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Abstract

In this work we investigate the issue of resource matching between jobs and ma-
chines in Intel’s compute farm. We show that common heuristics such as Best-Fit
and Worse-Fit may fail to properly utilize the available resources when applied to
either cores or memory in isolation. In an attempt to overcome the problem we
propose Mix-Fit, a heuristic which attempts to balance usage between resources.
While this indeed usually improves upon the single-resource heuristics, it too fails
to be optimal in all cases. As a solution we default to Max-Jobs, a meta-heuristic
that employs all the other heuristics as sub-routines, and selects the one which
matches the highest number of jobs. Extensive simulations that are based on real
workload traces from four different Intel sites demonstrate that Max-Jobs is in-
deed the most robust heuristic for diverse workloads and system configurations,
and provides up to 22% reduction in the average wait time of jobs.
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1 Introduction

Intel owns an Internet-scale distributed compute farm that is used for running its

massive chip-simulation workloads [6, 9, p. 78]. The farm is composed of tens of

thousands of servers that are located in multiple data centers that are geographi-

cally spread around the globe. It is capable of running hundreds of thousands of

simulation jobs and tests simultaneously, and handles a rate of thousands of newly

incoming jobs every second.

This huge compute capacity is managed by an in-house developed highly-

scalable two-tier resource management and scheduling system called NetBatch.

At the lower level NetBatch groups the servers into autonomous clusters that are

referred to in NetBatch terminology as Physical Pools. Each such pool contains up

to thousands of servers and is managed by a single NetBatch entity that is called

the Physical Pool Manager or PPM. The role of the PPM is to accept jobs from

the upper level, and to schedule them on underlying servers efficiently and with

minimal waste.

At the upper level NetBatch deploys a second set of pools that are called Vir-

tual Pools. Just like in the lower level, each virtual pool is managed by a single
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NetBatch component that is called the Virtual Pool Manager or VPM. The role of

the VPMs is to cooperatively accept jobs from the users and distribute them to the

different PPMs in order to spread the load across the farm. Together, these two

layers, VPMs at the top and PPMs at the bottom, strive to utilize every compute

resource across the farm. This work focuses on the work done at the PPM level.

A basic requirement in NetBatch is the enforcement of fair-share scheduling

among the various projects and business units within Intel that share the farm.

Fair-share begins at the planning phase where different projects purchase different

amounts of servers to be used for their jobs. These purchases eventually reflect

their share of the combined resources. Once the shares are calculated, they are

propagated to the PPMs where they are physically enforced. The calculation and

propagation mechanisms are beyond our scope.

To enforce fair-share the PPM constantly monitors which jobs from which

projects are currently running and the amount of resources they use. The PPM

then selects from its wait queue the first job from the most eligible project (the

project whose ratio of currently used resources to its share of the resources is the

smallest) and tries to match a machine to that job. If the matching succeeds, the

job is scheduled for execution on that machine. Otherwise, a reservation is made

for the job, and the process is repeated while making sure not to violate previously

made reservations. Such reservations enable jobs from projects that are lagging

behind to obtain the required resources as soon as possible.

Matching machines to jobs is done using any of a set of heuristics. For ex-

ample, one may sort the list of candidate machines according to some pre-defined
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criteria — e.g. increasing number of free cores or decreasing amount of free mem-

ory — and then traverse the sorted list and select the first machine on which the

job fits. This leads to variants of Best-Fit and Worse-Fit schemes. Good sorting

criteria reduce fragmentation thus allowing more jobs to be executed, and are crit-

ical for the overall utilization of the pool. Alternatively one may opt to reduce

overhead and use a First-Fit heuristic.

The sorting criteria are programmable configuration parameters in NetBatch.

This allows one to implement various matching heuristics and apply them on dif-

ferent resources to best suit the workload characteristics and needs. NetBatch also

allows individual jobs to specify different heuristics, while the pool administrator

can set a default policy to be used for all jobs.

In this work we argue that no heuristic applied to a single resource in isolation

can yield optimal performance under all scenarios and cases. To demonstrate

our point we use both simple test cases and workload traces that were collected

at four large Intel sites. Using the traces, we simulate the PPM behavior when

applying the different heuristics to schedule the jobs. We show that depending on

the workload different heuristics may be capable of scheduling a higher number

of jobs.

