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Abstra
t
The utilization of parallel 
omputers depends on how jobs are pa
ked together: if thejobs are not pa
ked tightly, resour
es are lost due to fragmentation. The problem is thatthe goal of high utilization may 
on�i
t with goals of fairness or even progress for alljobs. The 
ommon solution is to use ba
k�lling, whi
h 
ombines a reservation for the�rst job in the interest of progress with pa
king of later jobs to �ll in holes and in
reaseutilization. However, ba
k�lling 
onsiders the queued jobs one at a time, and thus mightmiss better pa
king opportunities. We propose the use of dynami
 programming to �ndthe best pa
king possible given the 
urrent 
omposition of the queue. We expe
t thatby maximizing the utilization on every s
heduling step, the overall performan
e of thesystem will improve.We developed a dynami
 programming based s
heduling algorithm that looks at theentire 
ontent of the waiting queue and 
hooses the set of jobs whi
h together maximizethe ma
hine utilization, while ensuring that long-waiting jobs will not be starved. Weimplemented the algorithm in a job s
heduler we named LOS � an a
ronym for �Looka-head Optimizing S
heduler�, and integrated LOS into the framework of an event-drivenjob s
heduling simulator. We then ran simulations of LOS on tra
e �les of real parallelsystems and 
ompared its results to those of traditional ba
k�lling algorithms.The results show that LOS indeed improves utilization, and thereby redu
es the meanresponse time and mean slowdown of all jobs whi
h are key metri
s used for on-linesystems. We also found that is not ne
essary to examine the whole waiting queue torea
h high performan
e, and that we 
an limit the lookahead depth and still a
hieve thesame results but with mu
h less 
omputation e�ort.Finally, we experimented with sele
tions among alternative groups of jobs that a
hievethe same utilization in the interest of improving other performan
e metri
s. Surprisingv



simulation results indi
ate that 
hoosing the group at the head of the queue does notne
essarily guarantee best performan
e. Instead, repeatedly sele
ting the group withthe maximal overall expe
ted slowdown boost performan
e when 
ompared to all otheralternatives.
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Chapter 1
Introdu
tion
A distributed memory parallel ma
hine 
onsists of a set of pro
essors, ea
h asso
iated witha private memory, whi
h are 
onne
ted using a fast network. A parallel job is 
omposedof a number of 
on
urrently exe
uting pro
esses 
ommuni
ating using message passing,whi
h 
olle
tively perform a 
ertain 
omputation. A rigid parallel job has a �xed numberof pro
esses (referred to as the job's size) whi
h does not 
hange during exe
ution [2℄. Toexe
ute su
h a parallel job, the job's pro
esses are mapped to a set of pro
essors using aone-to-one mapping. In a non-preemptive regime, these pro
essors are then dedi
ated torunning this job until su
h time that it terminates [3℄. The set of pro
essors dedi
ated toa 
ertain job is 
alled a partition of the ma
hine. To in
rease utilization, parallel ma
hinesare typi
ally partitioned into several non-overlapping partitions, allo
ated to di�erent jobsrunning 
on
urrently, a te
hnique 
alled spa
e sli
ing [1℄.To prote
t the ma
hine resour
es and allow su

essful exe
ution of jobs, users are notallowed to dire
tly a

ess the ma
hine. Instead, they submit their jobs to the ma
hine'ss
heduler � a software 
omponent that is responsible for monitoring and managing thema
hine resour
es. The s
heduler typi
ally maintains a queue of waiting jobs. The jobsin the queue are 
onsidered for allo
ation whenever the state of the ma
hine 
hanges.Two su
h 
hanges are the submittal of a new job (whi
h 
hanges the queue), and thetermination of a running job (whi
h frees an allo
ated partition) [8℄. Upon su
h events,so 
alled s
heduling steps, the s
heduler examines the waiting queue and the ma
hineresour
es and de
ides whi
h jobs (if any) will be started at this time.1



1.1 The Goals of the Job S
hedulerWhile the primary goal of all s
hedulers is to enable a su

essful exe
ution of jobs, di�erents
heduling algorithms try to optimize 
ertain se
ondary global or lo
al goals aimed atsatisfying groups or individual needs respe
tively [2℄, and thus 
hoose to start di�erentjobs at di�erent s
heduling steps.To better understand these goals, often referred to as metri
s, we will look at anexample in whi
h at t = 0 four jobs j1::j4, ea
h attributed with a size and an estimatedruntime time, had been submitted and pla
ed in the waiting queue of a parallel ma
hineof size N = 5.The queue state and a possible s
hedule of the four jobs are illustrated in Figures 1.1and 1.2 respe
tively.
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Figure 1.1: The waiting queue holds four jobs headed by j1.
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t=0 t=8Figure 1.2: A possible s
hedule of the four jobsThe following values are 
al
ulated for ea
h job j in the resulting s
hedule :� arrival time is the time at whi
h the job had arrived at the waiting queue.2



� start time is the time at whi
h the job had started exe
uting.� termination time is the time at whi
h the job had terminated.� response time = termination time � arrival time, often referred to as flow time[5℄, is the total time the job has spent in the system, either waiting in the queue orrunning.� running time = termination time� start time is the a
tual runtime of the job.� wait time = response time� running time is the time the job had spent waiting inthe queue.� slowdown = response timerunning time is the ratio of the time it takes to run the job on a loadedsystem divided by the time it takes on dedi
ated system.Table 1.1 shows the 
al
ulated values for the s
hedule in Figure 1.2ji arrival start termination response runtime wait slowdown1 0 0 2 2 2 0 12 0 0 4 4 4 0 13 0 4 6 6 2 4 34 0 6 8 8 2 6 4Table 1.1: Computed values for the example s
heduleMinimizing makespan - the di�eren
e between the termination time of the last joband the arrival time of the �rst job is a 
ommon global goal, primarily used for o�-line1s
heduling. As a metri
 it measures the performan
e of the system in the sense that theentire set of jobs will be s
heduled in su
h a way that it takes as little time as possible to�nish all jobs without fo
using on a single job.In our example s
hedule, the makespan a
hieved is 8.A se
ond and equally important global goal is to maximize the ma
hine utilizationwhi
h is the 
apa
ity of the ma
hine that was utilized over its a
tivity period. Utilizationis de�ned as1Where all jobs and their resour
e requirements are known in advan
e3



