases are numeric constants and the bodies are assignments to a
shared variables, followed by break. A few of these switch statements are governed
by a very simple if and else, so we see some nesting. Nevertheless, the structure of
these functions is still quite flat and regular.

The fifth function introduces several new elements for the first time in this series,
and its average grade is again double that of the previous one. Its header is much
more complex than previous functions, and contains an additional modifier besides
the traditional structure. Moreover, it contains more parameters than before where
some are simple and scalar and others are aggregate. These parameters are listed
over multiple lines, and in one case the type of a parameter was defined in one
line and its name in the next line. This function is still dominated by a large switch
statement with mostly (80 %) consecutive empty cases. The rest of the cases contain
one if statement or a for loop with a nested if statement. In both cases the blocks of
statements are very simple, but the conditions in the ifs span multiple lines.

The sixth function is composed of one large switch statement where each of its
cases is composed of another large switch statement with one simple line for each
of its cases. Moreover, the first case of the outer switch actually contains an if/else
construct with two switch statements in them.

The last function, which was graded as a bit more complex than the previous one,
is composed of two large switch statements that are controlled by if and else. The
cases of these switch statements are composed of nested ifs and elses with simple
conditions. Roughly, the blocks within the different cases create five categories of
regular blocks. Despite the deep nesting in the different cases, the impression is
that this nesting is used to break up ifs with very complicated conditions. This is
obvious because each of these blocks performs a single statement in its innermost
level.

The above allows us to identify the following elements of complexity, which are
generally not acknowledged by metrics like MCC:

– Ending a case with a break, followed by some additional processing after the
switch, is more complex than having a return directly in the case.

– Several small switchs (probably switching on different variables) are more com-
plex than one large switch.

– Using constructs of different types, e.g. ifs in addition to a switch, increases
complexity.

– Adding parameters to a function increases complexity.
– Increasing the nesting of constructs in each other increases complexity.
– Embedding switch statements within ifs and elses is more complex than having

the switch at the top level.
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In some of these cases the more complex version cannot be avoided due to the
logic of the program. But still we can suggest the following Dos and Don’ts lessons:

– Don’t separate processing, localize whenever it is possible.
– If possible, prefer one large switch rather than splitting across many smaller ones.
– Try to avoid mixing constructs of different types.
– Use paragraphing (empty lines separating blocks of code) and comments.

6 Regularity and Perceived Complexity

As we have already stated, High-MCC functions are quite long. Therefore, a visual
representation such as that provided by CSDs may ease capturing their code as a
whole, and may help in grasping structural properties and regularities. This raises the
empirical question of whether a visual view of high-MCC functions has an advantage
over a simple listing of the code, from a human point of view. This is research
question 3.3.

As noted above, using CSDs exposed some functions as being very regular while
others appear to have irregular code structure. This reflects a combination of the
sequence of constructs used, their nesting pattern, and formatting aspects such as
indentation and paragraphing. It seems likely that these factors contribute to the
perception of complexity, even though they are not taken into account by the
MCC metric. A second question is therefore whether regularity correlates with
perceived complexity. If it does, this would answer our research question 4 in the
affirmative.

To answer these questions we conducted an experiment with 15 experienced
programmers. We required that the subjects must have experience in the C language.
All subjects were males except two, with an average age of 31, and an average of
4.8 years experience with C.

The experiment consisted of 30 high-MCC functions, presented in two different
formats. In one phase the code listing of the functions was presented, and in the
other phase the CSD diagrams of the functions were presented. The two phases were
performed separately with a break of at least one day between them. Which phase
(code or CSD) was done first was randomized across subjects. The task was to assign
each function with a perceived complexity score, as in the previous experiment.
Before starting, participants were presented with a short description of CSDs and
an example showing the code and CSD of the same function side by side.

Somewhat surprisingly, the results show that the CSD view had no advantage over
the code view. In fact, in two-thirds of the cases there was no significant difference
in the average scores of the two types of view. Thus it seems that experienced
programmers can achieve a good impression of code by paging through it, and seeing
a graphical representation of the code structure did not provide much additional
information.

To answer the question of whether perceived complexity correlates with regu-
larity, we used the Lempel–Ziv compression algorithm (Ziv and Lempel 1978) to
compress each of the 30 functions and computed the percentage of reduction in size
for each one. As this algorithm is based on identifying recurring substrings in the
input, we expect that functions with high regularity will be compressed better than
irregular functions. But it is still unclear what parts of the code should be compressed
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Fig. 21 An example of the control structure of a function, used as the input for the compression
algorithm

to better reflect regularity. To check this we compressed each function twice: once
using its full code as is, and again using a reduced representation of its control
structure. In the control structure compression we remove the function’s content and
retain only its keywords and braces, as shown in Fig. 21. In each case we compare the
results against the perceived complexities (code view and CSD view) as reflected in
the experiment. Thus we got four combinations that are shown in Fig. 22.

The results indicate that there is a weak negative correlation between percentage
reduction for raw code (regularity) and perceived complexity in code view, with a
correlation coefficient of −0.197. Better correlation was achieved when contrasting
the raw reduction against perceived complexity using the CSD view. Here the
correlation coefficient was −0.339.

Figure 22c and d show the results of comparing the percentage reduction of the
control structure and the perceived complexity in both views (code and CSD). In this
case the correlation coefficient was much stronger than in the raw reduction case. For
Fig. 22c plot the correlation coefficient was −0.585 and for Fig. 22d it was −0.667.
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Fig. 22 Correlation of regularity with perceived complexity. Top row (a and b) assess regularity
using percent reduction of size when compressing the original code, while the bottom row (c and d)
use compression of the control structure. In the left column (a and c) perceived complexity is based
on the code view, and in the right column (b and d) on the CSD view
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These results suggest that low compressibility correlates with high perceived
complexity, and by implication, that irregularity correlates with high perceived
complexity.

7 Possibility of Replacing or Refactoring High-MCC Functions

To answer research question 5 (is all the high-MCC code really necessary) we
surveyed all 369 such functions that were collected from more than a thousand
versions of the Linux kernel, using the version with the highest MCC value for each
one. This complements the quantitative metrics discussed above with a qualitative
discussion aimed to gain some insights about their nature. We checked cloning,
replacement of code by a lookup table, and the option of factoring out some
functionality to a subroutine.

To find possible instances of cloning we compared the source code of each
pair of high-MCC functions. For doing this we used the diff Linux command, with
parameters to disregard differences in spaces and blank lines. We also allowed up to
10 % of the total lines of the compared functions in each pair to be different. We
repeated this process twice: Once for the full source code, and again based on the
skeleton of the functions (only the keywords and braces, as explained in Section 6)
while preserving formatting and nesting. Using the code structure comparison, we
found 56 sets of clones, where 34 are pairs of functions, 13 involve 3 functions, 5 have
4 functions, and 4 include no less than 5 clones. For the full code, we found 51 sets
of clones. These results indicate that nearly a quarter of the high-MCC functions are
clones of other high-MCC functions. The existence of so many clones indicates that
developers found it better to create clones with small changes rather than to abstract
away the common functionality and adjust it for different uses by parameterization.

As we stated earlier, some of the high-MCC functions are written in a way that
enables replacing them by a lookup table. We manually examined the 369 functions
and counted those that are likely candidates for replacement by a lookup table. We
found 19 such functions. In addition, we observed some functions that can be partially
replaced (meaning that they contain a few code segments that can be replaced with
a lookup table). There were 23 such functions. These include two sets of size 2 and 3
which also appeared in the clone list. As demonstrated in Section 4, replacement of a
high-MCC function by a simpler function based on table lookup is a transformation
that indeed occurs in practice.

An especially interesting question is whether well-known refactoring techniques
may be applied to high-MCC functions. As high-MCC functions are long, there is a
good chance for applying refactoring techniques such as function extraction. As an
initial check, we tried to identify clone code segments within a given function. We
were assisted by the CSD diagram of each function to get initial impression about
cloned segments. We reviewed all 369 CSDs manually in a single-evaluator style,
and subjectively extracted 61 functions that have what appear to be large cloned
segments. Two examples are shown in Fig. 23. These 61 functions have no overlap
with the lookup table functions, but may overlap with the clone list. This indicates
that about 1 in 6 high-MCC functions may be amenable to function-extraction
refactoring, but at the same time, that developers prefer to replicate code rather than
doing so.
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extractedLnx/linux-2.6.32/drivers/stag ing /r t2860/common/rtmp_init .c_RTMPReadTxPwrPerRate.c.ready

extractedLnx/linux-2.5.9/drivers/net/sk98lin/skge.c_GetConfiguration.c.ready

Fig. 23 Functions with repeated structures that may be factored out

8 Analysis of High-MCC Functions in Other Operating Systems and Domains

The discovery of high-MCC functions in Linux immediately raised the question
whether this phenomenon is unique to Linux (with its free-for-all open source
development methodology), or maybe such functions occur also in other systems and
domains. This was research question 6.
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To answer this, we analyzed the source code of three additional operating systems,
and three open source systems from other domains. In the operating systems domain
we chose Windows, FreeBSD, and OpenSolaris. From non-OS domains we chose
GCC (compilers), Firefox (browsers), and the OpenSSL toolkit. The Windows
Research Kernel (WRK) contains the source code for the NT-based kernel which
is compatible with Windows Server 2003. Its source code includes core sources for
object management, processes, threads, virtual memory, and the I/O system. It does
not include Plug-and-Play, power management, virtual DOS machine, and the kernel
debugger engine. The other five are the full codebases of FreeBSD, OpenSolaris,
GCC, Firefox, and OpenSSL respectively.

Table 2 summarizes initial results of our analysis. We see that all these systems
contain high-MCC functions with extreme values at their upper bound. For example,
in the FreeBSD system the highest MCC value was 1316 which is 26 times higher
than the highest threshold that was ever defined. It is true that the absolute number of
these functions in each system is small, but they represent a non-negligible fraction of
the control flow constructs in the respective systems. This is listed in the table under
‘percent of MCC values’, meaning what fraction of the total MCC summed over all
the functions in the system is contained in the high-MCC functions. For example, in
the Windows system functions with an MCC above 50 account for more than 18 %
of the total MCC in the system.

According to Table 2 there are relatively few high-MCC functions and a large
number of low-MCC functions. This observation indicates that the distribution of
MCC values is skewed in all of the systems. An important class of skewed distri-
butions are distributions with heavy tails. The common definition of heavy-tailed
distributions is that their tail is governed by a power law, so Pr(X > x) ∝ x−α . To test
the existence of a power-law tail one can use the log-log complementary distribution
plot. This plot should produce a straight line for a perfect power law tail where its
slope corresponds to the tail index α. Such plots for the MCC values of functions in
our four opperating systems and three other applications are shown in Fig. 24. In all
cases the lines look straight, and do not plunge downwards as they would for short-
tail distributions. Because we are interested in the tail of the distribution we focused
on the top 1 % of the values and performed a linear regression. The results show that
the tail indices for all the systems are a bit higher than 2, so these distributions have
a bounded variance. The common definition of heavy tailed distributions requires a
tail index in the range between 0 and 2, which leads to unbounded variance. Thus

Table 2 High-MCC function characteristics of four operating systems and three open source projects
from other domains.

Name Version Total Max # high-MCC funcs % of MCC values
funcs MCC ≥ 100 > 50 ≥ 100 > 50

Windows WRK-v1.2 4074 246 18 84 7.0 18.6
FreeBSD 9 (stable) 67528 1316 103 490 5.3 11.8
OpenSolaris 8 21259 506 34 202 4.2 11.6
Linux 2.6.37.5 259137 587 138 765 1.6 5.1
Firefox 9 (stable) 26444 699 27 181 3.3 9.9
GCC 4.8.0 72542 1301 248 938 10.2 21.3
OpenSSL 1.0.0k 6560 371 22 78 9.0 18.2



1292 Empir Software Eng (2014) 19:1261–1298

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

1  10  100  1000  10000

su
rv

iv
al

 p
ro

ba
bi

lit
y

MCC

Linux
FreeBSD

Solaris
Windows

Firefox
GCC

openSSL

Fig. 24 Log-log complementary distribution plot of MCC values in four different systems

these distributions are a border case: they have a power law tail, but with a tail index
of slightly more than 2.

9 Discussion and Conclusions

We have shown that the practice as reflected in the Linux kernel regarding large and
complex functions diverges from common wisdom as reflected by thresholds used
in various automatic tools for measuring MCC. This is not surprising, as a simplistic
threshold cannot of course capture all the considerations involved in structuring the
code. However, it does serve to point out an issue that deserves more thorough
empirical research. We now turn to the implications of our findings.

9.1 MCC and Linux Quality

The basic underlying question we faced was whether the high-MCC functions in
the Linux kernel constitute a code quality problem, or maybe such functions are
actually acceptable and the warnings against them are exaggerated. This was our
final research question, 7, and we can now discuss it based on all our findings.

Linux provides several examples where long and sometimes complex functions
with a high MCC seem to be justified. It is of course possible to split such functions
into a sequence of smaller functions, but this will be an artificial measure that only
improves the MCC metric, and does not really improve the code. On the contrary, it
may even be claimed that such artificial dissections degrade the code, by fragmenting
pieces of code that logically belong together.

For example, one class of functions that tend to have very high MCC values are
those that parse the options of some operation, in many cases the flag values of an
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ioctl (I/O control) system call for some device. There can be very many such flags,
and the input parameter has to be compared to all of them. Once a match is found,
the appropriate action is taken. Splitting the list of options into numerous shorter
lists will just add clutter to the code.

Another class of functions that tend to have high MCC values are functions
concerned with the emulation of hardware devices, typically belonging to unavailable
(possibly legacy) architectures. The device may have many operations that each
needs to be emulated, and furthermore this needs to take into account many different
attributes of the device. Thus there are very many combinations that need to be
handled, but partitioning them into meaningful subgroups may not be possible.

Despite the inherent size (and high MCC) of these functions, in many cases it may
be claimed that they do not in fact cause a maintenance burden. This can happen
either because they need not be maintained, or because they are actually not really
complex.

As we saw in Section 4, more than a third of our functions exhibited no or
negligible changes during the period of observation. In some of the other functions,
which had larger changes, there was only a single large-change event. Thus most
functions actually displayed strong stability the vast majority of the time. On average
these functions do not require much effort to maintain.

Alternatively, functions with a high MCC may not really be so difficult to
comprehend and maintain. MCC counts branch points in the code. If the cumulative
effect of many branch points is to describe a complex combination of concerns, it
may be hard for developers and maintainers to keep track of what is going on. But
if the branching is used to separate concerns, as in the example of handling different
flag values in an ioctl, this actually makes the code readable.

Our conclusion is therefore that for the most part the high-MCC functions found
in Linux do not constitute a serious problem. On the contrary, they can serve as
examples of situations where prevailing dogmas regarding code structure may need
to be lifted.

9.2 Refinements to the MCC Metric

The observation that the MCC value of a function may not reflect “real” complexity
as it is perceived by developers has been made before. Based on this, there have
been suggestions to modify the metric to better reflect perceived complexity. Two
previously suggested refinements are the following:

– Do not count cases in a large switch statement. This was mentioned already
in McCabe’s original paper (McCabe 1976), and is re-iterated in the MSDN
documentation (MSDN 2008).

– Also do not count successive if statements, as successive decisions are not as
complex as nested ones (Harrison et al. 1982).

Both of these modifications together define McCabe’s “essential” complexity metric,
leading to a reduced value that assigns complexity only to more convoluted struc-
tures. But at the same time McCabe suggests a lower threshold of only 4 for this
metric (McCabe Software 2009).

Generalizing the above, we suggest that one should not penalize “divide and
conquer” constructs where the point is to distinguish between multiple independent
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actions. This may include nested decision trees in addition to switch statements
and sequences of if statements. Note, however, that this refines the simple syntac-
tic definition, as it is crucial to ensure that the individual conditions are indeed
independent. For example, a switch statement in which a non-empty case falls
through to the next case violates this independence, and thus adds complexity to the
code.

The above suggestions are straightforward consequences of applying the principle
of independence to basic blocks of code. However, this does not yet imply that they
lead to any improvements in terms of measuring complexity. This would require
a detailed study of code comprehension by human developers, which we leave for
future work.

One more aspect that should be considered in MCC refinement is regularity. It
is reasonable to think that regular functions need less effort to comprehend than
irregular ones. As we have already seen compression algorithms tend to reflect the
regularity extent in functions. This can be used to help in counterbalancing the
exaggerated values of the MCC metric. In addition, we note based on our experience
with Linux scheduling (e.g. Etsion et al. 2006) that at least in some cases complexity
is much more a result of how the logic of the code is expressed than a result of its
syntactical structure. For example, even knowing the scheduling algorithm, it was
hard to understand how the code implements this algorithm, despite the fact that its
MCC was reasonably low. Thus syntactic metrics like MCC cannot be expected to
give the full picture.

9.3 Threats to Validity

Our results are subject to several threats to validity.
Linux uses #ifdefs to enable configuration to different circumstances. Analyzing

code that contains such directives may be problematic due to unbalanced braces. We
are aware of this and dropped files that were tagged as syntactically incorrect by the
pmccabe tool. In spite of their low percentage, these files may contain interesting
functions with high MCC values that we would have missed.

While pmccabe is a well known tool for calculating MCC values, we found a bug
in it: it counted the caret symbol (bitwise xor) as adding to the MCC value. We
wrapped pmccabe with code that fixed this bug, and manually confirmed the results
for selected functions. However, other bugs may exist in this and other tools.

In assessing the evolution of high-MCC functions, we actually rely on the MCC
values. This is not necessarily right because a function may change without affecting
the control constructs, or it may be that one construct was deleted but another was
added. Thus our counts of changes may err on the conservative side. Our survey
on perceived complexity also suffers from a few threats. For example, grading 92
functions within 2 hours is difficult and causes fatigue, which may affect the grading
of the last functions. Moreover, a learning effect may also occur.

The survey of perceived complexity suffers from being subjective. It would have
been good to also include some low-MCC functions in this survey, to see whether
subjects distinguish between them and the high-MCC functions. In subsequent work
we are also complementing this work by using a controlled experiment involving
tasks related to code comprehension, specifically understanding, fixing bugs, and
adding features (Jbara and Feitelson 2013, in preparation).
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Regarding external validity, we have verified that high-MCC functions exist also in
other operating systems and in some specific systems from other domains, and are not
unique to Linux. However, these are only preliminary results as we only examined
one specific system from each domain. Also, our results are limited to systems coded
in C, and do not necessarily generalize to systems written in an object-oriented
style.

9.4 Future Work

One avenue for additional work is to assess the prevalence of high-MCC functions. It
is plausible that an operating system kernel is more complex than most applications,
due to the need to handle low-level operations. Although our results have shown that
such functions also exists in other domains it would be interesting to repeat this study
for more systems in these domains and even move to new domains.

Another important direction of additional research is empirical work on compre-
hension and how it correlates with MCC. This is especially needed in order to justify
or refute suggested modifications to the metric, and indeed alternative metrics and
considerations, and improve the ability to identify complex code. For example, our
perceived complexity survey identified formatting and backwards gotos as factors
that should most probably be taken into account. An interesting challenge is to try
and see whether the functions with spaghetti gotos could have been written concisely
in a more structured manner.

Regarding the correlation between perceived complexity and regularity as
reflected by the Lempel-Ziv algorithm we think that retaining formatting attributes
(such as indentation and linebreaks) besides the control structure is a reasonable
direction as these attributes may affect regularity and perceived complexity.

Finally, in the context of studying Linux, the main drawback of our work is its
focus on a purely syntactic complexity measure. It would be interesting to follow this
up with semantic analysis, for example what happens to the functionality of high-
MCC functions that seem to disappear into thin air. Thus this study may be useful in
pointing out instances of interesting development activity in Linux.
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ABSTRACT

Program comprehension is a vital mental process in any mainte-
nance activity. It becomes decisive as functions get larger. Such
functions are burdened with very many programming constructs as
lines of code (LOC) strongly correlate with the McCabe’s cyclo-
matic complexity (MCC). This makes it hard to capture the whole
code of such functions and as a result hinders grasping their struc-
tural properties that might be essential for maintenance.

Program visualization is known as a key solution that assists in
comprehending complex systems. As a matter of fact we have
shown, in a recent work, that control structure diagrams (CSD)
could be useful to better understand and discover structural proper-
ties of such functions. For example, we found that the code regu-
larity property, and even cloning, can be easily identified by CSDs.

This paper presents JCSD, which is an Eclipse plug-in that im-
plements CSD diagrams for Java methods. In particular it visu-
alizes the control structure and nesting of a Java method, and by
this it easily conveys structural characteristics of the code to the
programmer and helps him to better understand and refactor.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments—Graph-

ical environments

General Terms

Design, Human Factors

Keywords

Visualization, code regularity, code complexity, MCC, LOC

1. INTRODUCTION
Program visualization (PV) is one aspect of Software visualiza-

tion (SV). It has been defined as ”the program is specified in a
conventional, textual manner, and the graphics is used to illustrate
some aspect of the program or its run-time execution" [10].

Software visualization has been around for a long time to facil-
itate both the human understanding and effective use of computer
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software [12]. In particular, by providing visual representation of
the code (program visualization) programmers can handle and un-
derstand complex software more easily.

The comprehension of a given program becomes crucial as pro-
grams get larger. One of the key solution to this is better visualiza-
tion [7]. This insight is consistent with our results about the effec-
tiveness of using visualization to explore interesting properties of
very long functions mainly in the Linux kernel and in many other
systems [6, 5]. Our criteria for selecting long functions was those
with high (higher than twice the highest threshold ever suggested)
McCabe’s cyclomatic complexity (MCC) as it is well known that
MCC has a strong correlation with lines of code (LOC) [4]. There-
fore, functions with high-MCC values are not only very long but
also burdened with very many control constructs.

This makes it hard to capture the whole code of such functions
as it spans over many pages and studying their structural properties
is also not easy, in particular when such properties are scattered
across the long code yet are related.

To cope with this we suggested to visualize such functions focus-
ing on their structure and therefore we presented the control struc-
ture diagram (CSD) [6, 5]. In particular it was applied on high-
MCC functions taken from the Linux kernel.

We showed that the high MCC does not really reflect effective
complexity as there are functions with much higher MCC values
but they are still well structured and easy to understand and handle.

This diagram has proved to be very useful as we have used it to
examine the structure of these long functions. We identified regu-
lar code segments within them. Regularity in code means that code
segments are repeated many times in the same function usually in
a consecutive manner, but there are cases where instances appear
separately. Such structural property is easily identified when the
functions are visualized, especially when the block sizes are re-
flected in the diagram as it is the case in CSD.

Moreover, we conducted an experiment to check correlation be-
tween regularity and perceived complexity. In this experiment we
got better correlation when the functions were presented to the sub-
jects using CSD rather than the code listing.

To summarize, using CSD diagrams we realized that long func-
tions that are supposed to be hard (according to traditional metrics)
are actually well structured and easy to handle.

These promising results lead to the thought of integrating CSDs
in a development environment. Our efforts produced an Eclipse
plug-in called JCSD which is used to create CSD diagram for Java
methods.

The JCSD tool is available for downloading and more details at
URL http://www.cs.huji.ac.il/%7eahmadjbara/jcsd/jcsd.html.
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2. THE JCSD

2.1 Design and Implementation
JCSD is a plug-in that has been developed for the Eclipse IDE

for visualizing the control structure and nesting of Java methods. It
is an implementation of our earlier study about CSD diagrams [6,
5]. In its current version the plug-in has one simple use case: when-

ever a programmer clicks a method’s name in the project explorer

window of Eclipse it produces a control structure diagram (CSD)

in a separate resizable window. Figure 1 shows an example of a
method and its CSD diagram.

The view window of the diagram is a typical Eclipse inner win-
dow. It is movable and resizable. It enables the programmer to
move it and position it vertically or horizontally. Moreover, in cases
the function is extremely long there is a possibility to resize the
window which automatically scales the diagram while resizing.

The general process of creating the CSD diagram is composed of
three basic stages. Initially, the source code of the method is pre-
processed: comments are removed, braces are added as required,
and line breaks are added, if needed, after opening and closing
braces and semicolon.

