Backfilling with Lookahead to Optimize
the Performance of Parallel
Job Scheduling

Edi Shmueli

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa
Faculty of Social Sciences

Department of Computer Science

10, 2003

Backfilling with Lookahead to Optimize
the Performance of Parallel

Job Scheduling

By : Edi Shmueli
Supervised by : Dr. Dror G. Feitelson
Supervised by : Prof. Alek Vainshtein

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE M.A DEGREE

University of Haifa
Faculty of Social Sciences
Department of Computer Science

10, 2003

Approved by : Date :

(Supervisor)

Approved by : Date :

(Supervisor & Chairman of M.A Committee)

Special Thanks

T'd like to thank

i

Contents

1 Introduction
The Goals of the Job Scheduler
1.2 The Lookahead Optimizing Scheduler

2

1.1

Related Work

The LOS Scheduling Algorithm

3.1
3.2

3.3

3.4

3.5

Formalizing the System State
The Basic Algorithm o

3.2.1 Freedom of Starvation

3.2.2 A Two Dimensional Data Structure

3.2.3 Filling M

3.2.4 Constructing S
The Full Algorithm

3.3.1 Maximizing Utilization

3.3.2 A Three Dimensional Data Structure

3.3.3 Filling M’

3.3.4 Constructing S"

Improving Performance by Job Selection

3.4.1 Maximizing the Number of Started Jobs

3.4.2 Maximizing the Total Slowdown

Complexity Analysis

3.5.1 Runtime Optimizations

il

4 Experimental Results
4.1 'The Simulation Environment 0oL
4.2 TImprovement over EASYo
4.3 Job Selection Effect on Performance
4.3.1 Selecting Instead of Bypassing
4.3.2 Maximizing the Number of Started Jobs
4.3.3 Maximizing the Total Slowdown
4.4 Limiting the Lookahead
4.5 The LOS Scheduler and Users Satisfaction

5 Conclusions

A Backfilling Algorithms
A.1 The EASY Backfilling Algorithm,
A.2 The Conservative Backfilling Algorithm,

B Workloads Characteristics
B.1 The CTC Workload
B.2 The SDSC Workload
B.3 The KTH Workload

iv

Abstract

The utilization of parallel computers depends on how jobs are packed together: if the
jobs are not packed tightly, resources are lost due to fragmentation. The problem is that
the goal of high utilization may conflict with goals of fairness or even progress for all
jobs. The common solution is to use backfilling, which combines a reservation for the
first job in the interest of progress with packing of later jobs to fill in holes and increase
utilization. However, backfilling considers the queued jobs one at a time, and thus might
miss better packing opportunities. We propose the use of dynamic programming to find
the best packing possible given the current composition of the queue. We expect that
by maximizing the utilization on every scheduling step, the overall performance of the
system will improve.

We developed a dynamic programming based scheduling algorithm that looks at the
entire content of the waiting queue and chooses the set of jobs which together maximize
the machine utilization, while ensuring that long-waiting jobs will not be starved. We
implemented the algorithm in a job scheduler we named LOS — an acronym for “Looka-
head Optimizing Scheduler”, and integrated LOS into the framework of an event-driven
job scheduling simulator. We then ran simulations of LOS on trace files of real parallel
systems and compared its results to those of traditional backfilling algorithms.

The results show that LOS indeed improves utilization, and thereby reduces the mean
response time and mean slowdown of all jobs which are key metrics used for on-line
systems. We also found that is not necessary to examine the whole waiting queue to
reach high performance, and that we can limit the lookahead depth and still achieve the
same results but with much less computation effort.

Finally, we experimented with selections among alternative groups of jobs that achieve

the same utilization in the interest of improving other performance metrics. Surprising

simulation results indicate that choosing the group at the head of the queue does not
necessarily guarantee best performance. Instead, repeatedly selecting the group with
the maximal overall expected slowdown boost performance when compared to all other

alternatives.

vi

List of Algorithms

—_

© 0 N O ot = W N

Constructing M 16
Constructing S L 17
Constructing M’ e 21
Constructing S” 23
Constructing S’- Selected-First Algorithm 25
Constructing M’ - The Maxjobs Approach 29
Constructing M' - The Maxz-Slowdown Approach 31
EASY Backfill 66
Conservative Backfill oo 67

vii

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

The waiting queue holds four jobs headed by 7;. 2
A possible schedule of the four jobs 2
System state and queue at t =25 13
Computing the shadow time 14
Scheduling wjs at t =25o 18
Computing shadow and extra, and the processed job queue 19
Scheduling wjs, wjs and wyg at t=25. 24
Scheduling wjs and wys at t =25.o 24
System Utilization vs. Load 37
Mean job differential response time vs Load 38
Mean job differential bounded slowdown vs Load 39
Mean job differential bounded slowdown time vs Load - 42
Mean job differential bounded slowdown time vs Load - 44
Mean job differential bounded slowdown time vs Load - 47
Mean job differential bounded slowdown vs Load - 48
Mean job differential response time vs Load - 49
Limited lookahead affect on mean job response time o1
Limited lookahead affect on mean job bounded slowdown 52
Limited lookahead affect on mean job wait time 53
Mean queue length vs Load 95
Queue Length Behavior Comparison- CTC log 57
Queue Length Behavior Comparison - SDSC log 58
Queue Length Behavior Comparison - KTHlog 59

viii

B.1 Jobs size distribution - CTC log
B.2 Jobs size distribution - SDSC log
B.3 Jobs size distribution - KTH log

ix

List of Tables

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Computed values for the example schedule 3
M’s initial valueso Lo 15
Resulting M 16
Initial k =0 plane 20
kE=0plane e 22
k=1plane e 22
k=2plane e 22
k=3plane e 23
Optimized Waiting Queue WQ' 34

Chapter 1

Introduction

A distributed memory parallel machine consists of a set of processors, each associated with
a private memory, which are connected using a fast network. A parallel job is composed
of a number of concurrently executing processes communicating using message passing,
which collectively perform a certain computation. A rigid parallel job has a fixed number
of processes (referred to as the job’s size) which does not change during execution [2]|. To
execute such a parallel job, the job’s processes are mapped to a set of processors using a
one-to-one mapping. In a non-preemptive regime, these processors are then dedicated to
running this job until such time that it terminates [3]. The set of processors dedicated to
a certain job is called a partition of the machine. To increase utilization, parallel machines
are typically partitioned into several non-overlapping partitions, allocated to different jobs
running concurrently, a technique called space slicing [1].

To protect the machine resources and allow successful execution of jobs, users are not
allowed to directly access the machine. Instead, they submit their jobs to the machine’s
scheduler — a software component that is responsible for monitoring and managing the
machine resources. The scheduler typically maintains a queue of waiting jobs. The jobs
in the queue are considered for allocation whenever the state of the machine changes.
Two such changes are the submittal of a new job (which changes the queue), and the
termination of a running job (which frees an allocated partition) [8]. Upon such events,
so called scheduling steps, the scheduler examines the waiting queue and the machine

resources and decides which jobs (if any) will be started at this time.

1.1 The Goals of the Job Scheduler

While the primary goal of all schedulers is to enable a successful execution of jobs, different
scheduling algorithms try to optimize certain secondary global or local goals aimed at
satisfying groups or individual needs respectively [2|, and thus choose to start different
jobs at different scheduling steps.

To better understand these goals, often referred to as metrics, we will look at an
example in which at ¢ = 0 four jobs j;..j4, each attributed with a size and an estimated
runtime ¢7me, had been submitted and placed in the waiting queue of a parallel machine
of size N = 5.

The queue state and a possible schedule of the four jobs are illustrated in Figures 1.1

and 1.2 respectively.

Sze=3 K5 ™ % Sze=4 N\%\ Size=3><

TEs =2 1EdTE
—> > —>
Time=2 Time=4 Time=2 Time=2

Figure 1.1: The waiting queue holds four jobs headed by j;.

L2

Sze=5

MKW

t=0 . t=8
—Time ————>
Figure 1.2: A possible schedule of the four jobs

The following values are calculated for each job j in the resulting schedule :

e arrival time is the time at which the job had arrived at the waiting queue.

e start time is the time at which the job had started executing.
e termination time is the time at which the job had terminated.

e response time = termination time — arrival time, often referred to as flow time
[5], is the total time the job has spent in the system, either waiting in the queue or

running.
e running time = termination time — start time is the actual runtime of the job.

o wait time = response time — running time is the time the job had spent waiting in

the queue.

response time

—oPet s is the ratio of the time it takes to run the job on a loaded
g time

o slowdown =

system divided by the time it takes on dedicated system.

Table 1.1 shows the calculated values for the schedule in Figure 1.2

‘ Ji H arrival ‘ start ‘ termination ‘ response ‘ runtime ‘ wait ‘ slowdown ‘
1 0 0 2 2 2 0 1

2 0 0 4 4 4 0 1
3 0 4 6 6 2 4 3
4 0 6 8 8 2 6 4

Table 1.1: Computed values for the example schedule

Minimizing makespan - the difference between the termination time of the last job
and the arrival time of the first job is a common global goal, primarily used for off-line!
scheduling. As a metric it measures the performance of the system in the sense that the
entire set of jobs will be scheduled in such a way that it takes as little time as possible to
finish all jobs without focusing on a single job.

In our example schedule, the makespan achieved is 8.

A second and equally important global goal is to maximize the machine utilization
which is the capacity of the machine that was utilized over its activity period. Utilization

is defined as

"Where all jobs and their resource requirements are known in advance

i Ji-Stze X ji.running time

Utilization =
makespan x N

3X2+42x44+4x2+3%2 =0.70

In our example, Utilization = o

Makespan and utilization are highly related, but the utilization metric is also often
used for on-line? scheduling, since it is largely dependent on the load [2]. With low loads
when all jobs can be serviced, utilization is equal to the load, but as load increases and
the machine saturated, the utilization is equal to the saturation point. Schedulers that
focus on maximizing utilization will try to delay the onset of saturation to higher loads,
but by doing so certain jobs may be starved.

Minimizing the mean job response time is a very common local goal especially in
interactive (i.e. on-line) systems [2]. Obviously, the lower bound on the response time of
a given job is its running time. The main problem with using mean job response time
as a performance metric is its use of absolute values. Two jobs that had responded in
one hour, but one required a full hour of computation while the other required only one
second, might indicate a problem with the scheduler, but if both had been running for 50
minutes than one hour of response is pretty good.

A possible solution to this problem is to use the mean job slowdown metric instead,
thus a job that takes twice as long to run due to system load, will suffer from a slowdown
factor of 2 etc. Slowdown is widely perceived as better matching user expectations that
a job’s response time will be proportional to its running time. The problem with the
slowdown metric is that it over emphasizes the importance of very short jobs [4]. A job
with computation requirements of 100ms that had been delayed for 10 minutes will suffer
from a slowdown of 6000 whereas a 10-second job delayed by the same 10 minutes has a
slowdown of only 60.

To avoid such effects, Feitelson et al. have suggested the bounded slowdown metric
[3]. The difference is that for short jobs, this measures the slowdown relative to some
“interactive threshold” rather than relative to the actual runtime. Denoting this threshold

by 7, the definition is

2Where future jobs and their resource requirements are not known in advance

response time
bounded slowdown = max : : ;
maz{running time, 7}

This metric behavior obviously depends on the choice of 7 which typically takes the

values in the range of 10 seconds to several minutes.

1.2 The Lookahead Optimizing Scheduler

Serving as a general-purpose computation core, the parallel machine is shared over a
period of time by wide range of users executing jobs with various resource requirements.
This mode of work is known as an on-line mode [4, 16] and is distinguished from an
off-line mode in which all jobs and their resource requirements are known in advance.

The lack of knowledge regarding future jobs leads current on-line schedulers to use
simple heuristics to maximize utilization at each scheduling step. The different heuristics
used by various algorithms are described in Chapter 2. These heuristics do not guarantee
to minimize the machine’s idle capacity.