Utilization = Pi ji:size� ji:running timemakespan�NIn our example, Utilization = 3�2+2�4+4�2+3�28�5 = 0:70.Makespan and utilization are highly related, but the utilization metri
 is also oftenused for on-line2 s
heduling, sin
e it is largely dependent on the load [2℄. With low loadswhen all jobs 
an be servi
ed, utilization is equal to the load, but as load in
reases andthe ma
hine saturated, the utilization is equal to the saturation point. S
hedulers thatfo
us on maximizing utilization will try to delay the onset of saturation to higher loads,but by doing so 
ertain jobs may be starved.Minimizing the mean job response time is a very 
ommon lo
al goal espe
ially inintera
tive (i.e. on-line) systems [2℄. Obviously, the lower bound on the response time ofa given job is its running time. The main problem with using mean job response timeas a performan
e metri
 is its use of absolute values. Two jobs that had responded inone hour, but one required a full hour of 
omputation while the other required only onese
ond, might indi
ate a problem with the s
heduler, but if both had been running for 50minutes than one hour of response is pretty good.A possible solution to this problem is to use the mean job slowdown metri
 instead,thus a job that takes twi
e as long to run due to system load, will su�er from a slowdownfa
tor of 2 et
. Slowdown is widely per
eived as better mat
hing user expe
tations thata job's response time will be proportional to its running time. The problem with theslowdown metri
 is that it over emphasizes the importan
e of very short jobs [4℄. A jobwith 
omputation requirements of 100ms that had been delayed for 10 minutes will su�erfrom a slowdown of 6000 whereas a 10-se
ond job delayed by the same 10 minutes has aslowdown of only 60.To avoid su
h e�e
ts, Feitelson et al. have suggested the bounded slowdown metri
[3℄. The di�eren
e is that for short jobs, this measures the slowdown relative to some�intera
tive threshold� rather than relative to the a
tual runtime. Denoting this thresholdby � , the de�nition is2Where future jobs and their resour
e requirements are not known in advan
e4



bounded slowdown = max ( response timemaxfrunning time; �g ; 1)This metri
 behavior obviously depends on the 
hoi
e of � whi
h typi
ally takes thevalues in the range of 10 se
onds to several minutes.1.2 The Lookahead Optimizing S
hedulerServing as a general-purpose 
omputation 
ore, the parallel ma
hine is shared over aperiod of time by wide range of users exe
uting jobs with various resour
e requirements.This mode of work is known as an on-line mode [4, 16℄ and is distinguished from ano�-line mode in whi
h all jobs and their resour
e requirements are known in advan
e.The la
k of knowledge regarding future jobs leads 
urrent on-line s
hedulers to usesimple heuristi
s to maximize utilization at ea
h s
heduling step. The di�erent heuristi
sused by various algorithms are des
ribed in Chapter 2. These heuristi
s do not guaranteeto minimize the ma
hine's idle 
apa
ity.We propose a new s
heduling heuristi
 seeking to maximize utilization at ea
h s
hedul-ing step. Unlike 
urrent s
hedulers that 
onsider the queued jobs one at a time, our s
hed-uler bases its s
heduling de
isions on the whole 
ontents of the queue. Thus we namedit LOS � an a
ronym for �Lookahead Optimizing S
heduler�. LOS starts by examiningonly the �rst waiting job. If it �ts within the ma
hine's free 
apa
ity it is immediatelystarted. Otherwise, a reservation is made for this job so as to prevent the risk of star-vation. The rest of the waiting queue is pro
essed using an e�
ient, newly developeddynami
-programming based s
heduling algorithm that 
hooses the set of jobs whi
h willmaximize the ma
hine utilization and will not violate the reservation for the �rst waitingjob. The basi
 algorithm also respe
ts the arrival order of the jobs, if possible. Whentwo or more sets of jobs a
hieve the same maximal utilization, it 
hooses the set 
loserto the head of the queue. However, we show that performan
e 
an further improve if wedisregard the queue order and 
hoose the set whi
h 
ontains the maximal number of jobsor the jobs with the maximal overall slowdown. To rea
h these 
on
lusions we developed5



and examined a set of enhan
ed algorithms, built on top and 
on
eptually similar tothe basi
 algorithm, whi
h in addition to maximizing the utilization of the ma
hine, alsoguarantee that the 
hosen set of jobs will maximize or minimize a prede�ned merit value.Chapter 3 provides a detailed des
ription of the algorithm. It 
ontinues with a des
rip-tion of the enhan
ed algorithms and 
on
ludes with a dis
ussion on 
omplexity, followedby performan
e optimizations. Chapter 4 des
ribes the simulation environment used inthe evaluation and presents the experimental results from the simulations in whi
h LOSwas tested using tra
e �les from real systems. It also presents, 
ompares and analyzesLOSs' results when using any of the enhan
ed algorithms. Chapter 5 
on
ludes on thee�e
tiveness and appli
ability of our proposed s
heduling heuristi
.

6



Chapter 2
Related Work
We will fo
us on the narrow �eld of on-line s
heduling algorithms of non-preemptive rigidjobs on distributed memory parallel ma
hines, and espe
ially on heuristi
s that attemptto improve utilization.The base 
ase often used for 
omparison is the First Come First Serve (FCFS) algo-rithm [5℄. In this algorithm all jobs are started in the same order in whi
h they arrive inthe queue. If the ma
hine's free 
apa
ity does not allow the �rst job to start, FCFS willnot attempt to start any su

eeding job. It is a fair s
heduling poli
y, whi
h guaranteesfreedom of starvation sin
e a job 
annot be delayed by other jobs submitted at a latertime. It is also easily implemented. Its drawba
k is the resulting poor utilization of thema
hine. When the next job to be s
heduled is larger than the ma
hine free 
apa
ity, itholds ba
k smaller su

eeding jobs, whi
h 
ould utilize the ma
hine.In order to improve various performan
e metri
s it is possible to 
onsider the jobs insome other order. The Shortest Pro
essing Time First (SPT) algorithm uses estimationsof the jobs' runtimes to make s
heduling de
isions. It sorts the waiting jobs by in
reasingestimated runtime and exe
utes the jobs with the shortest runtime �rst [5℄. This algorithmis inspired by the "shortest job �rst" heuristi
 [11℄, whi
h seeks to minimize the averageresponse time. The rationale behind this heuristi
s is that if a short job is exe
uted aftera long one, both will have a long response time, but if the short job gets to be exe
uted�rst, it will have a short response time, thus the average response time is redu
ed.The opposite algorithm, Largest Pro
essing Time First (LPT), exe
utes the jobs withthe longest pro
essing time �rst [15, 16℄. This poli
y aims at minimizing the makespan,7