After preprocessing, a tree is built where nodes represent con-
structs. Each node contains the construct type it represents and its
block size.

On the basis of the tree built, the CSD is drawn and the tool
listens to the resize event to enable future scaling of the diagram.
Each time the resize event is raised the diagram is redrawn on the
basis of the same tree.

2.2 Control Structure Diagram - CSD
As we stated earlier, CSD is a visualization of the control struc-

ture and nesting of a Java method. Three design criteria were con-
sidered when we designed this diagram:

• Capturing the whole code at once as much as possible.

• Reflecting the size of the different blocks in the code.

• Identifying the different types of control flow constructs.

To meet the first criterion we visualize the structure only by con-
sidering constructs and nesting while discarding simple statements.
For the second criterion we allocate more space on the diagram for
larger blocks. In particular we measure the size of each block and
scale its representation in the diagram accordingly. For the last
criterion we provide different geometric shapes and colors for dif-
ferent types of constructs. For example, the if statement is repre-
sented by a yellow trapezoid, and the wider the trapezoid the larger
the block it controls in the code. Figure 1 shows an example of a
Java method along with its CSD produced by the JCSD tool.

The CSD diagram is structured as follows. At the top appears
the legend that maps between the different constructs and their ge-
ometric shapes. The whole function is denoted by a bar, which
contains its name, underneath the legend. The content of the func-
tion is represented in the diagram from left to right while nesting is
reflected by deeper levels. Moreover, empty space between the ge-
ometric shapes represents uncontrolled lines of code between con-
trolled blocks in the code.

For example, Figure 1 visualizes a method called nextGen. This
method receives a board representing a generation of Conway’s

Game of Life and it creates the next generation. This method, at
its top level, is composed of three blocks. The first block encom-
passes the uncontrolled lines 3 and 4. The second block starts at
line 6 and ends at 11, while the third one spans the lines 13 to 29.

These three blocks are represented in the CSD diagram at the first
level right underneath the function bar. The first block is repre-
sented by a proportional empty space at the left. Next to it is the
second block which is represented by a small ellipse, and the third
block is represented by a larger ellipse as it contains more lines in
the original code than the previous block.

Levels in the diagram reflect nesting in the code. For example,
the leftmost yellow trapezoid in level 3 in the diagram represents
the if statement in line 6 in the listing which is nested in two for

loops.

2.3 Analysis of Example Usage
To illustrate our tool we used the jEdit open source project which

is a programmer’s text editor written in the Java language. We ap-
plied our tool on the getSize method taken from the ExtendedGrid-

Layout class of jEdit.
Figure 2 shows the CSD of this method while its listing is shown

at URL http://www.cs.huji.ac.il/%7eahmadjbara/jcsd/getSize.java as
it is quite long. Moreover, Table 1 shows its common metrics val-
ues.

According to the traditional metrics used the getSize method is
supposed to be hard for understanding. It has 348 lines of code
spanning about 6 pages. This is what a programmer really sees and
it is not easy to capture the whole structure of methods with such
size. However, it is easy by using a CSD.

When examining its control flow complexity (measured by MCC)
we see that it is on the highest threshold ever given. Moreover,
when considering its lines of code metric together with its MCC we
recognize that the average size of its control blocks is about 6 lines,
therefore the method is not purposelessly long but very many con-
trol constructs are interwoven within its lines. This could be easily
observed by the diagram without considering complexity metrics.

The nesting metrics also indicate that this method is not easy to
handle. The average nesting of all its lines is 1.3 which means that
on average every line is nested. However, one might think that there
is one control construct that encompasses all others and this metric
does not really reflect nesting. Again, the CSD helps to identify
that. In our example, this is not the case.

Based on the traditional metrics and the method’s listing this
method is portrayed as not easy to understand. However, exam-
ining its CSD diagram reveals a different picture. The regularity
property seems to be relatively dominant as there are two large
code segments (framed in Figure 2) that are likely similar. More-
over, within these two framed segments there are four repeated sub
trees. The first instance appears at the left of the first frame while
the second instance appears at the end of the first frame. The third
and fourth instances appear in the second framed segment. These
two framed segments appear at lines 60 and 173 of their method’s
listing at the URL presented earlier.

The fact that a code segment is totally repeated helps in investing
less efforts in understanding its instances and may be an indicator
for the need of refactoring.

3. RELATED WORK
One of the key solutions to code comprehension is visualization,

in particular when programs get larger [7]. Nassi and Shneider-
man suggested a visual model by proposing a flowchart language
which prevents unrestricted transfers of control and supports struc-
tured programming [11]. In their model the details of the code are
reflected as the constructs and their conditions appear within the
flowchart. This might make the control over large programs diffi-
cult. Trying to grasp structural properties does not necessarily need
the examination of the details. Moreover, the size of the differ-
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Metric name Description Value

LLOC Number of logical lines of code excluding blank lines and comments. 307
PLOC Number of physical lines of code. 348
MCC McCabe’s cyclomatic complexity. 50
Max nesting Max nesting within function. 3
Average nesting Average nesting of all logical lines of code. 1.3

Table 1: Typical metrics values of the getSize method.

Figure 1: The control structure diagram (CSD) for the nextGen method of the Conway’s game of life.

Figure 2: The control structure diagram (CSD) for the getSize method of the ExtendedGridLayout class from the jEdit project. Note

the similarity between the structure of the framed sub trees.
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ent blocks that are represented is not reflected, therefore makes it
harder to capture the structure of the program.

Another work that investigates control structure is a work by
Cross et al. where they present a Control Structure Diagram (CSD)
to clearly depict the control constructs and the control flow at all
levels of program abstraction [2]. Except of its name, it is totally
different from our diagram. This diagram is superimposed upon
the source code which means that the programmer is obliged to see
all the code, and therefore misses the power of abstraction as he
sees the details. Moreover, a diagram that reflects every line in the
code would experience some difficulty in visualizing long meth-
ods which are the real challenge. In addition, their diagram is not
aware to the size of the blocks that are controlled by the different
constructs.

Eick et al. suggested SeeSoft [3, 1] where a line of code is repre-
sented by a colored line ( each construct type is colored differently)
with a height of one pixel and its length reflects the length of the
code line. The structure of the code is reflected by preserving in-
dentation.

Marcus et al. presented sv3D [9, 8]. This visualization technique
is based on SeeSoft and added a third dimension where each code
line is mapped to a rectangular cuboid.

4. FUTURE WORK
One avenue is to empirically evaluate our tool to provide an evi-

dence of its viability in typical comprehension tasks.
Another direction is enhancing it by adding more features to help

discovering more interesting structural properties. In particular,
making JCSD an interactive tool. For example, it would be help-
ful to show the code of a specific block when the programmer’s
mouse hovers on its shape in the diagram, or adding a feature that
enables examining simultaneously the code segments of two sub
trees so the programmer could compare between them for cloning
or regularity detection.

Moreover, implementing CSD for other languages and IDEs would
expose it for more communities and bring more feedback. In par-
ticular, migration to other languages would be easy as the control
constructs and the means for formatting and layout building are
shared between different languages.

Last interesting direction is implementation of this idea as a web-
based tool. The purpose is to enable programmers who search for
code segments in the Internet to be able to examine its structure
before copying it to his development environment.
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Abstract—Complexity metrics are useful to identify potentially
problematic code. But there is little agreement regarding which
complexity metrics should be used and exactly what should be
measured, partly because many different factors influence code
complexity and comprehension. Code regularity has recently been
identified as another such factor, which may compensate for
other complexity factors, especially in long functions with high
cyclomatic complexity. Given that regularity consists of repeated
code structures, it has been suggested to measure regularity by
compressing the code with standard text compression tools. But
such compression can be done in many ways. We compare five
widely available compression tools (LZ77, gzip, LZMA, bzip2, and
bicom) and four levels of preprocessing the code (using the code
as is, or reducing it to a skeleton of keywords and possibly
some formatting). The comparison is done in terms of how the
different combinations discriminate between different functions,
how they correlate with human perceptions of complexity, and
how well they handle relatively short functions. The results show
that different combinations of compression tool and code pre-
processing lead to significantly different levels of discrimination
and correlation with human perceptions, and in addition some
combinations are extremely bad in handling many functions and
should be avoided. Our recommendation is to use gzip or bicom
on a code skeleton containing keywords and formatting.

Index Terms—Software complexity metrics, Code regularity,
Compression.

I. INTRODUCTION

Program comprehension is a vital preliminary step of soft-
ware maintenance. The ability to comprehend a given program
naturally depends on the programmer’s experience, his or her
knowledge of the problem domain, and the complexity of
the program itself [21]. Our focus is on the measurement of
program complexity, and in particular of one specific factor
that has an influence on this complexity, namely the code’s
regularity.

Measuring code complexity is difficult because there are
so many different factors that have an effect on developers
who are trying to comprehend, correct, or modify the code.
As a result there is no single metric of complexity, and in
fact, any given metric will fail to match human perceptions
of complexity in some cases [3], [14], [12]. Myriad metrics
are therefore used to measure distinct aspects of complexity:
McCabe’s cyclomatic complexity (MCC) and nesting measure
control flow complexity [17], [7], Halstead’s metrics measure
vocabulary and operator use [6], fan-in and fan-out measure
data flow [8], and other metrics measure elements of style

and formatting [9], [5]. Regularity was recently introduced
as yet another code attribute that may affect comprehension
[12], [13], [10], [22]. Specifically, it was demonstrated that
developers faced with long regular functions perceive them
as less complex than the conventional metrics (e.g. LoC and
MCC) suggest, and also perform cognitive tasks better than
when faced with shorter non-regular versions of the same
functions. An example of such a regular function from the
Linux kernel is shown in Figure 1.

In order to further investigate the importance and effects of
code regularity we need an objective metric that can quantify
the degree to which given code is regular. Intuitively, regularity
means that the same structures in the code repeat themselves
over and over again. It has therefore been suggested that
regularity may be quantified by compressing the code, and
noting the compression ratio [13]. This indirect methodology
is based on the mechanisms used in compression algorithms,
where repeated segments are replaced with pointers to earlier
instances in order to derive a shorter representation.

Still, this basic idea may be implemented in many different
ways. First, there is the question of which compression scheme
to use. In the following we compare common tools such
as gzip and bzip2 and more exotic ones like LZMA and
bicom. Then there is the question of possible preprocessing
of the code, to better express the regularities in the control
structure. We therefore compare compression of the raw code
with compression of a skeleton containing only the keywords,
possibly with some of the formatting.

Our goal in the present work is to find the best combination
of compression scheme and preprocessing, within the frame-
work of using compression to quantify regularity. Naturally,
this does not go to say that there are no other ways to quantify
regularity. However, finding the best parameters is enough
to support continued work on code regularity, and is also
important for future comparisons with competing approaches.

In order to identify the best combination, we use all of
the available combinations to compress 18755 functions taken
from seven systems in different domains. These functions
have an MCC of 20 or more to exclude short and simple
functions where regularity is not expected to play a part. Our
results show that different combinations indeed lead to very
different results, so it is important to select the compression
methodology carefully. In particular, some of the combinations



s t a t i c i n t a m d 8 1 1 1 e c a l c c o a l e s c e ( s t r u c t n e t d e v i c e ∗dev )
{

s t r u c t amd8111e pr iv ∗l p = n e t d e v p r i v ( dev ) ;
s t r u c t a m d 8 1 1 1 e c o a l e s c e c o n f ∗ c o a l c o n f = &lp−>c o a l c o n f ;
i n t t x p k t r a t e ;
i n t r x p k t r a t e ;
i n t t x d a t a r a t e ;
i n t r x d a t a r a t e ;
i n t r x p k t s i z e ;
i n t t x p k t s i z e ;

t x p k t r a t e = c o a l c o n f−>t x p a c k e t s − c o a l c o n f−>t x p r e v p a c k e t s ;
c o a l c o n f−>t x p r e v p a c k e t s = c o a l c o n f−>t x p a c k e t s ;

t x d a t a r a t e = c o a l c o n f−>t x b y t e s − c o a l c o n f−>t x p r e v b y t e s ;
c o a l c o n f−>t x p r e v b y t e s = c o a l c o n f−>t x b y t e s ;

r x p k t r a t e = c o a l c o n f−>r x p a c k e t s − c o a l c o n f−>r x p r e v p a c k e t s ;
c o a l c o n f−>r x p r e v p a c k e t s = c o a l c o n f−>r x p a c k e t s ;

r x d a t a r a t e = c o a l c o n f−>r x b y t e s − c o a l c o n f−>r x p r e v b y t e s ;
c o a l c o n f−>r x p r e v b y t e s = c o a l c o n f−>r x b y t e s ;

i f ( r x p k t r a t e < 800){
i f ( c o a l c o n f−>r x c o a l t y p e != NO COALESCE){

c o a l c o n f−>r x t i m e o u t = 0x0 ;
c o a l c o n f−>r x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = NO COALESCE;
}

}
e l s e{

r x p k t s i z e = r x d a t a r a t e / r x p k t r a t e ;
i f ( r x p k t s i z e < 128){

i f ( c o a l c o n f−>r x c o a l t y p e != NO COALESCE){
c o a l c o n f−>r x t i m e o u t = 0 ;
c o a l c o n f−>r x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = NO COALESCE;
}

}
e l s e i f ( ( r x p k t s i z e >= 128) && ( r x p k t s i z e < 512) ){

i f ( c o a l c o n f−>r x c o a l t y p e != LOW COALESCE){
c o a l c o n f−>r x t i m e o u t = 1 ;
c o a l c o n f−>r x e v e n t c o u n t = 4 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = LOW COALESCE;
}

}
e l s e i f ( ( r x p k t s i z e >= 512) && ( r x p k t s i z e < 1024)){

i f ( c o a l c o n f−>r x c o a l t y p e != MEDIUM COALESCE){
c o a l c o n f−>r x t i m e o u t = 1 ;
c o a l c o n f−>r x e v e n t c o u n t = 4 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = MEDIUM COALESCE;
}

}
e l s e i f ( r x p k t s i z e >= 1024){

i f ( c o a l c o n f−>r x c o a l t y p e != HIGH COALESCE){
c o a l c o n f−>r x t i m e o u t = 2 ;
c o a l c o n f−>r x e v e n t c o u n t = 3 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , RX INTR COAL ) ;
c o a l c o n f−>r x c o a l t y p e = HIGH COALESCE ;
}

}
}

/∗ NOW FOR TX INTR COALESC ∗/
i f ( t x p k t r a t e < 800){

i f ( c o a l c o n f−>t x c o a l t y p e != NO COALESCE){
c o a l c o n f−>t x t i m e o u t = 0x0 ;
c o a l c o n f−>t x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = NO COALESCE;
}

}
e l s e{

t x p k t s i z e = t x d a t a r a t e / t x p k t r a t e ;
i f ( t x p k t s i z e < 128){

i f ( c o a l c o n f−>t x c o a l t y p e != NO COALESCE){
c o a l c o n f−>t x t i m e o u t = 0 ;
c o a l c o n f−>t x e v e n t c o u n t = 0 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = NO COALESCE;
}

}
e l s e i f ( ( t x p k t s i z e >= 128) && ( t x p k t s i z e < 512) ){

i f ( c o a l c o n f−>t x c o a l t y p e != LOW COALESCE){
c o a l c o n f−>t x t i m e o u t = 1 ;
c o a l c o n f−>t x e v e n t c o u n t = 2 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = LOW COALESCE;

}
}

e l s e i f ( ( t x p k t s i z e >= 512) && ( t x p k t s i z e < 1024)){
i f ( c o a l c o n f−>t x c o a l t y p e != MEDIUM COALESCE){

c o a l c o n f−>t x t i m e o u t = 2 ;
c o a l c o n f−>t x e v e n t c o u n t = 5 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = MEDIUM COALESCE;
}

}
e l s e i f ( t x p k t s i z e >= 1024){

i f ( t x p k t s i z e >= 1024){
i f ( c o a l c o n f−>t x c o a l t y p e != HIGH COALESCE){

c o a l c o n f−>t x t i m e o u t = 4 ;
c o a l c o n f−>t x e v e n t c o u n t = 8 ;
a m d 8 1 1 1 e s e t c o a l e s c e ( dev , TX INTR COAL ) ;
c o a l c o n f−>t x c o a l t y p e = HIGH COALESCE ;
}

}
}

}
r e t u r n 0 ;

}

Fig. 1. Example of a regular function from the Linux kernel.

fail to effectively compress thousands of functions, because
they (or some of their preprocessed versions) are too short. As
being able to handle functions of modest length is important,
these combinations should be avoided.

The remainder of this paper is structured as follows. In the
next section we motivate our work and present its research
questions. Our methodological approach, including a descrip-
tion of the compression schemes and preprocessing levels, is
presented in section III. We present the results and analyze
them in section IV, also showing the correlation of regularity
with perceived complexity and documentation of the code.
Finally, we discuss the results and conclude in section VI.

II. MOTIVATION AND RESEARCH
QUESTIONS

In view of the large number of metrics that have been
defined for measuring code complexity, it is now accepted
that there is no one metric or factor that fully reflects the
complexity of source code [4], [18].

In previous work we have suggested regularity as an ad-
ditional factor that affects code comprehension, especially
in long functions, and provided experimental evidence for
its significance [13], [10]. Specifically, we conducted several
experiments where developers with different levels of expe-
rience were required to understand functions and to perform
maintenance tasks on functions, where different subjects were
actually working on different versions of the same function.
Thus we could evaluate the dependency between performance
and the style in which the function was coded. Additional
experiments required subjects to evaluate and grade a set of
functions. The produced rankings provide us with “ground
truth” regarding how human developers perceive code com-
plexity. Using this information we can now ensure that our
metrics reflect human perception, a quality that is missing in
many metrics that were proposed on theoretical grounds.

The preliminary operational definition of regularity we used
in that study was based on compression. We applied the gzip
tool to compress 30 functions and used the compression ratio
as a metric for regularity. This was actually done twice: first
with the full function code and then using only the control
structure while removing formatting, layout, and expressions.

Comparing the compression ratios with the human grading,
we found a weak correlation between the grades and the
compression ratios achieved on the whole function. We found a
moderate correlation between the grades and the compression
ratios of the control structure, and even better correlation when
using the grades given based on the visual representation of
the functions.

These results show that the methodology of calculating the
compression has an effect on the results. Consequently, a
systematic investigation of the methodology is needed.

Our ultimate goal is to define an objective metric for code
regularity that reflects perceived complexity. Based on the
framework of using compression ratios to quantify regularity,
this may be itemized into the following research questions:

1) Does it matter what compression scheme is used?

2



2) What elements of the source code should be com-
pressed?

3) What is the best combination of compression scheme
and code preprocessing level that would reliably reflect
code regularity?

To answer these questions, we need a way to evaluate the
available compression schemes and combinations. We use the
following three criteria:

1) Good discrimination. We expect functions with different
levels of regularity to exhibit different compression
ratios. A good compression algorithm that compresses
all the functions to the same degree would be useless
for us, even if the compression ratios are all very
high. To check this we use thousands of functions from
multiple sources, and look at the distributions of com-
pression ratios produced by the different compression-
preprocessing combinations.

2) The compression ratio should negatively correlate with
perceived complexity: a higher compression ratio means
higher regularity which should yield better comprehen-
sion. To verify this we use the same 30 functions we
used in the previous work [13], and check the correlation
of complexity scores we have with the compression ra-
tios achieved by the different compression-preprocessing
combinations.

3) Success on as many functions as possible. Some com-
pression schemes fail to compress some functions, espe-
cially when only a minimal skeleton is used, probably
because they are too short. We obviously prefer metrics
that can work on any function.

III. METHODOLOGICAL APPROACH

A. Compression Schemes

As explained above our operational quantification of reg-
ularity is based on compression. However, there are many
compressing schemes available. The compression schemes that
we examine in this work are three that are based on the
Lempel-Ziv algorithm: LZ77, gzip, and LZMA. Furthermore,
we also examine bzip2 and bicom. Table I summarizes these
schemes and indicates the versions used.

Text compression usually works on complete files: an input
file is compressed to create an output file. To work on
functions, we create temporary files that include only the
function of interest.

The most basic compression scheme we use is the original
Lempel-Ziv algorithm LZ77 [25]. This is a dictionary-based
compression scheme, where repeated occurrences of a string
are replaced with a pointer to the original occurrence. The key
point is that the pointer consumes less space than the string
itself assuming the matched string is long enough. Literals that
are not matched are output verbatim. The dictionary need not
be stored, as it can be reconstructed during the decompression.

A very popular version of the Lempel-Ziv algorithm is
implemented in the gzip tool, which is part of the common
GNU software distribution. It combines LZ77 with Huffman

TABLE I
COMPRESSION SCHEMES USED IN THIS STUDY.

Tool Version Description
LZ77 N/A The basic Lempel-Ziv dictionary-based

compression algorithm as implemented
by Marcus Geelnard.

gzip 1.4 a variant of the Lempel-Ziv algorithm
as included in the GNU project.

LZMA 4.32.0.beta3 Lempel-Ziv Markov-chain Algorithm,
another improved version of the
Lempel-Ziv algorithm.

bzip2 1.0.5 Compression algorithm using the
Burrows-Wheeler block sorting
transformation and Huffman coding.

bicom 1.01 Bijective compression based on predic-
tion by partial matching.

coding. The output file format includes some static overhead
(magic number, version number, timestamp, original file name,
and CRC check) so in some cases, especially with small input
files, the output may be larger than the input.

Another compression scheme based on the Lempel-Ziv
algorithm that we use is LZMA. This is based on LZ77
followed by a range encoder. The dictionary size is huge
relative to previous implementations, with special support for
repeatedly used match distances. The encoding is done using
context-based prediction.

Another compression scheme we use is bzip2. This uses,
at its core, the Burrows-Wheeler block sorting transformation,
which treats blocks of input to create sequences of repetitions
of the same symbol. This is then put through run-length
encoding and Huffman coding. Similar to the gzip tool, bzip2
always performs the compression even if the compressed file
is larger than the input.

The last compression scheme we use is bicom. This is a
bijective compressor from the PPM family. Bijective means
that it can always operate both ways: any file can be both
compressed and decompressed. In other words, it does not
produce any specified file format. PPM means prediction by
partial matching. This is an adaptive statistical compression
scheme, where the last n symbols are used to predict what
will come next. Arithmetic coding is used to represent the
output. This compressor is efficient even for very short input
sequences. It was developed for a Windows platform, but we
easily compiled and used it on a Linux system.

B. Code Preprocessing Levels

Regularity in code may occur in different forms, such as
repeated block structures, formatting, identifier names, and
operators usage. We believe that regularity in structure, which
is dominated by the control-flow constructs, has a large effect
on the overall understanding of the code. When using com-
pression to quantify regularity, the question is then what parts
of the code should be compressed to best reflect regularity and
provide a good correlation with humans’ opinions.

We define four levels of code preprocessing. The first level
is the raw code, where we take the source code as is (including
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TABLE II
KEYWORDS IN THE C LANGUAGE AND THEIR LETTER-CODE MAPPINGS.

Keyword Mapping
if A
else B
while C
for D
switch E
case F
do G
? H

TABLE III
THE SYSTEMS FROM WHICH FUNCTIONS WERE TAKEN.

Name Version Domain # functions
Windows WRK-v1.2 Op. syst. 420
FreeBSD 9 (stable) Op. syst. 1413
OpenSolaris 8 Op. syst. 864
Linux 2.6.37.5 Op. syst. 2819
Firefox 9 (stable) Browser 681
GCC 4.8.0 Compiler 1391
OpenSSL 1.0.0k Library 194

comments and blank lines) and compress it. The other extreme
is the unformatted control flow skeleton, where we remove
all expressions, layout, and comments. Thus we are left with
just the sequence of control flow constructs (keywords) and
braces (to preserve the nesting), with no linebreaks. In between
are two levels where we retain the formatting (linebreaks and
indentation), in order to better reflect the block structure. The
difference between them is that one contains only the format-
ting, while the other also indicates the existence of individual
statements (by retaining each statement’s semicolon).