We propose a new scheduling heuristic seeking to maximize utilization at each schedul-
ing step. Unlike current schedulers that consider the queued jobs one at a time, our sched-
uler bases its scheduling decisions on the whole contents of the queue. Thus we named
it LOS — an acronym for “Lookahead Optimizing Scheduler”. LOS starts by examining
only the first waiting job. If it fits within the machine’s free capacity it is immediately
started. Otherwise, a reservation is made for this job so as to prevent the risk of star-
vation. The rest of the waiting queue is processed using an efficient, newly developed
dynamic-programming based scheduling algorithm that chooses the set of jobs which will
maximize the machine utilization and will not violate the reservation for the first waiting
job. The basic algorithm also respects the arrival order of the jobs, if possible. When
two or more sets of jobs achieve the same maximal utilization, it chooses the set closer
to the head of the queue. However, we show that performance can further improve if we
disregard the queue order and choose the set which contains the maximal number of jobs

or the jobs with the maximal overall slowdown. To reach these conclusions we developed

and examined a set of enhanced algorithms, built on top and conceptually similar to
the basic algorithm, which in addition to maximizing the utilization of the machine, also
guarantee that the chosen set of jobs will maximize or minimize a predefined merit value.

Chapter 3 provides a detailed description of the algorithm. It continues with a descrip-
tion of the enhanced algorithms and concludes with a discussion on complexity, followed
by performance optimizations. Chapter 4 describes the simulation environment used in
the evaluation and presents the experimental results from the simulations in which LOS
was tested using trace files from real systems. It also presents, compares and analyzes
LOSs’ results when using any of the enhanced algorithms. Chapter 5 concludes on the

effectiveness and applicability of our proposed scheduling heuristic.

Chapter 2

Related Work

We will focus on the narrow field of on-line scheduling algorithms of non-preemptive rigid
jobs on distributed memory parallel machines, and especially on heuristics that attempt
to improve utilization.

The base case often used for comparison is the First Come First Serve (FCFS) algo-
rithm [5]. In this algorithm all jobs are started in the same order in which they arrive in
the queue. If the machine’s free capacity does not allow the first job to start, FCFS will
not attempt to start any succeeding job. It is a fair scheduling policy, which guarantees
freedom of starvation since a job cannot be delayed by other jobs submitted at a later
time. It is also easily implemented. Its drawback is the resulting poor utilization of the
machine. When the next job to be scheduled is larger than the machine free capacity, it
holds back smaller succeeding jobs, which could utilize the machine.

In order to improve various performance metrics it is possible to consider the jobs in
some other order. The Shortest Processing Time First (SPT) algorithm uses estimations
of the jobs’ runtimes to make scheduling decisions. It sorts the waiting jobs by increasing
estimated runtime and executes the jobs with the shortest runtime first [5]. This algorithm
is inspired by the "shortest job first" heuristic [11], which seeks to minimize the average
response time. The rationale behind this heuristics is that if a short job is executed after
a long one, both will have a long response time, but if the short job gets to be executed
first, it will have a short response time, thus the average response time is reduced.

The opposite algorithm, Largest Processing Time First (LPT), executes the jobs with

the longest processing time first [15, 16]. This policy aims at minimizing the makespan,

but the average response time is increased because many small jobs are delayed signifi-
cantly.

Other scheduling heuristics base their decisions on job size rather than on estimated
runtime. The Smallest Job First (SJF) algorithm [17] sorts the waiting jobs by increasing
size and executes the smallest jobs first. Inspired by SPT, this algorithm turned out to
perform poorly because there is not much correlation between the job size and it’s runtime.
Small jobs do not necessarily terminate quickly [18, 19|, which results in a fragmented
machine and thus a reduction in performance.

The alternative Largest Job First (LJF) is motivated by results in bin-packing that
indicate that a simple first-fit algorithm achieves better packing if the packed items are
sorted in decreasing size [20, 21]. In terms of scheduling it means that scheduling larger
jobs first may be expected to cause less fragmentation and therefore higher utilization
than FCFS.

Finally, the Smallest Cumulative Demand First [17, 22, 23| algorithm uses both the
expected execution time and job size to make scheduling decisions. It sorts the jobs in
an increasing order according to the product of the jobs size and the expected execution
time, so small short jobs get the highest priority. It turned out that this policy does not
perform much better than the original smallest job first [17].

The problem with all the above schemes is that they may suffer from starvation, and
may also waste processing power if the first job cannot run. This problem is solved
by backfilling algorithms, which allow small jobs from the back of the queue to execute
before larger jobs that arrived earlier, thus utilizing the idle processors, while the latter
are waiting for enough processors to be freed [3|. Backfilling is known to greatly increase
user satisfaction since small jobs tend to get through faster, while bypassing large ones.

Note that in order to implement backfilling, the jobs’ runtimes must be known in
advance. Two techniques, one to estimate the runtime through repeated executions of the
job [12] and the second to get this information through compile-time analysis [13, 14| have
been proposed. Real implementations, however, require the users to provide an estimate
of their jobs runtime, which in practice is often specified as a runtime upper-bound.
Surprisingly, it turns out that inaccurate estimates generally lead to better performance

than accurate ones [10].

Backfilling was first implemented on a production system in the "EASY" (the Ex-
tensible Argonne Scheduling sYstem) scheduler developed by Lifka et al. [24, 25|, and
later integrated with IBM’s LoadLeveler. This version is based on aggressive backfilling,
in which any job can be backfilled provided it does not delay the first job in the queue.
The objective is to improve the current utilization as much as possible but the price is
that execution guarantees cannot be made because it is impossible to predict how much
each job will be delayed in the queue. The EASY backfilling algorithm is described in
Appendix A.1. It is executed repeatedly whenever a new job arrives or a running job
terminates, if the first job in the queue cannot start. In each iteration, the algorithm
identifies a job that can backfill if one exists.

There are two interesting properties associated with this algorithm. First, queued jobs
may suffer an unbounded delay because if a job is not the first in the queue, new jobs that
arrive latter may skip it in the queue and impose delays on it, which makes predictability
impossible. Second, there is no starvation because the queuing delay for the job at the
head of the queue depends only on jobs that are already running since backfilled jobs will
not delay it. Thus, it is guaranteed to eventually run since the running jobs will either
terminate or be terminated when they exceed their estimated runtime. A detailed proof
of the above two properties is found in [10].

By using aggressive backfilling EASY sacrifices predictability for potentially improv-
ing utilization. When predictability is required, one can use “Conservative” backfilling
which performs all scheduling decisions upon job submittal and thus, has the capability
of predicting when each job will run, giving the users execution guarantees. With conser-
vative backfilling, users can plan ahead based on these guaranteed response times. In this
version, backfilling is done subject to checking that it does not delay any previous job in
the queue. To perform allocations, conservative backfilling maintains two data structures.
One is the list of queued jobs and the time at which they are expected to start execution.
The other is a profile of the expected processor usage at future times. Appendix A.2
describes the Conservative backfill algorithm. It is executed whenever a new job arrives.
Note that Conservative backfilling has no danger of starvation as a reservation is made
for each job when it is submitted.

Mu’alem and Feitelson [10] compared EASY backfilling to conservative backfilling.

Their simulation results show that for most cases the performance of the EASY backfilling
algorithm was better than that of conservative backfilling.

One of the important parameters of backfilling algorithms is the number of jobs that
enjoy reservations. In EASY, only the first job gets a reservation while in conservative
backfilling, all skipped jobs get reservations. The Maui scheduler [9] has a parameter that
allows the system administrator to set the number of reservations. When Maui schedules,
it prioritizes the jobs in the queue according to a number of factors and then orders
the jobs in a highest priority-first sorted list. By default, Maui reserves only the highest
priority job resulting in a most liberal and aggressive backfill. This give Maui the freedom
to optimize its schedule and thus to potentially result in a better job response times and
overall system utilization. While this reservation ensures that the highest priority job
will not be delayed, other jobs lack a resource protection, and thus potentially could be
significantly delayed. A tunable parameter, RESERVATIONDEPTH provides the ability
to control how deep in the priority queue reservation should be made. In its default value,
1, Maui backfills aggressively with the purpose of maximizing utilization. As the value
increases, the liberal backfilling behavior moves toward a more conservative one in which
resource protection and thus predictability become available.

Srinivasan et al. [26] have studied the relative effectiveness of conservative and ag-
gressive backfilling by grouping jobs into categories based on their size and runtime, and
examining their effect on jobs in different categories. They observed that conservative and
aggressive backfilling each benefit certain job categories while adversely affecting other
categories. They proposed a compromise strategy called selective backfilling with the pur-
pose of obtaining the best characteristics from both the conservative and the aggressive
backfilling. With selective backfilling, reservations are provided selectively only to jobs
whos their expected slowdown exceeds some threshold. By limiting the number of reser-
vations the amount of backfilling is greater than conservative backfilling, but by assuring
reservations to jobs after a limited wait, the disadvantage of potentially unbounded delay
with aggressive backfill is avoided.

Additional variants of backfilling allow the scheduler more flexibility. Talby and Fei-
telson presented slack based backfilling, an enhanced backfill scheduler that supports pri-

orities [6]. These priorities are used to assign each waiting job a slack, which determines

10

how long it may have to wait before running: important jobs will have little slack in
comparison with others. Backfilling is allowed only if the backfilled job does not delay
any other job by more than that job’s slack. Ward et al. have suggested the use of a
relaxed backfill strategy, which is similar, except that the slack is a constant factor and
does not depend on priority [27].

Lawson and Smirni presented a multiple-queue backfilling approach in which each job is
assigned to a queue according to its expected execution time and each queue is assigned to
a disjoint partition of the parallel system on which jobs from the queue can be executed
[7]. Their simulation results indicate a performance gain compared to a single-queue
backfilling, resulting from the fact that the multiple-queue policy reduces the likehood
that short jobs get delayed in the queue behind long jobs.

11

Chapter 3

The LOS Scheduling Algorithm

The LOS scheduling algorithm examines all the jobs in the queue in order to maximize the
current system utilization. Instead of scanning the queue in some order, and starting any
job that is small enough not to violate prior reservations, LOS tries to find a combination
of jobs that together maximize utilization. This is done using dynamic programming.
Section 3.2 presents the basic algorithm, and shows how to find a set of jobs that together
maximize utilization. Section 3.3 then extends this by showing how to select jobs that
also respect a reservation for the first queued job. Section 3.4 examines selection among
alternative groups of jobs that achieve the same utilization value in the interest of improv-
ing other performance metrics. Section 3.5 analyzes the complexity of the algorithm, and
finalizes the algorithm description with two suggested optimizations aimed at reducing
its complexity.

Before starting the description of the algorithm itself, Section 3.1 formalizes the state
of the system and introduces the basic terms and notations used later. To provide an
intuitive feel of the algorithms, each subsection is followed by an on-going scheduling
example on an imaginary machine of size N = 10. Paragraphs describing the example are

headed by .

3.1 Formalizing the System State

At time ¢ our machine of size N runs a set of jobs R = {rji,7js,...,7J,}, each with two

attributes: their size, and estimated remaining execution time, rem. For convenience, R

12

is sorted by increasing rem values. The machine’s free capacity isn = N — Y/, rj;.s1z€.

The queue contains a set of waiting jobs WQ = {wj, wjs, .., wj,}, which also have
two attributes: a size requirement and a user estimated runtime, time. The task of the
scheduling algorithm is to select a subset S C W of jobs, referred to as the produced
schedule, which maximizes the machine utilization. The produced schedule is safe if it
does not impose a risk of starvation.

& As illustrated in Figure 3.1, at ¢ = 25, our machine runs a single job rj; with
size = 5 and expected remaining execution time rem = 3. The machine’s free capacity is
n = 5. The table at the right describes the size and estimated runtime of the five waiting

jobs in the waiting queue, WQ.

d wj H size ‘ time
9 1 7 4
u 2 2 2
i //% 3] 1 6

o V777

- 421 4

| %% 51 3 | 5
s 1228

< rem=3->

Time —

Figure 3.1: System state and queue at t = 25

3.2 The Basic Algorithm

3.2.1 Freedom of Starvation

The algorithm begins by trying to start the first waiting job.

If wyy.size < n , it is removed from the waiting queue, added to the running jobs list
and starts executing.

Otherwise, the algorithm calculates the shadow time at which wj; can begin its exe-
cution [24]. Tt does so by traversing the list of running jobs while accumulating their sizes

until reaching a job rj, at which wyj;.size < n + >, rj;.size. The shadow time is then

13

defined to be shadow = t+ rj;.rem. By ensuring that all jobs in S terminate before that
time, S is guaranteed to be a safe schedule, as it will not impose any delay on the first
waiting job, thus ensuring a freedom from starvation.