but the average response time is in
reased be
ause many small jobs are delayed signi�-
antly.Other s
heduling heuristi
s base their de
isions on job size rather than on estimatedruntime. The Smallest Job First (SJF) algorithm [17℄ sorts the waiting jobs by in
reasingsize and exe
utes the smallest jobs �rst. Inspired by SPT, this algorithm turned out toperform poorly be
ause there is not mu
h 
orrelation between the job size and it's runtime.Small jobs do not ne
essarily terminate qui
kly [18, 19℄, whi
h results in a fragmentedma
hine and thus a redu
tion in performan
e.The alternative Largest Job First (LJF) is motivated by results in bin-pa
king thatindi
ate that a simple �rst-�t algorithm a
hieves better pa
king if the pa
ked items aresorted in de
reasing size [20, 21℄. In terms of s
heduling it means that s
heduling largerjobs �rst may be expe
ted to 
ause less fragmentation and therefore higher utilizationthan FCFS.Finally, the Smallest Cumulative Demand First [17, 22, 23℄ algorithm uses both theexpe
ted exe
ution time and job size to make s
heduling de
isions. It sorts the jobs inan in
reasing order a

ording to the produ
t of the jobs size and the expe
ted exe
utiontime, so small short jobs get the highest priority. It turned out that this poli
y does notperform mu
h better than the original smallest job �rst [17℄.The problem with all the above s
hemes is that they may su�er from starvation, andmay also waste pro
essing power if the �rst job 
annot run. This problem is solvedby ba
k�lling algorithms, whi
h allow small jobs from the ba
k of the queue to exe
utebefore larger jobs that arrived earlier, thus utilizing the idle pro
essors, while the latterare waiting for enough pro
essors to be freed [3℄. Ba
k�lling is known to greatly in
reaseuser satisfa
tion sin
e small jobs tend to get through faster, while bypassing large ones.Note that in order to implement ba
k�lling, the jobs' runtimes must be known inadvan
e. Two te
hniques, one to estimate the runtime through repeated exe
utions of thejob [12℄ and the se
ond to get this information through 
ompile-time analysis [13, 14℄ havebeen proposed. Real implementations, however, require the users to provide an estimateof their jobs runtime, whi
h in pra
ti
e is often spe
i�ed as a runtime upper-bound.Surprisingly, it turns out that ina

urate estimates generally lead to better performan
ethan a

urate ones [10℄. 8



Ba
k�lling was �rst implemented on a produ
tion system in the "EASY" (the Ex-tensible Argonne S
heduling sYstem) s
heduler developed by Lifka et al. [24, 25℄, andlater integrated with IBM's LoadLeveler. This version is based on aggressive ba
k�lling,in whi
h any job 
an be ba
k�lled provided it does not delay the �rst job in the queue.The obje
tive is to improve the 
urrent utilization as mu
h as possible but the pri
e isthat exe
ution guarantees 
annot be made be
ause it is impossible to predi
t how mu
hea
h job will be delayed in the queue. The EASY ba
k�lling algorithm is des
ribed inAppendix A.1. It is exe
uted repeatedly whenever a new job arrives or a running jobterminates, if the �rst job in the queue 
annot start. In ea
h iteration, the algorithmidenti�es a job that 
an ba
k�ll if one exists.There are two interesting properties asso
iated with this algorithm. First, queued jobsmay su�er an unbounded delay be
ause if a job is not the �rst in the queue, new jobs thatarrive latter may skip it in the queue and impose delays on it, whi
h makes predi
tabilityimpossible. Se
ond, there is no starvation be
ause the queuing delay for the job at thehead of the queue depends only on jobs that are already running sin
e ba
k�lled jobs willnot delay it. Thus, it is guaranteed to eventually run sin
e the running jobs will eitherterminate or be terminated when they ex
eed their estimated runtime. A detailed proofof the above two properties is found in [10℄.By using aggressive ba
k�lling EASY sa
ri�
es predi
tability for potentially improv-ing utilization. When predi
tability is required, one 
an use �Conservative� ba
k�llingwhi
h performs all s
heduling de
isions upon job submittal and thus, has the 
apabilityof predi
ting when ea
h job will run, giving the users exe
ution guarantees. With 
onser-vative ba
k�lling, users 
an plan ahead based on these guaranteed response times. In thisversion, ba
k�lling is done subje
t to 
he
king that it does not delay any previous job inthe queue. To perform allo
ations, 
onservative ba
k�lling maintains two data stru
tures.One is the list of queued jobs and the time at whi
h they are expe
ted to start exe
ution.The other is a pro�le of the expe
ted pro
essor usage at future times. Appendix A.2des
ribes the Conservative ba
k�ll algorithm. It is exe
uted whenever a new job arrives.Note that Conservative ba
k�lling has no danger of starvation as a reservation is madefor ea
h job when it is submitted.Mu'alem and Feitelson [10℄ 
ompared EASY ba
k�lling to 
onservative ba
k�lling.9



Their simulation results show that for most 
ases the performan
e of the EASY ba
k�llingalgorithm was better than that of 
onservative ba
k�lling.One of the important parameters of ba
k�lling algorithms is the number of jobs thatenjoy reservations. In EASY, only the �rst job gets a reservation while in 
onservativeba
k�lling, all skipped jobs get reservations. The Maui s
heduler [9℄ has a parameter thatallows the system administrator to set the number of reservations. When Maui s
hedules,it prioritizes the jobs in the queue a

ording to a number of fa
tors and then ordersthe jobs in a highest priority-�rst sorted list. By default, Maui reserves only the highestpriority job resulting in a most liberal and aggressive ba
k�ll. This give Maui the freedomto optimize its s
hedule and thus to potentially result in a better job response times andoverall system utilization. While this reservation ensures that the highest priority jobwill not be delayed, other jobs la
k a resour
e prote
tion, and thus potentially 
ould besigni�
antly delayed. A tunable parameter, RESERVATIONDEPTH provides the abilityto 
ontrol how deep in the priority queue reservation should be made. In its default value,1, Maui ba
k�lls aggressively with the purpose of maximizing utilization. As the valuein
reases, the liberal ba
k�lling behavior moves toward a more 
onservative one in whi
hresour
e prote
tion and thus predi
tability be
ome available.Srinivasan et al. [26℄ have studied the relative e�e
tiveness of 
onservative and ag-gressive ba
k�lling by grouping jobs into 
ategories based on their size and runtime, andexamining their e�e
t on jobs in di�erent 
ategories. They observed that 
onservative andaggressive ba
k�lling ea
h bene�t 
ertain job 
ategories while adversely a�e
ting other
ategories. They proposed a 
ompromise strategy 
alled sele
tive ba
k�lling with the pur-pose of obtaining the best 
hara
teristi
s from both the 
onservative and the aggressiveba
k�lling. With sele
tive ba
k�lling, reservations are provided sele
tively only to jobswhos their expe
ted slowdown ex
eeds some threshold. By limiting the number of reser-vations the amount of ba
k�lling is greater than 
onservative ba
k�lling, but by assuringreservations to jobs after a limited wait, the disadvantage of potentially unbounded delaywith aggressive ba
k�ll is avoided.Additional variants of ba
k�lling allow the s
heduler more �exibility. Talby and Fei-telson presented sla
k based ba
k�lling, an enhan
ed ba
k�ll s
heduler that supports pri-orities [6℄. These priorities are used to assign ea
h waiting job a sla
k, whi
h determines10