A potential problem with preserving keywords from a
given programming languages is that keywords have different
lengths, and there may be common substrings that cause
keywords to overlap. These characteristics may be expected
to affect the compression without reflecting any regularity. For
example, multiple repetitions of switch may be compressed
more than a similar sequence of the shorter if. To prevent
such bias in the compression process we replace all the
occurrences of each keyword with a single letter. For example,
the keyword if is replaced by the letter code A. Table II
shows the mapping between keywords and letter codes. (It
should be noted that such a replacement was not used in
our previous study [13].) The results of applying the different
transformations are exemplified in Figure 2.

C. Data Collection

We have 5 compression schemes combined with 4 code
preprocessing levels yielding 20 different combinations. We
examine these combinations on 18755 C functions from dif-
ferent systems taken from different domains. The different
systems, their domains, and the number of functions extracted
(filtered) from each system are summarized in Table III.

Initially, our scripts extracted all functions of all systems.
However, there is an intrinsic problem in C source code that is
caused by the C preprocessor (CPP) conditional compilation
directives. This interweaving causes problems in particular due

1 Raw
is_prime(int n)
{

int i, flag=0;
for (i=2; i<=n/2; ++i) {

if (n%i==0) {
flag=1;
break;

}
}
if (flag==0)

printf("%d is prime",n);
else

printf("%d not prime",n);
}

2 Skeleton

{
;
D;;{

A{
;
;

}
}
A

;
B

;
}

3 Format
{

D{
A{
}

}
A
B

}

4 Keywords
{D{A{}}AB}

Fig. 2. Example of the four levels of preprocessing the code.

to unbalanced braces. To avoid this we dropped each source
file that has such problems.

Functions that passed the first step were filtered by their
cyclomatic complexity value. We took functions with MCC 20
or higher to ensure a minimum size of the function’s structure,
as regularity is especially meaningful for long functions and
compression may fail on very small functions. We use the
pmccabe [1] tool to calculate the MCC values of the different
functions.

After these two filtering steps we had 18755 different
functions. However, for many of these functions some of
the different compression schemes yielded negative reduction
percentages. Removing all these problematic cases led to a
reduced set of 7744 functions.

Looking at the 11011 “bad” functions we found that almost
all of them (about 95%) have MCC lower than 40, which
means that they are relatively small functions. As compression
schemes perform better on large inputs, this might explain
the negative values they received. To support this conjecture
we looked at all combinations to see where the negative
values come from, and found them all in the most extreme
preprocessing level (keywords and braces only) compressed by
the bzip2 scheme and in some cases also the LZMA scheme. In
this level each function is in its shortest form, as we remove
all its content including formatting and layout and preserve
only control flow keywords which are then replaced with a
single letter. Thus the functions may be reduced to a few dozen
characters. The problems with bzip2 and LZMA do not mean
that such behavior does not occur in other schemes, but it is
not as prevalent. Table VII shows the different combinations
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Fig. 3. Complementary cumulative distribution plots of compression ratios for 7744 functions using 20 combinations of preprocessing level and compression
scheme.

and the number of functions out of the total 18755 that each
combination failed to compress. Apparently the other schemes
handle small inputs better. We show later that, for schemes that
do not fail often, using the full 18775 functions or the reduced
set of 7744 functions does not lead to significant changes in
the results.

IV. RESULTS AND ANALYSIS

A. Discrimination

As described above we have 20 candidate combinations
of compression scheme and preprocessing level. We applied
these to 7744 functions taken from 7 different systems that
belong to 4 domains. Each function was preprocessed at 4
different levels, and each of the results was then compressed
by 5 different compression schemes.

Figure 3 shows the distribution of the results using the com-
plementary cumulative distribution function (survival function)
of the obtained compression ratios. This distribution function
shows the probability to observe a sample that is bigger than
a given value.

According to this figure both the compression scheme
and the preprocessing level have a significant effect on the

achieved compression. The different schemes and the differ-
ent preprocessing levels lead to different distributions. This
means that selecting the best compression scheme and pre-
processing level is indeed important. Arbitrarily selecting a
popular compression scheme with some or no preprocessing
is inappropriate.

When comparing compression schemes, the figure shows
that some compression schemes consistently compress better
than others, relatively independently of the preprocessing level.
For example, the gzip, and bicom schemes compress very well
at all preprocessing levels, so all their distributions are concen-
trated between moderate and high compression ratios. There
is even a slight advantage for the bicom scheme (compresses
better than gzip).

The bzip2 and LZMA schemes exhibit similar behavior for
three of the preprocessing levels. But with the keywords only
preprocessing level (level 4) the distributions also include low
compression ratios. Interestingly, the LZ77 scheme has more
diverse distributions: one is relatively high, two distribute over
moderate up to high values, and one concentrates at rather low
values.

When using the results to compare preprocessing levels,
we observe that the raw code preprocessing level (level 1)
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TABLE IV
DISCRIMINATION ABILITY OF THE DIFFERENT COMBINATIONS, AS

MEASURED BY THE DIFFERENCE IN COMPRESSION RATIOS AT THE 15TH
AND 85TH PERCENTILES OF THE DISTRIBUTIONS OF FIGURE 3.

7744 functions 18215 functions
Combination Width per func. Width per func.
lz77 1 20.7 0.0038 21.2 0.0016
lz77 2 18.0 0.0033 21.3 0.0016
lz77 3 20.7 0.0038 24.7 0.0019
lz77 4 26.9 0.0049 29.9 0.0023
gzip 1 13.2 0.0024 13.7 0.0010
gzip 2 9.7 0.0017 12.9 0.0010
gzip 3 13.1 0.0024 17.8 0.0013
gzip 4 21.8 0.0040 31.3 0.0024
lzma 1 13.6 0.0025
lzma 2 12.1 0.0022
lzma 3 17.9 0.0032
lzma 4 33.3 0.0061
bzip2 1 13.6 0.0025
bzip2 2 12.8 0.0023
bzip2 3 19.3 0.0035
bzip2 4 38.6 0.0071
bicom 1 11.0 0.0020 11.0 0.0009
bicom 2 7.0 0.0013 10.0 0.0007
bicom 3 9.0 0.0016 12.0 0.0009
bicom 4 13.0 0.0023 18.0 0.0013

compresses relatively highly across the different schemes. One
explanation is that the code is the longest at this level when
compared with others, and therefore has more potential for
compression. Moreover, the input content at this level is real
source code and English text, which are what most compres-
sion schemes are optimized to handle (as stated explicitly in
the gzip manuals for example).

High compression ratios are obviously a desirable trait for
compression schemes. But in the context of using compression
to measure regularity, uniformly high compression ratios may
be counterproductive. Instead, what we want is a good discrim-
ination between input functions that have different degrees of
regularity. (In the next section we add to this the requirement
that this discrimination also corresponds to complexity as
perceived by human developers.)

To assess the discrimination provided by the different com-
binations of compression and preprocessing, we focus on the
central 70% of each distribution. This is the steepest part
of the graph, excluding the bottom 15% which are always
considerably lower and those above the 85th percentile which
are always considerably higher. A large difference between
the 15th and 85th percentiles of the compression ratio distri-
bution indicate that good discrimination is possible. A small
difference runs the risk that small changes in the code may
lead to large and inappropriate changes in the placement
in the distribution. In addition, we also divide this span of
compression ratios (width column in Table IV) by the number
of functions, to see the average difference per function (per
function column in Table IV).

Table IV shows the results for the different combinations,
both for the common set of 7744 functions and for the larger
set of 18215 functions (out of a total of 18755) that are handled
successfully by LZ77, gzip, and bicom.

According to this table combinations at level 4 (keywords
and braces only, with no formatting) exhibit the best discrim-
ination, sometimes by a wide margin. One explanation for
this is that because it is the shortest representation of the
code, compression ratios are necessarily lower, and every little
difference in length or regularity has an effect.

Levels 1 (raw) or 3 (keywords with formatting) vie for
second place. With bicom raw code provides a bit more
discrimination, whereas with LZMA and bzip2 the formatted
skeleton appears a bit better. With LZ77 and gzip they are
essentially the same. Level 2 (including also semicolons for
statements) is nearly always the least discriminative.

The results are not changed when looking at different sets
of functions. Obviously, in order to achieve a fair comparison,
all the combinations should be evaluated on the same set of
functions. However, some of the combinations turn out to
mishandle a large fraction of the original 18755 functions
(this is discussed further below). The problem is that maybe
limiting the evaluation to the subset of 7744 functions that
all combinations can handle may distort the results regarding
the better schemes, which can actually handle many more
functions. We therefore also checked the distributions for a
much wider set of functions, which are well handled by only
three compression schemes. The results for this set are also
presented in Table IV. They are consistent with those discussed
above for the smaller set of functions.

B. Correlation of Regularity with Human Perception

In this section we examine the different combinations of
compression schemes and preprocessing levels against other
factors that are supposed to be related to regularity: perceived
complexity and documentation in the source code.

1) Regularity and Perceived Complexity: In one of the ex-
periments conducted in our previous work 30 diverse functions
with high MCC (McCabe’s cyclomatic complexity) values
were presented to 15 experienced programmers [13]. The
experiment was conducted in two phases, on different days.
In one phase each subject was presented with listings of
the functions and in the other phase he was presented with
code structure diagrams (CSD: a visual representation of the
code structure [12], [11]). Which representation came first
was randomized across subjects. The subjects were asked to
assign a perceived complexity score to each function in each
representation. The result was a moderate negative correlation
between perceived complexity and regularity, where regularity
was measured by compression using gzip of a keywords plus
braces representation of the code.

We can now compute the correlations between the rankings,
from our previous work [13], and all 20 combinations of
compression and preprocessing, to see which combination best
matches the rankings of the human programmers. The two cor-
relation methods (Spearman and Pearson) yielded very close
results but we preferred the Spearman rank correlation because
the data tends to be non linear. The results are presented
in Table V and Figure 4, for both modes of presenting the
functions (visual and listing).
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Fig. 4. Correlation between perceived complexity and compression ratios. Top row shows results when using code listings and second row when using CSD
visualizations.

TABLE V
CORRELATIONS BETWEEN PERCEIVED COMPLEXITY AND COMPRESSION
RATIO FOR DIFFERENT COMBINATIONS OF COMPRESSION SCHEMES AND

PREPROCESSING LEVELS.

Combination Code CSD
lz77 1 -0.179 -0.393
lz77 2 -0.495 -0.579
lz77 3 -0.452 -0.564
lz77 4 -0.421 -0.449
gzip 1 -0.158 -0.363
gzip 2 -0.475 -0.551
gzip 3 -0.490 -0.594
gzip 4 -0.413 -0.524
lzma 1 -0.164 -0.363
lzma 2 -0.461 -0.530
lzma 3 -0.423 -0.525
lzma 4 -0.364 -0.402
bzip2 1 -0.136 -0.337
bzip2 2 -0.411 -0.489
bzip2 3 -0.323 -0.431
bzip2 4 -0.217 -0.193
bicom 1 -0.152 -0.362
bicom 2 -0.493 -0.556
bicom 3 -0.502 -0.608
bicom 4 -0.430 -0.535

According to these results, using the raw code (preprocess-
ing level 1) has very low correlation across all schemes. The
other three preprocessing levels achieve reasonable correla-
tions for all compression schemes except bzip2. When using
the code listing representation, levels 2 and 3 achieve the
best correlation for all schemes and level 4 achieves slightly
lower results. Similar results are achieved when using CSD
representation. As for the highest correlation overall, it occurs
at level 3 of bicom for both the visual mode and code listing
representations. gzip also achieved high correlations which are
not far from those of bicom.

2) Regularity and Comments: Regularity is characterized
by repeated code; similar code segments may consecutively
occur within a function. It seems reasonable to assume that
programmers document such regular functions less than other
non-regular ones. The rationale is that once the first instance
of some repeated code segment is documented the program-
mer fairly believes that following instances of that pattern
are understandable by implication, so he would provide less
comments for these instances or even not provide comments
at all.
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TABLE VI
CORRELATION BETWEEN COMMENTS AND COMPRESSION RATIOS FOR

DIFFERENT COMBINATIONS OF COMPRESSION SCHEMES AND
PREPROCESSING LEVELS.

Combination Correlation coefficient
lz77 1 -0.471
lz77 2 -0.298
lz77 3 -0.240
lz77 4 -0.224
gzip 1 -0.428
gzip 2 -0.253
gzip 3 -0.177
gzip 4 -0.201
lzma 1 -0.358
lzma 2 -0.209
lzma 3 -0.122
lzma 4 -0.142
bzip2 1 -0.298
bzip2 2 -0.118
bzip2 3 -0.034
bzip2 4 -0.034
bicom 1 -0.392
bicom 2 -0.284
bicom 3 -0.217
bicom 4 -0.197

Thus we conjecture that the more the function is regular
the less likely it is to be documented. To examine this idea
we measure the comments of each function of this study and
check if there is any correlation between this measure and the
regularity as quantified by the 20 different combinations of
compression scheme and preprocessing.

There are many ways to measure comments: character-based
length, word-based length, non-stop-word length, or just the
number of comments. However, no matter which metric one
chooses, it should be normalized relative to the function length
(LOC). In other words, we are interested more in the density
of commenting than in their absolute number. This point of
view is required to reliably reflect situations where we have
equal regularity measures for functions with different lengths.
In this work we calculated the character-based length of all
comments divided by the logical lines of code of that function.

We applied the Spearman nonparametric rank correlation
coefficient between the comments ratio and the compression
ratio for all 20 combinations of compression schemes and
preprocessing levels of the 7744 set of functions. The results
are shown in Table VI. Generally, a moderate correlation is
achieved when the raw version of the functions is used. The
best correlation is achieved in level 1 for the gzip and LZ77
schemes, with a slight advantage of the latter one. Many other
combinations also showed some correlation but it was weaker.
bzip2 showed essentially no correlation in its non-raw versions.

These results show that this direction is promising and
apparently programmers indeed document regular code less
than non-regular code. However, more work should be done
in the direction of the best way of measuring comments and
the ways developers document regular code.

C. Handling Small Functions

Generally, compression schemes are good with large inputs.
However, most of the functions in any system are not con-

TABLE VII
NUMBER OF FUNCTIONS EACH COMBINATION FAILS TO COMPRESS,

PRODUCING NEGATIVE REDUCTION.

Combination # Bad functions
lz77 1 0
lz77 2 4
lz77 3 15
lz77 4 534
gzip 1 0
gzip 2 4
gzip 3 15
gzip 4 59
lzma 1 0
lzma 2 8
lzma 3 96
lzma 4 7994
bzip2 1 0
bzip2 2 45
bzip2 3 287
bzip2 4 10942
bicom 1 0
bicom 2 0
bicom 3 0
bicom 4 0

sidered large. For example, in this work we collected 18755
different functions from different systems where more than
half of them have a cyclomatic complexity below 40. Many
more functions have MCC below 20 and were not included
in our sample to begin with. (The cyclomatic complexity is a
relevant threshold criterion as we look at the control structure
of each function).

Functions with relatively low MCC values lead to small
input files that might cause the compression algorithms to
create compressed files that are larger than the original ones. In
particular, one should remember that most of the compression
schemes have some headers that enlarge the output files
without reflecting real compression.

The problem is critical in levels 2, 3, and especially 4, as in
these levels much of the functions’ contents are removed and
the resulting input files are very small. This greatly reduces
the effectiveness of the compression schemes in identifying
and quantifying regular code as they fail to compress these
files by shortening them.

We have already seen that more than half of the functions
checked failed to be compressed in level 4 of bzip2, and more
than 40% failed in level 4 of LZMA. It is important to mention
that other schemes and levels fail also, but not as massively
as bzip2 and LZMA. Table VII shows the numbers of the
“bad” functions under the different combinations. Note that
in this work we considered only functions with MCC above
20. We expect that functions in the range between 10 and 20
would cause many more failures for the different compression
schemes.

While gzip fails for a relatively small number of functions,
bicom stands out for its ability to compress small files — it
did not fail for a single function, regardless of preprocessing
level. We believe that these differences and the inability of the
current compression schemes to deal with small files indicate
that there is room for considering other compression schemes,
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especially ones that are good at small files and maybe even
irreversible (lossy) compression schemes. This is permissible
in our context because we are not concerned with storing the
information, just with measuring the regularity.

At the same time, we note that the shorter the function,
the smaller the scope it has for regularity. Moreover, short
functions are typically considered easier to understand, so the
question of regularity is less pressing for short functions.

V. RELATED WORK

To the best of our knowledge we are the first to study
regularity in the context of code comprehension. In [12] we
examined more than 1000 versions of the Linux kernel where
we identified functions with very high cyclomatic complexity
values. We found that these functions are not really as complex
as their MCC complexity metric suggests. In particular, many
turned out to be well structured and very regular. We then sug-
gested the use of compression (using gzip) as an operational
metric to enable the quantification of regularity. A survey we
conducted provided empirical evidence for correlation between
the measured regularity scores and perceived complexity by
developers. In [13] we extended this work to encompass more
systems and more domains, finding that regular functions also
occur in systems and domains other than Linux.

Based on these results, we set out to verify the conjecture
that regularity is one of the factors that allows developers
to handle long high-MCC functions successfully. In a con-
trolled experiment we compared the performance of subjects
in terms of time and correctness when working on different
implementations of the same specification, where one of
the implementations adopted a regular style [10]. We found
that the subjects working with the regular version achieved
better results than others. The tasks that were used to assess
comprehension in this experiment were feature adding, bug
fixing, and functionality description.

Similar observations and results were reported in [22].
They introduced the idea of Control Flow Pattern (CFP) and
Compressed Control Flow Pattern (CCFP). They used CCFPs
to eliminate some repetitive structure from flow graphs. They
concluded that methods with high cyclomatic complexity have
very low entropy and are easy to understand.

Sasaki et al. also ascribed the large cyclomatic values that
some modules exhibit to the presence of repeated structures
such as consecutive if-else structures [20]. They claimed that
it would not be so difficult to understand such source code.
They proposed to preprocess the code to make complexity
measurement more efficient.

Regularity has been noticed before, but not quantified.
Chaudhary et al. conducted an experiment to study the effect
of control and execution structures on program comprehension
[2]. One result that contradicted their intuitive expectation was
the positive correlation between the subjects’ score and the
control structure complexity. They attributed this result to the
existence of syntactic and semantic regularities in the code.
They claimed that these regularities reduced the efforts in the
learning process and yielded a higher score.

Regularity has also been considered in other areas. Lipson
has defined structural regularity as the compressibility of the
description of the structure [15]. In addition to the regularity
definition, a metric for quantifying the amount of regularity
was suggested. It was defined by the inverse of the description
length or Kolmogorov complexity.

Recently, Zhao et al. have shown that regularity leads to
spontaneous attention [24]. This may be part of the explanation
of why regular code is easier to understand.

There are also works that have used the term “regularity”
with different meanings. For example, Lozano et al. use regu-
larity in the context of naming conventions, complementary
methods, and interface definitions [16]. Zhang suggested a
revised version of Halstead’s length equation. He based it on
the fact that the distribution of lexical tokens in the studied
systems follow Zipf’s law [23]. Similar results, regarding the
distribution of lexical tokens, were presented by [19].

VI. DISCUSSION AND CONCLUSIONS

We have already shown in a previous work that regularity
is yet another factor that may have a substantial effect on code
comprehension. We also suggested to measure it using com-
pression. In this study we have performed a methodological
investigation of this idea, and considered 20 different combi-
nations of compression scheme and code preprocessing level.
We used 5 compression schemes, namely LZ77, LZMA, gzip,
bzip2, and bicom. We used 4 levels of preprocessing which
are based on control-flow structure, formatting, and statement
awareness. The effectiveness of the 20 combinations was
evaluated by how well they discriminate between functions,
how well their compression ratios correlate with perceived
complexity, and how well they handle small functions.

The results show that bzip2 and LZMA are problematic even
with not-so-small functions, so they are less useful and should
not be used. bicom is best on small files, but has somewhat
lower discrimination than gzip. gzip is also very good, except
with the most extreme preprocessing.

The bicom scheme achieved the highest correlations with
perceived complexity so it best reflects effect on humans.
gzip’s performance was very close to that of bicom. Similar
results were also achieved by LZ77, with an advantage of being
more discriminative.

As for preprocessing levels, level 1 (using the raw code)
leads to very low correlations, so this should not be considered
and preprocessing should definitely be used. Several interac-
tions occur between the correlations and other attributes. The
most extreme preprocessing, level 4, led to the best discrimina-
tion, but had somewhat lower correlations than levels 2 and 3.
Preprocessing level 2 gives the highest correlations for LZ77,
LZMA, and bzip2, but level 3 was better for gzip and bicom.

Our conclusion is that gzip or bicom combined with pre-
processing level 3 (retain keywords, braces, and formatting,
but not statements) are the best combination. bicom may be
better at handling small functions, and has the advantage of not
adding a header that distorts the compression ratio (due to its
bijective nature). But gzip is more widely available. Luckily,

9



the combination we used in previous work turns out to be near
optimal, and therefore the results are valid.

These results indicate that compression is a promising
way to measure regularity, but it is important to choose an
adequate scheme. Not all schemes correlate with perceived
complexity and not all of them have the same discrimination
ability. Furthermore, the whole code of the functions is not
representative and a preprocessing step on the code should be
performed prior to compressing.

VII. THREATS TO VALIDITY

Our work suffers from several threats to validity. We prepro-
cessed the code in various levels by removing different things
and retaining others. It might be that some of the removed stuff
has an effect on regularity and we missed that. For example,
Green et al. present a set of coding guidelines that are partially
based on formatting. They suggest considering a program
as a table by using vertical alignments, and considering the
use of white space to show structure [5]. These guidelines
represent factors that are part of regularity. Our work considers
indentation and structure but not all these factors.

Another threat is that most compression schemes add head-
ers to the compressed output, which distorts the compression
ratio. This can be avoided by careful parsing of the output
files to better reflect the true representation of the compressed
data.

A third threat is that we evaluated the effectiveness of
different combinations based on their correlation with a pre-
vious study in which complexity grades were given to 30
functions. Comparisons with larger sets of functions, and
with multiple methods of assessing their complexity, would
increase confidence in the results and allow for more general
conclusions.

For future work, an interesting issue is measuring regularity
of small functions. Indeed, we have shown a scheme that is
capable of compressing small functions, but it has somewhat
lower discrimination ability. Moreover, in this work we ex-
amined only functions with cyclomatic complexity of 20 or
more, but a significant fraction of functions is below that.

Another avenue is to examine other families of compression
schemes which were not examined in this study. For example,
lossy compression scheme may be adequate as humans do not
really read repeated code line by line and allow themselves to
skip predictable parts.
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[3] G. Denaro and M. Pezzè, “An empirical evaluation of fault-proneness
models”. In 24th Intl. Conf. Softw. Eng., pp. 241–251, May 2002, doi:
10.1145/581339.581371.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. Course Technology, 2nd ed., 1998.

[5] R. Green and H. Ledgard, “Coding guidelines: Finding the art
in science”. Comm. ACM 54(12), pp. 57–63, Dec 2011, doi:
10.1145/2043174.2043191.

[6] M. Halstead, Elements of Software Science. Elsevier Science Inc., 1977.
[7] W. Harrison, K. Magel, R. Kluczny, and A. DeKock, “Applying software

complexity metrics to program maintenance”. Computer 15(9), pp. 65–
79, Sep 1982.

[8] S. Henry and D. Kafura, “Software structure metrics based on informa-
tion flow”. IEEE Trans. Softw. Eng. SE-7(5), pp. 510–518, Sep 1981,
doi:10.1109/TSE.1981.231113.

[9] A. Hindle, M. W. Godfrey, and R. C. Holt, “Reading beside the lines:
Indentation as a proxy for complexity metrics”. In 16th IEEE Intl. Conf.
Program Comprehension, Jun 2008.

[10] A. Jbara and D. G. Feitelson, “On the effect of code regularity on
comprehension”. In Proceedings of the 22Nd International Conference
on Program Comprehension, pp. 189–200, ACM, New York, NY, USA,
2014, ISBN 978-1-4503-2879-1, doi:10.1145/2597008.2597140.

[11] A. Jbara and D. G. Feitelson, “JCSD: Visual support for under-
standing code control structure”. In Proceedings of the 22Nd In-
ternational Conference on Program Comprehension, pp. 300–303,
ACM, New York, NY, USA, 2014, ISBN 978-1-4503-2879-1, doi:
10.1145/2597008.2597801.