To dismiss us of the concern of handling special cases, we set shadow to oo if wj; can
be started at ¢. In this case every produced schedule is safe, as the first waiting job is
assured to start without delay.

& The 7 processors requirement of wj; prevents it from starting at ¢ = 25. Tt will
be able to start at ¢ = 28 after rj; terminates, thus shadow is set to 28 as illustrated in

Figure 3.2.

10 ——H

F——N
\\\&?\‘\\Q\\\\

Figure 3.2: Computing the shadow time

3.2.2 A Two Dimensional Data Structure

After handling the first job, we need to find the set of subsequent jobs that will maximize
utilization. To do so, the waiting queue, W), is processed using a dynamic-programming
algorithm. Intermediate results are stored in a two dimensional matrix denoted M of size
((WQ|+ 1) x (n+ 1), and are later used for making successive decisions.

Each cell m;; contains a single integer value util, and two boolean trace markers,
selected and bypassed.

util holds the maximal achievable utilization at ¢, if the machine’s free capacity is j
and only waiting jobs {1..i} are available for scheduling.

The selected marker is set to indicate that wyj; was chosen for execution (wj; € S).

14

The bypassed marker indicates the opposite. When the algorithm finishes calculating M,
the trace markers are used to trace the jobs which construct S. It is possible that both
markers will be set simultaneously in a given cell, which means that there is more than
one way to construct S. It is important to note that either way, jobs in the produced
schedule will always achieve the same overall maximal utilization.

For convenience, the ¢ = 0 row and 7 = 0 column are initialized with zero values. Such
padding eliminates the need of handling special cases.

& In the example, M is a 6 x 6 matrix. The selected and bypassed markers, if set,

are noted by ~_and 1 respectively. Table 3.1 describes M’s initial values.

Li(size), j—|0|1]2]3]4]5]
0 (¢ ojoJofo]o]o
7

—_

P PN P P P
~— | — | — [— | — |~

Ot = W N =
(]l Hen) Bav] e} Ra]
ASHRCHRCH RCR RS
ASHRSHRASH RSHRESS
ASHRSHRASH RSHRSS
ASHRCHRCH RCR RS
ASHRSHRASH RSHRSS

Table 3.1: M'’s initial values

3.2.3 Filling M

M is filled from left to right, top to bottom, as indicated in Algorithm 1. The values of
each cell are calculated using values from previously calculated cells. The idea is that if
adding another processor (bringing the total to j) allows the currently considered job i
to be started, we need to check whether including wy; in the produced schedule increases
the utilization. If not, or if the size of job i is larger than j, the utilization is simply what
it was without this job, that is m;_; ;.util.

As mentioned in Section 3.2.1, a safe schedule is guaranteed if all jobs in S terminate
before the shadow time. The third line of Algorithm 1 ensures that every job wj; that
will not terminate by the shadow time is immediately bypassed, that is, excluded from
S. This is done to simplify the presentation of the algorithm. In Section 3.3 we relax this

restriction and present the full algorithm.

15

The computation stops when reaching cell myyq,,, at which time M is filled with values.

Algorithm 1 Constructing M

e Note : To slightly ease the reading, m; ;j.util, m, j.selected, and m; ;.bypassed are
represented by util, selected and bypassed respectively.

for i =1 to [WQ)|
forj=1ton
if wy;.size > j or t + wy;.time > shadow
util +— mi_l,j.util
selected < False
bypassed < True
else
util’ < mi_l,j_wji,me.util + wji.sz'ze
if Utll’ Z mi_l,j.util
util < util'
selected < True
bypassed < False
if util’ = mi_l,j.util
bypassed < True
else
util <— m;_y j.util
selected < False
bypassed < True

& The resulting M is shown in Table 3.2. As can be seen, the selected flag is set only
for wjs, as it is the only job which can be started safely without imposing any delay on
wji. Since all other jobs are bypassed, the maximal achievable utilization of the j = 5

free processors when considering all 7 = 5 jobs is mj;5.util = 2.

Li(size),j—= O] 1] 2 | 3 | 4] 5 |

0 (¢) 0] 0] 0] 0] 01 0

1(7) 0/0t]| of | of | of | oF
2 (2) 0] 0t 2~ |2~ |2~ |2~
3 (1) 0ojot] 2t | 2t | 2t | 2t
1(2) o]0t] 2t | 2t | 2t | 2t
5 (3) o]0t] 2t | 2t | 2t | 2t

Table 3.2: Resulting M

16

3.2.4 Constructing S

Starting at the last computed cell m),q|», S is constructed by following the trace markers
as described in Algorithm 2.

It was already noted in Section 3.2.2 that it is possible that in an arbitrary cell m,,
both markers are set simultaneously, which means that there is more than one possible
schedule. In such case, the algorithm will follow the bypassed marker.

In terms of scheduling, wj, ¢ S simply means that wj, is not started at ¢, but this
decision has a deeper meaning in terms of queue policy. Since the queue is traversed by
Algorithm 2 from tail to head, skipping wj, means that other jobs, closer to the head of
the queue will be started instead, and the same maximal utilization will still be achieved.
By selecting jobs closer to the head of the queue our produced schedule is more committed
to the queue FCF'S policy, and is expected to receive a better score from the evaluation

metrics such as average response time, slowdown etc.

Algorithm 2 Constructing S
S« {}
i [WQ)
jn
while 2 > 0 and 5 > 0
if m; ;.bypassed = True

14—1—1

else
j 4 Jj—wj;.s1ze
11— 1

& The resulting S contains a single job wjs, and its scheduling at ¢ is illustrated in
Figure 3.3. Note that wj; is not part of S. It is only drawn to illustrate that wj, does

not effect its expected start time, indicating that our produced schedule is safe.

3.3 The Full Algorithm

3.3.1 Maximizing Utilization

One way to create a safe schedule is to require all jobs in S to terminate before the shadow

time, so as not to interfere with that job’s reservation. This restriction can be relaxed

17

{AXXOCHHAA
(LAAXLCXAXXO

B t=25 ;a?dB
L LR | PN

Figure 3.3: Scheduling wj, at t = 25

in order to achieve a better schedule S’, still safe but with a much improved utilization.
This is possible due to the extra processors left at the shadow time after wj; is started.
Waiting jobs which are expected to terminate after the shadow time can use these extra
processors, referred to as the shadow free capacity, and run side by side together with wjy,
without effecting its start time. As long as the total size of jobs in S’ that are still running
at the shadow time does not exceed the shadow free capacity, wj;will not be delayed, and
S’ will be a safe schedule.

If the first waiting job, wj;, can only start after rj, has terminated, than the shadow

free capacity, denoted by extra, is calculated as follows :

S
ervtra =n + Z rj;.S12€ — Wj.S12€
i=1
To use the extra processors, the jobs which are expected to terminate before the
shadow time are distinguished from those that are expected to still run at that time, and
are therefore candidates for using the extra processors. Each waiting job wyj; € WQ will
now be represented by two values: its original size and its shadow size — its size at the

shadow time. Jobs expected to terminate before the shadow time have a shadow size of

0. The shadow size is denoted ssize, and is calculated using the following rule:

S 0 t + wj;.time < shadow
wj;.ssize =
wj;.stze otherwise

18

If wj; can start at £, the shadow time is set to oo. As a result, the shadow size
ssize, of all waiting jobs is set to 0, which means that any computation which involves
extra processors is unnecessary. In this case setting extra to 0 improves the algorithm
performance.

All these calculation are done in a pre-processing phase, before running the dynamic
programming algorithm.

& wjywhich can begin execution at ¢ = 28 leaves 3 extra processors. shadow and
extra are set to 28 and 3 respectively, as illustrated in Figure 3.4. In the queue shown on
the right, we use the notation sizeg,,. to represent the two size values. wj, is the only

job expected to terminate before the shadow time, thus its shadow size is 0.

T [T TT]
extra=3
| wj H S12€5gize ‘ time
8]_ 77 4
Z 2 2 2
% 3 1, 6
o 4 2 4
2
%% 5} 33 5}
e 1228

Figure 3.4: Computing shadow and extra, and the processed job queue

3.3.2 A Three Dimensional Data Structure

To manage the use of the extra processors, we need a three dimensional matrix denoted
M' of size (|WQ|+ 1) x (n+1) x (extra+1).

Each cell m/; j, now contains two integer values, util and sutil, and the two trace
markers.

util holds the maximal achievable utilization at ¢, if the machine’s free capacity is j,
the shadow free capacity is &, and only waiting jobs {1..i} are available for scheduling.

sutil hold the minimal number of extra processors required to achieve the util value

mentioned above.

19

The selected and bypassed markers are used in the same manner as described in section
3.2.2.

As mentioned in section 3.2.2, the ¢ = 0 rows and 7 = 0 columns are initialized with
zero values, this time for all k£ planes.

& M is a 6 x 6 x 4 matrix. util and sutil are noted utily,;. The notation of the
selected and bypassed markers is not changed and remains _and 1 respectively.

Table 3.3 describes the initial £ = 0 plane. Planes 1..3 are initially similar.

Vi (sizeggive), j—= |0 1| 2] 3] 4] 5]

U(¢¢) Og | Og | Og | Og | Og | Og

1 (77) 0o | by | Do | Do | D6 | Do

20; 0o | $o | s | Po | s | Do
)
)

Oo | Og | Pg | Do | D¢ | Py
Oo | Og | Pg | Do | D¢ | Py
Oo | Og | Pg | Do | D¢ | Py

Table 3.3: Initial £ = 0 plane

3.3.3 Filling M’

The values in every m/; ;x cell are calculated in an iterative matter using values from
previously calculated cells as described in Algorithm 3. The calculation is exactly the
same as in Algorithm 1, except for an addition of a slightly more complicated condition
that checks that enough processors are available both now and at the shadow time.

The computation stops when reaching cell m/|,,q) n extra-

& When the shadow free capacity is & = 0, only wjs, who'’s ssize = 0 can be sched-
uled. As a result, the maximal achievable utilization of the j = 5 free processors, when
considering all i = 5 jobs is m'5 5 g.util =2, as can be seen in Table 3.4. This is of course
the same utilization value (and the same schedule) achieved in Section 3.2.3, as the k = 0
case is identical to considering only jobs that terminate before the shadow time.

When the shadow free capacity is £k = 1, wjs who's ssize = 1 is also available for
scheduling. As can be seen in Table 3.5, starting at m's 3, the maximal achievable uti-

lization is increased to 3, at the price of using a single extra processor. The two selected

20

Algorithm 3 Constructing M’

e Note : To slightly ease the reading, m'; jx.util, m'; x.sutil, m'; ;.selected, and
m/'; j k-bypassed are represented by util, sutil, selected, and bypassed respectively.

for £k =0 to extra
for i =1 to [WQ|
forj=1ton
if wj;.size > j or wj;.ssize > k
util < m’i,l,j,k.util
sutil «<—m';_q j .sutil
selected < False
bypassed < True
else
util' < m’i,1,j,wjz.,size,k,wji,ssize.util + wji.size
SULil' <= Mi_y i sive kwii.ssizeSULIL + Wi ss12€
if wtil' > m';_y jg.util or
(util' =m/;_y jp.util and sutil’ < m';_y j.sutil)
util < util'
sutil < sutil’
selected < True
bypassed < False
if util' = m;_y j.util and sutil' = m;_y j.sutil
m'; jx-bypassed < True
else
util < mli,Lj’k.UtZ‘l
sutil <— m';_y jj.sutil
selected < False
bypassed < True

jobs are wj, and wjs.

As the shadow free capacity increases to k& = 2, wjs; who's shadow size is 2, joins
wjo and wjz as a valid scheduling option. Its effect is illustrated in Table 3.6 starting at
m'442, as the maximal achievable utilization has increased to 4 — the sum of wj, and
wjy sizes. This comes at a price of using a minimum of 2 extra processors, corresponding
to wj4’s shadow size.