In an attempt to overcome the problem we develop “Mix-Fit” — a combined

heuristic that tries to balance the use of cores and memory. Intuitively this should

reduce fragmentation at the pool. However, while generally better than the previ-

ous heuristics, Mix-Fit too fails to yield optimal assignments in some cases.

As an alternative, we propose a meta-heuristic we call “Max-Jobs”. Max-Jobs
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is not tailored towards specific workloads or configurations. Instead, it uses the

aforementioned heuristics as sub-routines and chooses, in every scheduling cycle,

the one that yields the highest number of matched jobs. This overcomes corner

cases that hinder specific heuristics from being optimal in all cases, and conforms

well to the NetBatch philosophy of maximizing resource utilization in every step.

We demonstrate, through simulation, that Max-Jobs yields lower wait times by up

to 22% for all jobs in average under high loads.

The rest of this work is organized as follows. Section 2 reviews the traces that

were collected from Intel’s pools. Section 3 provides more details on the problem

of matching machines to jobs, and explores the performance of commonly used

heuristics. Section 4 then describes the Mix-Fit heuristic, followed by the Max-

Jobs meta-heuristic in Section 5, and simulation results in Section 6. Section 7

presents related work, and Section 8 concludes.
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2 Workload Characterization

In order to perform the simulations that will be described later, we conducted a

survey of the jobs that were executed in NetBatch during a one month period. The

following section describes the traces of jobs that were collected.

NetBatch is a grid computing scheduling system. There exist few similar grid

computing systems: LSF [3], OracleGrid [2] and HTCondor [1] are such exam-

ples. NetBatch is an in-house solution that was implemented at Intel, and is tai-

lored for Intel’s specific needs.

As a grid computing system, NetBatch accepts jobs, schedule to run it on one

or more machines and manage all aspects of the job execution environment. When

a job finishes it’s execution in NetBatch , it is reported to a database with all the

information that was gathered during execution. That data is then stored for few

month for users introspection. Later, the data is aggregated by business analysis

requirements, while the original data is dropped. We collected the data of job

execution couple of month after these jobs were finished and before the data was

deleted.

The data comes from traces that were collected at the PPM level during a
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Property Pool A Pool B Pool C Pool D
Number of Jobs 13,368,191 13,085,800 13,313,793 9,054,066
Number of Users 1,104 1,615 1,146 862

Number of Machines 1,633 3,115 1,499 2,692
Number of Cores 16,588 33,300 18,816 40,372

Table 2.1: General summary of the traces collected during one month
period.

one-month period, and which contain up to 13 million jobs each. The data was

collected from four of Intel’s largest pools at different locations. These pools were

labelled A, B, C and D. The data is stored and available in the Parallel Workload

Archive [4] in original format and The Standard Workload Format[7]. Table 2.1

describes general properties of the recorded data.

Figures 2.1 and 2.2 show the distribution of the jobs’ cores and memory re-

quirements 1. As can be seen in the figures, the vast majority of the jobs are serial

(single-thread jobs, requiring a single CPU core in order to execute). Memory

requirements are mostly 8 GB and below, but there are jobs that require 16 GB,

32 GB, or even more memory (not shown) in order to execute. These observations

are consistent across the pools.

1 The requirements are specified as part of the job profile at submit time.
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Figure 2.1: Jobs’ cores requirements: the vast majority of the jobs are
serial and require a single CPU core in order to execute.
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Figure 2.2: Jobs’ memory requirements: demands are mostly 8 GB and
below, but there are jobs that require 16 GB, 32 GB or even more mem-
ory in order to execute.
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3 Matching Machines to Jobs

As described above, matching machines to jobs at the PPM is done by choosing

the most eligible job from the wait queue, sorting the list of candidate machines

according to some pre-defined criterion, traversing the sorted list, and selecting

the first machine on which the job fits1. This is repeated again and again until

either the wait queue or the list of machines are exhausted. At this point the

PPM launches the chosen job(s) on the selected machine(s) and waits for the next

scheduling cycle.

A job may be multi-threaded, but we assume that each job can fit on a single

(multi-core) machine. In principle NetBatch also supports parallel jobs (called

“MPI jobs”) that span multiple machines, but in practice their numbers at the

present time are small. The only added difficulty in supporting such jobs is the

need to allocate multiple machines at once instead of one at a time.