[12] A. Jbara, A. Matan, and D. G. Feitelson, “High-MCC functions in
the Linux kernel”. In Proceedings of the 20th IEEE International
Conference on Program Comprehension, ICPC 2012., Jun 2012.

[13] A. Jbara, A. Matan, and D. G. Feitelson, “High-MCC functions in the
Linux kernel”. Empirical Softw. Eng. 2013, doi:10.1007/s10664-
013-9275-7. Accepted for publication.

[14] B. Katzmarski and R. Koschke, “Program complexity metrics and pro-
grammer opinions”. In 20th IEEE Intl. Conf. Program Comprehension,
Jun 2012.

[15] H. Lipson, “Principles of modularity, regularity, and hierarchy for scal-
able systems”. Journal of Biological Physics and Chemistry 7(4), pp.
125–128, 2007.

[16] A. Lozano, A. Kellens, K. Mens, and G. Arevalo, “Mining
source code for structural regularities”. In 17th Working Conf. Re-
verse Engineering, pp. 22–31, Washington, DC, USA, 2010, doi:
10.1109/WCRE.2010.12.

[17] T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng. 2(4), pp.
308–320, Dec 1976, doi:10.1109/TSE.1976.233837.

[18] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict compo-
nent failures”. In 28th Intl. Conf. Softw. Eng., pp. 452–461, May 2006,
doi:10.1145/1134285.1134349.

[19] D. Pierret and D. Poshyvanyk, “An empirical exploration of
regularities in open-source software lexicons”. In 17th IEEE
Intl. Conf. Program Comprehension, pp. 228–232, 2009, doi:
10.1109/ICPC.2009.5090047.

[20] Y. Sasaki, T. Ishihara, K. Hotta, H. Hata, Y. Higo, H. Igaki, and
S. Kusumoto, “Preprocessing of metrics measurement based on sim-
plifying program structures”. In Software Engineering Conference
(APSEC), 2012 19th Asia-Pacific, vol. 2, pp. 120–127, 2012, doi:
10.1109/APSEC.2012.59.

[21] S. Tilley, S. Paul, and D. Smith, “Towards a framework for
program understanding”. In Program Comprehension, 1996, Pro-
ceedings., Fourth Workshop on, pp. 19–28, Mar 1996, doi:
10.1109/WPC.1996.501117.

[22] J. J. Vinju and M. W. Godfrey, “What does control flow really look like?
Eyeballing the cyclomatic complexity metric”. In 12th Working Conf.
Source Code Analysis and Manipulation, Sep 2012.

[23] H. Zhang, “Exploring regularity in source code: Software science and
Zipf’s law”. In 15th Working Conf. Reverse Engineering, pp. 101–110,
2008, doi:10.1109/WCRE.2008.37.

[24] J. Zhao, N. Al-Aidroos, and N. B. Turk-Browne, “Attention is sponta-
neously biased toward regularities”. Psychological Sci. 24(5), pp. 667–
677, May 2013, doi:10.1177/0956797612460407.

[25] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression”. IEEE Trans. Information Theory IT-23(3), pp. 337–343, May
1977, doi:10.1109/TIT.1977.1055714.

10



74



Chapter 5

On the Effect of Code

Regularity on

Comprehension
Ahmad Jbara, Dror G. Feitelson.

Status:

Published.

Full citation:

Ahmad Jbara and Dror G. Feitelson. On the effect of code regularity

on comprehension. In Proceedings of the 22nd International Conference

on Program Comprehension, ICPC 2014, pages 189–200, New York, NY,

USA, 2014. ACM

75



On the Effect of Code Regularity on Comprehension

Ahmad Jbara1,2 Dror G. Feitelson2

1School of Mathematics and Computer Science
Netanya Academic College, 42100 Netanya, Israel

2School of Computer Science and Engineering
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

ABSTRACT

It is naturally easier to comprehend simple code relative to com-
plicated code. Regrettably, there is little agreement on how to
effectively measure code complexity. As a result simple general-
purpose metrics are often used, such as lines of code (LOC), Mc-
Cabe’s cyclomatic complexity (MCC), and Halstead’s metrics. But
such metrics just count syntactic features, and ignore details of the
code’s global structure, which may also have an effect on under-
standability. In particular, we suggest that code regularity—where
the same structures are repeated time after time—may significantly
reduce complexity, because once one figures out the basic repeated
element it is easier to understand additional instances. We demon-
strate this by controlled experiments where subjects perform cogni-
tive tasks on different versions of the same basic function. The re-
sults indicate that versions with significant regularity lead to better
comprehension, while taking similar time, despite being longer and
having higher MCC. These results indicate that regularity is another
attribute of code that should be taken into account in the context of
studying the code’s complexity and comprehension. Moreover, the
fact that regularity may compensate for LOC and MCC demon-
strates that complexity cannot be decomposed into independently
addable contributions by individual attributes.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Complexity measures

General Terms

Experimentation, Measurement, Human factors

Keywords

Code regularity, code complexity, MCC, LOC

1. INTRODUCTION
Some code is easy to understand, while other code may be diffi-

cult to understand. The attribute that makes code hard to understand
is generally called “code complexity”. It is important to be able to
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define and measure code complexity, because doing so may enable
reliable predictions of defect density (complex code is harder to
get right) and maintenance effort (complex code is harder to under-
stand, correct, and modify), and enable identification of code that
should be subjected to further scrutiny and possibly refactoring.

However, the concept of code complexity has proven to be elu-
sive. Many complexity metrics have been proposed, but all have
been attacked on various theoretical and practical grounds. Thus it
seems that complexity cannot be captured by a single simple met-
ric: different (combinations of) metrics may be needed for different
projects, and interactions between the metrics should also be con-
sidered [12, 32, 29].

The McCabe cyclomatic complexity (MCC) metric is a widely
used metric that measures one specific aspect of complexity, namely
the cyclomatic complexity of the control flow of the code [27]. In
previous work we studied MCC in the Linux kernel and some other
large projects [18], and found a wide gap between the practice as
reflected in these projects and the suggested thresholds on MCC in
different works [27, 44, 43, 8] and tools [30, 45]. For example,
we found many hundreds of functions with MCC higher than 100,
whereas suggested thresholds for MCC range between 10 and 50,
above which the code is considered “too complex”. But some of
these “high complexity” functions appeared to be well structured,
and underwent extensive evolution [18]. The conclusion was that
this metric does not necessarily reflect the effective complexity, es-
pecially in high-MCC functions.

Using a visualization of the structure of the code in terms of con-
structs and nesting, it was obvious that some of these long functions
are very regular, with a certain pattern of nested constructs being re-
peated very many times (see Fig. 1 for an example). We speculated
that this regularity is an important factor in making the functions
manageable. Indeed, in a survey where participants subjectively
ranked high MCC functions, we found a significant correlation be-
tween functions’ subjective ratings and their regularity [18].

This last result spurred a larger research effort to better under-
stand regularity and its implications, including

• Formally defining regularity and finding ways to measure it
effectively. Our results in this area are outlined in the next
section.

• Performing controlled experiments to precisely measure the
impact of regularity and its relation to other metrics. The
current paper is the initial part of this effort.

• Trying to understand why and how regularity affects devel-
oper performance, using experiments with eye-tracking and
other means. This is ongoing work and results will be pub-
lished separately.
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Figure 1: Code structure diagram (CSD) of a regular function

from the Linux kernel.

Our focus is on establishing the effect of regularity on compre-
hension. In this we emphasize the interest in cognitive and human
aspects of software development (as in e.g. [1, 38, 48]), as opposed
to other studies which focus on direct predictions of project at-
tributes while avoiding the human element (e.g. [34, 9, 31, 4, 28]).
This complements recent works which have shown that complexity
metrics, e.g. MCC, do not reflect complexity as it is perceived by
humans [18, 21, 46, 11].
To enable this study we focus on trying to isolate the effect of

regularity by controlling all other sources of variability. Thus we
do not try to mine existing data from various projects. Instead we
conduct controlled experiments using different solution styles for
the same problem, where one is based on regular repeated struc-
tures and the others are not. Subjects are then asked to perform
typical comprehension tasks on either of the versions, and we eval-
uate their performance when doing so.
The results show that, in terms of correctness, subjects working

on regular code did better overall than those faced with non-regular
code, while taking about the same amount of time. Since the regu-
lar versions are typically longer, this implies that the subjects spent
less time on average on each line of code. We thus conclude that
regularity may compensate for high MCC and LOC at least in some
cases, and should therefore be taken into account alongside these
commonly used metrics. Importantly, these experiments use func-
tions of moderate length, so they also show that regularity is rele-
vant for “normal” code and is not limited to extreme cases such as
the high-MCC functions from Linux studied previously.
In the next section we review the work on quantifying regularity,

followed by motivation and high-level research questions in Sec-
tion 3. The methodological approach is presented in Section 4.
Sections 5 and 6 presents top-level and detailed analyses of the re-
sults of our first experiment, and Section 7 analyzes the second ex-
periment. Related work is reviewed in Section 8, and the discussion
and conclusions are in Section 9.

2. MEASURING CODE REGULARITY
As mentioned above, we suggested code regularity as an expla-

nation for the success in writing and maintaining extremely long
functions in the Linux kernel [18]. Our observation was based on
identifying repeated structures in the code, where the same block
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Figure 2: Correlation of perceived complexity with regularity

for 30 functions from the Linux kernel, from [18].

of nested control structures (and in many cases even the same types
of expressions) are repeated again and again. An example of such
a function is given in Fig. 1. The challenge was then to come up
with a metric that can quantify the prevalence of such structures.

Our metric for regularity is based on the observation that regu-
larity lies at the basis of text compression. For example, the well-
known Lempel-Ziv algorithm compresses text by maintaining a
dictionary of observed strings. When some string is seen again,
a pointer to the previous instance is used instead of the string itself
[51]. Therefore the compression ratio can be used as a metric for

regularity. To apply this insight to code regularity we conducted
a systematic study of compression schemes and their effectiveness
in this context. Quantifying regularity using compression has also
been suggested in other domains [24].

Our study involved 5 compression schemes and 4 levels of pre-
processing the code [17]. The 20 resulting combinations were eval-
uated based on their correlation with perceptions of the complexity
of 30 functions as rated by human developers in the Linux study.
The conclusion was that the most promising combination is the
well-known gzip utility applied to a skeleton of the code obtained
by removing all the statements, expressions, and comments, and
leaving just the keywords, braces, and formatting (specifically in-
dentation). The keywords are then mapped to single-letter codes to
avoid effects that depend on keyword length.

Comparing this metric with the Linux perception results led to
a correlation coefficient of −0.585, indicating that higher regular-
ity as measured by the compression ratio indeed correlates with a
perception of lower complexity by programmers (see Fig. 2). For
comparison, the correlation coefficient of MCC and LOC with the
survey results were −0.29 and 0.16, respectively.

For completeness, we also mention how we measure LOC and
MCC. There are many versions of LOC (lines of code), e.g. with or
without comments and blank lines. As long as one is consistent the
differences are typically small, so we simply use the Linux utility
wc -l which counts newline characters. The files did not contain
comments or blank lines. MCC was defined by McCabe to be the
cyclomatic number of a function’s control flow graph [27]. For a
graph g this is V (g) = e−n+2p, where n is the number of nodes,
e the number of edges, and p the number of connected components.
We use the “extended” version of MCC, which also counts logical
operators within predicates, as calculated by the pmccabe tool [2].

3. RESEARCH QUESTIONS
While the experiment cited above showed a correlation between

regularity and perceived complexity, this was limited to a percep-

tion by human subjects. The experiment did not show that regular-
ity actually affects programmer performance. Evaluating such an
effect is the focus of the present paper. Specifically, we set out to
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Table 1: Attributes of the three versions of the program used in experiment 1.

Version LOC MCC Reg. Description

Regular 125 32 89.7% Loop with switch on digits. Count and track max within switch.

Sort 48 11 55.6% Loop to find number of digits, double loop to sort them, and loop with complex if for processing.

Array 29 6 36.5% Loop to collect digit frequencies in an array, followed by processing.

Table 2: Attributes of the two versions of the programs used in experiment 2.

Regular version Non-regular version

Program LOC MCC Reg. LOC MCC Reg. Description

Median 53 18 79.3% 34 13 60.7% Find median of each 3× 3 neighborhood

Diamond 46 17 82.8% 26 14 43.8% Find max Manhattan-radius around point with all same value

investigate the following high-level research questions, from which
we later derive more detailed ones. The questions are:

Q1. How does regularity affect programmer performance on tasks
that require code comprehension in terms of correctness? Is
it easier to handle regular code?

Q2. How does regularity affect programmer performance on tasks
that require code comprehension in terms of the time needed
to perform such tasks? Is it faster to handle regular code?

Q3. How large is the effect of regularity relative to the effect of
commonly used metrics such as MCC and LOC? Can regu-
larity compensate for high MCC and LOC?

The purpose of this paper is to report the evidence we found
for the importance of code regularity as a factor that affects com-
prehension. In particular, we demonstrate that functions with high
MCC and LOCmay have enough regularity to actually be relatively
simple, whereas functions that have lower MCC and LOC values
can be much harder to understand. This leads us to renounce the
direct use of MCC and LOC as major guidelines for software devel-
opment. Instead, one should consider the effective MCC and LOC
after taking regularity into account.

4. METHODOLOGICAL APPROACH
To study the effect of regularity on comprehension we conducted

two controlled experiments with dozens of participants, different
versions of 3 different programs, and 3 typical comprehension tasks.

4.1 Test Programs
It is problematic to compare different functions with different

levels of regularity, because differences in the domain and func-
tionality may confound the results without being identified. To best
evaluate the effect of regularity one therefore needs programs that
can be implemented in different ways while retaining precisely the
same functionality. In our first experiment we use a set of three ver-
sions of one such program. The common specification for all three
versions is a function that receives a number and returns the most

frequent digits of this number. The rationale for this choice was
that it is not trivial, and facilitates implementations using different
approaches. Moreover, versions of this program need only simple
constructs of the C language so they fit a wide range of subjects, and
a minimal knowledge of the language is sufficient. The three ver-
sions are described in Table 1. To avoid the side effects of format-
ting on comprehension we formatted all of them using the default
formatting mechanism of the Eclipse IDE. All test programs are
available at URL http://www.cs.huji.ac.il/%7efeit/papers/RegExp/.
The main problem with these functions is that it may be claimed

that their specification is just an unnatural exercise. However, we

have in fact seen similar implementations in Linux [18]. Moreover,
to the degree that these functions are indeed unnatural, using them
leads to conservative results because they do not match program-
mer expectations [42]. Nevertheless, we later conducted a second
experiment using two versions of each of 2 additional programs re-
lated to image processing. These programs generally operate on all
the pixels of a 2D image. One version first copies the image into a
larger matrix to create a boundary around it, and then does the pro-
cessing in a very condensed manner. The other uses repeated struc-
tures to perform the processing while checking for different edge
conditions, leading to a regular structure. These two approaches
are both reasonable, and the functions are realistic. A description
of these programs is given in Table 2.

In both cases, the relatively low number of functions is due to
the desire to collect enough statistics about each version, while ran-
domizing experimental aspects such as presentation order.

4.2 Task Design
The design of the tasks in experiment 1 was motivated by the

comprehension framework from Pacione et al. [36], also adopted by
[7]. Pacione et al. stated that a set of typical software comprehen-

sion tasks should seek to encapsulate the principal activities typi-

cally performed during real world software comprehension. They
divided software comprehension activities into those that are per-
formed to gain an overall understanding and those that carry out
a specific task such as bug fixing. In particular, two of the list of
comprehension activities they elicited from the literature were In-
vestigating the functionality of (a part of) the system and Adding to
or changing the system’s functionality. Thus we define three tasks
to be performed on each program version: understanding function-
ality, bug fixing, and adding a new feature.

In more detail, the experiment comprised three comprehension
tasks which we call phase1, phase2, and phase3. In phase1 the
subject is presented with one program version and is asked to an-
swer what does the function do (an open question). In phase2 a
buggy version of the program from phase1 is presented and the
subject is asked to find and fix the bugs in this program (without
looking back at the version from phase 1). The subject does not
know in advance the number of bugs. In phase3 the program ver-
sion from phase1 is presented again and the subject is asked to add
a feature to it. The new feature was modify the program so that it

prints an appropriate message if all digits of the original number

also appear in the result.
For bug fixing we introduced 8 bugs. The bugs types were mo-

tivated by two classification schemes identified in [3] and used in
[19]. According to one scheme a bug can be classified as omission
or commission. Bugs of omission are those where the program-
mer forgets to include some code, while bugs of commission are
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Table 3: A list of the bugs that were applied in the different versions. Bugs 5 and 6 are implemented differently in different versions.

Bug no. Type(scheme1) Type(scheme2) Correct Buggy

1 Commission Initialization maxFreq=0 maxFreq=1

2 Omission Computation pValue=1 removed

3 Commission Data switch(number%10) switch(number/10)

4 Commission Data number=number/10 number=number%10

5 Commission Control if (di==maxFreq) if (di!=maxFreq)

6 Commission Computation case 0: case 0:
maxDigits=maxDigits*10 maxDigits=maxDigits+0*pValue

7 Commission Computation pValue=pValue*10; maxDigits=maxDigits+2*pValue;
maxDigits=maxDigits+2*pValue pValue=pValue*10

8 Omission ? unsigned long long int maxFreq unsigned long int maxFreq

incorrect code which exists in the program. According to the other
scheme a bug can belong to one of six types: Initialization, Con-
trol, Computation, Interface, Data, and Cosmetic. Table 3 shows
the bugs and their classification according to the two schemes. We
applied the same 8 bugs in all 3 versions.
In experiment 2 our emphasis was on obtaining data for more

example programs. Therefore only the task of understanding what
the program does was used. Each subject was asked to perform this
task on two different programs, one being a regular version and
the other a non-regular version. In addition, subjects were asked to
provide their evaluation of the difficulty of the programs and what
features made them difficult.

4.3 Grading Solutions for Correctness
In grading the solutions in experiment 1 we followed [22, 7, 41].

In [22], two graders worked together to grade a programming task
in pair-programming style. Initially, they reviewed several of the
solutions to determine how best to grade them and set a five-point
scale. For a comprehension task each grader assessed half of the
cases after agreeing on a binary rubric. A similar approach was
adopted in [7]. In [41] three modification tasks were assigned a 10-
point score and were graded by a TA who had extensive experience
in grading student programs. A similar approach was adopted in
grading the functional correctness of recalled programs.
Our approach was qualitatively similar. To evaluate the answers

of the subjects in phase 1 we used a multi-pass style for 60% of the
analyzed cases where two or three evaluators were involved. The
grades were based on a scale of 0–100. Initially the first author per-
formed the grading according to a personal rubric. In the second
pass the first author together with a colleague made another evalua-
tion based on a rubric that both agreed on. However, in some cases
there was a substantial gap between the grades of the two passes.
To resolve this and to verify the other cases where the differences
were relatively small we performed a third pass. The first author
selected the top 5 cases that have extreme differences and another
random set of 5 normal cases. These 10 cases were evaluated by
the second author based on the same evaluation rubric used in the
second pass, without knowing which set of 5 they came from. The
results of pass three were as follow: the 5 random normal cases
were evaluated quite close to the first two passes. In the extreme
cases the third evaluator was close to the grades in the first pass in
two cases and to the second pass in the rest. We then used all the
data from the three passes to set the final grades. In cases where
the difference between the first pass and the second was relatively
small we take the grade in the second pass. In moderate differences
(up to 10 points) we average the grades of the first two passes. In
extreme cases we average the two closest grades. Based on this ex-

perience, the other 40% of cases were evaluated by the first author
alone.

A similar style was applied in the third phase. The first author
made an initial evaluation. A second pass was done by the first
author together with the same colleague from the first phase. The
final grade was set by the average of the two passes. The second
phase was evaluated in a single pass single evaluator style due to
the objectivity of the answers. The grade assigned was simply the
number (or percent) of bugs found.

In experiment 2 we exploited our experience from experiment
1. The first author initially graded the solutions of each group im-
mediately after their session, as was done for experiment 1. Two
weeks later he performed a second pass on all the results together
in order to adjust them on a common scale.

4.4 Subjects
The subjects in experiment 1 were recruited in four sessions: 13

computer science students from the HebrewUniversity of Jerusalem,
27 third year and 15 second year computer science students from
Netanya Academic College, and 11 computer science education
students from the Technion institute of technology. Thus we have a
total of 66 subjects, from which 2 were removed because they did
not submit results.

All participants, except those from the Technion, were enrolled
in courses taught by the authors. Participation in the experiment
was anonymous and not compulsory. The analyzed group in exper-
iment 1 is composed of 19 females and 43 males (2 did not state
their gender). The average age is 27.6, the average industrial expe-
rience is 1.7 years, and the average year of study is 2.8.

Experiment 2 was similar and was done in two sessions: 24 com-
puter science students from the Hebrew University, and 20 com-
puter science students from Netanya Academic College, for a total
of 44 subjects. Of these, 5 submitted nearly empty forms so they
were removed from the analysis. The 39 remaining subjects had
an average age of 24.9 and an average industrial experience of 0.6
years. There were 7 females and 32 males.

4.5 Procedure
The authors were the experimenters of all 6 sessions of the two

experiments. Each participant received a booklet which contained
a demographic form to be filled and the material for the different
functions and tasks to be performed, including space for answers.
In experiment 1 there were 3 variants of this booklet, one for each
version of the program. In experiment 2 there were 4 variants,
each including a single version of both programs. The variants dif-
fered in which program was represented by the regular version, and
which came first. The variants were interleaved before distribution
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to ensure an equal number of participants for each variant and no
adjacent participants receiving the same variant. Which subject got
which version was random based on seating order.
The experimenter initially gave a general overview. Participants

were told that the experiment is about comprehension but were not
told the specific goal. The participants were not limited in time. At
the beginning and end of each phase the participants were required
to write the time. A clock was projected on a screen to ensure
reliability. In experiment 1 phase 2 we asked them to also write the
time when they found each bug.
Participants were required not to go back to a previous phase

once they finished it. This was included in the written instructions
and was emphasized by the experimenter. In experiment 2, how-
ever, they were allowed to revise their evaluation of the first pro-
gram after seeing the second program. To enable us to compare the
first evaluation with the second (in case it was changed) we asked
them to write the new evaluation at the end.

4.6 Variables and Analysis
The design of the experiments has the following independent

variables: program, solution style, MCC, LOC, regularity, and de-
mographic details. In experiment 1 there is only one program, but
in experiment 2 there are two. The style is regular, array based, or
sort in experiment 1, and regular or irregular in experiment 2. Our
main interest is naturally in the effect of solution style and metric
values. The demographic variables (gender, age, and industrial ex-
perience) are almost fairly distributed among the different groups
of subjects so they should not have an effect. We believe that future
work should examine the effect of experience on solution styles like
those we are investigating here.
The dependent variables measure the performance of the partic-

ipants in terms of time and correctness. We measure the time spent
by requiring the subjects to fill in the start time and the end time for
each phase. We subjectively evaluate their answers on functionality
and feature adding as described above and compute the percentage
of corrected bugs in the second phase.
We use Analysis of Variance (ANOVA) to test whether the means

of the different groups of the solution style are identical. In this
context, a generalization of the t-test is used when the number
of groups to compare is larger than two. In experiment 1 we use
ANOVA to investigate whether there is a significant difference be-
tween the three solution styles for correctness and completion time,
while in experiment 2 we use a mixed repeated measure.
When using ANOVA there are three main assumptions that should

be met: normality of the dependent variables, homogeneity of vari-
ances, and independence of cases. Regarding the first assump-
tion, ANOVA is considered robust against the normality assump-
tion when in each group there are at least 10 participants. For
the second assumption we use Levene’s test. If this fails, we can
use Welch ANOVA instead of one-way ANOVA. Moreover, a post-
hoc test is used to identify the statistically significant pairs. How-
ever, this test depends on the ANOVA test used: for the one-way
ANOVA the Tukey test should be used, but for Welch ANOVA the
Games-Howell test should be used instead. The third assumption
is met as each subject is only involved in one case.
For experiment 2 we use mixed ANOVA as the tasks performed

by each subject are consecutive (repeated). Mixed ANOVA com-
pares the mean differences between groups that are split on the ba-
sis of two independent variables. One variable is the programming
style which is a within-subjects factor. This factor specifies the
conditions for each subject; in our case each subject performs two
comprehension tasks one after the other. The second variable is the
order factor which is a between-subjects factor. This factor helps

splitting the subjects into two groups based on the order in which
the subject receives the functions.