It is interesting to examine the m's 59 cell, as it introduces an interesting heuristic
decision. When the machine’s free capacity is j = 2 and only jobs {1..4} are considered for
scheduling, the maximal achievable utilization can be accomplished by either scheduling
wjs or wjs, both with a size of 2, yet wj, will use 2 extra processors while wj,; will

use none. The algorithm chooses to bypass wj, and selects wjs as it leaves more extra

21

u(sizessm),j—wo\ 1| 2 | 3 | 4] 5 |

() 00 OO 00 00 00 00
1 (77) 0o | O 7] OoT | OoT | OgT | OpT
2 (2) 0o [00 T 200120 N0 20\ | 200
3 (14) 0o | Oo T 207 | 207 | 207 | 207
4 (29) 0o | Oo T 20T | 20T | 207 | 20T
5 (33) 0o | Oo 7] 207 207 207 207
Table 3.4: k£ = 0 plane
Vi (sizegine), j—= 0| 1 | 2 | 3 | 4 | 5 |

00 00 00 00 00 00
77 Og | 0o 7 | 0ot | Ot | 0o | 0ot
20 Oo | Oo 1 | 20 0| 20 0] 20 0| 20 0

0 (¢9)
1 (77)
2 (20)
3 (14) Og | 1 N | 207 | 300 | 300 | 31\
4 (29)
5 (33)

29 Og | 11t | 207 | 317 | 317 | 3?
33 Oo | 117 | 207 | 317 | 3t | 3t

Table 3.5: k£ =1 plane

processors to be used by other jobs.

Li(sizeggine), j—> 0| 1 | 2 | 3 | 4 | 5 |
0 (65) 0o] 0o | 0o | 0o | 0o | 0o
1 (77) Oo | Oo T | OoT | OoT | OpT | 0ot
2 (20) Og | Oo 7 | 200 20 N0 | 200 | 20
3 (1y) Og | 1 ™| 201 | 30 | 3N | 31\
4 (2) Op | 1ot | 20T | i | N | N
5 (33) Oo | Li T | 207 | 311 | 4ot | 4ot

Table 3.6: £ = 2 plane

Finally the full £ = 3 shadow free capacity is considered. wj5, who’s shadow size is 3
can now join wj..wj4 as a valid scheduling option.

As can be seen in Table 3.7, the maximal achievable utilization at ¢ = 25, when the
machine’s free capacity is n = 57 = 5, the shadow free capacity is extra = k = 3 and all
five waiting jobs are available for scheduling is m’s 5 5.util = 5. The minimal number of

extra processors required to achieve this utilization value is m’s 5 5.sutil = 3.

22

Li(sizeggie), j— O] 1 | 2 | 3 | 4 | 5 |
(¢¢) 0o | O 0o 0o 0o 0o
) Oo | O 7| 0o | 0ot | OgT 0o
20) Oo | Oo 1 | 20020\ 20\ | 20 N0
)
)
)

Oo | 1i N 201 | 340 | 3N | 31N
O | Lo T | 201 | 3ut | 420 | 53\
O | 1o 1 | 201 | 3ut | 4of | 53N\T

Table 3.7: k£ = 3 plane

3.3.4 Constructing S’

Algorithm 4 describes the construction of S’. It starts at the last computed cell m/|,q) n,catra,
follows the trace markers, and stops when reaching the 0 boundaries of any plane.
As explained in section 3.2.4, when both trace markers are set simultaneously, the

algorithm follows the bypassed marker, a decision which is closer to the FCFS policy.

Algorithm 4 Constructing S’
S {}
i+ [WQ)|
jn
k < extra
while 7 > 0 and 7 > 0
if m; ; p-bypassed = True
11— 1

else
S+ S'U{wy;}
j 4 Jj—wj;.s1ze
k < k —wjy;.ss1z€
1—1—1

& Both trace markers in m/s 5 3, are set, which means there is more than one way to
construct S’. In our example there are two possible schedules, both utilize all 5 free pro-
cessors, resulting in a fully utilized machine. Choosing S" = {wjs, wjswj4} is illustrated
in Figure 3.5. Choosing S’ = {wj,, wjs} is illustrated in Figure 3.6.

Both schedules fully utilize the machine and ensure that wj; will start without a delay,
thus both are safe schedules, yet the first schedule (illustrated in Figure 3.5) contains jobs
closer to the head of the queue, thus it is more committed to the queue FCFS policy.

23

o
<a)§%§

N=10
B
O(XXXXXXXXXX&
(AR

Figure 3.5: Scheduling wjs, wj3 and wj, at t = 25

N=10
|

B t=25 t=28
(shadow)

Figure 3.6: Scheduling wj, and wjs at t = 25.

Based on the explanation in section 3.2.4, choosing S’ = {wjs, wjswjs} is expected to

gain better results when evaluation metrics are considered.

3.4 Improving Performance by Job Selection

In Section 3.2.4 we stated that in the case where both trace markers are set in a give cell,
following the bypassed marker is expected to produce better results, since by doing so we
start jobs which are closer to the head of the queue, and thus we are more committed to
the queue FCFS policy. To verify this assumption we performed the following experiment:

We modified algorithm 4 so it will follow the selected marker first, that is, whenever both

24

markers are set in a given cell, it will start the current job instead of bypassing it. The
effect of this modification is that jobs which are closer to the tail of the queue are given
precedence over jobs which where submitted at earlier times. We named the modified
algorithm the “Selected-First” algorithm to distinguish it from the original “Bypassed-
First” behavior, and describe it formally in Algorithm 5.

Algorithm 5 Constructing S’- Selected-First Algorithm
S {}
i W)
jn
k < extra
while 2 > 0 and 5 > 0
if mj ;,..selected = True
S'«+ S'"uU {UI]Z}
j 4 j—wy;.s1ze
k< k —wj;.ssize
141 —1

else
11—1

We expected the Selected-First algorithm to perform poorly since its produced sched-
ule, S”, is no longer committed the queue’s FCFS policy, but simulation results have proven
the opposite and LOS performance has improved against expectations. (The simulation
results are presented in Section 4.3.1).

Such surprising results have proven that basic assumptions which are often based
on pure intuition, such as the one stating that selecting jobs closer to the head of the
queue will improve performance, might be misleading. This opened the door to a set
of experiments aimed at the purpose of improving LOS’s performance and exploring the
cause for the results differences. In all experiments, we enhance our three dimensional
data structure which was described in Section 3.3.2 by including an additional merit value
in every m/; ;. cell, in addition to the existing, util, sutil, and the two trace markers. We
also modified LOS’s core algorithm for constructing M’ (Algorithm 3) to consider the
merit value. Whenever the same utilization value can be achieved, either by selecting
or bypassing job i, a case in which both the selected and the bypassed markers were set
by the original algorithm, the modified algorithm considers the merit value in order to

eliminate one of the options, if possible. By doing so, the number of optional selections

25

is minimized and the produced schedule, S’, is optimized in view of the merit.

It is important to note that the use of the merit does not change any of the utilization
values in any of M’s cells when compared to the values computed by the original algorithm,
and that the produced schedule, S’, will still maximize the machine utilization. The only
difference is that now there are less cells in which both trace markers are set, and thus, less
freedom to choose the set of jobs which construct S’. It is also important to understand
that the construction of M’ has not changed and that M’ is still filled using the same
iterative algorithm as described in Section 3.3.3, thus the use of the merit does not change
the complexity of the algorithm.

We started with a simple experiment in which the merit value was simply the number
of selected jobs in the path, with the purpose of choosing the set S’ which contains the
maximal number of jobs. We named this the Mazjobs approach and it is described in
Subsection 3.4.1. Simulation results have shown that by starting the maximal number of
jobs (in addition to maximizing utilization), the performance of LOS is improved. The
reason for the improvement is that less jobs remain waiting and thus the mean response
time and slowdown are reduced.

Next we examined various merit values such as the total jobs response time with the
purpose of choosing S’ with the maximal or minimal total response time, and total jobs
slowdown with the purpose of maximizing or minimizing that factor also. Simulation
results indicate that the performance of LOS has improved or reduced with respect to the
chosen merit.

Peak performance was observed when the merit was the total jobs slowdown with the
purpose of choosing the set S’ which mazimizes this factor. Again, this goes against
intuition which states that when several sets of jobs exist, all of which achieve the same
utilization value, it is expected that choosing the set with the minimal total slowdown will
improve performance, since if we delay those jobs in the waiting queue, their slowdown
(and response time) will increase. Unfortunately, intuition fails here also and performance
is boosted when starting the set with the maximal total slowdown. The reason is that
the slowdown metric is mostly effected by the shortest jobs and thus, a set with large
total slowdown is likely to contain shorter jobs. By starting these jobs we comply with

the shortest jobs first heuristic described in Chapter 2, which states that by starting

26

short jobs before other time consuming jobs, their response time and slowdown will be
reduced, while the response time and slowdown of the longer jobs will not be severely
effected and thus, the mean response and slowdown will be reduced. We named this
the Max-Slowdown approach and describe it in Section 3.4.2. Simulation results for the

Mazx-Slowdown approach are shown in Section 4.3.3.

3.4.1 Maximizing the Number of Started Jobs

The purpose of this experiment is to explore the effect of the number of started jobs in
each scheduling step on the performance of LOS. In a case where both the selected and the
bypassed markers are set in a given cell, following the path on which the maximal number
of jobs will start, is expected to improve performance since in addition to maximizing
the system utilization, fewer jobs will remain waiting and thus improvement is expected
in the mean jobs response time and slowdown metrics. We refer to this as the Maxjobs
approach.

We enhance our three dimensional data structure which was described in Section 3.3.2
by including an additional integer value, num_ jobs, in every m/; j cell, in addition to
the existing, util, sutil, and the two trace markers. The role of num_ jobs is to record the
number of jobs which will start when following a path through that cell. We also modified
Algorithm 3 which constructs M’, to consider the value of num__jobs. Whenever the same
utilization value can be achieved, either by selecting or bypassing job ¢, the following rule
is applied: If more jobs will start by bypassing job ¢ - only the bypassed marker will
remain set to force the bypassing of that job. On the other hand, if selecting or starting
job 7 maximizes the number of started jobs, then leaving only the selected marker will
force the starting of that job. This does not change any of the utilization values in any
of the cells when compared to the values computed by the original algorithm, but it does
limit the number of optional selections when the two trace markers are set, by eliminating
one of the options — the one on which less jobs will start. Algorithm 6 formally describes
this approach.

The final phase is to construct S’ as described in Section 3.3.4. Since M’ is only

enhanced with a single integer value in each cell, constructing S’ does not require any

27

modifications and Algorithm 4 (or 5) remains the same. The only difference is in the
final result — this time the number of jobs in the resulting S’ is maximized, that is
| S" |- MAX.

Simulation results presented in Section 4.3.2 show that the Maxzjobs approach indeed

improves LOS performance and thus our assumption was proven to be correct.

28

Algorithm 6 Constructing M’ - The Maxjobs Approach

e Note : To slightly ease the reading, m';x.util, m';;.sutil, m';;.selected,
m'; jk-bypassed and m'; ;p.num_jobs are represented by wutil, sutil, selected,
bypassed and num __jobs respectively.

for k£ =0 to extra
for i =1 to [WQ|
forj=1ton
if wj;.size > j or wj;.ssize > k
util < m’i,l,j,k.util
sutil «<—m';_y j .sutil
num__jobs <= m';_; j.num__jobs
selected <— False
bypassed < True
else
util’ mli—1,j—wji.size,k—wji.ssize-uml + wji-Size
SULl' <= My ;i sive ki ssize-SULIL + wjj.ss12€
num_jobs' <= mi_y ;i sive k—wii.ssize- UM _jobs + 1
if util' > m';_q jg.util or
(util' =m';_q jp.util and sutil’ < m';_y jj.sutil)
util < util'
sutil < sutil’
if util' > m';_y j putil or sutil’ < m';_y jg.sutil
num__jobs < num__jobs’'
selected <— True
bypassed < False
else
if num_jobs" < mj_ ; .num_ jobs
num_jobs <= mj;_y ; p.num_jobs
selected <— False
bypassed < True
else
num__jobs < num__jobs'
selected < True
if num_jobs' =mj_ ;
bypassed <— True

p-num__jobs

else
bypassed < False
else
util < mli,Lj’k.UtZ‘l
sutil <= m';_q jj.sutil
num__jobs <— m';_y j.num_ jobs
selected < False
bypassed < True

29

3.4.2 Maximizing the Total Slowdown

In this experiment we took the enhanced three dimensional data structure, M’, which was
described in Section 3.4.1, and replaced the num_ jobs counter in every each m/; ; ,with
a tot__slowdown accumulator. tot _slowdown records the accumulated slowdown values
of jobs when following a path through that cell.