There are many criteria by which the machines can be sorted. In this work

we focus on the number of free cores and amount of free memory, as this suits

well the workload in Intel which is characterized by compute-intensive memory-

1 This is done for practical reasons since trying all combinations is time consuming.
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demanding jobs. Though I/O is definitely a factor, and some jobs do perform large

file operations, there are some in-house solutions that are beyond the scope of this

work that greatly reduce the I/O burden on the machines.

The two ways to sort the machines by available cores or memory are in in-

creasing or decreasing order. Sorting them by increasing amount of free cores

or memory and selecting the first machine on which the job fits effectively im-

plements the Best-Fit heuristic. Best-Fit is known to result in a better packing

of jobs, while maintaining unbalanced cores (or memory) usage across the ma-

chines in anticipation for future jobs with high resource requirements. Sorting the

machines by decreasing amount of free cores or memory implements the Worse-

Fit heuristic. Worse-Fit’s advantage is in keeping resource usage balanced across

machines, which is particularly useful for mostly-homogeneous workloads. For

completeness we also mention First-Fit. First-Fit’s advantage is in its simplicity,

as it does not require the sorting of the machines. Our tests, however, revealed

that it performs poorly in our environment, so we do not refer to it further.

We argue that no single heuristic, when applied to a single resource in isola-

tion, can yield optimal performance under all workload scenarios. To demonstrate

our point we begin by providing simple synthetic examples showing how different

heuristics match different number of jobs under different workload conditions. We

then put theory to the test by running simulations on the aforementioned traces,

demonstrating the effectiveness of the different heuristics under different work-

loads.
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Figure 3.1: Scenario for which Worse-Fit (right) is better than Best-Fit
(left). Memory is depicted in 4 GB blocks. Shading indicates mapping
of a job to a certain core and certain blocks of memory. Note that both
cores and memory are mapped exclusively to distinct jobs.

3.1 Synthetic Examples of Heuristics Failures

In our examples we consider two machines, A and B, each having four cores and

32 GB of memory. Assume that 8 jobs are queued at the PPM in the following

priority order: two jobs of one core and 16 GB of memory, and then 6 jobs of one

core and 4 GB of memory. As can be seen in Figure 3.1(a), Best-Fit matches the

first two jobs with machine A, totally exhausting its memory, and the next four

jobs with machine B, thereby exhausting its cores. The end result is two non-

utilized cores on machine A, half the memory non-utilized on machine B, and

two jobs that remain pending at the PPM. Worse-Fit on the other hand matches

the first two jobs on different machines, which leaves enough free space (cores

and memory) for all the remaining 6 jobs to be matched. This is illustrated in

Figure 3.1(b).

Another example is illustrated in Figure 3.2. The priority order here is 3 jobs

of one core and 8 GB, followed by one job of one core and 32 GB of memory. As
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Figure 3.2: Scenario for which Best-Fit (left) is better than Worse-Fit
(right).

can be seen, Worse-Fit spreads the first three jobs on different machines, which

doesn’t leaves enough memory for the 32 GB job to be matched. Best-Fit on the

other hand matches the first three jobs on machines A, which allows the 32 GB to

be matched with machine B.

3.2 Observations from the Workloads

Machines currently available on the market typically have multi-core CPUs and

large amounts of memory. Therefore, we may expect to see situations similar to

the ones described above. In addition, jobs comes with core and memory require-

ment, and in most cases jobs are allocated one per core. This may waste cycles

due to wait states and I/O, but makes things much more predictable.

To characterize the use of cores and memory in each of the pools, we used the

traces mentioned above, and partitioned them into buckets of 1000 jobs each. This

resulted in 13K buckets for pools A, B, and C, and 10K buckets for pool D. Such

small buckets allow us to observe bursts of activity that deviate from the average.
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Figure 3.3: Bursts in jobs cores requirements: pool A is the burstiest.
Pool B’s bursts are sparse, while pool C’s have only a small amplitude.
In pool D there are virtually no bursts of jobs requiring more than one
core.
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Figures 3.3 and 3.4 show the jobs’ average cores and memory requirements

in each of the buckets, for each of the four pools, respectively. As can be seen,

different pools exhibit different magnitudes of bursts of jobs with high core or

memory demands. Pool A is the most bursty in both dimensions; it is the only

pool that had a bucket in which the average job core requirement is higher than 2,

and multiple buckets in which the average memory requirement is larger than 20

GB.