In this experiment our primary dependent variables are the scores
the subjects achieved on each function and the time spent in un-
derstanding each function. We could also discard the order effect
factor and run a repeated measure ANOVA as we counterbalanced
the treatments for each subject. Counterbalancing is a technique
used to minimize order effect. The primary purpose of the mixed
ANOVA is to check whether there is an interaction between our
within-subjects factor (regular vs. non-regular programming style)
and between-subjects factor (the order of performing the tasks) in
terms of effect on the dependent variable.

5. TOP-LEVEL RESULTS FROM

EXPERIMENT 1
Table 4 summarizes the averages and standard deviations of the

measured dependent variables. It shows for each solution style the
score and time taken in the different phases. The overall column
presents the average grade for the answers in all phases and the
total time spent to give these answers.

According to this table the quality of answers was best for the
regular version when considering the overall average of all phases.
Next is the array version. Participants did the worst with the sort
version. Regarding the average total time spent on all the phases,
the participants of the array version did better than other versions,
while those of the sort version were again the worst. But the differ-
ences were small.

5.1 Correctness Results
Testing the significance of the dependence of correctness scores

on code metrics is complicated by the interaction between the met-
rics. In our test cases MCC and LOC are highly correlated with reg-
ularity. Therefore code with high MCC, which is expected to lead
to worse performance, also has high regularity, which is expected
to lead to good performance. And indeed we find such cases where
the effects cancel out. We therefore use hypotheses which focus on
one metric, and state that the commonly assumed effect need not
occur:

• H10: different values of MCC or LOC do not impact the
correctness of the solutions given.

• H1: high values of MCC or LOC do not necessarily decrease
correctness and low values do not necessarily increase cor-
rectness.

due to the high correlation between them, in the analysis we
treat MCC and LOC together, without going into the discussion of
whether MCC adds complexity information beyond the size infor-
mation that is contained in LOC [40]. We use ANOVA to compare
the means of the groups of the levels of the solution style variable
and determine if any of the means are statistically significantly dif-
ferent in the correctness dependent variable.

Since the assumption of homogeneity of variance failed, we used
the Welch ANOVA. There was a statistically significant difference
between the groups of the solution style levels as determined by
Welch ANOVA (F (2, 35.4) = 19.23, ρ = .000)1. A Games-
Howell post-hoc test showed that the regular (ρ = .000) and array
(ρ = .002) subjects’ groups did statistically significantly better
when compared to the sort style. However, there was no statis-
tically significant difference between the regular and array styles

1F ratio is the between-group variability divided by within-group
variability. Parameters for F represent degrees of freedom. ρ is the
significance of the F ratio. Significance level used is 0.05.
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Table 4: Experiment 1 descriptive statistics (average ± standard deviation) of the measured dependent variables for each phase and

solution style. Correctness is on a scale of 0-100 and time is in minutes.

Phase 1 Phase 2 Phase 3 Overall

Version N Correctness Time Correctness Time Correctness Time Correctness Time

Regular 22 68.8±31.5 13.5±5.6 37.5±18.5 8.9±3.4 57.2±35.3 9.8±4.2 50.2±20.0 32.2±6.9

Sort 22 52.3±27.2 19.1±10.9 10.5±9.1 8.7±5.1 18.9±29.4 8.4±4.3 23.0±11.0 36.2±9.5

Array 20 69.5±33.1 10.1±7.2 35.9±28.5 8.1±4.0 40.5±35.5 9.5±6.2 39.4±23.5 27.7±10.2
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Figure 3: Distributions of average grade for all phases and to-

tal time taken for experiment 1. Cumulative probability is the

probability that a specific sample be smaller than or equal to a

given value.
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Figure 4: Distributions of grades and time vs. MCC. The MCC

values 6, 11, and 32 are for the array, sort, and regular styles,

respectively (per Table 1).

(ρ = .764). This means that the regular style, despite its high
MCC and LOC, is not necessarily worse than the array style which
has very low MCC and LOC. In other words, there is a possibility
that their means are identical. The lack of significant difference
between the array and regular styles is illustrated in Fig. 3 top
(which shows not only the average but the whole distribution) as
their curves are pretty close and even cross each other, while both
are far from the curve of the sort style. This figure shows for each
grade on theX axis the percent of subjects who achieved this grade
or less.

Fig. 4 shows a scatter plot of the different distributions, to em-
phasize the lack of correlation with MCC. Again, the distribution
for sort is seen to be different from the other two. Specifically, the
range from the first to the third quartile of the distribution is 15–
25, as opposed to 30–65 for the other two. In addition to the large
difference between them the subjects’ variability in sort is much
smaller — they all did badly. Regular and array are similar despite
the wide difference in MCC.

5.2 Time Results
We now test the null hypothesis regarding the average of total

time spent in all phases by the subjects of each solution style. The
hypotheses are similar to the ones for correctness:

• H20: different values of MCC or LOC do not impact the
time spent when performing a comprehension tasks on dif-
ferent solution styles.

• H2: high values of MCC or LOC do not necessarily increase
the time spent and low values do not necessarily decrease
time spent.

Again, we use ANOVA to compare the means of the groups of
the levels of the solution style variable and determine whether any
of the means are statistically significantly different in their time-
spent dependent variable.

In this case the homogeneity assumption was met so the one-way
ANOVAwas used. There was statistically significant difference be-
tween the groups of the solution style level as determined by one-
way ANOVA (F (2, 61) = 4.65, ρ = .013). A Tukey post-hoc test
shows that the array style subjects’ group did statistically signifi-
cantly better when compared to the sort style. However, there was
no statistically significant differences between the array and regu-

lar (ρ = .249) as well as between the regular and sort (ρ = .311).
This lack of significant difference is illustrated in Fig. 3 where the
curve of regular falls between the curves for array and sort. We
speculate that the similarity between the timing for participants of
the sort style and the others is a result of frustration and not spend-
ing sufficient time answering the questions, as reflected by their
relatively low correctness scores.

In addition to looking at the total time, we can also consider the
average time per line of code (this is discussed more below, see
Table 6). In this case we get statistically significant differences be-
tween the groups of the different styles (F (2, 61) = 2.75, ρ =
.000). The Tukey post-hoc test shows that the regular style is sig-
nificantly better than the other styles while the sort style is better
than the array. Again, this last result is probably explained by the
two versions having relatively close LOC but the sort subjects gave
up more quickly so they spent less time.

6. DETAILED ANALYSIS OF RESULTS

FROM EXPERIMENT 1
In this section we analyze and test hypotheses regarding the spe-

cific phases of the experiment. For the different subjects’ groups
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Figure 5: Phase 1 results.

and the three phases we compare the differences between the means
and check whether these differences are statistically significant.
Moreover, we investigate which phases impacted the overall results
as presented in the previous section. We use null hypotheses like
before, stating that MCC, LOC, and regularity do not affect the
grades or the time needed to achieve them, and the corresponding
alternative hypotheses.

6.1 Phase 1 - Understanding Functionality
There are two null hypotheses, concerning correctness grades

and time, and derived from the general description of all hypotheses
in this section that was presented above. Using ANOVA there was
no statistically significant difference between these groups (F (2, 61) =
2.18, ρ = 0.122) which means that we cannot reject the null hy-
pothesis and there is a possibility that the means are identical. This
test was run after the homogeneity assumption was met.
This result indicates that despite the high MCC and LOC of the

regular version and the low values of the other two, the subjects of
the regular version did not do significantly worse as would be ex-
pected from functions with high MCC and LOC. Table 4 shows that
the means of the regular version (which has the highest MCC) and
the array version (which has the lowest MCC) are almost equal,
and both are relatively far from the sort version. Fig. 5 can explain
the large difference in the means but the lack of its significance.
The curves of the three versions in this figure look the same for
the lowest 35% of the cases which means that there were no differ-
ences between the groups for the subjects who achieved bad scores.
However, for the remaining 65%, the figure shows that the regular
and array are rather similar and both are quite different from the
sort version. Specifically, the sort version subjects tend to achieve
grades in the range 50–70, whereas with the other versions many
subjects achieved grades above 80.
Regarding the time-spent-variable hypothesis, the ANOVA (ho-

mogeneity assumption was met) found a statistically significant dif-
ference between the three groups (F (2, 61) = 6.27, ρ = 0.03). A
Tukey post-hoc test showed that there is a statistically significant
difference between sort and array with (ρ = 0.03) while there are
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Figure 6: Phase 2 results.

no significant differences between the other pairs. However, when
considering time as a function of LOC the differences are statisti-
cally significant between regular and the two other version, while
there is no significant difference between array and sort.

When looking at the distributions of time spent (Fig. 5 bottom)
we see that they have a significant overlap. This explains the fact
that the averages are not statistically significantly different. How-
ever, when looking at each decile of the distribution, we find that
consistently (except the last data point) array < regular < sort (a
phenomenon called “stochastic dominance”). sort is also distin-
guished by having a much higher maximum (longer tail).

6.2 Phase 2 - Fixing Bugs
Regarding bug fixing, we had three measured variables: bugs

revealed, bugs fixed, and time spent. The homogeneity assumption
was not met for the two first variables, and was met for the time
spent.

Welch ANOVA analysis shows that there is a statistically signifi-
cant difference between the groups for the number of bugs revealed
(F (2, 34.09) = 18.69, ρ = .000) and for the number of bugs fixed
(F (2, 32.63) = 20.97, ρ = .000). A Games-Howell post-hoc test
showed that there is a significant difference between regular and
sort as well as between array and sort. This result is the same for
the first two variables. No significant difference was found between
regular and array. This can be seen in Fig. 6 where the curves of
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Figure 7: Phase 3 results.

the regular and array versions are quite close and the sort curve is
far from both throughout.
Regarding time spent there were no significant differences be-

tween the groups. Again, when investigating the time as a function
of LOC we get that the regular version has statistically significant
differences when compared with the other two versions. However,
the interesting result here is that the sort version had a statistically
significant difference with regard to the array version (explained
below in section 6.4).

6.3 Phase 3 - Adding a New Feature
In this phase the null hypotheses and their alternatives are also

derived from the general description above. ANOVA was again
used to compare between the means of the different groups. Re-
garding the correctness variable the ANOVA shows that there are
statistically significant differences between the groups F (2, 61) =
7.19, ρ = 0.002). The homogeneity assumption also was met. A
Tukey post-hoc test shows that there is a significant difference be-
tween the regular version and the sort version, while there is no
significant difference between all other combinations.
Fig. 7 shows that grade distributions in phase 3 are the most dis-

tinct from each other throughout, but time is not. In particular, the
regular distribution of the correctness variable is markedly higher
than the other two throughout. This is the cause for the overall
higher grades of regular relative to array in Table 4.
When investigating the time variable the ANOVA shows no sig-

nificant differences. In other words, we cannot reject the null hy-
pothesis regarding the time spent.

6.4 Fatigue Effects
It is also interesting to track the changes in subjects’ behaviors

from phase to phase.
One observation is that the difference between the time taken to

perform phase 1 using the 3 different program styles is rather large,
but it converges for the later two phases (see Table 4).
Another observation is that the biggest change is for subjects

who were working with the sort version. For these subjects the

Table 5: Results (average±standard dev.) of experiment 2.

Correctness Time

order Reg. Non Reg. Reg. Non Reg

1st 80.6±25.2 47.8±29.8 15.6±7.5 12.9±4.4

2nd 64.2±33.8 53.9±28.9 13.4±9.6 15.4±6.6

time invested dropped to less than half going from phase 1 to 2,
and stayed there for phase 3. For subjects working with the other
two styles the differences were not so big, and phase 3 took more
time than phase 2. Note that the low time for sort in phase 3 does
not correspond to better results, and in fact their grades were sub-
stantially lower. We therefore suggest that a reasonable interpreta-
tion of this is that the “willingness to keep trying” of the subjects
of the sort version decreases and they give up sooner. The interest-
ing point is that the sort subjects gave up sooner, despite the fact
that their average time was much shorter than an hour, while it is
known that fatigue effects typically occur only in experiments that
span more than an hour [13]. So maybe this reflects frustration
more than fatigue.

7. ANALYSIS OF RESULTS FROM

EXPERIMENT 2
The goal of the second experiment was to reproduce the differ-

ences between regular and non-regular code for additional func-
tions, using the first task. The null hypothesis and alternative are
again the same as above. The results are shown in Table 5.

7.1 Correctness Results
According to our analysis, the average score of the regular func-

tions when presented first was 80.6 and when second it was 64.2.
As for the non regular functions, subjects achieved much lower
scores: when presented first the average score was 47.8, when pre-
sented second it was 53.9.

The very obvious conclusion is that in terms of correctness sub-
jects did better in the regular style regardless of the order of presen-
tation so it is most likely to be the easier style to comprehend. In-
deed, according to the mixed ANOVA analysis, there was a signifi-
cant main effect of the programming style being examined, F (1, 34) =
14.68, ρ = 0.001. This effect tells us that if we ignore the order
by which the functions were given, the scores of the two styles are
significantly different.

Given that each subject received two functions in this experi-
ment, we need to consider the effect of order. According to ANOVA
the main effect of the order between-subjects factor is not signifi-
cant (F (1, 34) = 0.40, ρ = 0.530). The fact that the F ratio is
less than 1 means that there was more error than variance created
by the experiment, in effect negating the possibility of significance.
Thus if we ignore the programming style it appears that the first
and second functions would achieve similar scores.

It is also interesting to check whether there is an interaction be-
tween the presentation order and the programming style. In other
words, are the scores achieved for the two styles affected by the
order in which the styles are examined by subjects? According
to ANOVA this effect is not significant (F (1, 34) = 4.01, ρ =
0.053). However, the significance level is very close to the cut-off
point of 0.05, and the means of the different styles in the different
groups show that an interaction seems to exist: subjects achieved
much better scores with the regular style for the style presented
first, whereas they achieved marginally better scores with non-regular
for the style presented second. A possible interpretation is that
working on a non-regular function is harder, and after this expe-
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rience subsequent performance is suppressed, whereas working on
a regular function does not suppress subsequent work on another,
non-regular function.

7.2 Time Results
The time spent by the subjects performing the tasks for the dif-

ferent styles given in different orders is quite similar. For example,
the averages for the regular style function in the two groups were
15.6 (minutes) for the first group and 13.4 (minutes) for the second
group. As for the non regular style subjects spent 12.9 in the first
group and 15.4 in the second.
In terms of significance there were no significant differences at

all. Moreover, it seems that there was no fatigue effect. Subjects
spent quite similar times on the later functions as on the first func-
tions despite the fact that they achieved much lower scores on them.

7.3 Difficulty of Programming Style
After answering the question regarding functionality, we asked

the subjects to rank each function on an ordinal scale of difficulty
(very easy, easy, moderate, hard, very hard). Fig. 8 shows the re-
sults. Nobody ranked the functions as very easy, and only a few
as easy; together with the time spent this shows that the functions
were reasonably challenging for our subjects. Many more ranked
regular versions as moderate, and similarly many more ranked non-
regular versions as very hard.
We also asked the subjects whether they want to change their

mind regarding the ranking of the first function after seeing the
second function. Out of 37 valid answers, 9 changed their mind.
These 9 answers distribute as follows: 5 decreased their ranking of
regular functions (made them easier), and 2 each increased and de-
creased their ranking of the non-regular functions. The data in Fig.
8 is from before this change, so in the final ranking the difference
is even bigger.
Finally, we also asked subjects to indicate what caused them to

rank the functions the way they did. We focus here on the answers
given by those who ranked regular functions as easy or moderate,
as opposed to those who ranked them as hard or very hard.
Subjects who ranked regular functions as easy or moderate jus-

tified this noting the discord between the initial impression and the
actual complexity. For example, one wrote “It seems a bit more
daunting at first because of the length and the if statements, but
they were not as complicated as they seemed to be initially.” Sev-
eral respondents even specifically identified the regularity, for ex-
ample writing “Consistency in the if dynasty. After understanding
the first ifs, there is a consistency.”
As for the subjects who ranked regular functions as hard, almost

all of them justified this by complaining about too many ifs and
loops. One also complained about bad variable names, and an-
other suggested that refactoring was in order. These statements
do not explain why it was hard to understand the functions, but

rather comment on the quality of the solutions. Interestingly, when
comparing their grades, the average score of all those who ranked
regular functions as hard was 70.4, which is not far behind the av-
erage score (76.1) of those who ranked regular functions as easy
or moderate. The impression is that subjects who ranked regular
functions as hard did not experience real difficulty, but rather were
dissatisfied with the solution style.

8. RELATEDWORK
A large number of code complexity metrics has been defined,

based on various aspects of the source code [12]. The LOC met-
ric is the simplest one and reflects the code size. The MCC metric
counts the number of decision points in the code, and as such it is
considered a control-flow metric [27]. Likewise, the Npath metric
counts the number of acyclic execution paths [33]. Halstead’s soft-
ware science metrics provide a measure for the programming effort
[14]. Other metrics focus on the data-flow aspect of the code. The
Dep-Degree metric counts the number of edges in the definition-
use graph [5], and Lifespan is the average of all spans of all vari-
ables in a method where span is defined as the number of LOC
between one occurrence of a variable and its next occurrence [10].
The CFS (cognitive functional size) belongs to the cognitive cate-
gory of metrics. It is based on cognitive weights for the different
control structures [39]. There are also composite metrics that com-
bine several different aspects of the code rather than focusing on
one. Oman et al. use LOC, MCC, and Halstead’s metrics to define
a maintainability index [35, 47].

None of the metrics that have been defined so far reflect all as-
pects of source code complexity, and it is hard to envision any that
would. In particular, regularity in the code seems not to have been
considered up to now. However, regularity has indeed been con-
sidered in areas unrelated to program code. Lipson has defined
structural regularity as the compressibility of the description of the
structure [24]. In this work different forms of regularity were de-
scribed: repetitions, symmetries, and self similarities. In addition,
this work suggested using the inverse of the description length or
Kolmogorov complexity as a metric for quantifying the amount of
regularity. Recently, Zhao at al. have shown that regularity leads to
spontaneous attention [50]. This may be part of the explanation of
why regular code is easier to understand.

It should be noted that the term “regular” is sometimes used with
different meanings. For example Lozano et al. also look at regular-
ities in the code, but they mean naming conventions, complemen-
tary methods, and interface definitions [25]. Others have consid-
ered statistical regularity, where certain aspects of the code follow a
well-defined statistical distribution. For example, Zhang suggested
a revised version for Halstead’s length equation, based on the fact
that the distribution of lexical tokens in the studied systems follow
Zipf’s law [49]. A similar result was introduced by [37]. These
works have no connection to our notion of regularity.

Closer to our work, Chaudhary et al. conducted an experiment
to study the effect of control and execution structures on program
comprehension [6]. One result that contradicted their intuitive ex-
pectation was the positive correlation between the subjects’ score
and the control structure complexity. They attributed this to the
existence of syntactic and semantic regularities in the code. They
claimed that these regularities reduced the effort in the learning pro-
cess and yielded higher score. Also, works on cloning and copy-
paste (e.g. [26, 23, 20, 16]) are somewhat related to our work, as
repeated code fragments may be a result of cloning and copy-paste.
In particular, Harder et al. conducted the first controlled experiment
to investigate the effect of clones on programmer performance in
bug-fixing tasks [15].
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Table 6: Time per line of code versions. Experiment 2 values

are lower because it has only one task.

Experiment 1

Version Time/LOC

Regular 0.25±0.05

Sort 0.75±0.19

Array 0.95±0.35

Experiment 2

Version Time/LOC

Median reg 0.068±0.023

Median nonreg 0.125±0.050

Diamond reg 0.087±0.029

Diamond nonreg 0.154±0.037

To the best of our knowledge, regularity as we defined and quan-
tified it in [18, 17] is a novel metric for software, and this is the first
paper to systematically and empirically assess its effect.

9. DISCUSSION AND CONCLUSIONS
In this study we conducted controlled experiments to compare

the performance of maintenance tasks when faced with a program
implemented in different programming styles, where one is reg-
ular and others are not. We conclude that the regularity of code
may have a large impact on comprehension by humans, and may
compensate for high MCC and LOC. Thus we believe that regular-
ity should be included among code complexity metrics alongside
common metrics such as MCC and LOC, and that the interactions
between these metrics should be taken into account. Importantly,
these results hold for moderately long functions from common set-
tings, extending the scope considered in our previous work which
was confined to very long functions in the Linux kernel.
MCC and LOC are usually believed to be monotonically related

to complexity. Thus high MCC and LOC levels supposedly lead
to high levels of complexity. But in spite of the high MCC and
LOC values of the regular version in experiment 1, which are about
three times higher than the sort version and five times higher than
the array version, subjects using the regular version almost always
did significantly better than those of the sort version and never de-
cidedly worse than the array version. These results contradict the
expectations that functions with high MCC and LOC be hard to
comprehend. Similar results were obtained in experiment 2.
Thus we have shown again that the MCC and LOC metrics do

not fully reflect code complexity as experienced by humans. This in
itself is not new, as other studies have shown various deficiencies of
MCC and LOC. However, few if any have done so using controlled
experiments in which MCC and LOC are the main independent
variables, based on using different implementations of the same
functionality. Thus our results contribute rigor to the discussion on
MCC and LOC and their problems. At the same time, these results
should not be interpreted as implying that striving for low MCC
and LOC is inadvisable, but only that low MCC and LOC values
are not necessarily good and high values are not necessarily bad.
More importantly, we suggest an explanation for why and when

high MCC and LOC values are actually OK. High MCC and high
LOC can result from code regularity, where the same structures are
repeated many times. This led us to speculate that functions with
high regularity would be comprehensible despite their high MCC
and LOC. Moreover, the results also showed that functions with
regular code do not take more time to comprehend, despite their
length and supposed complexity. Thus regularity compensates for
high MCC and LOC, and explains why they are not monotonically
related to complexity. Such interactions also means that complex-
ity cannot be decomposed into additive contributions by individual
code attributes.
These results can be interpreted to mean that regularity affects

the effective MCC and LOC of a function. In other words, regu-

larity makes the individual lines easier to understand on average.
Hence the effective MCC and LOC of regular code are lower than
the measured MCC and LOC. Using the total time results from Ta-
bles 4 and 5 we can calculate the average time per line of code, and
compare the different versions. For experiment 1, we indeed find
that the time per line in the regular version is 3 times lower than
in the sort version, and nearly 4 times lower than in the array ver-
sion. Note that the real factor for sort may actually be even higher
than indicated, because subjects faced with the sort version seem
to have given up earlier than others.

The notion of effective MCC and LOC suggested here requires
much more work to establish its validity in general. It is reasonable
to assume that not all lines of code are alike. In particular, maybe
repeated lines in regular code are indeed scanned much faster, while
other lines are scanned at the same rate as non-regular code. This
would enable an automated estimation of effective MCC and LOC
based on identification of code repetition. We intend to use eye-
tracking experiments to try and investigate this issue.

Another interesting point we observed is that the motivation of
the subjects of the sort version in experiment 1 seems to decrease
over the phases, as the time they spend decreases from phase to
phase. Such a decrease does not occur with the other versions.
Taken together with the low grades that the sort subjects received
in terms of correctness, these observations may indicate that they
become frustrated with the difficulty to cope with this version of
the code. This was the reason for the post-test briefings used in ex-
periment 2 to assess the subjective feelings of the different subjects,
and complement the objective metrics that were collected.

Our work suffers from several threats to validity. We suggest
that regularity is an additional attribute that affects complexity, but
in this work we examined only several regular functions. While
our results are also supported by previous work on perceived com-
plexity of Linux functions [18], much additional work remains on
quantifying the effect of regularity and on measuring regularity. In
particular, we need to look into different styles of regularity. There
is also the danger that the specific programs used induce some con-
founding effects. For example, one of the respondents of experi-
ment 2 mentioned problematic variable naming. However, we ap-
plied the same level of naming in all versions, therefore minimizing
the effect of naming on one version rather than on others.