It is important to understand how the algorithm computes a jobs’ slowdown. Slowdown

was defined in Section 1.1 to be the ratio of the time it takes to run the job on a loaded

response time

system divided by the time it takes on dedicated system, formally slowdown = rumming time *

Since response time = wait time + running time and the jobs’ actual running time is
unknown at the time the slowdown is calculated, we use the user-estimated runtime for
that job instead, since it is the best (and only) indication to how long that job will run.
Thus for each considered job wj;, its slowdown is computed as follows:

wj;.wait time + wj;.estimated runtime (t — wj;.arrival) + wj;.time

wji.slowdown = : , : = —
wj;.estimated runtime wy;.time

We also took the Maxjobs algorithm as a basis and modified it to consider the value of
tot _slowdown in the following matter: When the same utilization can be achieved either
by selecting or bypassing job i, then if the total slowdown achieved by selecting job ¢ is
greater than the total slowdown achieved by bypassing that job, then only the selected
marker remains set. On the other hand if the total slowdown is greater by bypassing job
i then setting the bypassed marker will force job i to be bypassed. We named this the
Mazx-Slowdown approach and formally describe it in Algorithm 7.

Simulation results presented in Section 4.3.3 have shown that LOS’s performance is

boosted when using this approach, compared to all other tested merit values.

30

Algorithm 7 Constructing M’ - The Maz-Slowdown Approach

e Note : To slightly ease the reading, m';x.util, m';;.sutil, m';;.selected,
m'; jk-bypassed and m'; ;.tot_slowdown are represented by wtil, sutil, selected,
bypassed and tot__slowdown respectively.

for k£ =0 to extra
for i =1 to [WQ|
forj=1ton
if wj;.size > j or wj;.ssize > k
util < m’i,l,j,k.util
sutil «<—m/;_y j .sutil
tot _slowdown < m/';_y ;.tot_slowdown
selected <— False
bypassed < True
else
util’ mli—1,j—wji.size,k—wji.ssize-uml + wji-Size
sutil’ < m/ sutil + wj;.ssize

i—1,j—wj;.size,k—wj;.ssize*
tot_slowdown' < m tot__slowdown—+

i—1,j—wj;.size,k—wj;.ssize
(t — wy;.arrival + wj;.time) Jwj;.time
if util' > m';_q jg.util or
(util' =m';_y jp.util and sutil’ < m';_y j.sutil)
util < util’
sutil < sutil’
if utel' > m';_q jp.util or sutil’ < m';_q jk.sutil
tot _slowdown < tot__slowdown'
selected < True

bypassed < False

else
if tot _slowdown' < m;_, ; .tot_slowdown
tot_slowdown < my_ ; ,.tot_slowdown
selected < False
bypassed < True
else
tot _slowdown < tot__slowdown’
selected < True
if tot_slowdown' = mj_, ;,.tot_slowdown
bypassed < True
else
bypassed < False
else

util < mli,Lj’k.UtZ‘l

sutil <— m';_y j.sutil

tot_slowdown < m';_y j.tot_slowdown
selected < False

bypassed < True

31

3.5 Complexity Analysis

The most time and space demanding task is the construction of M’ which depends on
three input parameter: |W@Q| — the length of the waiting queue, n — the machine’s free
capacity at ¢, and extra — the shadow free capacity. |[IW Q| depends on the system load.
Both n and extra are bounded by N — the size of the machine, which is a constant. Since
each m/; ;. cell is computed in a constant time and there are maximum |[W@Q| x N x N
cells to compute, the time complexity of the algorithm for constructing M’ and thus for

producing the optimal schedule is:
(1) O(WQ|x N x N)=0(WQ| x N?)

It is important to understand that the algorithm is not polynomial in the size of its
input — the list of jobs sizes and in fact, there is an exponential relationship between the
size of the input and the algorithm runtime. To compute the size of the input we first
need to encode each of the waiting jobs’ sizes in a binary format. The length of encoding
an integer x is logx, and thus the length of encoding any of the waiting jobs’ sizes is

logwy;.size. If wy; is the largest waiting job, than the size of encoding the entire input is:
(2) O([WQ)| x logwyj,.size)

At this point we can use the fact that /N is at-most the sum of all waiting jobs sizes,
otherwise all jobs can be started and the solution becomes trivial. Since wj; is the largest
of all waiting jobs, we can safely state that N < |[WQ| X wj;.size. Thus by substituting
N in (1) we find that the time complexity of the algorithm is:

(3) O(WQ[x (wji.size)?)

Since log wj;.size in (2) and wyj.size in (3) hold an exponential relationship and not
a polynomial one, it is clear that the time complexity is not polynomial in the size of the
input alone. In fact, it is polynomial in the size of the input and the size of the largest

waiting job.

32

Such algorithms which have their runtime bounded by a polynomial in the size in
the input and the wvalue of any integer in the input are known as pseudo-polynomial
algorithms. They are designed to solve NP-complete problems using the fact that in
practice it is sufficient to solve the problem for a restricted set of inputs, in contrast to
the unbounded values which are considered in theoretical analysis. In our case, it is the
restriction on N which allows the optimal schedule to be produced in a “reasonable” time,

feasible for practical implementation.

3.5.1 Runtime Optimizations

As mentioned in Section 3.5, the construction of M’ depends on three parameters: |W@Q)|
— the length of the waiting queue, n — the machine’s free capacity at ¢, and extra
— the shadow free capacity. Since the values of these three parameters change from one
scheduling step to the other, understanding the factors which effect each of the parameters
is useful if one wishes to predict LOSs’ runtime in upcoming scheduling steps.

Both n and extra fall in the range of 0 to N. Their values depend on the size and
time distribution of the waiting and running jobs. A termination of a small job causes
nothing but a small increase to the system’s free capacity, thus n is increased by a small
amount. On the other hand, when a large job terminates, it leaves much free space and n
will consequently be large. extra is a function of the size of the first waiting job, and the
size and time distribution of the running jobs. If wj; is small but it can start only after
a large job terminates, extra will consequently be large. On the other hand, if the size of
the terminating job is small and wy;’s size is relatively large, fewer extra processors will
be available.

‘W Q| on the other hand, depends on the system load. On heavy loaded systems the
mean waiting queue length can reach tens of jobs with peaks reaching sometimes hundreds
— a fact that significantly increases the runtime of the algorithm. Two enhancements can
be applied in the pre-processing phase. Both result in a shorter waiting queue |IWQ'| <
‘W Q| and thus improve LOS runtime performance.

The first enhancement is to exclude jobs larger than the machine’s current free capac-

ity. If wj;.size > n it is clear that it will not be started in the current scheduling step, so

33

it can be safely excluded from the waiting queue without any effect on the results.

The second enhancement is to limit the number of jobs examined by the algorithm by
including only the first C' waiting jobs in W Q' where C' is a predefined constant. We call
this approach limited lookahed since we limit the number of jobs the algorithm is allowed
to examine. It is often possible to produce a schedule which maximizes the machine’s
utilization by looking only at the first C' jobs, thus by limiting the lookahead, the same
result are achieved, but with much less computation effort. Obviously this is not always
the case, and such a restriction might produce a schedule which is not optimal. The effect
of limiting the lookahead on LOSs results is examined in Section 4.4.

& Looking at our initial waiting queue described in the table in Figure 3.4, it is clear
that wj; cannot start at ¢ since its size exceeds the machine’s 5 free processors. Therefore
it can be safely excluded from the processed waiting queue without effecting the produced

schedule. The resulting waiting queue W Q' holds only four jobs as shown in Table 3.8.

U)] H Sizessize

2 2%
3 1,
4 2%
5 35

Table 3.8: Optimized Waiting Queue W Q'

We could also limit the lookahead to C' = 3 jobs, excluding w5 from WQ'. In this case
the produced schedule will contain jobs wj,, wjs and wj4, and not only that it maximizes
the utilization of the machine, but it is also identical to the schedule shown in Figure
3.5. By limiting the lookahead we improved the algorithm runtime and achieved the same

results.

34

Chapter 4

Experimental Results

4.1 The Simulation Environment

We implemented all aspects of the algorithm including the optimizations mentioned in
Section 3.5.1, in a job scheduler we named LOS, and integrated LOS into the framework
of an event-driven job scheduling simulator. We used logs of the Cornell Theory Center
(CTC) SP2, the San Diego Supercomputer Center (SDSC) SP2, and the Swedish Royal
Institute of Technology (KTH) SP2 parallel supercomputers (See Appendix B - Workload
Characteristics for details) as a basis [28], and generated logs of varying loads ranging
from 0.5 to 0.95, by multiplying the arrival time of each job by constant factors. For
example, if the offered load in the CTC log is 0.60, then by multiplying each job’s arrival
time by 0.60 a new log is generated with a load of 1.0. To generate a load of 0.9, each

f 0.60

090 We claim that in contrast to other

job’s arrival time is multiplied by a constant o
log modification methods which modify the jobs’ sizes or runtimes, our generated logs
and the original ones maintain resembling characteristics. The logs were used as an input
for the simulator, which generates arrival and termination events according to the jobs
characteristics of a specific log.

On each arrival or termination event, the simulator invokes LOS which examines the
waiting queue, and based on the current system state it decides which jobs to start.

For each started job, the simulator updates the system free capacity and enqueues a

temination event corresponding to the job termination time. For each terminated job,

35

the simulator records its response time, bounded slowdown (applying a threshold of 7 = 10

seconds), and wait time.

4.2 Improvement over EASY

We used the framework mentioned above to run simulations of the EASY scheduler [24,
25|, and compared its results to those of LOS which was limited to a maximal lookahead
of 50 jobs. By comparing the achieved utilization vs. the offered load of each simulation,
we saw that for the CTC and SDSC workloads (Figures 4.1(a,b)) a discrepancy occurs
at loads higher than 0.9, whereas for the KTH workload (Figure 4.1(c)) it occurs only
at loads higher than 0.95. As such discrepancies indicate that the simulated system is
actually saturated, we limit the z axis to the indicated ranges when reporting our results.

As the results of schedulers processing the same jobs may be similar, we need to
compute confidence intervals to assess the significance of observed differences. Rather
than doing so directly, we first apply the “common random numbers” variance reduction
technique [29]. For each job in the workload file, we tabulate the difference between its
response time under EASY and under LOS. We then compute confidence intervals on
these differences using the batch means approach. By comparing the difference between
the schedulers on a job-by-job basis, the variance of the results is greatly reduced, and so
are the confidence intervals.

The results for response time are shown in Figure 4.2 , and for bounded slowdown in
Figure 4.3. The results for wait time are the same as those for response time, because
we are looking at differences. In all the plots, the mean job differential response time (or
bounded slowdown) is positive across the entire load range for all three logs, indicating
that LOS outperforms Easy with respect to these metrics. This observation is reinforced
by that fact that all lower boundaries of the 90% confidence interval measured at key load

values, remain above the load axis, indicating the accuracy of our results.

36

System_Utilization

System_Utilization

System_Utilization

System_Utilization vs. Load
1

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

0.5 *~
0.5 055 0.6 0.65 0.7 0.75 0.8 0.85 09 095 1
Load

(a) CTC Log

System_Utilization vs. Load
0.95

0.9 HLOS.50 J e

0.85
0.8
0.75
0.7
0.65

0.6

0.55

0.5 *~
05 055 0.6 065 0.7 0.75 0.8 085 0.9 095 1
Load

(b) SDSC Log

System_Utilization vs. Load

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

0.5 *~
05 055 0.6 065 0.7 0.75 08 085 0.9 095 1
Load

(c) KTH Log

Figure 4.1: System Utilization vs. Load

37

Mean Job Differential Response _Time vs. Load

6000
Easy-LOS ——

5000
4000

3000 /
2000 /

1000 ////

Mean Job Differential Response_Time

—
Ol_,_’—ir——‘
05 055 06 065 07 075 08 085 09
Load
(a) CTC log

Mean Job Differential Response_Time vs. Load

20000
[Easy-LOS ——]
18000
16000

14000

12000 /
10000 //
8000 /
6000
4000
2000

—

Mean Job Differential Response_Time

0,—_——1%
05 055 06 065 07 075 08 085 0.9
Load

(b) SDSC log

Mean Job Differential Response_Timevs. Load
25000
Easy-LOS ——

20000
15000 /
10000

5000 /

,—1

Mean Job Differential Response_Time

0
05 055 0.6 065 0.7 075 08 0.85 0.9 0.95
Load

(c) KTH log

Figure 4.2: Mean job differential response time vs Load

38

Mean Job Differential Bounded_Slowdown vs. Load
25
Easy-LOS ——

20

15 /
10

Mean Job Differential Bounded_Slowdown

)
05 055 06 065 07 075 08 085 009
Load
(a) CTC log

Mean Job Differential Bounded_Slowdown vs. Load

100
Easy-LOS ——

)
80
70
60

50 //
40

Mean Job Differential Bounded_Slowdown

30
20
10 L
0
05 055 06 065 07 075 08 085 09
Load
(b) SDSC log
Mean Job Differential Bounded_Slowdown vs. Load
350
Easy-LOS ——
300

250

200 /
150

100 /

Mean Job Differential Bounded_Slowdown

50
4»/‘/
[
05 055 06 065 07 075 08 085 0.9 0.95
Load
(c) KTH log

Figure 4.3: Mean job differential bounded slowdown vs Load
39

4.3 Job Selection Effect on Performance

4.3.1 Selecting Instead of Bypassing

In Section 3.4 we introduced the Selected-First algorithm which is a modification of the
original algorithm for constructing S’. Unlike the original, Bypassed-First algorithm which
selects jobs closer to the head of the queue, the Selected-First algorithm favors jobs at
the queue tail.