how long it may have to wait before running: important jobs will have little sla
k in
omparison with others. Ba
k�lling is allowed only if the ba
k�lled job does not delayany other job by more than that job's sla
k. Ward et al. have suggested the use of arelaxed ba
k�ll strategy, whi
h is similar, ex
ept that the sla
k is a 
onstant fa
tor anddoes not depend on priority [27℄.Lawson and Smirni presented amultiple-queue ba
k�lling approa
h in whi
h ea
h job isassigned to a queue a

ording to its expe
ted exe
ution time and ea
h queue is assigned toa disjoint partition of the parallel system on whi
h jobs from the queue 
an be exe
uted[7℄. Their simulation results indi
ate a performan
e gain 
ompared to a single-queueba
k�lling, resulting from the fa
t that the multiple-queue poli
y redu
es the likehoodthat short jobs get delayed in the queue behind long jobs.

11



Chapter 3
The LOS S
heduling Algorithm
The LOS s
heduling algorithm examines all the jobs in the queue in order to maximize the
urrent system utilization. Instead of s
anning the queue in some order, and starting anyjob that is small enough not to violate prior reservations, LOS tries to �nd a 
ombinationof jobs that together maximize utilization. This is done using dynami
 programming.Se
tion 3.2 presents the basi
 algorithm, and shows how to �nd a set of jobs that togethermaximize utilization. Se
tion 3.3 then extends this by showing how to sele
t jobs thatalso respe
t a reservation for the �rst queued job. Se
tion 3.4 examines sele
tion amongalternative groups of jobs that a
hieve the same utilization value in the interest of improv-ing other performan
e metri
s. Se
tion 3.5 analyzes the 
omplexity of the algorithm, and�nalizes the algorithm des
ription with two suggested optimizations aimed at redu
ingits 
omplexity.Before starting the des
ription of the algorithm itself, Se
tion 3.1 formalizes the stateof the system and introdu
es the basi
 terms and notations used later. To provide anintuitive feel of the algorithms, ea
h subse
tion is followed by an on-going s
hedulingexample on an imaginary ma
hine of size N = 10: Paragraphs des
ribing the example areheaded by |.3.1 Formalizing the System StateAt time t our ma
hine of size N runs a set of jobs R = frj1; rj2; :::; rjrg, ea
h with twoattributes: their size, and estimated remaining exe
ution time, rem. For 
onvenien
e, R12



is sorted by in
reasing rem values. The ma
hine's free 
apa
ity is n = N �Pri=1 rji:size.The queue 
ontains a set of waiting jobs WQ = fwj1; wj2; ::; wjqg, whi
h also havetwo attributes: a size requirement and a user estimated runtime, time. The task of thes
heduling algorithm is to sele
t a subset S � WQ of jobs, referred to as the produ
eds
hedule, whi
h maximizes the ma
hine utilization. The produ
ed s
hedule is saf e if itdoes not impose a risk of starvation.| As illustrated in Figure 3.1, at t = 25, our ma
hine runs a single job rj1 withsize = 5 and expe
ted remaining exe
ution time rem = 3. The ma
hine's free 
apa
ity isn = 5. The table at the right des
ribes the size and estimated runtime of the �ve waitingjobs in the waiting queue, WQ.
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rj1

t=25 t=28

n=
5

N
=

10

rem=3

si
ze

=
5

Time

wj size time1 7 42 2 23 1 64 2 45 3 5
Figure 3.1: System state and queue at t = 25

3.2 The Basi
 Algorithm3.2.1 Freedom of StarvationThe algorithm begins by trying to start the �rst waiting job.If wj1:size � n , it is removed from the waiting queue, added to the running jobs listand starts exe
uting.Otherwise, the algorithm 
al
ulates the shadow time at whi
h wj1 
an begin its exe-
ution [24℄. It does so by traversing the list of running jobs while a

umulating their sizesuntil rea
hing a job rjs at whi
h wj1:size � n +Psi=1 rji:size. The shadow time is then13



de�ned to be shadow = t+ rjs:rem. By ensuring that all jobs in S terminate before thattime, S is guaranteed to be a safe s
hedule, as it will not impose any delay on the �rstwaiting job, thus ensuring a freedom from starvation.To dismiss us of the 
on
ern of handling spe
ial 
ases, we set shadow to1 if wj1 
anbe started at t. In this 
ase every produ
ed s
hedule is safe, as the �rst waiting job isassured to start without delay.| The 7 pro
essors requirement of wj1 prevents it from starting at t = 25. It willbe able to start at t = 28 after rj1 terminates, thus shadow is set to 28 as illustrated inFigure 3.2.
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N
=

10

t=25 t=28
(shadow)

TimeFigure 3.2: Computing the shadow time3.2.2 A Two Dimensional Data Stru
tureAfter handling the �rst job, we need to �nd the set of subsequent jobs that will maximizeutilization. To do so, the waiting queue, WQ, is pro
essed using a dynami
-programmingalgorithm. Intermediate results are stored in a two dimensional matrix denoted M of size(jWQj+ 1)� (n + 1), and are later used for making su

essive de
isions.Ea
h 
ell mi;j 
ontains a single integer value util, and two boolean tra
e markers,sele
ted and bypassed.util holds the maximal a
hievable utilization at t, if the ma
hine's free 
apa
ity is jand only waiting jobs f1::ig are available for s
heduling.The sele
ted marker is set to indi
ate that wji was 
hosen for exe
ution (wji 2 S).14



The bypassed marker indi
ates the opposite. When the algorithm �nishes 
al
ulatingM ,the tra
e markers are used to tra
e the jobs whi
h 
onstru
t S. It is possible that bothmarkers will be set simultaneously in a given 
ell, whi
h means that there is more thanone way to 
onstru
t S. It is important to note that either way, jobs in the produ
eds
hedule will always a
hieve the same overall maximal utilization.For 
onvenien
e, the i = 0 row and j = 0 
olumn are initialized with zero values. Su
hpadding eliminates the need of handling spe
ial 
ases.| In the example, M is a 6 � 6 matrix. The sele
ted and bypassed markers, if set,are noted by - and " respe
tively. Table 3.1 des
ribes M 's initial values.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 � � � � �2 (2) 0 � � � � �3 (1) 0 � � � � �4 (2) 0 � � � � �5 (3) 0 � � � � �Table 3.1: M 's initial values3.2.3 Filling MM is �lled from left to right, top to bottom, as indi
ated in Algorithm 1. The values ofea
h 
ell are 
al
ulated using values from previously 
al
ulated 
ells. The idea is that ifadding another pro
essor (bringing the total to j) allows the 
urrently 
onsidered job ito be started, we need to 
he
k whether in
luding wji in the produ
ed s
hedule in
reasesthe utilization. If not, or if the size of job i is larger than j, the utilization is simply whatit was without this job, that is mi�1;j:util.As mentioned in Se
tion 3.2.1, a safe s
hedule is guaranteed if all jobs in S terminatebefore the shadow time. The third line of Algorithm 1 ensures that every job wji thatwill not terminate by the shadow time is immediately bypassed, that is, ex
luded fromS. This is done to simplify the presentation of the algorithm. In Se
tion 3.3 we relax thisrestri
tion and present the full algorithm. 15