Another threat is that the demographics of our subjects may not
be representative, or may interact with solution styles to have an
effect on comprehension. While using students as subjects is not
optimal, this has often been done before. In our analysis we found
no demographic-related effects, but the groups resulting from fac-
torization are quite small to generalize.

For future work, an interesting issue is the possible relationship
between regularity and bug proneness, especially in the long run. It
is possible that long regular code will eventually lead to more bugs,
because changes would most probably have to be replicated in the
repeated constructs, and some may be missed. Harder et al., in a
controlled experiment, did not succeed to achieve decisive results
regarding the effect of clones on programmer performance in bug-
fixing tasks [15]. Therefore comprehensibility may not be the same
as code quality. This effect is hard to study, as it will require data
about the long-term usage of regular functions.
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1 Introduction

Although there is a general agreement on the importance of code complexity met-
rics, there is little agreement on specific metrics and in particular their accuracy
[33]. Syntactic metrics like lines of code (LOC) and McCabe’s cyclomatic complex-
ity (MCC) are commonly used mainly because they are simple. These metrics are
additive and myopic: they simply count source code elements without consider-
ing their type and context. Therefore, they do not necessarily reflect the effective
complexity of source code. In particular, they lead to inflated measurements of
well-structured long functions that are actually reasonably simple to comprehend
[16].

In previous work [16,15] we introduced regularity as a new factor that questions
the additivity of the classical syntactic metrics. Regularity is the repetition of
code segments (patterns), where instances of these patterns are usually successive.
Figures 4 and 5 show examples of regular code (the repeated instances are indicated
by rectangles).

Regular code is generally longer than its non-regular alternative, and if mea-
sured by metrics like MCC it is also more complex, as there is a strong correlation
between LOC and MCC. However, our experiments showed that long “complex”
regular code is not harder to comprehend than the non-regular alternative which is
shorter normal code. The speculation was that regularity helps because repeated
instances are easier once the initial ones are understood [15].

To investigate this idea, we conducted a controlled experiment that uses eye
tracking to explore how programmers read regular code, and to quantitatively
measure the time and effort invested in the successive repetitions of such a code.
The results indeed show that time and effort are focused on the initial repeated
instances, and reduced as later instance are considered. This reduction can be
modeled by an exponential or a cubic function.

The consequence is that additive syntax-based metrics like LOC or MCC may
be misleading, because repeated instances contribute less to complexity and com-
prehension effort. This observation was made already by Weyuker in the context
of her famed work on desirable properties of code complexity metrics [36], where
she writes “Consider the program body P; P (that is, the same set of statements
repeated twice). Would it take twice as much time to implement or understand P;
P as P? Probably not.” Our results enable us to take an additional step, and sug-
gest a specific weighting function which can be applied to repeated code segments
so as to reflect their reduced effect. This adds a degree of context sensitivity to
previously oblivious syntactic metrics.

But overall effort modeling does not tell the whole story: it is also interesting
to observe the subjects’ reading pattern. We used the eye tracking data to analyze
the subjects’ scanpaths, namely how they scan the code they are reading. This
shows that the way programmers read regular code is far from the conventional
mostly-linear order employed in reading natural language texts. Instead, reading
code appears to be done in a sequence of patterns such as scanning it, jumping
ahead to look for ideas, jumping back to verify details, and so on.

However, the patterns employed and their order are highly individualistic It
is therefore necessary to collect much more data in different contexts before a
general picture of code reading will emerge. Such future work can be based on
the methodological foundations which we laid in our analysis of reading regular
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Table 1: Attributes of the two versions of the programs used in the experiment.
The Reg. column represents compression ratio.

Regular version Non-regular version

Program LOC MCC Reg. LOC MCC Reg. Description
Median 53 18 79.3% 34 13 60.7% Find medians of all 3×3 neighbor-

hoods
Diamond 46 17 82.8% 26 14 43.8% Find max Manhattan-radius

around point with all same value

code, including the identified basic patterns and the use of smoothing to remove
noise from the original eye tracking data and make the patterns more evident.
It is expected that these methodological innovations will be relevant not only for
regular code but also for studying code reading in general.

2 Motivation and Research Questions

While a large number of metrics for measuring code complexity have been pro-
posed, no one of them is capable of fully reflecting the complexity of source code [7,
21]. In previous work we have suggested regularity as an additional factor that af-
fects code comprehension, especially in long functions, and provided experimental
evidences for its significance [16,15]. Specifically, we conducted several experiments
where developers were required to understand functions and to perform mainte-
nance tasks on them, where different subjects were actually working on different
versions of the same function. Thus we could evaluate the relationship between
performance and the style in which the function was coded.

To quantify the level of regularity of the different versions, we use an opera-
tional definition that is based on compression. We have systematically investigated
different compression schemes and code preprocessing levels [14,16], and found
that different combinations yield different results. The combination that gave the
best correlation with perceived complexity was to strip the code down to a skele-
ton of keywords and formatting, and use the gzip compression routine. Regularity
is quantified by the compression ratio.

Regular functions by definition contain repetitive code segments that, at least
to some extent, come one directly after another. This suggests that understanding
one of these segments would help understanding subsequent ones. Based on this
we argue that the cognitive effort needed for the second segment is lesser than that
for the first, and as the developer proceeds in the sequence of repetitive segments
the effort needed becomes smaller. After several segments it may be expected that
the additional effort would even be negligible.

The purpose of this work is twofold. First is to replicate our previous study
regarding where we compared the performance of subjects when maintaining regu-
lar programs versus their non-regular counterpart. The second purpose is to study
the way developers investigate regular code, and whether their efforts in repetitive
segments are equal. If the efforts are not the same we want to find a model that
reflects the relation between the serial location of the segment and the amount
of effort needed to comprehend it. If developers need less effort to understand re-
peated segments that they already encountered then our model would be a good
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context-dependent weighting factor for metrics that consider all segments using
the same mechanism and hence yield exaggerated measures. An example of very
long functions that some metrics classify as very hard while humans classify as
simple and well structured was presented in [16].

The specific research questions this paper addresses are:

– Do developers follow any pattern when they are required to comprehend regular
code? In particular, are their efforts equally divided among regular segments?

– Assuming there is a pattern that governs the investment of effort, which model
might fit and describe it?

– Does the distribution of effort tell the whole story? In other words, is code
read linearly and only the time spent on repetitions perhaps changes, or is the
reading pattern more complicated?

– In terms of correctness and completion time, are the results consistent with
those of our previous work [15]?

3 Methodological Approach

3.1 Test Programs

We use two programs from the image processing domain (Table 1). Each pro-
gram has two versions: regular and non-regular. The specifications of the programs
used are: finding the medians of all 3×3 neighborhoods and finding the maximal
Manhattan-radius around a point with all same value. The programs were taken
from our previous work [15], and they meet the following design criteria:

– Realistic programs of known domain.
– Reasonable regular and non regular implementations of the same specification.
– Non trivial specifications

We could use one program with its two implementations, but we prefer two pro-
grams to avoid program-specific conclusions. We do not use more because then it
becomes hard to enlist enough experimental subjects for each version.

3.2 Eye-tracking Apparatus

We use the Eye Tribe eye tracker (www.theeyetribe.com) in this work. The device
uses a camera and an infrared LED. It operates at a sampling rate of 60Hz, latency
less than 20ms at 60Hz mode, and accuracy of 0.5◦–1◦. The device supports 9,
12, or 16 points for the calibration process. We used 9 points mode. The screen
resolution was set to 1280 by 1024.

The Eye Tribe is a remote eye tracker and as such it provides the subjects
a non-intrusive work environment which is essential for reliable measurements.
Furthermore, the device allows head movements during the real experiment but
not while calibrating.

To analyze the tracking data we use OGAMA (www.ogama.net). It is an open
source software designed for analyzing eye and mouse movements. OGAMA sup-
ports many commercial eye trackers like Tobii. In its last version (4.5) support for
the Eye Tribe has been added. This builtin support makes the process easier and
saves the import of the data between systems.
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3.3 Task Design

Basically, we adopted the programs and the task of experiment 2 from our previous
work [15] with one difference. In our previous work, each subject sequentially
performed the same task (understanding what does a program do) for the regular
version of one program and the non-regular version of the other. In this work
we follow a between-subject design where each subject performs the task on one
version only. This design decision has been taken on the basis of a pilot study
where subjects claimed that performing two programs is hard especially when you
have to keep your gazes within the screen for a long time [34].

In addition to answering the comprehension question what does the program
do, the subjects were asked to evaluate the difficulty of the code on a 5-point scale,
and state the reasons for their evaluation.

A post-experiment question was presented to each participant regarding the
way they approach the programs, with the goal of understanding how their effort
was distributed in the code and why. Retrospectively, it turned out that this post-
experiment question was important as there were cases where the eye tracking
data did not fit the participant’s opinion.

3.4 Grading Solutions for Correctness

In grading the solutions of the subjects we followed [19,5,29]. In particular, we
adopted a multi-pass approach where three evaluators were involved. Initially, the
first author evaluated the answers according to a personal scale. In the second
pass another colleague evaluated the answers. However, in a few cases there were
large gaps between the two evaluations. To resolve this, the second author made
a third pass on these cases.

The final grade for each of the cases was computed as the average of the three
evaluations when these were close enough (≤10 pts). Otherwise, we computed the
average of the two closest grades. It should be noted that in all cases where we
chose two grades of the three, these two grades were always very close to each
other.

3.5 Subjects

The subjects in this experiment are 18 3rd year students at the computer science
department of Netanya Academic College, and two faculty members. In total we
had 20 subjects. All participants except three were males. The average age is 24.8
(SD=8.7), and subjects are without industrial experience except one subject who
had 3 years experience before his academic studies.

To ensure fair comparisons we asked the subjects about their average grades in
general and in programming courses. Initially assignment was random, but later
we assigned subjects to groups so as to reduce the variability in grades. Table 2
shows the averages of the 4 groups. According to this table we see that in terms
of groups and style the averages are quiet similar.
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Table 2: Average grades of the participants in the different groups.

Style All courses Programming courses
Regular (median) 84.0±7.9 86.5±11.1
Regular (diamond) 86.6±9.0 87.0±9.8

85.1±8.1 86.7±10.0
Non-regular (median) 82.2±11.0 83.2±9.9
Non-regular (diamond) 85.6±8.1 86.2±7.7

84.1±9.0 84.8±8.3

Table 3: Accuracy levels of the calibration process and how many subjects fall
into each of these levels.

Level Accuracy subjects
Perfect < 0.5◦ 12
Good < 0.7◦ 5

Moderate < 1.0◦ 2
Poor < 1.5◦ 0

Re-calibrate bad 1

3.6 Procedure

The first author was the experimenter of all subjects. The experimenter initially
gave a general overview about the experiment and the eye tracker. Participants
were told that the experiment is about comprehension but were not told the spe-
cific goal. The experimenter showed each participant how the eye tracker operates
and let him practice that by himself. In particular, the experimenter asked each
participant to notice the track-status window that shows the subject’s eyes and
their gazes. This is important because when the participant moves his head it is
reflected in this window allowing the participant to learn about the valid range of
his head’s movements.

Once the participant felt satisfied with the system, the experimenter asked him
to calibrate. The system notification about the calibration results uses a five-level
scale. Table 3 shows the different levels, their accuracy, and the number of subjects
at each level. The subject who failed the calibration process was tracked manually
(he was requested to move the mouse to show the code he is looking at). Luckily he
was assigned to a non-regular function, so was not needed for the detailed analysis
of regular ones.

After the calibration phase the subject started the experimentation. The first
screen presents a general overview and instructions, and the second screen presents
the program to comprehend. The participant is allowed to study the program as
much time as he wants and then answers the question. While studying the program
he is allowed to use off-computer means to trace the variables even if this forces
him to disconnect his gaze from screen.

A post-experiment question was asked by the experimenter about the way the
subject studied the program. The initial question was “how did you approach the
program”. In the ensuing discussion subjects were also asked where they invested
effort. They were also shown the heatmap of their gazes trying to learn more about
the process, and asked to comment on it — specifically, whether it reflects what
they think they did.
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3.7 Study Variables

The dependent variables of this study are correctness, completion time, and visual
effort. The correctness variable is the score a subject achieves for answering the
what does the function do? question. The completion time variable measures the
time a subject spent in the function stimuli including answering the question.
The rationale of considering the time of writing the answers is that subjects also
consider the stimuli while writing their answers.

The correctness and completion time variables are not the main variables we
want to analyze in this study as they have been studied already in a previous
work for comparing the comprehension of regular and non-regular implementa-
tions of the same program. Thus we use them for replication and for generating a
challenging environment to get a realistic measure for the visual effort variable.

The visual effort variable measures, in terms of eye movements, the effort a
subject needs to invest to get an answer. It is a latent variable so it is measured
indirectly using observable variables related to fixations.

Fixation is one of two types of data that are considered when using the eye
tracking technique. It occurs when the eyes stabilize on an object. The other type
of data is called saccade. It describes a rapid movements between fixations.

We derive our observable variables from fixations rather than saccades as two
important mental activities occur during fixation. These activities are derived from
two assumptions that relate fixation to comprehension. The eye-mind assumption
states that processing occurs during fixation, and the immediacy assumption posits
that interpretation at all levels of processing are not deferred [17].

The observable variables that are measured to represent visual effort are fixa-
tion count, total fixation time, and pupil dilation.

3.7.1 Fixation Count

This metric counts the number of fixations in a predefined area of interest (AOI).

3.7.2 Total Fixation Time

This metric measures the total fixation durations in a predefined AOI.

3.7.3 Average Pupil Dilation

It has been shown that there is a positive correlation between cognitive effort and
pupil size. Hess showed that the pupil size increases with the increase of arithmetic
complexity [11]. In a different domain, Just et al. found a correlation between pupil
size and sentence complexity during a comprehension task [18]. Similar findings
were presented by Ganholm et al. in the context of working memory load [9].

On the basis of the above works we use pupil dilation as a measure of complexity
and apply it to compare regular code with non regular code. In addition, we use
pupil size to examine our claim about decreasing complexity of repeated instances
of code segments.

We define the metric as the average of pupil size in all fixations in a given
area of interest (AOI). We discard gazes between fixations (saccades) as pupil size
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reflects complexity and complexity is experienced during processing which happens
in fixations.

3.7.4 Fixation Locations

Finally, we also record fixation locations, to enable a reconstruction of the scan
path. The scan path is the path that the subject’s gaze traverses over the code
being read.

4 Results and Analysis

4.1 Regular vs. Non-Regular Versions

4.1.1 Correctness and Time

The main purpose of this work is exploring the way developers approach regular
code rather than comparing its performance to non regular code. We have investi-
gated this in a previous work [15]. Nevertheless, we replicate that work to confirm
the results. We use the following hypotheses to test the differences between regular
and non-regular versions of the same program.

– H0: Programmers achieve similar scores and time in understanding non-regular
versions as in the regular counterpart.

– H1: The regular versions are easier and faster to understand even though they
are longer and have higher values of McCabe’s cyclomatic complexity.

To test our hypotheses we initially look at the means of all regular and non-
regular scores for each program, then consider the whole distribution of regular
scores against the whole distribution of non-regular ones.

The four groups’ scores met the normality assumption which was tested by
the Shapiro-Wilks test. The diamond groups did not meet the equality of variance
assumption so we did not assume that. As the groups are unrelated we used the
independent t-test. Comparing the means of the regular and non-regular groups
of the diamond programs yielded a significant different between these two groups
(t(4.967) = −3.211, p = 0.012). So we can reject the null hypothesis and accept the
alternative one. When examining the groups of the median program the difference
between the means was not significant. Thus we cannot reject the null hypothesis
in this case.

One explanation for the similar scores in the median program is that the differ-
ence between the values of the regularity measure for the regular and non-regular
versions is not large enough. Furthermore, the non-regular version contains a code
segment that computes the median by partial sorting. As sorting is a programming
plan [31] it might serve as a strong clue for the whole function understanding.

Taken together, the results show that the regular versions are not more difficult,
contradicting the naive expectation that subjects of the regular version achieve
lower scores due to high values of LOC and MCC.

We also compared the whole distribution of regular scores (of the two programs)
to the distribution of non-regular scores. We did not use the independent t-test
as the groups failed the normality assumption even under transformation. In such



How programmers read regular code: a controlled experiment using eye tracking 9

Table 4: Correctness and completion time results for all implementations.

Style Correctness average Completion time average
Regular (median) 66.5±30.0 26.0±12.9
Regular (diamond) 92.0±9.8 25.7±12.3

80.2±25.4 25.9±12.0
Non-regular (median) 65.0±28.7 25.2±7.4
Non-regular (diamond) 49.1±27.0 31.5±21.6

56.1±26.7 28.7±16.3
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Fig. 1: Distribution of perceived difficulty ratings.

cases it is recommended to use the Mann-Whitney non-parametric test. This test
is used to compare differences between two unrelated groups when their dependent
variable is not normally distributed. By running this test it was found that the
regular group achieved significantly better scores than the non-regular group (U =
24, p = 0.028).

In terms of completion time, we also applied the independent t-test as the four
groups were normally distributed and each pair also met the equality of variance
assumption. For the two programs there was no significant difference in the means,
so we cannot reject the null hypothesis.

According to Table 4 the results are quite similar for the two styles in the
two programs (with slight advantage for the regular style despite its long imple-
mentations when compared to the non regular style), except for one non-regular
implementation (diamond program) where one subject in this group spent much
time and as a result the average got a relatively high value.

These results (correctness and completion time) follow those of our previous
work where we used the same functions as in this work [15].

4.1.2 Difficulty of Programming Style

Besides the what does the function do? question, we also asked the subjects to
rank the function difficulty on an ascending 5-point scale. Figure 1 shows the
distribution of the subjects’ answers. In particular it shows that a third of the
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Fig. 2: Left: heat map of the regular implementation of the median program based
on 6 subjects. Right: heat map of the regular implementation of the diamond
program based on 4 subjects (we excluded the fifth subject due to a contradiction
between his heat map and think-aloud results).

Fig. 3: Left: heat map of the non-regular implementation of the median program
based on 3 subjects (we excluded the fourth subject as he failed the calibration
process). Right: heat map of the non-regular implementation of the diamond pro-
gram based on 5 subjects.
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subjects of the non-regular implementation ranked their functions as very hard
while none of the regular-implementation subjects used this level. On the opposite
side, 2 subjects have ranked the regular implementations as easy while not even
one subject of the non-regular group used this rank.

Moreover, about 55% of the regular group ranked their functions as easy or
moderate while about 78% of the non-regular group ranked their functions as
hard or very hard. These results are a bit more extreme than those we obtained
previously [15].

Fig. 4: The areas of interest (AOIs) of the median regular implementation.
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Fig. 5: The areas of interest (AOIs) of the diamond regular implementation.

4.2 Visual Effort

4.2.1 Heat Map

One way to identify regions which garner special attention is using heat maps. They
are designed to visualize the concentration of fixations, and can represent data from
one or many subjects. Using this we can answer questions like what locations of the
stimulus are noticed by the average subject? We use this technique to investigate
whether subjects follow an obvious pattern in terms of effort allocation, and by
this we answer our first research question.

Figure 2 shows the heat maps of the regular implementations (diamond and
median programs). Both maps show that the average subject largely fixates on
the first instance of the repeated pattern. The innermost red spot indicates the
region that received the largest attention, and as we move downward the color
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Table 5: Measures (averages) of the AOIs of the median regular implementation.

AOI #fixations Complete fixation time Pupil size
AOI1 311.6 133714.0 19.98
AOI2 393.8 182459.3 19.85
AOI3 287.6 144096.0 19.54
AOI4 173.0 82537.0 19.55
AOI5 130.0 66345.5 19.38
AOI6 116.0 49318.6 19.19
AOI7 97.6 43115.3 19.11
AOI8 87.0 31101.8 19.18

Table 6: Measures (averages) of the AOIs of the diamond regular implementation.

AOI #fixations Complete fixation time Pupil size
AOI1 496.7 235035.8 22.57
AOI2 239.0 92919.0 22.19
AOI3 179.0 80597.5 22.21
AOI4 129.2 46648.0 22.61

becomes colder and regions get less attention. These figures show an aggregation
of all subjects of each regular group.

The conclusion is that subjects spend more effort in the initial instances. When
it comes to the last instances the examined area gets minimal focus.

Importantly, subjects did refocus on the final processing that comes after the
regular repeated instances in the median program. This shows that attention is
not just reduced with length, and subjects do not just tend to ignore the end of
the function. Thus it strengthens the above result concerning reduced attention to
repeated segments. The diamond program does not have such a final processing
part.

There is no such obvious behavior in the non-regular counterparts as shown in
Figure 3. Subjects generally focus on the inner-loop of the functions.

4.2.2 Areas of Interest

heat maps show the dominant areas in the code without clear separation between
repeated segments. Areas of interest are geometric areas defined by the experi-
menter for the sake of between-area and within-area analyses.

In both regular implementations we are interested in the repeated instances.
The median version was divided into 8 areas of interest as shown in Figure 4 (one
AOI for each instance), and the diamond version was likewise divided into 4 areas
of interest (Figure 5). For each AOI we compute fixation count, total fixations time,
and average size of subjects’ pupil.

Tables 5 and 6 show the average measures of all areas of interest for the regular
versions of both programs. Obviously these results show that subjects spent more
time (and thus effort) in the earlier segments, and the time spent is sharply reduced
as we progress to later segments. This behavior is preserved in terms of all measures
with slight digression in few cases, but the general pattern is pretty evident.

If subjects spend more time in one area rather than others that would normally
mean that this area is more complex than others. But in our study, given that the
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Table 7: Transitions frequencies between AOIs of the median regular implemen-
tation.

AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8
AOI1 980 254 23 9 9 8 3 4
AOI2 254 1085 214 21 6 5 8 2
AOI3 26 211 761 138 11 4 6 9
AOI4 14 23 112 432 113 13 6 10
AOI5 5 8 24 97 408 85 8 5
AOI6 6 5 14 14 70 319 83 15
AOI7 4 7 5 10 13 71 280 53
AOI8 4 5 10 7 7 15 48 187

Table 8: Transitions frequencies between AOIs of the median regular implemen-
tation.

AOI1 AOI2 AOI3 AOI4
AOI1 1339 128 12 6
AOI2 123 541 77 15
AOI3 12 60 383 52
AOI4 5 13 35 279

segments are pretty similar, a better interpretation is that once one segment is
learned it is easier to comprehend the others.

4.2.3 AOI Transitions

Heatmaps and fixations data provide us with clues about the areas in the code
where the programmers spend the most effort. However, we do not get any infor-
mation about the way they progress while reading. In particular, we are interested
to know how they move between AOIs. From this we can learn about their read-
ing pattern and whether regularity affects the supposed story order in natural
languages and semi-linear order in source code [3].

According to [12] a transition is a saccade from one AOI to another one. A
transition matrix contains the frequencies of direct transitions between all pairs of
AOIs. Tables 7 and 8 show the transition frequencies between AOIs of the median
and diamond programs respectively. The main diagonal in each table contains
transitions within the same AOI. Generally a saccade within an AOI is not really a
transition but rather a within-AOI saccade [12]. We included them in the transition
matrix to compare with the transition rates.

The first thing to notice when examining these tables is that the most tran-
sitions occur within an AOI (main diagonal, in italics). And in both tables we
see that the number of within-AOI saccades decreases as we progress to higher
AOIs. This again indicates that subjects face more difficulty in initial AOIs and
comprehension becomes easier in the repeated instances later.