To compare the two algorithms we used the framework described in Section 4.1 and
ran two simulation of LOS which was limited to a maximal lookahead of 50 jobs. The only
difference between the two runs is that in the first, LOS used the unmodified Bypassed-
First algorithm, and in the second, the Selected-First algorithm was used to construct
S’

Following the explanation in Section 4.2, we applied the “common random numbers”
variance reduction technique [29]. For each job in the workload file, we tabulate the
difference between its bounded slowdown in the first and the second runs, computed
confidence intervals on these differences and plotted the results. We decided to focus our
analysis on the mean job bounded slowdown metric since it does not use absolute values
(See Section 1.1 - The Goals of the Job Scheduler), and thus more accurately reflects the
differences between the two algorithms.

The results are shown in Figure 4.4. We see that for all three workloads, the mean job
bounded slowdown difference is positive across the entire load range — a clear indication
that the Selected-First algorithm outperforms the original Bypassed-First with respect to
this metric. On the other hand if we compare the resulting plots to those of Figure 4.3
where LOS was compared to EASY, we see that the curves here are significantly lower
and in fact some of the lower foundries of the 90% confidence interval bars fall below the
load axis. For example, the mean job differential bounded slowdown at 90% load for the
CTC workload in Figure 4.4(a) is 2, while in Figure 4.3(a) it is about 18. For the SDSC
workload in Figure 4.4(b) it is 16 while in Figure 4.3(b) it is 65 etc. The reason for the
low curves is the fact that unlike Section 4.2 where we compared LOS to a conceptually
different scheduling algorithm, we now compare two versions of the same scheduler, both

which focus and achieve the exact same maximal utilization, but only differ in the set of

40

jobs which construct the final schedule. Therefore we can expect the performance gaps
to be smaller, but still we see that choosing different sets jobs effect LOSs performance,

a positive improvement in our case.

41

Mean Job Differential Bounded_Slowdown vs. Load
35

[‘ Bypéssed First-Selected First —— |

25

15 AN
/ N

0.5 7

-0.5

Mean Job Differential Bounded_Slowdown

05 055 06 065 07 075 08 085 09
Load

(a) CTC log

Mean Job Differential Bounded_Slowdown vs. Load

[" Bypassed_First-Selected First —— |

N
u

Mean Job Differential Bounded_Slowdown

05 055 06 065 07 075 08 085 09
Load

(b) SDSC log

Mean Job Differential Bounded_Slowdown vs. Load

=
N
o

[" Bypassed_First-Selected_First —— |

[
o
o

80

60

40

20 /

'

Mean Job Differential Bounded_Slowdown

05 055 06 065 07 075 0.8 0.85 0.9 0095
Load

(c) KTH log

Figure 4.4: Mean job differential bounded slowdown time vs Load -

Selected-First algorithm
42

4.3.2 Maximizing the Number of Started Jobs

In Section 3.4.1 we introduced the Mazjobs approach. We stated that considering the
number of jobs which will start, and selecting the path on which this number is maximized,
is expected to improve LOS’s performance since less jobs will remain waiting.

We followed the simulation paradigm of Section 4.3.1 and ran two simulations of LOS.
In the first, LOS used the unmodified algorithm for constructing M’ (Algorithm 3). In the
second, this algorithm was replaced with Algorithm 6 which encapsulates the Mazjobs
approach. Again, for each job we tabulated the difference between its bounded slowdown
in the first and the second runs, computed confidence intervals on these differences and
plotted the results.

The results are shown in Figure 4.5. The curve title “No_ Merit - Max_Jobs” indicates
that the differences are between the original algorithm where no merit computation was
involved and the Mazjobs algorithm which starts the maximal number of jobs.

The fact that for all three workloads and for the entire load range, the mean job
differential bounded slowdown remain positive indicates that the Maxjobs algorithm
outperforms the original algorithm for constructing M’, and since the time complexity of

both algorithms is identical, it is the preferable choice in view of its results.

43

Mean Job Differential Bounded_Slowdown vs. Load
25

[No_Merit-Max_Jobs —— |

15 / \
7 {

0.5
v

-0.5

'
[=N

Mean Job Differential Bounded_Slowdown

05 055 06 065 07 075 08 085 09
Load

(a) CTC log

Mean Job Differential Bounded_Slowdown vs. Load

N
o

[No_Merit-Max_Jobs —— |

N
o

=
ol

=
o

u
%
>

o

'
o

Mean Job Differential Bounded_Slowdown

KN
o

05 055 06 065 07 075 08 085 09
Load

(b) SDSC log

Mean Job Differential Bounded_Slowdown vs. Load

c
s 100 : T : : :
8 [__No_Merit-Max_Jobs ——]
g 80
P 60
o
g !
S 40
>
8 20 ,/"\a//
s 0 —
<
[0}
o -20
=
O 40
o)
[<]
— -60
]
2 -80
= 05 055 06 065 0.7 075 08 085 0.9 0.95
Load
(c) KTH log

Figure 4.5: Mean job differential bounded slowdown time vs Load -

Mazxjobs approach
44

4.3.3 Maximizing the Total Slowdown

In Section 3.4.1 we introduced the Maz-Slowdown approach in which the set S’ is chosen in
a way that its overall total slowdown is maximized. We followed the paradigm of Sections
4.3.2 and 4.3.1, and run two simulations of LOS, one with the unmodified algorithm for
constructing M’ and the second with the modified Algorithm 7 which considers the jobs
slowdown.

The results in Figure 4.6 show that LOS performance is boosted when using the Maz-
Slowdown approach compared to the results achieved when the original algorithm for
constructing M’ was used. In addition, the results far exceeds those of the Mazjobs
approach in Figure 4.5 and the selected-first algorithm in Figure 4.4.

Just for comparison, the maximal differential bounded slowdown for the KTH workload
in Figure 4.5(c) is 50, in Figure 4.4(c) it is 60 while for the Maz-Slowdown in Figure 4.6
it is 90. Similar observation hold for the CTC and SDSC workloads.

To complete the performance evaluation we compared LLOS when using the Maz-
Slowdown approach, to the EASY scheduler. We followed the simulation paradigm of
Section 4.2 and plotted the mean job differential bounded slowdown curve in Figure
4.7. We then compared the results to Figure 4.3, where the unmodified algorithm for
constructing M’ was used. As can be seen, for all three workloads and for the entire
load range, the mean job differential bounded slowdown curves in Figure 4.7 are higher
than the curves in Figure 4.3. The fact that the new curves are higher indicates that the
difference between the jobs bounded slowdown under EASY and under LOS has increased.
Since EASY was not modified, it means the Maz-Slowdown approach had further reduced
the jobs slowdown and thus it outperforms the original algorithm for constructing M.

It is also interesting to see how does the Maz-Slowdown approach effect other metrics
such as jobs’ response time. We plotted the mean job differential response time under
EASY and LOS in Figure 4.8 and compared the resulting curves to Figure 4.2. For all
three workloads the curves of the Max-Slowdown approach are higher than those of the
unmodified algorithm for constructing M‘ which means that this approach outperforms
the original algorithm with respect to other metrics as well. As can be seen in Sub-

figures 4.8(b) and 4.8(c), in 90% load (95% in KTH) there is a slight advantage for the

45

unmodified algorithm. This does not mean the Maz-Slowdown has failed to perform and in
fact a positive mean response difference of 14000 (20000 in KTH) is a major improvement
over EASY. What this means is that on extremely high loads when the machine almost
saturates, a change in the heuristic may be considered if the scheduler target is to minimize

the response time of the jobs.

46

Mean Job Differential Bounded_Slowdown vs. Load

[No Merit-Max_Slowdown —— |

Mean Job Differential Bounded_Slowdown
w

0"_,__/:/
05 055 06 065 07 075 08 085 0.9
Load
(a) CTC log

Mean Job Differential Bounded_Slowdown vs. Load
45

40
35
30
25
20

15 /
10 /

5 =]
_’—Il‘/

[No_Merit-Max_Slowdown ——]

Mean Job Differential Bounded_Slowdown

0 =—
05 055 06 065 07 075 08 085 09
Load

(b) SDSC log

Mean Job Differential Bounded_Slowdown vs. Load

[_No_Merit-Max_Slowdown —— |

[

N

o
—

—

Mean Job Differential Bounded_Slowdown

05 055 06 065 07 075 0.8 0.85 0.9 0095
Load

(c) KTH log

Figure 4.6: Mean job differential bounded slowdown time vs Load -

Maz-Slowdown approach
47

Mean Job Differential Bounded_Slowdown vs. Load

g 20
3 Easy-LOS ——
g
U—.)I 25
°
(5}
T 20
>
: /
5 15
g
[
s 10
=
[a)]
35]
S
=
§ ot
2 05 055 06 065 07 075 08 08 09
Load
(a) CTC log

Mean Job Differential Bounded_Slowdown vs. Load
c
S 120
.§ Easy-LOS ——
o
] 100
'csl
(7}
T 80 /
>
o
o
5 60
€
[0}
s 40
=
o
g S
% "__’il-//l
= 05 055 06 065 07 075 08 085 09

Load

(b) SDSC log

Mean Job Differential Bounded_Slowdown vs. Load

S 450
S Easy-LOS ——
£ 400
9 350
o
Q
S 300
3
8 250
=]
£ 200 /
3 150
£
Q100
o)
) —
§ . l—/_/_,,—/_n/
= 05 055 06 065 07 075 08 085 09 0.95
Load
(c) KTH log

Figure 4.7: Mean job differential bounded slowdown wvs Load -

EASY - LOS, Maxz-Slowdown approach
48

Mean Job Differential Response Timevs. Load

6000
Easy-LOS ——

[}
£
E
o' 5000
[%2]
c
2
@ 4000
[}
m /
£ 3000
c
<
(3
£ 2
£ 2000
=)
[<]
2 1000
© [
L
g =
05 055 06 065 07 075 08 085 09
Load
(a) CTC log
Mean Job Differentia Response Time vs. Load
o 18000
E Easy-LOS ——
F, 16000
[}
2 14000
2
§ 12000 /
< 10000 /
S 8000
&
£ 6000
Qo
8 4000 M
S 2000 =
g 0 L
05 055 06 065 07 075 08 085 09
Load
(b) SDSC log
Mean Job Differential Response_Time vs. Load
» 25000
£ Easy-LOS ——
;I
@ 20000
=
[}
Qo
3
¥ 15000
8
5
5 10000
£
[a)
Qo
S 5000
c
I+ !
A
0.5 055 0.6 065 0.7 075 0.8 0.85 0.9 0.95
Load
(c) KTH log

Figure 4.8: Mean job differential response time vs Load -

EASY - LOS, Maxz-Slowdown approach
49

4.4 Limiting the Lookahead

Subsection 3.5.1 proposed an enhancement called limited lookahead aimed at improving
the runtime performance of LOS. We explored the effect of limiting the lookahead on
LOS’s results by performing six LOS simulations with a limited lookahead of 10, 25, 35,
50, 100 and 250 jobs respectively. Figure 4.9 presents the effect of the limited lookahead
on the mean job response time. Figures 4.10 and 4.11 present its effect on the mean job
bounded slowdown and mean job wait time respectively.