The 
omputation stops when rea
hing 
ellmjwqj;n at whi
h timeM is �lled with values.Algorithm 1 Constru
ting M� Note : To slightly ease the reading, mi;j:util, mi;j:sele
ted, and mi;j:bypassed arerepresented by util, sele
ted and bypassed respe
tively.for i = 1 to jWQjfor j = 1 to nif wji:size > j or t + wji:time > shadowutil mi�1;j:utilsele
ted Falsebypassed Trueelse util0  mi�1;j�wji:size:util + wji:sizeif util0 � mi�1;j:utilutil util0sele
ted Truebypassed Falseif util0 = mi�1;j:utilbypassed Trueelse util mi�1;j:utilsele
ted Falsebypassed True| The resulting M is shown in Table 3.2. As 
an be seen, the sele
ted �ag is set onlyfor wj2, as it is the only job whi
h 
an be started safely without imposing any delay onwj1. Sin
e all other jobs are bypassed, the maximal a
hievable utilization of the j = 5free pro
essors when 
onsidering all i = 5 jobs is m5;5:util = 2.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 0 " 0" 0" 0" 0"2 (2) 0 0 " 2 - 2 - 2 - 2 -3 (1) 0 0 " 2" 2" 2" 2"4 (2) 0 0 " 2" 2" 2" 2"5 (3) 0 0 " 2" 2" 2" 2"Table 3.2: Resulting M
16



3.2.4 Constru
ting SStarting at the last 
omputed 
ell mjwqj;n, S is 
onstru
ted by following the tra
e markersas des
ribed in Algorithm 2.It was already noted in Se
tion 3.2.2 that it is possible that in an arbitrary 
ell mx;yboth markers are set simultaneously, whi
h means that there is more than one possibles
hedule. In su
h 
ase, the algorithm will follow the bypassed marker.In terms of s
heduling, wjx =2 S simply means that wjx is not started at t, but thisde
ision has a deeper meaning in terms of queue poli
y. Sin
e the queue is traversed byAlgorithm 2 from tail to head, skipping wjx means that other jobs, 
loser to the head ofthe queue will be started instead, and the same maximal utilization will still be a
hieved.By sele
ting jobs 
loser to the head of the queue our produ
ed s
hedule is more 
ommittedto the queue FCFS poli
y, and is expe
ted to re
eive a better s
ore from the evaluationmetri
s su
h as average response time, slowdown et
.Algorithm 2 Constru
ting SS  fgi jWQjj  nwhile i > 0 and j > 0if mi;j:bypassed = Truei i� 1else S  S [ fwjigj  j � wji:sizei i� 1| The resulting S 
ontains a single job wj2, and its s
heduling at t is illustrated inFigure 3.3. Note that wj1 is not part of S: It is only drawn to illustrate that wj2 doesnot e�e
t its expe
ted start time, indi
ating that our produ
ed s
hedule is safe.3.3 The Full Algorithm3.3.1 Maximizing UtilizationOne way to 
reate a safe s
hedule is to require all jobs in S to terminate before the shadowtime, so as not to interfere with that job's reservation. This restri
tion 
an be relaxed17
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wj1

wj2

rj1

N
=

10
t=25 t=28

(shadow)
TimeFigure 3.3: S
heduling wj2 at t = 25in order to a
hieve a better s
hedule S 0, still safe but with a mu
h improved utilization.This is possible due to the extra pro
essors left at the shadow time after wj1 is started.Waiting jobs whi
h are expe
ted to terminate after the shadow time 
an use these extrapro
essors, referred to as the shadow free 
apa
ity, and run side by side together with wj1,without e�e
ting its start time. As long as the total size of jobs in S 0 that are still runningat the shadow time does not ex
eed the shadow free 
apa
ity, wj1will not be delayed, andS 0 will be a safe s
hedule.If the �rst waiting job, wj1, 
an only start after rjs has terminated, than the shadowfree 
apa
ity, denoted by extra; is 
al
ulated as follows :extra = n+ sXi=1 rji:size� wj1:sizeTo use the extra pro
essors, the jobs whi
h are expe
ted to terminate before theshadow time are distinguished from those that are expe
ted to still run at that time, andare therefore 
andidates for using the extra pro
essors. Ea
h waiting job wji 2 WQ willnow be represented by two values: its original size and its shadow size � its size at theshadow time. Jobs expe
ted to terminate before the shadow time have a shadow size of0. The shadow size is denoted ssize, and is 
al
ulated using the following rule:wji:ssize = 8><>: 0 t+ wji:time � shadowwji:size otherwise18



If wj1 
an start at t, the shadow time is set to 1. As a result, the shadow sizessize, of all waiting jobs is set to 0, whi
h means that any 
omputation whi
h involvesextra pro
essors is unne
essary. In this 
ase setting extra to 0 improves the algorithmperforman
e.All these 
al
ulation are done in a pre-pro
essing phase, before running the dynami
programming algorithm.| wj1whi
h 
an begin exe
ution at t = 28 leaves 3 extra pro
essors. shadow andextra are set to 28 and 3 respe
tively, as illustrated in Figure 3.4. In the queue shown onthe right, we use the notation sizessize to represent the two size values. wj2 is the onlyjob expe
ted to terminate before the shadow time, thus its shadow size is 0.
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N
=

10

t=25 t=28

extra=3

(shadow)
Time

wj sizessize time1 77 42 20 23 11 64 22 45 33 5
Figure 3.4: Computing shadow and extra, and the pro
essed job queue3.3.2 A Three Dimensional Data Stru
tureTo manage the use of the extra pro
essors, we need a three dimensional matrix denotedM 0 of size (jWQj+ 1)� (n+ 1)� (extra + 1).Ea
h 
ell m0i;j;k now 
ontains two integer values, util and sutil, and the two tra
emarkers.util holds the maximal a
hievable utilization at t, if the ma
hine's free 
apa
ity is j,the shadow free 
apa
ity is k, and only waiting jobs f1::ig are available for s
heduling.sutil hold the minimal number of extra pro
essors required to a
hieve the util valuementioned above. 19