The next observation is that most transitions occur between each AOI and
its two adjacent AOIs. The diagonal below the main diagonal, indicated in bold,
reflects transitions to the previous (upper) AOI. Similarly, each cell in the upper
diagonal (underlined) reflects transitions to the next lower AOI. Interestingly, there
is an advantage for the upper AOI, meaning going back in the code. For example,
according to Table 7 there are 254 transitions from AOI2 to AOI1 and 214 to
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AOI3. This property is preserved for all AOIs in both tables except in two cases
in Table 7 where in one case the values are almost equal. It is reasonable that a
programmer frequently moves to the previous AOI while studying the current one
as these segments are similar and it is natural that he tries to compare between
them and infers about the current one based on the previous one. The interesting
point is that as the programmer progresses to next AOIs the number of transitions
decreases (except in one case). Also, the ratio of transitions back and forth becomes
more skewed: in Table 7 there are 254 transitions from AOI1 to AOI2 and also
from AOI2 to AOI1, but only 70 transitions from AOI6 to AOI5 compared with
85 from AOI5 to AOI6. This can be interpreted as meaning that the need for the
previous segment is reduced over time and the inference process becomes easier.

If we add AOIs for other non-repeated parts of the code, we find that the
within-AOI saccades in the end block that finds the median value in the median
program is 1217. This follows our observation from the heat map above regarding
the renewed focus on non-regular segments that follow regular ones.

4.2.4 Pupil Dilation

It is well known that there is a strong correlation between pupil size and mental
effort, and therefore also a correlation between pupil size and the complexity of the
task. Table 5 shows the average size of the subjects’ pupil in all areas of interest
in the regular version of the median program. According to this table the average
size in the first AOI is 19.98, in the second AOI it is 19.85, in the third 19.54,
and this behavior is roughly preserved as we progress to the next areas. Similar
behavior occurs in the regular version of the diamond program (Table 6). Thus
the pupil size data too indicates that successive repeated code segments become
easier to comprehend.
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Fig. 6: Left: Changes to the pupil size of 6 subjects over 8 AOIs of the regular
version of the median program. Right: Changes to the pupil size of 4 subjects over
4 AOIs of the regular version of the diamond program.

However, the differences are smaller than for the fixation data. To investigate
this more deeply, we consider the individual distributions for the different sub-
jects. As shown in Figure 6, some have a clear downward trend, e.g. Subject5 and
Subject1. For others there is a mainly downward trend, but it is not monotonous
— as for Subject2 and Subject9. Finally there are those where there is no clear
trend, and even one with an upward trend. In general, the subjects who worked
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Table 9: Subject opinions regarding their effort allocations in the regular imple-
mentations.

Subject Version Response
Subject1 diamond I realized that once I understood the first segment, it

will be easier to understand the rest due to similarity.
Subject2 median Do not know why there is more focus on the first

segment compared to others.
Subject5 median Passed over all the code but focused on the first if

more than others. I saw that the segments are similar
so spent less efforts in the later. If the later segments
were different I would spent more effort there.

Subject7 diamond Inner loops were similar.
Subject9 median Passed over all ifs, but it was enough to focus on a

few to understand others.
Subject12 diamond Spent much efforts at the beginning, tried to under-

stand the loops at the beginning because I saw that
they repeat themselves. In particular I realized that
the differences are very small so it is easy to infer
about other.

Subject13 diamond Spent more efforts on the first inner loop because it
is new for me and the rest are similar.

Subject16 median Passed over all loops and ifs. Spent much efforts on
the ifs.

Subject17 median Most of the time in the ifs. Thought about one if
and infer about others.

Subject19 median I was panicked of the if...else statements but once
saw they all similar I spent much time on those at
the beginning. She was surprised from the fact that
her attention map follows the pattern of the other
and said that she always thinks in a different way
than others.

Subject20 diamond Most of the efforts were spent on the inner loops
in particular the first one because it “jumps to the
eyes” the similarity with others. I do not agree with
the heat map (it shows he spent much efforts on the
last loop), it does not reflect the real efforts I spent.

on the median program exhibited stronger trends, maybe because the diamond
program had only 4 repeated segments.

4.2.5 Verification of Eye Gaze Results

A post-experiment question was asked by the experimenter of each of the subjects
about their approach and effort allocation to the different parts of the function.
During the conversation they were presented with the heat map of their session and
were asked whether this map matches their subjective impression. In particular
the focus was on the subjects of the regular implementations. We summarize their
responses in Table 9. According to this table more than 72% of the subjects stated
clearly that they spent more time on the first instances. One subject just stated
that instances are similar without any statement regarding effort allocation. Two
subjects did not express awareness of the regularity issue.

The responses of Subject20 and Subject19 were particularly interesting. Sub-
ject20 did not agree with his heat map and said that he did not investigate the
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program this way. His heat map shows one spot on the last inner while and one
before the outermost loop. We believe that something went wrong while recording
the gazes. It could be that the device was unintentionally moved by the subject
or the subject himself moved.

Subject19 was surprised from the perfect matching between her mind and its
heat map. She was even more surprised when she realized that her pattern fol-
lows the aggregated pattern of all other subjects. She said that she always thinks
differently and it is interesting to see that this time she broke that.

4.3 Scanpath Analysis

A scanpath is defined as a set of fixations and directed saccades. They can be
studied in either of two ways: by superimposing them over the stimuli, or by
graphing the AOIs visited as a function of time. So the added value of scanpaths
over heatmaps and transition matrices is temporality.

We start the analysis by manual visual inspection (traditional approach) of the
data at the granularity of AOIs. This is good for checking the quality of the data
and providing very initial observations. We then suggest two improvements. First,
we smoothed the scanpaths to get rid of noisy data. Second, we identify recurring
patterns which representing scanpath events, and analyze the scanpaths according
to these events.

4.3.1 Traditional Approach

In this study the average number of fixations is relatively high, therefore showing
them directly superimposed over the code does not make sense. To learn about the
temporality aspect we adapted the traditional approach and created figures that
show fixations in AOIs as a function of start time of each fixation point (figures
7 and 8). Moreover, these figures include more AOIs than we depicted in 4 and
5. These added AOIs capture the non-regular parts of the code. For the median
program we added AOI0 for the code above AOI1. AOI9 is the single line right
beneath AOI8. The two loops in the end are captured by AOI10 and the rest by
AOI11. For the diamond program AOI0 captures the code above AOI1 and AOI5
the code in the end.

Figure 7 left shows that subject1 started by looking for a while back and forth
at AOIs 0 and 1, then made a quick scan of all AOIs with a very short fixation
in each one, then jumped back to AOI 0 for a long session of moving back and
forth between AOI 0 and 1 with many fixations in AOI 1 (horizontal lines). It is
interesting to see that in this session the transitions between AOI 0 and 1 decrease
as time goes on. At some point there is a jump to AOI 2 and the subject starts
a new pattern where he jumps back and forth between AOIs 1 and 2 with short
fixations between transitions. The same behavior is largely repeated for the pairs
2, 3 and 3, 4. For AOIs 4 and 5 there were very few back and forth moves without
consecutive fixations in 5. The subject then moved to back to AOI 0, and similar
patterns of traversing all the AOIs in sequence were repeated three more times.

Behaviors similar to that of subject1 can be easily identified also in Figure 7
(right) and Figure 8. In particular, going back and forth while progressing towards
lower AOIs occurs more than once within a subject’s complete scanpath.
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Fig. 7: Left: The fixations of subject1 on AOIs of the diamond program over time.
Right: The fixations of subject12 on AOIs of the diamond program over time.
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Fig. 8: Left: The fixations of subject9 on AOIs of the median program over time.
Right: The fixations of subject16 on AOIs of the median program over time.

4.3.2 Scanpath Smoothing

Figures 7 and 8 provide some insights about the way programmers read regular
code. However, it is quite evident that these figures are noisy in several areas.
One explanation for this noisy data is probably the very large number of con-
secutive fixation points in a condensed areas. Another cause could be the use of
off-computer means for tracing which disconnect the gazes from the screen and
re-connect them after a while.

The purpose of providing scanpaths is to identify trends in reading regular
code and not to know what happens in a specific point of time. To make these
figures more clear one acceptable technique is smoothing.

Smoothing is a technique primarily used in the signal processing domain to
reduce noise in the signal amplitudes (y-axis values). In this process points with
abnormally high values, compared to their adjacent points, are reduced, and those
with abnormally low values are increased. This process leads to a smoother signal.
Another way to look at smoothing is in the frequency domain; smoothing is then
achieved by low-pass filtering, which suppresses the high-frequency transitions up
and down. The simplest smoothing algorithm is the rectangular where each point
is replaced by the average of m adjacent points where m is the smooth width.

We applied the rectangular smoothing algorithm to our raw gazes of the fixa-
tion points with a smooth width of 7000 milliseconds. Thus every smoothed point
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is the average of a set of adjacent points that were sampled in a range of 7000 mil-
liseconds. Setting the value of the smooth width to 7000 was not arbitrary. Initially
we created the graphs for all subjects using smoothing widths of 1000, 3000, 5000,
7000, 10000, and 30000 milliseconds. As expected the higher the smooth width the
clearer the graphs will be. However, there is a tradeoff and we may lose data.
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Fig. 9: Left: The distribution of dwell time of subject1 on the diamond program.
Right: The distribution of dwell time of subject9 on the median program.

To make an intelligent choice we looked at the distribution of dwell times.
A dwell time is defined as the duration of one visit to an AOI, from entry to
exit (discarded dwells with one point). The most frequent dwell time can be an
indicator for the appropriate smooth width. Figure 9 show two histograms of the
dwell times of two subjects, one from each program. The histograms of the other
subjects are pretty similar. The majority of the dwells resides around the area
of 1000. This fact already invalidates higher values such as 10000 and 30000 as
candidates for the smooth width. As for the other candidate values we realized, by
manual investigation, that the differences between the figures of all these values
(except 1000) are not so large therefore we took the highest value we could.

Figures 10 and 11 are smoothed versions of Figures 7 and 8 with additional
subjects added. Note that as opposed to the noisy figures, in the smoothed ones
the y axis is the y coordinate of the gazes and is not discretized into AOIs. We do
not consider the x coordinate (location in the code line) as we are interested in
the vertical transitions rather than horizontal ones. This is justified because the
gazes nearly always remain within the scope of the code lines (and AOIs), so the
pattern is captured by the y values.

According to Figure 10a subject1 made a very quick scan of the code, and then
restarted with a slow scan that includes very short back and forth moves. The
progress was very slow at the beginning and then became successively quicker.
This was followed by a shorter third scan that ends with a very quick move to the
end, and a fourth scan which is quite similar to the third one. One key point to
notice is that the start point of each new inner scan always moves forward.

Other subjects behaved differently. In Figure 10c subject12 slowly read the
beginning of the code then made a quick scan of the rest of the code. He then
goes back and forth to different parts of the code in an unclear pattern. Subject13
(Figure 10d) starts with three quick scans of most of the code, and then starts a
very long period of reading almost all the code interspersed with back and forth
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Fig. 10: Smoothed scanpaths of the diamond program subjects.

moves. After this a new scan starts that again covers all the code but is shorter
than the previous one.

Figure 10b shows the scanpath of subject7. This scanpath is largely different
from the other scanpaths of the diamond program. It is true that it starts, like
others, with a quick scan over the code, but then he performs a very long session
of small back and forth in the very initial parts of the code, followed by a very
noisy scan to the end, and then returning to focusing on the beginning with some
very quick scans to the end. This might be a clue of comprehension difficulty as
reflected by the grade this subject achieved (76.5, average=90.4) and the very high
spent time (41 min, average=26 min). A further point that might explain this is
the low GPA of subject7 which was reported at the pre-experiment questionnaire.
This reflects the general methodological issue of variability among subjects in
controlled experiments.

When examining the figures of the median program subjects we see that sub-
ject2 scanpath is relatively noisy with an endless number of back and forth moves.
The unclear trend can be explained by the very low score (10, average=66.5) he
achieved and the very long time spent (48 min, average=26 min). Consistently
with other subjects, he made a quick scan at the beginning. Subject9 initially fo-
cuses on the beginning, and then performs a quick scan of most of the code. He
then repeats this pattern, this time with a slightly wider and longer scan. The
third scan, however, is slower and seems to cover all the code methodically at a
constant rate. subject16 has a three similar scans where the third one does not
cover all the code. As for subject5, he starts with a long period of back and forth
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Fig. 11: Smoothed scanpaths of the median program subjects.

moves at the initial parts in the code, then switches to a methodical scan simi-
lar to the previous two subjects. Many of the subjects end with relatively wide
fluctuations going back and forth.

To summarize, it seems that subjects spent some time for a quick scan of the
code (or part of it) probably to draw an overall picture about its size and structure
before starting a real comprehension process. This preliminary scanning has been
identified by Uwano et al. who argued that there is a correlation between the first
scan time and the defect detection time [32]. Many of them also spend considerable
time reading the initial part of the code, and perform slower methodical scans of
all the code (or nearly all of it) later. In addition, short back and forth moves
is a property that exists in all scanpaths. This property is unavoidable when the
regular structure of the code is considered.



22 Ahmad Jbara, Dror G. Feitelson

4.3.3 Scanpath Events

One way to identify the reading patterns of subjects is by analyzing their scan-
paths events. Scanpath events are temporal patterns that occur in eye-movement
sequences [12]. In this section we analyze the scanpaths according to a set of events
that have been published and reviewed in [12] as well as a few new events we intro-
duce. Before delving in the analysis we introduce the events and describe them in
Table 10. Some of the events were tagged as new which means that they were not
listed in [12] and we are not aware of studies that define them as such, except for
the prescan event that has received some attention [32] but not necessarily under
this naming and context. We believe that the need for these new events reflects
the fact that reading code is different from conventional reading [4,6].

Interestingly, some events interact with their neighborhood, which means that
the behavior before the event and after it is expected. For example, the before-
event and the after-event of look ahead are quite similar and generally fixations.
Likewise for the look back event.

As noted in Table 10, each scanpath event can be represented by a single letter
code. The entire scanpath can then be encoded by a string of these letters, where
the size of each letter reflects the duration of the event (this was inspired by the
sequence logos used in the bioinformatics domain [24]). For this purpose we define
4 levels: tiny, small, large, and huge. An alternative representation of duration
could be repetition of the letter representing the event. However, this requires
dividing the scanpath into equal units of time which may produce segments that
are composed of different events.

Table 11 shows the event coding strings of the subjects’ scanpaths. According
to this table, the most frequent event is Fixations which are 22.5% of all events,
followed by the look ahead event with 18.3%. The look back, return, reading, and
scan events are at the same rank with about 12% each. The forward jump, prescan,
fumbling, and verification events are relatively rare.

These frequencies should be taken with caution. Some events are visually simi-
lar and this makes it difficult to choose between them. For example, the difference
between fixation, reading, and scan is based on the extent of steepness and this
is not easily determined. In the case of fixation it is not so critical because even
if some fixation events were considered as reading it still semantically belongs
to comprehension. The second problematic point is that frequency simply counts
items and does not take into account the duration of the event which means that
not all counted events have the same contribution. For example, the fixation event
occurrences come in all sizes, and in fact are common in each size category. So
fixation event also have the highest total duration. When combined with the value
of the reading events, which is reasonable as both are semantically similar, we find
that comprehension is the most common event type.

An interesting pair of events are the look ahead and look back. The former is
nearly equally divided between subjects, while the latter does not occur in 40% of
the subjects but in 50% of the subjects it is divided nearly equally. In one subject
it has 42% of its total count which means that the look back event is rare but
thanks to an extreme value for one subject it was ranked high.

Another interesting aspect to examine is recurring patterns. The first one to
notice is the prescan event that occurs in 60% of the subjects and is always followed
by reading or fixation. A semantically similar event is scan which is followed by
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Table 10: Scanpath events that occur in eye-movement sequences. Letters in bold
represent the events’ names for symbol representation of scanpaths.

Event Code Description
Suggested Mean-
ing

Illustration

Reading R
A slow progress along the y
axis (moderate slope).

Comprehension

Fixation F Reading in one place. Comprehension

Scan S
A fast progress along the y
axis (steep slope).

Hypothesis test-
ing

Look ahead A
Jump ahead along the y
axis then back.

Look for ideas

Look back B
Jump back along the y axis
then return.

Verify details

Prescan (new) P Scan for preview at t = 0. Orientation

Return (new) T
Set y to a low value and
start over.

Failure to con-
clude

Forward jump
(new)

J
Set y to a high value and
continue.

Continue at a
new location

Fumbling
(new)

M No clear pattern or event.
Do not know
what to do

Verify (new) V
multiple varied jumps at
t=end

Verification
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Table 11: Event-coding strings of the scanpaths of the subjects.

Subject Symbol representation of scanpaths

subject1 PRSBSTFAS ARBS/MFA

subject7 PFRTFAFAFA FAFAFAFAF

subject12 RARSTRAJF TRV

subject13 PRARBABFBRBTFV

subject2 PFAASTSTSTFASTFSM
subject5 PRAFARTSBBBTFSV

subject9 FARAJFTFTSTFJFTFSB

subject16 STSTSMASTVA

subject17 RSBBTRAFAFARAFASTF/MA

subject19 PRSFTFARAFJRBFBBRBFBFBFBFBFBF

the return event in 55% of its occurrences. As for the look ahead related patterns,
it seems that after a comprehension event subjects look ahead. This is evident in
the coding strings as 80% of the look ahead occurrences are preceded by reading
or fixation.

The coding strings in most cases end with M or V. Both letters indicate unclear
behavior. However, in the former this behavior points to a lack of knowledge and
control and in the latter it points to a verification process. We make the distinction
partly based on how the subjects performed, assigning M to subject2 who failed
the mission and V to subjects who did better.

The ultimate purpose of event coding is to define a framework that enables
pretty accurate representation of behavior to enable automatic manipulation and
analysis, for example, similarity between strings and pattern identification within
those strings. As we stated earlier event coding is still questionable and it is subject
to further work. For example, our coding so far totally ignores code coverage, which
might be a very important parameter which describes how much code a prescan
event covers, or how far in the code a look ahead reaches.

4.3.4 Reading Regular Code

Using the scanpath events we can also characterize the reading patterns used in
regular code, and more specifically, the patterns employed in successive instances
of the repeated pattern. Based on our results, it appears that the initial part of
the regular functions is indeed read thoroughly, with reading or fixation events.
This includes the initial repeated instances of the repeated pattern. But the later
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Table 12: Results of curve fitting to fixation data as a function of instance number
in regular implementations.

Version Measure Equation Model Sig. R2

median

complete
fixation
time

Linear y = −20422.9x+ 183489.2 0 0.340
Logarithmic y = −65923.5 ∗ ln(x) + 178972.5 0 0.292
Quadratic y = 325.1x2 − 23349.5x+ 188366.8 0 0.340
Cubic y = 1743.5x3 − 23212.92 + 66443.9x +

102060.5
0 0.375

Exponential ln(y) = −0.254x+ 12.2 0 0.465
Power ln(y) = −0.819 ∗ ln(x) + 12.1 0 0.400
Inverse y = 48715.4 + 126189.4

x
0.002 0.187

#fixations

Linear y = −43x+ 393.1 0 0.384
Logarithmic y = −144.3 ∗ ln(x) + 390.9 0 0.356
Quadratic y = 3.2x2 − 72.6x+ 442.6 0 0.393
Cubic y = 3.1x3 − 38.9x2 + 88.6x+ 287.5 0 0.422
Exponential ln(y) = −0.228x+ 6.0 0 0.489
Power ln(y) = −0.756 ∗ ln(x) + 6.0 0 0.443
Inverse y = 101.0 + 290.3

x
0 0.252

diamond

complete
fixation
time

Linear y = −57748.2x+ 258171 0.007 0.414
Logarithmic y = −132855.2 ∗ ln(x) + 219355.4 0.003 0.475
Quadratic y = 27041x2 − 192958x+ 393380.6 0.013 0.487
Cubic y = −25237x3 + 216320.3x2 − 614418x +

658370.5
0.029 0.515

Exponential ln(y) = −0.405x+ 12.2 0.066 0.222
Power ln(y) = −0.858 ∗ ln(x) + 11.9 0.07 0.216
Inverse y = −13799 + 244990.5

x
0.002 0.505

#fixations

Linear y = −116.2x+ 551.6 0.006 0.432
Logarithmic y = −265.6 ∗ ln(x) + 472.0 0.003 0.489
Quadratic y = 52x2 − 376.2x+ 811.6 0.011 0.501
Cubic y = −31.2x3 + 286.3x2 − 898.1x+ 1139.7 0.03 0.512
Exponential ln(y) = −0.375x+ 6.2 0.026 0.308
Power ln(y) = −0.806 ∗ ln(x) + 5.9 0.026 0.308
Inverse y = −7.95 + 485.8

x
0.002 0.511

instances are actually not read, but only scanned, as evident for example in the
scanpaths of subjects 5, 9, 17, and 19 in Figure 11.

4.4 Modeling Effort in Repeated Instances

We claim that not all code segments in a program should have equal weight,
especially if they have the same structure or they are clones. The rationale is that
once the developer understands one instance it is easier for him to understand the
other instances and therefore he needs less effort.

Based on this claim we observe that many widely used complexity metrics
unfairly present inflated measurements of a given code. For example, the McCabe
cyclomatic complexity is based on the number of conditions in the code where all
conditions are treated the same. Conditions in the 10th instance of a pattern are
counted just like those in the first instance. But this is misleading. As we showed,
developers do not need to invest the same effort in repeated instances.

We therefore wish to build a model that predicts the effort needed to under-
stand a repeated instance on the basis of its ordinal number. To do so we use the
fixation data for all the subjects and check the fit of candidate functions to this
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data. The natural candidates are various decreasing functions. Table 12 shows the
models found by the curve fitting procedure for the different measures (complete
fixation time and number of fixations) as a function of AOI for our two regular
implementations. According to the table all the models are significant except one
(the exponential model of the complete fixation time measure for the diamond
program).

The best model turns out to depend on the program. For the median program
the best model could be the exponential one, which explains about 46–49% of the
observed variation. Not far behind it is the power model which explains about
40–44% of the observed data. Other models are far behind them, therefore both
models are good candidates. As for the diamond program the best models are the
cubic and the inverse. They succeed in explaining more than 50% of the observed
variation in both measures. An additional good candidates are the quadratic and
the logarithmic models which are relatively close to the best models. The worst
models for this program are the exponential and the power models, which in one
case are not statistically significant and in the other explain only 30% of the
variation which is relatively low.

The reason for the relatively low values of the R2 of the different models is the
way the observed values distribute. For example, for the median version we have
8 AOIs. For each AOI we have a column of the measurements for each subject.
Due to the natural variability between subjects, it is impossible to explain all the
variation using a function of only the instances.

But as we are interested in the average user on the long term we can perhaps
do better if we fit a model to the average value for each AOI. Thus the data is
reduced to a single vector with 8 values for each measure in the median program,
and 4 values for the diamond program. In fact these values are the ones shown in
Tables 6 and 5.

The results of fitting the median program data are that all model equations are
pretty much similar (up to fractional digits) to those of Table 12 and statistically
significant. The substantial change was in their R2 values. In particular, in the
number of fixations measure of the median program, the exponential model ex-
plained 92% of the variation while the worst model explained a bit more than 50%.
Similarly, in the complete fixation time measure, the exponential model explained
92% of the variation while the worst model explained 45%.

As for the diamond program the results show that the linear and quadratic
models are not significant, so we are left with the other five. Of these, the cubic
model shows a perfect fit, while the other four show a very high fit. However,
note that with only 4 data points a cubic function can indeed pass through all the
points, so this may be an overfit. These results are true for the both the complete
fixation time as well as the number of fixations measures.

But when selecting a model one should consider the characteristics of the func-
tion and not only the R2 of the fit. For example, the seven model functions for the
number of fixations on the diamond program from Table 12 are shown in Figure 12
(right). This shows that if we extrapolate to larger xs, the quadratic model grows
to infinity, while the logarithmic, linear, inverse, and cubic models attain negative
values. The exponential and power models have the more appropriate attribute of
tending asymptotically to zero.

As for the median version (Figure 12 left) the linear, logarithmic, and quadratic
models behave as in the diamond program although not as steeply, and the inverse
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Fig. 12: Extrapolation of the model functions for the #fixation measure from Table
12. Data points are from Tables 5 and 6. Left: median version. Right: diamond
version.
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Fig. 13: Extrapolation of the model functions for the complete fixation time
measure from Table 12. Data points are from Tables 5 and 6. Left: median version.
Right: diamond version.

model converges to a positive value. However, the cubic model changed its direction
to positive infinity to compensate for the non-monotonicity of the first point.