Pool B exhibits sparse bursts of jobs with high core demands, but intense

bursts of high memory requirements. Pool C exhibits continuous moderate core

demands, and also relatively steady memory bursts. Finally, pool D has virtually

no bursts of jobs requiring more than one core, but it does exhibit bursts of high

memory demands, along with periods of particularly low memory requirements.

3.3 Comparing Heuristics

To demonstrate the effectiveness of the different heuristics under different work-

loads we performed the following experiment. We used the buckets described

above, assigned all jobs in each bucket a submit time of 0, and gave each heuristic

an opportunity to try and match, in simulation, as many jobs as possible from each

bucket on a small synthetic pool of empty machines (total of 512 cores); jobs that

could not be matched were simply skipped. For each bucket we then counted the

number of jobs matched by each heuristic, and gave the winning heuristic(s) (the

one(s) who matched the highest number of jobs) a point.

The results are shown in Figure 3.5. As can be seen, Worse-Fit-Cores signifi-
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Figure 3.5: Percentage of wins by each heuristic: Worse-Fit-Cores sig-
nificantly outperforms the other heuristics in pool A. The differences in
pools B, C, and D are smaller.

cantly outperforms all other heuristics (collecting the highest percentage of wins)

in pool A. It is also the best heuristic in pools B, C, and D, but the differences

there are smaller. There is little difference among Best-Fit-Memory, Worse-Fit-

Memory, and Best-Fit-Cores, although Worse-Fit-Memory is consistently slightly

better than the other two. Notably, for pool D where there is virtually no core frag-

mentation as indicated in Figure 3.3 there seems to be little difference between the

performance of the different heuristics.

An important observation is that though Worse-Fit-Cores appears to be the

preferred heuristic, it did not win in all cases. This is shown by the gap between

the Worse-Fit-Cores bars and the 100% mark, indicating that in 6–37% of the

experiments other heuristics performed better. These gaps are the motivation for
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the Mix-Fit heuristic proposed next.
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4 The Mix-Fit Heuristic

As demonstrated in the previous section, none of the one-dimensional heuristics is

capable of maximizing the number of matched jobs under all workload scenarios.

In this section we propose a new heuristic, Mix-Fit, that takes into account both

cores and memory in an attempt to overcome the problem.

4.1 Balanced Resource Usage

The basic idea behind Mix-Fit is to try and reach balanced resource utilization

across both cores and memory. This is achieved by considering the configured

ratio of cores to memory on each machine, and matching the job with the machine

on which the ratio of used cores to memory, together with this job, is closest to

the configured ratio.

To see how this is done, envision a grid representing possible resource combi-

nations (as was done in Figures 3.1 and 3.2). Each column represents a CPU core,

and each row a block of memory (the sizes of such blocks are not really impor-

tant as long as they are used consistently; they should correspond to the smallest

unit being allocated). Assuming that cores and memory blocks are assigned ex-
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clusively to jobs, an allocation may be portrayed as a sequence of shaded squares

on this grid, where each job is represented by a sequence of memory-squares in a

specific core-column.

The configured ratio is represented by the diagonal of this grid, and the used

ratio by the line connecting the top-right point of the grid with the top-right point

of the last job. Mix-Fit defines a parameter, α , that denotes the angle between

these two lines. Note that the used ratio is calculated after allocating the job being

considered, so machines on which this job does not fit are excluded from the

discussion. Mix-Fit then matches the job with the machine with the minimal α

value. In case of a tie, the first machine with the minimal value is used.

Two important notes. First, The grid is drawn such that memory and cores

are normalized to the same scale in each machine separately, thereby creating a

square. This prevents the scale from affecting the angle. Second, the angle is

based on lines emanating from the top right corner. It is also possible to have a

similar definition based on the origin (i.e. the bottom-left corner). Choosing the

top-right corner leads to higher sensitivity when the machine is loaded, which

facilitates better precision in balancing the resources in such cases.

Let’s see an example. Three machines are available, each with 4 cores and 32

GB of memory. Machine A already has one job with 24 GB, Machine B has 2 jobs

with 8 GB each, and Machine C has one job with 2 cores and 4 GB memory and

another job with 1 core and 4 GB memory. The next job that arrives requires one

core and 8 GB of memory. The various α values of all three machines including

the newly arrived job are demonstrated in Figure 4.1. The machine selected by
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Figure 4.1: Example of various α angles calculated by Mix-Fit. The
selected machine in this case is B where α = 0.
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Figure 4.2: Mix-Fit behaviour for the example in Figure 3.1. The end
result is identical to Worse-Fit.