The sele
ted and bypassedmarkers are used in the same manner as des
ribed in se
tion3.2.2.As mentioned in se
tion 3.2.2, the i = 0 rows and j = 0 
olumns are initialized withzero values, this time for all k planes.| M 0 is a 6 � 6 � 4 matrix. util and sutil are noted utilsutil. The notation of thesele
ted and bypassed markers is not 
hanged and remains - and " respe
tively.Table 3.3 des
ribes the initial k = 0 plane. Planes 1::3 are initially similar.# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 �� �� �� �� ��2 (20) 00 �� �� �� �� ��3 (11) 00 �� �� �� �� ��4 (22) 00 �� �� �� �� ��5 (33) 00 �� �� �� �� ��Table 3.3: Initial k = 0 plane3.3.3 Filling M 0The values in every m0i;j;k 
ell are 
al
ulated in an iterative matter using values frompreviously 
al
ulated 
ells as des
ribed in Algorithm 3. The 
al
ulation is exa
tly thesame as in Algorithm 1, ex
ept for an addition of a slightly more 
ompli
ated 
onditionthat 
he
ks that enough pro
essors are available both now and at the shadow time.The 
omputation stops when rea
hing 
ell m0jwqj;n;extra.| When the shadow free 
apa
ity is k = 0; only wj2 who's ssize = 0 
an be s
hed-uled. As a result, the maximal a
hievable utilization of the j = 5 free pro
essors, when
onsidering all i = 5 jobs is m05;5;0:util =2, as 
an be seen in Table 3.4. This is of 
oursethe same utilization value (and the same s
hedule) a
hieved in Se
tion 3.2.3, as the k = 0
ase is identi
al to 
onsidering only jobs that terminate before the shadow time.When the shadow free 
apa
ity is k = 1, wj3 who's ssize = 1 is also available fors
heduling. As 
an be seen in Table 3.5, starting at m03;3;1 the maximal a
hievable uti-lization is in
reased to 3, at the pri
e of using a single extra pro
essor. The two sele
ted20



Algorithm 3 Constru
ting M 0� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil, m0i;j;k:sele
ted, andm0i;j;k:bypassed are represented by util, sutil, sele
ted, and bypassed respe
tively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutilsele
ted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util + wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil + wji:ssizeif util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0sele
ted Truebypassed Falseif util0 = mi�1;j;k:util and sutil0 = mi�1;j;k:sutilm0i;j;k:bypassed Trueelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutilsele
ted Falsebypassed Truejobs are wj2 and wj3.As the shadow free 
apa
ity in
reases to k = 2, wj4 who's shadow size is 2, joinswj2 and wj3 as a valid s
heduling option. Its e�e
t is illustrated in Table 3.6 starting atm04;4;2, as the maximal a
hievable utilization has in
reased to 4 � the sum of wj2 andwj4 sizes. This 
omes at a pri
e of using a minimum of 2 extra pro
essors, 
orrespondingto wj4's shadow size.It is interesting to examine the m04;2;2 
ell, as it introdu
es an interesting heuristi
de
ision. When the ma
hine's free 
apa
ity is j = 2 and only jobs f1::4g are 
onsidered fors
heduling, the maximal a
hievable utilization 
an be a

omplished by either s
hedulingwj2 or wj4, both with a size of 2, yet wj4 will use 2 extra pro
essors while wj2 willuse none. The algorithm 
hooses to bypass wj4 and sele
ts wj2 as it leaves more extra21



# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 00 " 20" 20" 20" 20"4 (22) 00 00 " 20" 20" 20" 20"5 (33) 00 00 " 20" 20" 20" 20"Table 3.4: k = 0 plane# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 31" 31"5 (33) 00 11 " 20" 31" 31" 31"Table 3.5: k = 1 planepro
essors to be used by other jobs.# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20"? 31" 42- 42-5 (33) 00 11 " 20" 31" 42" 42"Table 3.6: k = 2 planeFinally the full k = 3 shadow free 
apa
ity is 
onsidered. wj5, who's shadow size is 3
an now join wj1::wj4 as a valid s
heduling option.As 
an be seen in Table 3.7, the maximal a
hievable utilization at t = 25, when thema
hine's free 
apa
ity is n = j = 5, the shadow free 
apa
ity is extra = k = 3 and all�ve waiting jobs are available for s
heduling is m05;5;3:util = 5. The minimal number ofextra pro
essors required to a
hieve this utilization value is m05;5;3:sutil = 3.22



# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 42- 53-5 (33) 00 11 " 20" 31" 42" 53-"Table 3.7: k = 3 plane3.3.4 Constru
ting S 0Algorithm 4 des
ribes the 
onstru
tion of S 0. It starts at the last 
omputed 
ellm0jwqj;n;extra,follows the tra
e markers, and stops when rea
hing the 0 boundaries of any plane.As explained in se
tion 3.2.4, when both tra
e markers are set simultaneously, thealgorithm follows the bypassed marker, a de
ision whi
h is 
loser to the FCFS poli
y.Algorithm 4 Constru
ting S 0S 0  fgi jWQjj  nk extrawhile i > 0 and j > 0if m0i;j;k:bypassed = Truei i� 1else S 0  S 0 [ fwjigj  j � wji:sizek  k � wji:ssizei i� 1| Both tra
e markers in m05;5;3, are set, whi
h means there is more than one way to
onstru
t S 0. In our example there are two possible s
hedules, both utilize all 5 free pro-
essors, resulting in a fully utilized ma
hine. Choosing S 0 = fwj2; wj3;wj4g is illustratedin Figure 3.5. Choosing S 0 = fwj2; wj5g is illustrated in Figure 3.6.Both s
hedules fully utilize the ma
hine and ensure that wj1 will start without a delay,thus both are safe s
hedules, yet the �rst s
hedule (illustrated in Figure 3.5) 
ontains jobs
loser to the head of the queue, thus it is more 
ommitted to the queue FCFS poli
y.23
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TimeFigure 3.5: S
heduling wj2; wj3 and wj4 at t = 25

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��

��
��
��
��

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

wj1

wj2

rj1

wj5

N
=

10

t=28t=25
(shadow)