When considering the complete fixation time measure models which are shown
in Figure 13, we see that the logarithmic, linear, cubic, inverse, exponential and
power models behave as in Figure 12 for both programs. However, the quadratic
model attains negative values at its minimum.

As we stated earlier, the best model depends on the program. However, it
seems that it does not depend on the measure nor on the interaction between
the program and the measure. On the basis of the above observations one may
claim that all models, except the exponential and the power models, are bad for
extrapolation as some of them grow to infinity and others to negative values for
larger xs. Theoretically that is right, however, the number of repeated instances in
the code does not grow to very large values. Therefore, for some thresholds other
models could be a good fit.

5 Threats to Validity

The results of this work are subject to several threats to validity, in particular in
the experimental part.
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There is an obvious advantage to using a remote eye tracker over a head
mounted device, especially when considering intrusiveness and how natural is the
experiment environment. Yet, it is still somewhat restrictive and may influence
subjects’ behavior and affect their performance. For example, one subject noted
a fear to move his head too much which prevented him from fully tracing the
function.

The small number of subjects in each group is another threat to validity. It is
hard to avoid because of the need to conduct personal experiments with the eye
tracker, and our total of 20 is relatively high in this context when compared to
other works that use eye tacking [1,27,28,37].

In this work we only used two different programs and our conclusions rely
on them. The hope is to generalize to additional examples. The reason we stuck
to these programs is because we already used them in our previous work, and
they appear to be non-trivial and realistic. Furthermore, this work basically uses
undergraduate students which could limit its generalization.

Two more threats are related to the areas of interest (AOIs). In our analysis
each area of interest captures one repeated instance. However, repeated instances
may form a continuum, therefore, areas of interest may span over two successive
instances. Moreover, we used the same margins around the code of each instance,
and created rectangular areas, but other options and geometric shapes are possible
and may lead to slightly different results.

6 Related Work

A large body of work has been done in the area of syntactic complexity met-
rics. Lines of code (LOC) is a very straightforward metric that simply counts
lines. Halstead defined the software science metrics including one which measures
programming effort [10]. This is built on the basis of operator and operand oc-
currences. McCabe introduced the cyclomatic complexity metric which effectively
counts the number of conditions in the code [20].

These metrics and others simply count syntactic elements. But are all lines
in the code of equal importance? Do all operators or operands have the same
effect? Do all constructs and conditions have the same intrinsic complexity? A few
works have considered these questions and introduced weight-based metrics. For
example, the cognitive functional size (CFS) metric is based on cognitive weights of
the different control structure [25]. Oman et al. defined the maintainability index
on the basis of three other syntactic metrics [22,35].

Admittedly, these works have taken the syntactic metrics one step forward,
but they still ignore the context of source code elements. In particular, repeated
structures are based on the same elements but require different cognitive effort
for the comprehension process. As far as we know we are the first to empirically
quantify the effect of context on complexity as anticipated by Weyuker [36].

There have been other works that study repetitions in code. Vinju et al. empiri-
cally showed that the cyclomatic complexity metric overestimates understandabil-
ity of Java methods. They introduced compressed control flow patterns (CCFPs)
that summarizes consecutive repetitive control flow structure, which helps in iden-
tifying where and how many times the cyclomatic metric overestimates the com-
plexity of the code [33]. But their focus was not on complexity or regularity, but
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rather on the question of whether people understand control flow by recognizing
patterns. Nevertheless, in the analysis they assert that “code that looks regular is
easier to chunk and therefore easier to understand”.

Sasaki et al. were even closer to our work. They recognized that one reason for
large values of the MCC metric is the presence of consecutive repeated structures,
and suggested that humans would not have difficulty in understanding such a
source code. They then proposed performing preprocessing to simplify repeated
structures for metrics measurement [23]. But both these works lack quantitative
experimental evidence, and we are not aware of such evidence also in the context
of clones in source code.

Repeated code has also been considered in the context of error proneness
whenever modifications are required. As a first step for supporting modifications
Imazato et al. investigated how repeated code is modified [13]. They revealed that
more than 73% of the repeated code is modified at least once and 31-58% of the
modifications on repeated code are needed for all elements.

Eye tracking has recently been used in several code comprehension studies.
Sharif et al. have used eye tracking in multiple works. In [27] eye tracking was
used to capture quantitative data to investigate the effect of identifier-naming
conventions on code comprehension. The use of eye tracking was a better alterna-
tive to traditional means that were used in a previous similar work [2]. Likewise,
in [28] they also replicate a previous work where traditional means were used.
The replication uses eye tracking to extend the results and determine the effect of
layout on the detection of roles in design patterns.

As for events (patterns) in eye tracking, Uwano et al. identified the scan pat-
tern in subjects’ eye movements and defined it as a preliminary scan of the source
code. They showed that there is an inverse correlation between time spent scan-
ning the code and the time for finding defects [32]. Additional patterns that have
been identified are reviewed in [12]. Sharif et al. replicated the Uwano study but
with more participants and additional eye-tracking measures [26]. This work also
investigates how programmers find defects in source code and concludes the same
results regarding scan time and defect finding time. Furthermore they concluded
that a correlation exists between scanning time and visual effort on relevant defect
lines. Yusuf et al. used eye tracking to identify the most effective characteristics
of UML class diagrams that support software tasks. Our work is unique in using
the results of eye tracking (specifically, the fixations data) to derive a quantitative
model of effort investment. We know of no previous work that used eye tracking
to quantify complexity model parameters.

In addition to eye tracking, there have been works that use psycho-physiological
sensors and functional magnetic resonance imaging in the context of program com-
prehension measurement [30,8]. Such additional measurement could be interesting
also in the context of dealing with code regularity.

7 Conclusions

We conducted an eye tracking experiment to see how programmers read code when
they try to understand it, for regular and non-regular versions of the same pro-
grams. Results show that in the repeated segments the programmers tend to invest
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more effort on the initial repetitions, and less and less on successive ones. Specif-
ically, the time and number of fixations seem to drop of exponentially (although
other models, e.g. cubic, are also possible).

One may claim that the fact that programmers invest less effort in the later
repeated instances is a natural behavior which stems from fatigue or lack of inter-
est. However the heat map of the median version showed that subjects renewed
focus on the last segment of the function which is not part of the repetitive seg-
ments. This is also supported by the higher number of within-AOI saccades of this
segment compared with its previous ones. Thus we can claim that the reduced
attention is indeed a function of the repetitions.

The reduced attention is related to the fact that repeated patterns can be antic-
ipated and are easier to understand, as was verified by post-experiment debriefing
with participants. The above observations therefore indicate that syntactic com-
plexity metrics, which just count the number of appearances of various syntactic
constructs, should be modified with context-dependent weights. For example, as-
suming an exponential model with a base of 2, a modified version of the MCC
metric would add the full MCC of the first instance, but only 1

2i−1 of the MCC
of the ith instance. This shows how syntactic measures can be reconciled with
Weyuker’s suggestion that complexity metrics reflect context [36].

However, the current experiments are not extensive enough to enable a full
model to be formulated. Of the two programs we used, one produced results which
favor an exponential model, while the other’s results do not. Additional measure-
ment with more programs and subjects are needed in order to converge on a general
model, or alternatively, to identify when different models are appropriate.

Moreover, the reduced total effort invested in successive repetitions of a code
segment does not imply that all the repetitions are read in sequence at an ever
increasing rate. On the contrary, we find that the way in which code is read is
highly non-linear, and can be described as a sequence of recurring basic patterns
such as fixation on a certain line, a linear scan of a large fraction of the code, a
temporary jump back to previously read code, and more. But while the patterns
themselves seem to be shared by different subjects, their use is inconsistent, with
each subject using a different sequence of such patterns to read the same code. We
further suggest that these patterns are likely to be used in reading all types of code,
not only regular code. A lot of additional work is needed to better characterize
the different patterns and how they are used.

In conducting such research, we suggest that several methodological innova-
tions we introduced may be useful. First, we focus exclusively on the vertical
dimension of the code, and ignore the location within a line of code. This allows
us to plot the vertical location as a function of time. But plotting all fixations
leads to very noisy graphs that are hard to interpret. The common solution is to
plot dwells in AOIs instead of individual fixations. As an alternative we suggest to
use smoothing, as achieved by computing a moving average. This retains the full
resolution of the original data (instead of discretizing using AOIs) and enables the
patterns to be seen more clearly.

Our observations and methods serve to illuminate some individual aspects of
code reading, naturally focusing on regular code. We are convinced that there is
a need for much further study to be able to draw the big picture.
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7 Conclusions

Bill Curtis has stated that there must be “as many complexity measures as

there are computer scientists” [1]. This points to the inherent difficulty in

defining one simple number that is capable of measuring complexity. Prather

even clearly asserted that: “It is fairly certain that no one magic number

can serve as a measurement for all the characteristics of software” [2]. He

continued “One expects that different metrics will be needed in estimating a

program’s inherent psychological complexity, its readability ...”.

With this in mind, following is a list of the main points that conclude this

thesis. There order is not according to their importance but rather a story

order.

7.1 The Practice Does not Match the Common Wis-

dom

McCabe’s cyclomatic complexity has been one of the most popular complex-

ity metric since its introduction. McCabe suggested 10 as the threshold above

which functions are considered complex and refactoring should be applied to

reduce complexity. Since then other thresholds have been suggested with

values up to 50.

We investigated a few large scale software systems for the MCC of their

functions and revealed that there are very many functions that have very

high MCC values (up to twenty times the highest threshold ever suggested).

The immediate question asked was: are these functions very complex as

their MCC values suggest? A few practical investigations showed that these

numbers are far from reflecting real complexity and they place the common

wisdom thresholds in a big doubt regarding their reliability. Here are the

actions we performed:

• Some of these functions (of the Linux system) evolve over time. In

particular, developers succeeded to maintain them which means that
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their very high MCC values are not a real barrier that prevents com-

prehension.

• Subjective ranking of some of these functions ranked them as very easy

to comprehend.

• Manual close examination of some of them showed that they are actu-

ally very long but well structured which explains why subjects tended

to think they are not complex.

• Due to their length we visualized them and this clearly emphasized

their flat and regular structure.

In conclusion, it seems that a simple number threshold (for MCC but

fairly for others) is hard to set due to the large variability of the factors that

might affect it. For example, the human factor is one that has a large effect

on complexity and at the same time hard to capture.

7.2 Visualization of Long Functions

One of the best ways to capture the whole structure of a very long function

is visualization. To this end we proposed and implemented CSD; a control

structure diagram that helped us to easily identify regularity in code.

This diagram reflects many structural aspects such as construct type,

nesting level, and code block size. we believe that this diagram has a po-

tential for wider usage than just identifying regularity. Its comprehensive

aspects could help in detecting new properties that might have an effect on

complexity.
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7.3 Regularity: A New Structural Property that Af-

fects Comprehension

The most widely used complexity metric was introduced in 1976 by McCabe.

Since then it has been largely criticized, mainly for its failure to capture all

considerations involved in structuring code. Admittedly, other complexity

metrics also suffer from this drawback but they are less common. Moreover,

there is no metric or a combination of metrics that is capable to measure

complexity seemingly due to the fact that they are not aware of all consid-

eration that might have an effect on comprehension. These considerations

include program aspects and humans variability.

In this thesis we introduce regularity as an additional factor that affects

comprehension. Regularity characterizes code that has many successive rep-

etitions of a pattern, where the effort invested in the initial instances is much

larger than the one invested later instances because programmers leverage

their experience in the first segments to make it easier to understand the

other ones.

To show to what extent regularity affects comprehension we conducted ex-

periments where subjects performed various comprehension tasks on regular

and non-regular implementations of the same problem. The results showed

that despite the supposed complexity of the regular implementations (they

are longer and have much higher cyclomatic complexity) subjects achieved

better results. Therefore, we conclude that regularity of code may have a

large impact on comprehension by humans and may compensate for high

values of cyclomatic complexity and lines of code.

To help integrating regularity in future or existing metrics we conducted

an eyetracking-based experiment to explore the way programmers read reg-

ular code for the sake of understanding. We concluded that the best model

would be the exponential one. This model confirmed our initial argument re-

garding the fact that programmers leverage their understanding of the initial

segments to help themselves understanding the later ones.
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7.4 Context Awareness

As has been mentioned, regularity is a new factor we have came up with that

affects comprehension. This new factor leads to context awareness which

is an aspect that has a wider implications and might help in revealing new

properties, such as regularity, that might have an effect on comprehension.

Context awareness points to the ability of being sensitive to some fac-

tors that somehow are related to the measured element. This means that

complexity is no longer absolute and it is relative to other factors such as

location and neighbors.

Therefore, we believe that future metrics as well as existing metrics should

consider this type of awareness in order to better reflect complexity.

Admittedly, context awareness has been around for a long time but has

not received appropriate attention. Martin Shepperd in a critique paper on

the cyclomatic complexity stated that “the complexity of a decision cannot

be considered in isolation, but must take into account other decisions within

its scope” [3].

7.5 Challenging Existing Metrics

A very large number of metrics has been developed over the years. This

broad arsenal fails in providing an effective way to measure complexity. Nev-

ertheless they are still in use.

The new property (regularity) we presented in this thesis challenges the

reliability of the existing metrics in reflecting effective complexity. Following

this new property and its wider aspect (context awareness) an introspection

of the existing metrics is probably necessary and perhaps a redefinition of

some is required. For example, we have already shown the failure of MCC

in predicting complexity in the presence of regular code and even suggested

a way to model regularity for integration in MCC. In particular, we found

that the effort invested in comprehending successive regular instances is gov-
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erned by a decreasing functions, therefore, we suggest to give these segments

different weights according to their order in the sequence.

This considerations should also be taken into account whenever a new

metric is proposed.

7.6 Non Linearity of Code Reading

It is well known that natural language text is read quite linearly; from left-

to-right, top-to-bottom. We have shown that code is read in a non-linear

manner and in particular it seems that some regular code is not read at all

but rather just scanned.

This examination has been largely based on an event-based framework

we have developed for analyzing scanpaths built when code is read by pro-

grammers. This framework can be used in any eyetracking-based experiment

for better analysis of subject’s reading path.

7.7 Experimentally Grounded Insights

Our results were based on a family of experiments we conducted in every

stage of this thesis. It starts by subjectively ranking High-MCC functions,

comparing the effect of regular and non-regular implementations on compre-

hension, and finally studying the way programmers read regular code using

eyetracking means.

It is very important and even necessary to experimentally verify conjec-

tures in general because it has been shown that there is a large gap between

the measurements of existing metrics and complexity as perceived by humans.

Beyond the verification of our conjectures, the experimental observations led

to unknown and surprising insights that would not otherwise be achieved.
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 רגולריות של קוד: מאפיין מבני חדש והשפעתו על 

 מורכבות והבנת הקוד
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 .פרופ' דרור פייטלסוןעבודה זו נעשתה בהדרכתו של 
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 תקציר

נתון. הקוד ה עבורשבו נבנה מודל מנטלי היא תהליך   (Program Comprehension) מחשב תוכניתקוד של הבנת 

ון באגים והוספה של דרישות כדוגמת תיק  תוכנההשל ( Maintenance)תחזוקה התהליך זה הוא הבסיס לכל פעילות 

 חדשות לתוכנה קיימת.

מוקצים במהלך חיי התוכנה מנוצלים בעת מהעובדה שחלק גדול מהמשאבים אשר חשיבותה של תחזוקת תוכנה נו

, יותו שלב מקדים לכל פעילות תחזוקתיתלא רק בשל ה , שגם תהליך הבנת הקוד חשוב בפעילות זו. לכן, נובע מכך

ן יותר . בפרט, ככל שהקוד מובתחילה אלא בשל העובדה שהצלחת תהליך התחזוקה תלויה במידה רבה בהבנת הקוד

 ירות גבוהה שתהליך התחזוקה יצליח יותר.סב

 מסובך( שזה אומר שככל שהקוד Code Complexity)הקוד  סיבוכיותמנגד, הבנת קוד מושפעת בצורה ישירה מ

וזרימה לא לינארית של קוד הם גורמים אשר ( Nesting)פחות יהיה קל יותר למתכנת להבין אותו. למשל, קינון 

הקוד וככל הנראה הופכים אותו לקשה להבנה. לכן, אנחנו רוצים לשפר את הבנת הקוד על ידי  תסיבוכיומשפיעים על 

 של קוד.  כפי  סיבוכיותנו למדוד של מטרה זו תלויה ביכולת של הישימותכתיבת תוכניות קשות פחות.  כמובן, 

מדידה הינה השלב ההתחלתי שמוביל לשליטה שמובילה לשיפור. אם אין יכולת למדוד "סיכם, ג'יימס הרינגטון ש

משהו במשהו, אין אפשרות להבין אותו. אם אין אפשרות להבין משהו, אינך יכול לשלוט בו. אם אינך יכול לשלוט 

 אינך יכול לשפר אותו."

לי יותר מכל דבר וא הל מדדים אלה מעידש השל קוד. הכמות הגדול סיבוכיותבמשך השנים הוגדרו הרבה מדדים ל

 הצגת מספר אחד פשוט.של קוד על ידי  סיבוכיותבהגדרת מדד אידיאלי שיש לו יכולת לשקף  הקושי האמיתיאחר על 

על ידי ניתוח תחבירי של הקוד  סיבוכיותהקיימים היא שמדדים אלה מעריכים  סיבוכיותהבעיה העיקרית של מדדי ה

( מתבסס על McCabe's Cyclomatic Complexity - MCC) McCabeיקלומטי של הנתון. למשל, המדד הצ

מספר מסלולי הביצוע הבלתי תלויים בקוד שהינו שקול למספר התנאים ועוד אחד. מדד זה נחשב לשימושי ביותר מאז 

הוא בעיקר בשל העובדה ש ם. למרות הפופולריות שלו, מדד זה קבל הרבה ביקורות במשך השני1976הצגתו ב 

 שלהם. א התייחסות להקשרבקוד ומסתפק בספירת אלמנטים של התוכנית לל (Data Flow) נתוניםמתעלם מזרימת ה

 MCC -חוסר שביעות הרצון מהיכולות המעשיות של המדדים הקיימים מובילה לשאלת המחקר של למה מדד ה

אפקטיבית? מה חסר במדדים אלה ומה צריך כדי להגדיר מדדים  סיבוכיותואחרים אינם מספיק טובים על מנת לשקף 

 טובים יותר?
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הקוד. בפרט, בקוד  סיבוכיותכגורם נוסף שיש לו השפעה על ( Regularity)בעבודת גמר זו אנחנו מציגים רגולריות 

לקלה יותר ת כאשר הבנת מופעים רצופים של תבניות אלה הופכת ות מסוימורגולרי קיימות הרבה חזרות של תבני

 כל תבנית.בר בהבנת המופעים הראשונים של וצהמתכנת ש ןהניסיובהינתן 

והרגישות אליו: קטע קוד מסוים ניתן  (Context Awareness) המודעות להקשרהחידוש העיקרי ברגולריות הוא 

רת יותר כערך דשל קוד אינה מוג סיבוכיותלופין, וזאת כתלות בקוד שכן. לח סיבוכיותלאבחנה ברמות שונות של 

יותר מאשר המופעים בהמשך  כמסובכיםמוחלט אלא תלוית הקשר. בפרט, ברגולריות המופעים ההתחלתיים נמדדים 

האפקטיבית של המופעים החוזרים קטנה בגלל שמתכנתים ממנפים את הבנתם לקטעים  סיבוכיותוזאת בשל העובדה שה

 אים לקלה יותר.הראשונים כדי להפוך את ההתמודדות בקטעים החוזרים הב

 Code) , באופן בלתי מודע מזניחים את היבט ההקשר בקודMCC -הנוכחיים, כולל מדד ה סיבוכיותמנגד, מדדי ה

Context)בפרט, הם פשוט סופרים אלמנטים בקוד. למשל, מדד ה .- LOC  (lines of code)  סופר שורות קוד ומדד

 סופר תנאים. MCC -ה

הרצנו סדרה ות שקיימות בפרקטיקה. בפרט, עגישה אמפירית על מנת לחקור את ההשפקיימת חשיבות גדולה לאמץ 

בניסוי שהתבסס על  ( וכלוSubjective Rankingפשוט של דירוג סובייקטיבי )ו בניסוי ילשל ניסויים מגוונים שהתח

חלק יכים . התוצאות מראות שנסיינים מער(Eyetracking-based Experiment) עקיבה אחר תנועות עיניים

ביצעו משימות הבנה והשיגו תוצאות  הנסיינים. יתרה מזו, מסובכותציקלומטית גבוהה כלא  סיבוכיותפונקציות עם מה

 ( בהשוואה לקוד שאינו רגולרי.MCC -יותר על פי מדד ה מסובךטובות יותר בקוד רגולרי )למרות היותו 

תובנות אודות קריאת קוד באופן כללי וקריאה של קוד ירי שלנו חשף ידיים שהצגנו, המחקר האמפמעבר לאפקטים המ

רגולרי באופן פרטי. בפרט, התוצאות מראות שקריאה של קוד היא לא לינארית בהשוואה לקריאת טקסט של שפה 

 חלקים ממנו רק נסרקים.קרא בכללותו אלא, שקוד זה לא נטבעית. באשר לקוד רגולרי, ככל הנראה 

קוראים קוד רגולרי הוביל לתשתית מבוססת אירועים אשר משמשת כבסיס לניתוח המחקר על הדרך שבה מתכנתים 

. בפרט, הרחבנו את אוסף האירועים אשר מתרחשים בזמן תהליך קריאה של קוד )קריאה, באופן כללי קריאה של קוד

קריאה  וניים חדשים הצענו דרך לקידוד נתעורודות קודמות. בנוסף להגדרה של איהוצגו בעבואשר סריקה וכו'( 

 על ידי שימוש בטכניקות מתחום הביואינפורמטיקה. לניתוחים עתידיים

הקוד ועל כן הוא מציב, בין היתר, אתגר  סיבוכיותעבודה זו אנחנו מציגים מאפיין חדש שיש לו השפעה על באמנם 

פת בפני המדדים הקיימים, אבל רגולריות הינה רק דוגמה של גורם כזה והיא אינה פותרת הכל. רגולריות בעצם חוש

  כקווים מנחים בגילוי והצגה  של גורמים חדשים. היבטים רחבים יותר שיכולים לשמש

בוחן את לעיל. המאמר הראשון  גים ומנתחים את הרעיונות שהוצגוציפה של מאמרים שמועבודת גמר זו מורכבת מאס

גבוהים במיוחד. מאמר זה משמש   MCCתמונת המצב הפרקטית על ידי הסתכלות בפונקציות אמיתיות בעלות ערכי

מאמר זה הורחב לגרסת ג'ורנל כאשר אותם רעיונות נבחנו אך [. 1כמאמר מוטיבציה למחקר המשך באותו כיוון ]
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 סיבוכיות[. בשל העובדה שפונקציות עם 2מערכות תוכנה נוספות כדי לנסות לתאר תמונת מצב כללית יותר ]הפעם ב

 [.3ציקלומטית גבוהה הן גם ארוכות מאוד הצענו כלי ויזואליזציה שעוזר בין יתר הדברים בזיהוי רגולריות בקוד ]

ל ידי השוואה ניסיונית של קוד רגולרי עם קוד הצעד הבא היה לחקור את השפעת הרגולריות על הבנה של קוד וזאת ע

 מסובךשהוא לא רגולרי של אותה תוכנית. התוצאות מראות שקוד רגולרי קל יותר להבנה למרות היותו ארוך יותר ו

 [.4( ]MCCיותר )על פי 

ף את היבט חשוב נוסף שבחנו אותו היה הדרך שבה מתכנתים קוראים קוד רגולרי. מחקר זה הניב מודל אשר משק

הג'ורנל המורחבת של מאמר זה הראינו  [. בגרסת5רגולרי כפונקציה יורדת ]המאמצים אשר מושקעים בהבנה של קוד 

 [.6של שפה טבעית ] טקסטשקריאת קוד שונה בהרבה מאשר קריאה של 

כדוח לבסוף, הצענו דרך כדי למדוד רגולריות באמצעים של דחיסה. עבודה זו עדיין לא התפרסמה והיא מופיעה 

 [.7שמסכם את המסקנות בתחום זה ]
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