Mix-Fit in this case is B where α = 0.

To demonstrate why this may be expected to improve over the previous heuris-

tics we will use the same examples we used above. Consider Figure 3.1, where

Worse-Fit yielded the best match. After matching the first 16 GB job with ma-

chine A, Mix-Fit will match the second 16 GB job with machine B, as this will

lead to a smaller α value as can be seen in Figure 4.2(a). It will then match the

remaining 4 GB jobs with both machines until all cores get utilized. As can be

seen in Figure 4.2(b) the end result is identical to Worse-Fit.

Next, lets re-examine Figure 3.2 where Best-Fit yielded the best results. In

this scenario Mix-Fit will match the first three 8 GB jobs with machine A, and
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Figure 4.3: Jobs allocated by Mix-Fit for the Example in Figure 3.2. The
result is identical to Best-Fit.

then the 32 GB job with machine B, replicating the behaviour of Best-Fit. Note

that α would have been the same for the second 8 GB, whether it would have

been matched on machine A or B. But as noted above, in such cases the First-Fit

heuristics is used as a tie breaker and hence the job is matched with machine A.

As can be seen in Figure 4.3 the end result is identical to Best-Fit.

4.2 Mix-Fit’s Results

To check the performance of Mix-Fit we repeated the buckets experiment from

Section 3.3, but this time including Mix-Fit in the set of competing heuristics.

The results are shown in Figure 4.4. As can be seen, Mix-Fit wins by only a small

margin in pool A, performs similarly to Worse-Fit-Cores in pools B and D, and is

slightly outperformed by Worse-Fit-Cores in pool C.

These results are counter-intuitive, since in a two-dimensional environment of

cores and memory, where both resources are subject to sudden deflation by bursts

of jobs with high demands, a reasonable strategy would be to try and balance the

usage between the resources, in order to secure a safety margin against bursts of
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Figure 4.4: Percentage of wins by each heuristic: Mix-Fit wins by only a
small margin in pool A, performs similarly to Worse-Fit-Cores in pools
B and D, and is slightly outperformed by Worse-Fit-Cores in pool C.

any kind. This strategy, however, which Mix-Fit employs, seems to yield some

improvement only under the most bursty situations (pool A). This leads us to

default to a meta-heuristic, Max-Jobs, which is described next.
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5 The Max-Jobs Meta-Heuristic

The experiment described above indicates that counter-intuitively, Mix-Fit does

not yield the best performance in all pools. As an alternative, we therefore suggest

the use of the Max-Jobs meta-heuristic.

A meta-heuristic is an algorithm that employs other heuristics as subroutines.

In our case, Max-Jobs uses all of the heuristics described before: Best-Fit-Cores,

Best-Fit-Memory, Worse-Fit-Cores, Worse-Fit-Memory, and Mix-Fit. At each

scheduling cycle, Max-Jobs picks the best schedule produced by any of these

heuristics for this cycle. In other words, the meta-algorithm runs all the available

heuristics as black-boxes and selects the one with the best result for the currently

queued jobs. The target function defining “best” is maximizing the number of

jobs assigned to machines in this cycle. Importantly, additional heuristics can be

added later and the system will take advantage of them in those cases that they

perform the best.

Pseudo-code for the Max-Jobs meta-heuristic is given in Figure 5.1.
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L – list of heuristics
S – list of proposed schedules (mapping jobs to hosts)

foreach heuristic H in L
S[H] = H.Schedule(waitingQueue)

maxJobsSchedule = MaxJobsSchedule(S)
Dispatch(maxJobsSchedule)

Figure 5.1: The Max-Jobs meta-heuristic.
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6 Simulation Results

To experiment with Max-Jobs, Mix-Fit and the rest of the heuristics, we developed

a Java-based event-driven simulator [14] that mimics the matching behaviour at

the PPM. The simulator accepts as input a jobs trace file, a machines configuration

file, and a parameter defining which matching heuristic to apply. It first loads

the two files into memory, building an event queue of job arrival events sorted

according to the timestamps from the trace (hence preserving the original arrival

order and inter-arrival times of the jobs), and a list of machine objects according

to the configuration.