TimeFigure 3.6: S
heduling wj2 and wj5 at t = 25.Based on the explanation in se
tion 3.2.4, 
hoosing S 0 = fwj2; wj3;wj4g is expe
ted togain better results when evaluation metri
s are 
onsidered.3.4 Improving Performan
e by Job Sele
tionIn Se
tion 3.2.4 we stated that in the 
ase where both tra
e markers are set in a give 
ell,following the bypassed marker is expe
ted to produ
e better results, sin
e by doing so westart jobs whi
h are 
loser to the head of the queue, and thus we are more 
ommitted tothe queue FCFS poli
y. To verify this assumption we performed the following experiment:We modi�ed algorithm 4 so it will follow the sele
ted marker �rst, that is, whenever both24



markers are set in a given 
ell, it will start the 
urrent job instead of bypassing it. Thee�e
t of this modi�
ation is that jobs whi
h are 
loser to the tail of the queue are givenpre
eden
e over jobs whi
h where submitted at earlier times. We named the modi�edalgorithm the �Sele
ted-First� algorithm to distinguish it from the original �Bypassed-First� behavior, and des
ribe it formally in Algorithm 5.Algorithm 5 Constru
ting S 0- Sele
ted-First AlgorithmS 0  fgi jWQjj  nk extrawhile i > 0 and j > 0if m0i;j;k:sele
ted = TrueS 0  S 0 [ fwjigj  j � wji:sizek  k � wji:ssizei i� 1else i i� 1We expe
ted the Sele
ted-First algorithm to perform poorly sin
e its produ
ed s
hed-ule, S', is no longer 
ommitted the queue's FCFS poli
y, but simulation results have proventhe opposite and LOS performan
e has improved against expe
tations. (The simulationresults are presented in Se
tion 4.3.1).Su
h surprising results have proven that basi
 assumptions whi
h are often basedon pure intuition, su
h as the one stating that sele
ting jobs 
loser to the head of thequeue will improve performan
e, might be misleading. This opened the door to a setof experiments aimed at the purpose of improving LOS's performan
e and exploring the
ause for the results di�eren
es. In all experiments, we enhan
e our three dimensionaldata stru
ture whi
h was des
ribed in Se
tion 3.3.2 by in
luding an additionalmerit valuein every m0i;j;k 
ell, in addition to the existing, util, sutil, and the two tra
e markers. Wealso modi�ed LOS's 
ore algorithm for 
onstru
ting M 0 (Algorithm 3) to 
onsider themerit value. Whenever the same utilization value 
an be a
hieved, either by sele
tingor bypassing job i, a 
ase in whi
h both the sele
ted and the bypassed markers were setby the original algorithm, the modi�ed algorithm 
onsiders the merit value in order toeliminate one of the options, if possible. By doing so, the number of optional sele
tions25



is minimized and the produ
ed s
hedule, S', is optimized in view of the merit.It is important to note that the use of the merit does not 
hange any of the utilizationvalues in any ofM's 
ells when 
ompared to the values 
omputed by the original algorithm,and that the produ
ed s
hedule, S', will still maximize the ma
hine utilization. The onlydi�eren
e is that now there are less 
ells in whi
h both tra
e markers are set, and thus, lessfreedom to 
hoose the set of jobs whi
h 
onstru
t S'. It is also important to understandthat the 
onstru
tion of M' has not 
hanged and that M' is still �lled using the sameiterative algorithm as des
ribed in Se
tion 3.3.3, thus the use of the merit does not 
hangethe 
omplexity of the algorithm.We started with a simple experiment in whi
h the merit value was simply the numberof sele
ted jobs in the path, with the purpose of 
hoosing the set S' whi
h 
ontains themaximal number of jobs. We named this the Maxjobs approa
h and it is des
ribed inSubse
tion 3.4.1. Simulation results have shown that by starting the maximal number ofjobs (in addition to maximizing utilization), the performan
e of LOS is improved. Thereason for the improvement is that less jobs remain waiting and thus the mean responsetime and slowdown are redu
ed.Next we examined various merit values su
h as the total jobs response time with thepurpose of 
hoosing S' with the maximal or minimal total response time, and total jobsslowdown with the purpose of maximizing or minimizing that fa
tor also. Simulationresults indi
ate that the performan
e of LOS has improved or redu
ed with respe
t to the
hosen merit.Peak performan
e was observed when the merit was the total jobs slowdown with thepurpose of 
hoosing the set S' whi
h maximizes this fa
tor. Again, this goes againstintuition whi
h states that when several sets of jobs exist, all of whi
h a
hieve the sameutilization value, it is expe
ted that 
hoosing the set with the minimal total slowdown willimprove performan
e, sin
e if we delay those jobs in the waiting queue, their slowdown(and response time) will in
rease. Unfortunately, intuition fails here also and performan
eis boosted when starting the set with the maximal total slowdown. The reason is thatthe slowdown metri
 is mostly e�e
ted by the shortest jobs and thus, a set with largetotal slowdown is likely to 
ontain shorter jobs. By starting these jobs we 
omply withthe shortest jobs �rst heuristi
 des
ribed in Chapter 2, whi
h states that by starting26



short jobs before other time 
onsuming jobs, their response time and slowdown will beredu
ed, while the response time and slowdown of the longer jobs will not be severelye�e
ted and thus, the mean response and slowdown will be redu
ed. We named thisthe Max-Slowdown approa
h and des
ribe it in Se
tion 3.4.2. Simulation results for theMax-Slowdown approa
h are shown in Se
tion 4.3.3.3.4.1 Maximizing the Number of Started JobsThe purpose of this experiment is to explore the e�e
t of the number of started jobs inea
h s
heduling step on the performan
e of LOS. In a 
ase where both the sele
ted and thebypassed markers are set in a given 
ell, following the path on whi
h the maximal numberof jobs will start, is expe
ted to improve performan
e sin
e in addition to maximizingthe system utilization, fewer jobs will remain waiting and thus improvement is expe
tedin the mean jobs response time and slowdown metri
s. We refer to this as the Maxjobsapproa
h.We enhan
e our three dimensional data stru
ture whi
h was des
ribed in Se
tion 3.3.2by in
luding an additional integer value, num_jobs, in every m0i;j;k 
ell, in addition tothe existing, util, sutil, and the two tra
e markers. The role of num_jobs is to re
ord thenumber of jobs whi
h will start when following a path through that 
ell. We also modi�edAlgorithm 3 whi
h 
onstru
tsM 0, to 
onsider the value of num_jobs. Whenever the sameutilization value 
an be a
hieved, either by sele
ting or bypassing job i, the following ruleis applied: If more jobs will start by bypassing job i - only the bypassed marker willremain set to for
e the bypassing of that job. On the other hand, if sele
ting or startingjob i maximizes the number of started jobs, then leaving only the sele
ted marker willfor
e the starting of that job. This does not 
hange any of the utilization values in anyof the 
ells when 
ompared to the values 
omputed by the original algorithm, but it doeslimit the number of optional sele
tions when the two tra
e markers are set, by eliminatingone of the options � the one on whi
h less jobs will start. Algorithm 6 formally des
ribesthis approa
h.The �nal phase is to 
onstru
t S' as des
ribed in Se
tion 3.3.4. Sin
e M' is onlyenhan
ed with a single integer value in ea
h 
ell, 
onstru
ting S' does not require any27



modi�
ations and Algorithm 4 (or 5) remains the same. The only di�eren
e is in the�nal result � this time the number of jobs in the resulting S 0 is maximized, that isj S 0 j!MAX.Simulation results presented in Se
tion 4.3.2 show that the Maxjobs approa
h indeedimproves LOS performan
e and thus our assumption was proven to be 
orre
t.