The notation LOS.X is used to represent LOS’s result curve, where X is the maximal
number of waiting jobs that LOS was allowed to examine on each scheduling step (i.e.
its lookahead limitation). We also plotted EASY’s result curve to allow a comparison.
We observe that for the CTC log in Figure 4.9(a) and the KTH log in Figure 4.9(c),
when LOS is limited to examine only 10 jobs at each scheduling step, its resulting mean
job response time is relatively poor, especially at high loads, compared to the result
achieved when the lookahead restriction is relaxed. The same observation also applies to
the mean job bounded slowdown for these two logs, as shown in Figures 4.10(a,c) and
to the mean job wait time as shown in Figures 4.11(a,c). As most clearly illustrated in
figures 4.9(a), 4.10(a) and 4.11(a), the result curves of LOS and EASY intersect several
times along the load axis, indicating that the two schedulers achieve the same results with
neither one consistently outperforming the other as the load increases. The reason for
the poor performance is the low probability that a schedule which maximizes the machine
utilization actually exists within the first 10 waiting jobs, thus although LOS produces
the best schedule it can, it is rarely the case that this schedule indeed maximizes the
machine utilization. However, for the SDSC log in Figures 4.9(b), 4.10(b) and 4.11(b),
LOS manages to provide good performance even with a limited lookahead of 10 jobs.

As the lookahead limitation is relaxed, LOS performance improves but the improve-
ment is not linear with the lookahead factor, and in fact the resulting curves for all three
metrics are relatively similar for lookahead in the range of 25-250 jobs. Thus we can safely
use a bound of 50 on the lookahead, thus bounding the complexity of the algorithm.

The explanation is that at most of the scheduling steps, especially under low loads, the

length of the waiting queue is kept small, so a lookahead of hundreds of jobs has no effect

50

Mean Job Response_Time vs. Load
21000

Easy e
20000 | LOS.10
o) LOS.25
£ 19000 [| 0535
[
I 18000 || LOS.50
e LOS.100 ---o---
S 17000 {LOS.250 --we--
Qo
& 16000
@
g 15000
g 14000
<L 13000
12000 [y
11000
05 055 06 065 07 075 08 085 09
Load
(a) CTC log
Mean Job Response_Time vs. Load
55000 : :
Easy --+--
50000 | LOS.10
) LOS.25
E 45000 [| 0535
[
I 40000 || LOS.50
e LOS.100 ---o---
S 35000 {LOS.250 -~
Qo
& 30000
@
o 25000 ;
S y
- 20000 ,,.r?,.,*‘
3 i
L 15000 S
10000 fpazassaiuismimsnrlE=="
5000
05 055 06 065 07 075 08 085 09
Load
(b) SDSC log
Mean Job Response_Time vs. Load
120000 ‘ : :
Easy --+--
LOS.10 ---w----
@ 100000 || LOS.25
£ LOS.35 -
F LOS.50 -
2 80000 [-/LOS.100 ---=---
g LOS.250 e
Q.
S 60000
@
Q
S 40000
c
©
[}
S 20000

0
05 055 06 065 0.7 075 0.8 0.85 0.9 0.95
Load

(c) KTH log

Figure 4.9: Limited lookahead affect on mean job response time

51

10)

30

Mean Job Bounded_Slowdown(thresh=10) vs. Load

25

(thresh

20

Easy - -+ -
LOS.10 -se--
LOS.25
LOS.35

LOS.50
LOS.100 ---

)

LOS.250 e

15

10

Mean Job Bounded_Slowdown

10)

Mean Job Bounded_Slowdown(thresh=10) vs. Load

= 200 = :
asy -- -+ -
§ 180 F| LOS.10 -
2 LOS.25 -
£ 1601 10535 -
S 140 || LOS.50 -
8 LOS.100 ===
$ 120 [{LOS.250 e
o 100
he]
g 80
c
,§ 60
g 40 PR S
T Y S B S e i
% s
5 0
= 05 055 06 065 07 075 08 085 0.9
Load
(b) SDSC log
. Mean Job Bounded_Slowdown(thresh=10) vs. Load
S 1600 : ‘ :
£ LOSTY e
£ 1400 1 1155125 -
= || LOS.35 =
S 12001 (5550 --wm-
<} LOS.100 -+
'% 1000 LOS.250 -« -eeeee
o 800
®
< 600
c
=}
8 400
8 ,
2 B o
2 00 e
= o
5} 0
= 05 055 06 065 0.7 075 0.8 0.85 0.9 0.95

Load

(c) KTH log

Figure 4.10: Limited lookahead affect on mean job bounded slowdown

52

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Mean Job Wait_Time

0

50000
45000
40000

30000
25000
20000
15000
10000

5000

Mean Job Wait_Time

0

120000

100000

80000

60000

40000

Mean Job Wait_Time

20000

35000

Mean Job Wait_Time vs. Load

Easy --
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100 --o--

PRI

5 055 06 065 07 075 08 085 09
Load
(a) CTC log
Mean Job Wait_Time vs. Load
Easy -
F LOS.10
|| LOS.25
LOS.35
LOS.50
LOS.100 -0
HLOS.250 e
.- ,'19'
»r;.;;.-’-l-;‘;“"“;w
SnGaranansamannans
5 055 06 065 07 075 08 085 09
Load
(b) SDSC log
Mean Job Wait_Timevs. Load
Easy -
LOS.10 ------er
H LOS.25
LOS.35 -
LOS.50 -
F{LOS.100 ----
LOS.250 -~

o

0
05 055 06 065 0.7 075 0.8 0.85 0.9 0.95

Load

(c) KTH log

Figure 4.11: Limited lookahead affect on mean job wait time

93

in practice. As the load increases and the machine advances toward its saturation point,
the number of waiting jobs increases, and the effect of changing the lookahead is more
clearly seen. Figure 4.12 compares the mean queue length under EASY and LOS which
was limited to a lookahead of 50 jobs. We can make two interesting observation based
on the results. First, with LOS, the mean queue length is actually shorter compared to
EASY, and the reason is its efficiency in packing jobs, which allows them to terminate
faster. The second observation is that only for the KTH log in Sub-figure 4.12(c), the mean
number of waiting jobs exceeds the lookahead limitation of 50 jobs, and this happens only
at loads higher than 90%. The problem with Figure 4.12 is that the mean queue length
provides only a brief summary to what happened over the entire simulation and that
time-dependent information such as peaks in which the queue length can reach hundreds
of jobs are absorbed in the mean calculation.

A detailed time-dependent analysis of the queue behavior is presented in Section 4.5
where the queue length is examined at every scheduling step across the entire simulation.
The results show that although peaks of hundreds of jobs actually exist, they are relatively
rare, and that LOS manages to keep the queue length well below 50 jobs at times when
it reaches a length of hundreds under EASY.

4.5 The LOS Scheduler and Users Satisfaction

In Section 3.5.1 we stated that on a heavily loaded system the waiting queue length can
reach tens of jobs, so a scheduler capable of maintaining a shorter queue across a large
fraction of the scheduling steps, increases the users’ satisfaction with the system.

It is interesting to examine if and how LOS manages to maintain a shorter waiting
queue when compared to EASY. It is also interesting to examine the queue behavior when
the Maz-Slowdown approach is used by LOS.

To explore the queue length behavior, we instrumented the simulator with a waiting-
queue length counter and recorded its changing value on every scheduling step (i.e arrival
or termination of jobs) across the entire simulation.

As such instrumentation produces large amounts of data, we enabled it only for the

two most high offered loads on which the simulation is still stable, that is, for the SDSC

54

Mean_Queue_Length

Mean_Queue_Length

Mean_Queue_Length

Mean_Queue_Length vs. Load

40
35
30
25
20
15 s

10 e e S

05 05 06 065 07 075 08 08 09

60

50

40

30

20 - . L

10 e

05 05 06 065 07 075 08 08 09

(b) SDSC log

Mean_Queue_Length vs. Load

140
120
100
80
60 l
40 ;
o
0
S S S
P s —
05 055 06 065 0.7 075 08 085 09 0.9
Load
(c) KTH log

Figure 4.12: Mean queue length vs Load

39

and CTC workloads, counter recording has been enabled for 0.85 and 0.90 loads and for
the KTH workload results were recorded for 0.90 and 0.95 loads.

A detailed comparison of the queue length behavior of the EASY scheduler and LOS
which was limited to a lookahead of 50 jobs is presented in Figures 4.13 to 4.15. Figure
4.13 presents the simulation results for the CTC workload. Figures 4.14 and 4.15 presents
the results for the SDSC and KTH respectively. In all figures, the curves in Sub-figures
(a) and (c) are those of the unmodified algorithm and in Sub-figures (b) and (d) are for
the Max-Slowdown algorithm.

As clearly seen in all figures, LOS maintains a shorter queue compared to EASY across
a dominating portion of the scheduling steps. The reason is LLOS’s efficiency in packing
jobs. As jobs are packed in an optimal manner, more processors are utilized and thus
more computation is performed. As a result more jobs will terminate which allows waiting
jobs to start, thus the waiting queue length is reduced.

Following the results analysis we can safely state that in addition to improving specific
metrics such as response time or slowdown , LOS will also increase users satisfaction when

compared to the EASY scheduler.

56

Queue Length

Queue Length

700

600

500

400

300

200

100

-100

600

500

400

300

200

100

-100

Queue Length Comparison at 0.85 Load

’mﬁ
LOS.50 ——

Queue Length

0 20000 40000 60000 80000 100000 120000 140000 160000

Scheduling Step

(a) Unmodified Algorithm

Queue Length Comparison at 0.90 Load

Easy -
LOS.50

Queue Length

0 20000 40000 60000 80000 100000 120000 140000 160000

Scheduling Step

(¢) Unmodified Algorithm

Queue Length Comparison at 0.85 Load

700
’m‘f‘
LOS.50 ——

600

500

400

300

200 v

100

0 20000 40000 60000 80000 100000 120000 140000 160000
Scheduling Step

(b) The Max-Slowdown Approach

Queue Length Comparison at 0.90 Load

600
’Tasy%‘
LOS.50 ——

500

400

300

200

100 i

0 20000 40000 60000 80000 100000 120000 140000 160000
Scheduling Step

(d) The Max-Slowdown Approach

Figure 4.13: Queue Length Behavior Comparison- CTC log

57

Queue Length

Queue Length

Queue Length Comparison at 0.85 Load

500

HLOS.50 ——

450

400

350

300

250

200
150

Queue Length

100 ;] ' A
g

50 A A :"..;, ,\ AA‘
0 o SELATL IS LN A aAZ)

-50
60000 80000
Scheduling Step

0 20000 40000 100000

(a) Unmodefied Algorithm

Queue Length Comparison at 0.90 Load
500

120000

140000

Easy - - - -
HLOS.50 ——

450

400

350
300

250

200 :
150

Queue Length

e

100

50 "
0 AN

e

—_—

Yyv

-50

0 20000 40000 60000 80000

Scheduling Step

100000

(¢) Unmodified Algorithm

120000

140000

Queue Length Comparison at 0.85 Load

HLOS.50 ——

500
450

400

350

300

250

200

150 oy
100 ;

b

50

-50

0 20000 40000 60000 80000

Scheduling Step

100000 120000 140000

(b) The Max-Slowdown Approach

Queue Length Comparison at 0.90 Load

Easy - - - -
HLOS.50 ——

400 .