The scheduling function is invoked by the scheduler at regular intervals, as

is commonly done in many large-scale systems. In our simulations we used an

interval of 30 seconds. This allows the scheduling overhead to be amortized over

multiple jobs that are handled at once, and may also facilitate better assignments

of jobs to machines, because the scheduler can optimize across a large number of

jobs rather than treating them individually.

In each scheduling cycle, the scheduler begins by picking the first arrival event

from the queue and trying to match a machine to the arriving job using the selected
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heuristic1. If the matching succeeds the job is marked as “running” on the selected

machine, and a completion event is scheduled in the event queue at a time-stamp

corresponding to the current time plus the job’s duration from the trace. Other-

wise a reservation is made for the job. Specifically the machine with the highest

available memory is reserved for the job for its future execution, thus preventing

other jobs from being scheduled to that machine during the rest of the scheduling

cycle.

For the workload we used the traces that were described in Section 3, and

which contains 9–13 million jobs each. The parameters we used from the traces

are the jobs’ arrival times, runtime duration, and the number of cores and amount

of memory each job requires in order to execute (see Figures 2.1 and 2.2 for the

distributions). For the machines we used a special NetBatch command to query

the present machine configurations from each of the pools on which the traces

were collected.

Our initial simulations revealed that the original load in the traces is too low

for the wait queue in the simulated PPM to accumulate a meaningful number of

jobs. This may stem from fact that the load in the month in which the traces were

collected was particularly low, or that the configuration has changed by the time

we ran the machines query (a few months later). In any case the results were that

all heuristics performed the same.

To overcome this problem we increased the load by multiplying the jobs arrival

time by a factor, β , that is less than or equal to one. The smaller the value of β , the

1 For simplicity we skipped the fair-share calculation.
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Figure 6.1: Average wait time of jobs. System load is expressed as per-
cent of capacity.

smaller the inter-arrival times become between the jobs, which increases the rate

of incoming jobs and the load on the simulated pool. We ran high-load simulations

with β values ranging between 0.58–0.95. In the figures below, we translate the

β values into an actual load percentage for each pool.

Metrics that were measured are the average wait time of jobs, the average

slowdown, and the average length of the waiting queue during the simulation.

The results are shown in Figures 6.1 to 6.3, for each metric, respectively. Since

the metrics are dependent and the results are similar between the metrics, we will

only discuss the differences between the heuristics and pools.

In correlation with the buckets experiment in Figure 4.4, Mix-Fit showed
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Figure 6.2: Average slowdown of jobs.
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Figure 6.3: Average wait-queue length.
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marked improvement over the other heuristics in pool A, and was able to reduce

the waiting time by 22%, slowdown by 23%, and queue length by 22% under the

highest loads simulated.

The second-best heuristic on pool A, Best-Fit-Memory, appears to slightly

outperform Mix-Fit in pool B, especially in the mid-range load, as opposed to the

buckets experiment. This may be caused by the fact that pool B had the most

intense bursts of high memory demands and the largest fraction of 4 GB jobs,

making the conservation of memory resources of prime importance. At the same

time, Best-Fit-Memory performs relatively poorly on pool D.

Similarly, Worse-Fit-Cores that was the best heuristic in the buckets experi-

ment (except for Mix-Fit) appears to perform poorly in the load simulation in both

pools A and B. This may stem from the fact that the buckets experiments were

conducted in a highly artificial setting where all jobs were presented in advance,

and were matched to empty clusters of machines. In such a scenario Worse-Fit-

Cores — which is similar to round-robin allocation — performed well, but when

confronted with a continuous on-line scenario, where machines typically already

have some of their resources taken, it did not. This is another indication that

challenges faced by on-line schedulers are different from those faced by batch (or

off-line) schedulers, and that it is important to match the simulation type to the

system type. In our case this means that the dynamic simulations described here

are more relevant than the bucket experiments used above.

In pool C all the heuristics achieved essentially the same performance. This

reflects an unchallenging workload that can be handled by any heuristic.
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Figure 6.4: Selected heuristics by Max-Jobs. Sum is more than 100%
because in many cases several heuristics produced the same result.

Finally, in pool D Mix-Fit had similar results to the second best heuristic,

Worse-Fit-Cores. It looks like the non-bursty nature of that pool gives an advan-

tage to balancing heuristics such as Worse-Fit-Cores.

Figure 6.4 shows the fraction of times each heuristic was selected by Max-

Jobs. As can be seen, Mix-Fit is dominant, even more than in the above buck-

ets experiment, but still getting as low as 73% in pool A. Best-Fit-Memory is

markedly better than Worse-Fit-Cores especially in pools A and D.