500

450

350

300
250

200

150

e L LR T

100

A

50

O\M,M

0 20000 40000 60000 80000

Scheduling Step

100000 120000 140000

(d) The Max-Slowdown Approach

Figure 4.14: Queue Length Behavior Comparison - SDSC log

58

Queue Length

Queue Length

300

250

200

150

100

50

-50

500

450

400

350

300

250

200

150

100

50

Queue Length Comparison at 0.90 Load

Queue Length

ARSI Y

Scheduling Step

(a) Unmodified Algorithm

Queue Length Comparison at 0.95 Load

Easy - - - -
[[LOS.50 ——

Queue Length

manuiavRe

R RV
00 N A 7

I I,

0

10000 20000 30000 40000 50000 60000
Scheduling Step

(¢) Unmodified Algorithm

Queue Length Comparison at 0.90 Load

300
ok —
LOS.50

250

200

150

WWY

-50

0 10000 20000 30000 40000 50000 60000
Scheduling Step
(b) The Max-Slowdown approach
Queue Length Comparison at 0.95 Load
450 ’Wj
400 L0850 — ‘
350
300 iy
ol i b ARAR/ \
) .\i \
% 10000 20000 30000 40000 50000 60000

Scheduling Step

(d) The Max-Slowdown Approach

Figure 4.15: Queue Length Behavior Comparison - KTH log

29

Chapter 5

Conclusions

Backfilling algorithms have several parameters. In the past, two parameters have been
studied: the number of jobs that receive reservations, and the order in which the queue is
traversed when looking for jobs to backfill. We introduce a third parameter: the amount
of lookahead into the queue. We show that by using a lookahead window of about 50
jobs it is possible to derive much better packing of jobs under high loads, and that this
improves both the mean job response time and mean job bounded slowdown metrics.

In addition, improving packing positively effects secondary metrics such as the queue
length behavior. We show that on heavily loaded systems under the control of tradi-
tional backfilling schedulers, the waiting queue length can reach tens of jobs with peaks
sometimes reaching hundreds. On the other hand, when lookahead is used and packing is
optimized, the waiting queue is maintained shorter across large fraction of the scheduling
steps and this increases the users’ satisfaction with the system.

There is often more than a single way to pack jobs and achieve the same utilization
values. We explored the various alternatives by including merit calculation in the looka-
head process and choosing the set of jobs which maximizes or minimizes the merit value.
We show that performance can improve or reduce with respect to the chosen merit. Sur-
prisingly, performance is boosted when choosing the set of jobs, S’, with the mazimal
total slowdown. The reason is the nature of the slowdown metric which is mostly effected
by the shorter jobs and thus, a set with a large total slowdown is likely to contain the
shortest jobs. By starting these jobs ahead of longer ones, the mean job response time is

reduced and performance much improve.

60

A future study should further explore the various ways to optimize the algorithm
runtime. In Section 3.5.1 we suggested two enhancements which result in a shorter waiting
queue and showed that runtime performance can improve without effect on the results.
Calculating the utilization in an on-going fashion and stopping the construction of M’
when utilization reaches a certain threshold is another improvement which we suggest
as a study case. In addition, extending our algorithm to perform reservations for more
than a single job and exploring the effect of such a heuristic on performance presents an

interesting challenge.

61

Bibliography

1]

2]

3]

[4]

5]

[6]

D. G. Feitelson, "A Survey of Scheduling in Multiprogrammed Parallel Systems”.
Research Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994 -
The revised version, Aug 1997.

D. G. Feitelson and L. Rudolph, "Toward Convergence in Job Schedulers for Parallel
Supercomputers”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), Springer-Verlag, Lect. Notes Comput. Sci. Vol. 1162, pp. 1-26,
1996.

D. G. Feitelson, L.. Rudolph, U. Schweigelshohn, K. C. Sevcik and P. Wong, "Theory
and Practice in Parallel Job Scheduling”. In Job Scheduling Strategies for Paral-
lel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, Lect. Notes
Comput. Sci. Vol. 1291, pp 1-34, 1997.

D. G. Feitelson and L. Rudolph, "Metrics and Benchmarking for Parallel Job schedul-
ing”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L.
Rudolph (eds.), Springer-Verlag, Lect. Notes Comput. Sci. Vol. 1459, pp. 1-24, 1998.

O. Arndt, B. Freisleben, T. Kielmann and F. Thilo, "A Comparative Study of On-
Line Scheduling Algorithms for Networks of Workstation”. Cluster Computing 3(2),
pp. 95-112, 2000.

D. Talby and D. G. Feitelson, "Supporting Priorities and Improving Utilization of the
IBM SP Scheduler Using Slack-Based Backfilling". In 13th Intl. Parallel Processing
Symp. (IPPS), pp 513-517, Apr 1999.

62

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

B. G. Lawson and E. Smirni, “Multiple- Queue Backfilling Scheduling with Priorities
and Reservations for Parallel Systems”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, Lect. Notes Comput.
Sci. Vol. 2537, pp. 72-87, 2002.

E. Krevat, J. G. Castanos and J. E .Moreira , "Job Scheduling for the BlueGene/L
System". In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), Springer-Verlag, Lect. Notes Comput. Sci. Vol. 2537, pp. 38-54,
2002.

D. Jackson, Q. Snell, and M. Clement, “ Core Algorithms of the Maui Scheduler”. In
Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), Springer-Verlag, Lect. Notes Comput. Sci. Vol. 2221, pp 87-102, 2001.

A. W. Mu’alem and D. G. Feitelson, “Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling”, In IEEE Trans. on
Parallel and Distributed Syst. 12(6), pp. 529-543, Jun 2001.

S. Krakowiak, "Principles of Operating Systems”. The MIT Press, Cambridge Mass.,
1998.

M. V. Devarakonda and R. K. Iyer, "Predictability of Process Resource Usage : A
Measurement Based Study on UNIX". IEEE Tans. Sotfw. Eng. 15(12), pp. 1579-1586,
Dec 1989.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, "A Static Performance Fsti-
mator to Guide Data Partitioning Decisions”. In 3rd Symp. Principles and Practice

of Parallel Programming, pp. 213-223, Apr 1991.

V. Sarkar, "Determining Average Program FEzxecution Times and Their Variance”.
In Proc. SIGPLAN Conf. Prog. Lang. Design and Implementation, pp. 298-312, Jun
1989.

D. Karger, C. Stein and J. Wein, "Scheduling Algorithms". In Handbook of algorithms
and Theory of computation, M. J. Atallah, editor. CRC Press, 1997.

63

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

J. Sgall, "On-Line Scheduling — A Survey”. In Online Algorithms: The State of
the Art, A. Fiat and G. J. Woeginger, editors, Springer-Verlag, 1998. Lect. Notes
Comput. Sci. Vol. 1442, pp. 196-231.

S. Majumdar, D. L. Eager, and R. B. Bunt, "Scheduling in Multiprogrammed Parallel
Systems”. In SIGMETRICS Conf. Measurement and Modeling of Comput. Syst., pp.
104-113, May 1988.

S. T. Leutenegger and M.K. Vernon, "The Performance of Multiprogrammed Multi-
processor Scheduling Policies”. In SIGMETRICS Conf. Measurement and Modeling
of Comput. Syst., pp. 226-236, May 1990.

P. Krueger, T-H. Lai, and V. A. Radiya, "Processor Allocation vs. Job Scheduling on
Hypercube Computers”. In 11th Intl. Conf. Distributed Comput. Syst., pp. 394-401,
May 1991.

E. G. Coffman, Jr., M. R. Garey , D. S. Johnson, and R. E. Tarjan, "Performance
Bounds for Level-Oriented Two-Dimensional Packing Algorithms”. STAM J. Comput.
9(4), pp. 808-826, Nov 1980.

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, "Approzimation Algorithms
for Bin-Packing - An Updated Survey". In Algorithm Design for Computer Systems
Design, G. Ausiello, M. Lucertini, and P. Serafini (eds.), pp. 49-106, Springer-Verlag,
1984,

S. T. Leutenegger and M. K. Vernon, "Multiprogrammed Multiprocessor Scheduling
Issues". Research Report RC 17642 (#77699), IBM T. J. Watson Research Center,
Nov 1992.

K. C. Sevick, "Application Scheduling and Processor Allocation in Multiprogrammed
Parallel Processing Systems". Performance Evaluation 19(2-3), pp. 107-140, Mar
1994.

D. Lifka, "The ANL/IBM SP Scheduling System", In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295-303, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. Vol. 949.

64

[25]

[26]

[27]

28

[29]

J. Skovira, W. Chan, H. Zhou, and D. Lifka, "The EASY - LoadLeveler API Project”.
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 41-47, Springer-Verlag, 1996. Lect. Notes Comput. Sci. Vol. 1162.

S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan, “Selective Reserva-
tion Strategies for Backfill Job Scheduling”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson, L. Rudolph and U. Schwiegelshohn, Springer-Verlag,
Lect. Notes Comput. Sci. Vol. 2537, pp. 55-71, 2002.

W. A. Ward, Jr., C. L. Mahood and J. E. West, “Scheduling Jobs on Parallel Systems
Using a Relazed Backfill Strategy”. In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, Lect. Notes Comput.
Sci. Vol. 2537, pp. 88-102, 2002.

Parallel Workloads Archive. URL http://www.cs.huji.ac.il/labs/parallel /workload.

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. 3rd ed., McGraw
Hill, 2000.

65

Appendix A

Backfilling Algorithms

A.1 The EASY Backfilling Algorithm

The EASY backfilling algorithm is executed repeatedly whenever a new job arrives or a
running job terminates, if the first job in the queue cannot start. In each iteration, the

algorithm identifies a job that can backfill if one exists.

Algorithm 8 EASY Backfill

1. Find the shadow time and extra nodes:

(a) Sort the list of running jobs according to their expected termination time.

(b) Loop over the list and collect nodes until the number of available nodes is
sufficient for the first job in the queue.

(c) The time at which this happens is the shadow time.

(d) If, at this time, more nodes are available than needed by the first queued job,
the ones left over are the extra nodes.

2. Find a backfill job:

(a) Loop on the list of queued jobs in order of arrival.
(b) For each one, check whether either of the following conditions hold:

i. It requires no more than the currently free nodes and will terminate by
the shadow time, or

ii. It requires no more than the minimum of the currently free nodes and the
extra nodes.

(c) The first such job can be used for backfilling.

66

A.2 The Conservative Backfilling Algorithm

Conservative backfilling maintains two data structures. One is the list of queued jobs
and the time at which they are expected to start execution. The other is a profile of the
expected processor usage at future times. The algorithm is executed whenever a new job

arrives.

Algorithm 9 Conservative Backfill

1. Find anchor point:

(a) Scan the profile and find the first point where enough processors are available
to run this job. This is called the anchor point.

(b) Starting from this point, continue scanning the profile to ascertain that the
processors remain available until the job’s expected termination.

(c) If not, return to (a) and continue the scan to find the next possible anchor
point.

2. Update the profile to reflect the allocation of processors to this job, starting from
its anchor point.

3. If the job’s anchor is the current time, start it immediately.

67

Appendix B

Workloads Characteristics

B.1 The CTC Workload

The Cornell Theory Center (CTC) log contains 79302 job records submitted to a 512
nodes IBM SP2 System. Log recording started at Wednesday, 26 Jun 96, 16:06:00 and
ended at Saturday, 31 May 97, 22:11:26.

Information :

1. http://www.tc.cornell.edu

2. http://www.cs.huji.ac.il /labs/parallel /workload

68

Jobs Size Distribution

35000

Eas

30000

25000

20000

15000

Number of Jobs

10000

5000 ffi}

0 50 100 150 200 250 300 350
Job Size

Figure B.1: Jobs size distribution - CTC log

B.2 The SDSC Workload

The San Diego Supercomputer Center (SDSC) log contains 67667 job records submitted to
a 128 nodes IBM SP2 System. Log recording started at Wednesday, 29 Apr 98, 16:05:28,
16:06:00 and ended at Sunday, 30 Apr 00, 04:08:32.

Information :

1. http://joblog.npaci.edu

2. http://www.cs.huji.ac.il /labs/parallel /workload

69

Jobs Size Distribution

25000

Eas

20000

15000

10000

5000 |
0 ML. AN It ‘

20 40 60 80 100 120 140
Job Size

Number of Jobs

o

Figure B.2: Jobs size distribution - SDSC log

B.3 The KTH Workload

The Swedish Royal Institute of Technology (KTH) log contains 28490 job records sub-
mitted to a 100 nodes IBM SP2 System. Log recording started at Monday, 23 Sep 96,
12:00:31 and ended at Friday, 29 Aug 97, 08:55:01.

Information:

1. http://www.pdc.kth.se

2. http://www.cs.huji.ac.il /labs/parallel /workload

70

Number of Jobs

Jobs Size Distribution

10000
Easy

9000

8000

7000

6000

5000

4000

3000

2000

1000

0 | 11 1 |
0 10 20 30 40 50 60 70 80 90 100

Job Size

Figure B.3: Jobs size distribution - KTH log

71