As expected, the Max-Jobs meta-heuristic is the best scheme all around, and

seems to be largely robust against workload and configuration variations. This is

due to the fact that it uses the best heuristic at each scheduling cycle. However,

its final result (in terms of average performance across all the jobs in the trace) is
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not necessarily identical to that of the best heuristic that it employs. On one hand,

Max-Jobs can be better than each individual heuristic, as happens for example in

pool B. This is probably because it can mix them as needed, and use a different

heuristic for different situations as they occur. On the other hand, Max-Jobs is

sometimes slightly inferior to the best individual heuristic, as seen for example

in pool A. This is probably due to situations in which packing jobs very densely

leads to reduced performance in a successive scheduling round.
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7 Related Work

There are very few externally available publications that relate to NetBatch. Zhang

et al. investigated the use of dynamic rescheduling of NetBatch jobs between pools

which improves utilization at the farm level [24]. Our work in effect complements

theirs by focusing on utilization improvements within the individual pools.

The question of assigning machines to jobs has received some attention in the

literature. Xiao et al. studied a problem similar to ours and also concluded that

one-dimensional strategies yields sub-optimal performance [22]. In their work,

however, cores are considered shared resources, and thus the investigation fo-

cused on the interference between the jobs. Amir et al. proposed a load balancing

scheme where the targets for process migration are selected so as to avoid satu-

ration of any single resource [5]. This is similar to avoiding high α values in our

terminology.

The idea of symbiotic scheduling is also related to our work. Symbiotic

scheduling attempts to find sets of jobs that complement each other and together

use the system resources effectively. This was initiated in the context of hyper-

threading (or simultaneous multi-threading) processors [17, 10], and extended
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also to the domain of clusters [21].

Meta-schedulers like the Max-Jobs approach have also been used before. For

example, Talby used such a meta-scheduler to select among different versions of

backfilling in scheduling large-scale parallel machines [19]. However, this was

done by simulating recent work in the background and then switching to the ver-

sion that looks best. Such an approach depends on an assumption of locality,

meaning that the future workload will also benefit from this version. In our work

we actually run all the contending variants on the jobs in the queue, and select the

one that indeed achieves more assignments.

Another meta-scheduler example is the portfolio scheduler [8] that was de-

veloped in parallel to our work. The portfolio scheduler is a general-purpose

mechanism that applies to scientific computing with various target functions for

scheduling. Max-Jobs on the contrary, applies to batch systems and its target

function is specified as maximizing the total number of running jobs.

Reservations with on-line backfilling, such like was suggested by Srinivasan

et al.[18], may improve utilization and throughput. However at Intel, reservations

are preferred over backfilling so such an approach was not evaluated.

It should be noted that due to the assumption that cores and memory are al-

located exclusively to jobs, our problem is not directly related to the well-known

2D bin-packing problem. In particular, it is not allowed to pack multiple jobs

with limited memory requirements onto the same core [12]. It does, however,

correspond the problem of allocating virtual machines to physical servers which

has gained much attention in recent years. This has been called the vector bin-
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packing problem, since the allocation can be depicted as the vector-sum of vectors

representing the resource requirements of individual virtual machines [13]. This

directly corresponds to our depiction of rectangles that connect at their corners in

Figures 3.1, 3.2, etc.

The ideas suggested for vector bin-packing are all very similar to our Mix-Fit

algorithm. For example, they are also based on normalizing the resources and cre-

ating a square (or multi-dimensional cube, if there are more resources than 2). The

available resources are then represented by a diagonal vector, the consumption by

other vectors, and the basic idea is to try to make these vectors close to each other.

However, the details may differ.

Mishra and Sahoo [12] describe the SandPiper algorithms used in Xen, and the

VectorDot algorithm [16]. They show that both suffer from failures similar to the

ones we demonstrated in Section 3. For example, the VectorDot algorithm uses the

dot product of the consumed resources vector and the request vector to identify

requests that are orthogonal to the current usage, and thus may be expected to

complement it. However, this is subject to artifacts because the lengths of the

vectors also affect the result. They then suggest a rather complex approach for

identifying complementary vectors based on a discretization of the space called

the “planar resource hexagon”. They did not, however, evaluate its performance

compared to existing heuristics.

Panigrahy et al. study a wide range of First-Fit-Decreasing-based algorithms

[13]. The idea is to combine the requirements for different resources in some way

into a single number, and then pack in a decreasing order. However, this approach
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loses the important geometrical structure of the problem. They therefore also

consider heuristics based on the dot product or the maximal required resource.

The evaluations are based on presumed synthetic distributions.

Compared with these previous works, our approach of using just the angle

between two vectors is among the simplest. Basing the comparison at the top-right

corner for improved discrimination seems to be novel. It would be interesting to

evaluate the effect of these details, but our results so far indicate that they may not

have much impact for real workloads.

Another approach for utilization improvement that was previously introduced

is altering resources requirements of job submission. Yom-Tov And Aridor sug-

gested reduction of memory requirements [23]. This approach is orthogonal to

ours, and can be combined in the same system altogether. Tang et al. adjusted

job’s runtime estimates [20]. This approach is not relevant to NetBatch . Net-

Batch scheduler uses transient reservations, hence there is no promise about the

actual dispatch time of jobs. In addition, our jobs did not have any runtime esti-

mates during submission.

Lee et al. investigated the problem of virtual machines allocation taking into

consideration the consolidation of virtual machines onto the same physical plat-

form, and the possible resulting resource contention [11]. In principle such con-

siderations are also applicable to our work. However, we note that the configura-

tion of NetBatch pools is such that I/O and bandwidth are seldom a bottleneck.

Finally, it is important to remember that since the PPM considers the jobs

one at a time there is a limit on the optimizations that can be applied. Looking
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further into the queue and considering more than one job may yield significant

improvements [15].
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8 Conclusions

Matching jobs with resources is an NP-hard problem. The common practice is

therefore to rely on heuristics to do the matching. In this work we investigated

the problem of resource matching in Intel’s compute farm, and showed that none

of the well-known heuristics such as Best-Fit or Worse-Fit yield optimal perfor-

mance in all workload scenarios and cases. This stems from two reasons. First,

these heuristics focus on a single resource, either cores or memory, whereas in

reality the contention may apply to the other resource. To address this problem

we implemented a specialized heuristic, Mix-Fit, that takes both resources into

account and tries to create an assignment that leads to a balanced use of the re-

sources. In principle this can be extended to more than two resources. While this

too failed to be optimal in all cases, it did show some improvement under certain

conditions.

Second, the nature of dynamically changing demands prevent a specific use-

case-tailored algorithm to be optimal for all cases. For that, we proposed a meta-

heuristic called Max-Jobs, that is not tailored to a specific workload or scenario.

Rather, it uses the other heuristics as black-boxes, and chooses, in every schedul-
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ing cycle, the one that yields the maximal number of matched jobs. We have

demonstrated through simulations that max-jobs is highly competitive with all the

individual heuristics, and as such is robust against changes in workload or config-

uration.
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 תקציר

 

אנו מראים . בחוות המחשוב של אינטל אנו בוחנים שיטות להתאמת עבודות למכונות, במסגרת מחקר זה

עלולות לפגוע בנצילות השרתים כאשר הם , Worst-Fitאו  Best-Fitכי יוריסטיקות נפוצות כגון 

 .מופעלות באופן חד מימדי על כמות הזיכרון הפנוי או ניצולת המעבד בשרתים

. אשר מנסה לאזן בין דרישות דו ממדיות, Mix-Fitבניסיון להתגבר על בעיה זו הצענו יוריסטיקה חדשה 

כפתרון . אופטימאליאך ניצול המשאבים עדיין אינו , במחקר רואים שיפור כלשהו בשימוש ביוריסטיקה זו

כדי לשפר את  יוריסטיקה שמשתמשת בתוצאות היוריסטיקות האחרות-מטה, Max-Jobsאנו מציעים את 

 .הוק של היוריסטיקה הטובה ביותר בכל התאמה מחדש-הפתרון הכללי על ידי בחירה אד

הסימולציות הורצו בעזרת רשומות של עבודות . במסגרת המחקר הרצנו סימולציות לבחינת התוצאות

-Maxמתוצאות המחקר ניתן ללמוד כי . חוות שרתים מהגדולות של אינטל במשך חודש 4שנאספו ב 

Jobs בזמן  22% דהיא אכן היוריסטיקה החסינה ביותר מפני שינויים ויכולה להביא לשיפור של ע

 .ממוצע של עבודות בחווההההמתנה 
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