28



Algorithm 6 Constru
ting M 0 - The Maxjobs Approa
h� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil, m0i;j;k:sele
ted,m0i;j;k:bypassed and m0i;j;k:num_jobs are represented by util, sutil, sele
ted,bypassed and num_jobs respe
tively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutilnum_jobs m0i�1;j;k:num_jobssele
ted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util + wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil + wji:ssizenum_jobs0  m0i�1;j�wji:size;k�wji:ssize:num_jobs + 1if util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0if util0 > m0i�1;j;k:util or sutil0 < m0i�1;j;k:sutilnum_jobs num_jobs0sele
ted Truebypassed Falseelse if num_jobs0 < m0i�1;j;k:num_jobsnum_jobs m0i�1;j;k:num_jobssele
ted Falsebypassed Trueelse num_jobs num_jobs0sele
ted Trueif num_jobs0 = m0i�1;j;k:num_jobsbypassed Trueelse bypassed Falseelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutilnum_jobs m0i�1;j;k:num_jobssele
ted Falsebypassed True 29



3.4.2 Maximizing the Total SlowdownIn this experiment we took the enhan
ed three dimensional data stru
ture, M', whi
h wasdes
ribed in Se
tion 3.4.1, and repla
ed the num_jobs 
ounter in every ea
h m0i;j;kwitha tot_slowdown a

umulator. tot_slowdown re
ords the a

umulated slowdown valuesof jobs when following a path through that 
ell.It is important to understand how the algorithm 
omputes a jobs' slowdown. Slowdownwas de�ned in Se
tion 1.1 to be the ratio of the time it takes to run the job on a loadedsystem divided by the time it takes on dedi
ated system, formally slowdown = response timerunning time .Sin
e response time = wait time + running time and the jobs' a
tual running time isunknown at the time the slowdown is 
al
ulated, we use the user-estimated runtime forthat job instead, sin
e it is the best (and only) indi
ation to how long that job will run.Thus for ea
h 
onsidered job wji, its slowdown is 
omputed as follows:wji:slowdown = wji:wait time + wji:estimated runtimewji:estimated runtime = (t� wji:arrival) + wji:timewji:timeWe also took theMaxjobs algorithm as a basis and modi�ed it to 
onsider the value oftot_slowdown in the following matter: When the same utilization 
an be a
hieved eitherby sele
ting or bypassing job i, then if the total slowdown a
hieved by sele
ting job i isgreater than the total slowdown a
hieved by bypassing that job, then only the sele
tedmarker remains set. On the other hand if the total slowdown is greater by bypassing jobi then setting the bypassed marker will for
e job i to be bypassed. We named this theMax-Slowdown approa
h and formally des
ribe it in Algorithm 7.Simulation results presented in Se
tion 4.3.3 have shown that LOS's performan
e isboosted when using this approa
h, 
ompared to all other tested merit values.
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Algorithm 7 Constru
ting M 0 - The Max-Slowdown Approa
h� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil, m0i;j;k:sele
ted,m0i;j;k:bypassed and m0i;j;k:tot_slowdown are represented by util, sutil, sele
ted,bypassed and tot_slowdown respe
tively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutiltot_slowdown m0i�1;j;k:tot_slowdownsele
ted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util + wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil + wji:ssizetot_slowdown0  m0i�1;j�wji:size;k�wji:ssize:tot_slowdown+(t� wji:arrival + wji:time)=wji:timeif util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0if util0 > m0i�1;j;k:util or sutil0 < m0i�1;j;k:sutiltot_slowdown tot_slowdown0sele
ted Truebypassed Falseelse if tot_slowdown0 < m0i�1;j;k:tot_slowdowntot_slowdown m0i�1;j;k:tot_slowdownsele
ted Falsebypassed Trueelse tot_slowdown tot_slowdown0sele
ted Trueif tot_slowdown0 = m0i�1;j;k:tot_slowdownbypassed Trueelse bypassed Falseelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutiltot_slowdown m0i�1;j;k:tot_slowdownsele
ted Falsebypassed True 31



3.5 Complexity AnalysisThe most time and spa
e demanding task is the 
onstru
tion of M 0 whi
h depends onthree input parameter: jWQj � the length of the waiting queue, n � the ma
hine's free
apa
ity at t, and extra � the shadow free 
apa
ity. jWQj depends on the system load.Both n and extra are bounded by N � the size of the ma
hine, whi
h is a 
onstant. Sin
eea
h m0i;j;k 
ell is 
omputed in a 
onstant time and there are maximum jWQj � N � N
ells to 
ompute, the time 
omplexity of the algorithm for 
onstru
ting M 0 and thus forprodu
ing the optimal s
hedule is:(1) O(jWQj �N �N) = O(jWQj �N2)It is important to understand that the algorithm is not polynomial in the size of itsinput � the list of jobs sizes and in fa
t, there is an exponential relationship between thesize of the input and the algorithm runtime. To 
ompute the size of the input we �rstneed to en
ode ea
h of the waiting jobs' sizes in a binary format. The length of en
odingan integer x is logx, and thus the length of en
oding any of the waiting jobs' sizes islogwji:size. If wjl is the largest waiting job, than the size of en
oding the entire input is:(2) O(jWQj � logwjl:size)At this point we 
an use the fa
t that N is at-most the sum of all waiting jobs sizes,otherwise all jobs 
an be started and the solution be
omes trivial. Sin
e wjl is the largestof all waiting jobs, we 
an safely state that N � jWQj � wjl:size. Thus by substitutingN in (1) we �nd that the time 
omplexity of the algorithm is:(3) O(jWQj3 � (wjl:size)2)Sin
e logwjl:size in (2) and wjl:size in (3) hold an exponential relationship and nota polynomial one, it is 
lear that the time 
omplexity is not polynomial in the size of theinput alone. In fa
t, it is polynomial in the size of the input and the size of the largestwaiting job. 32



Su
h algorithms whi
h have their runtime bounded by a polynomial in the size inthe input and the value of any integer in the input are known as pseudo-polynomialalgorithms. They are designed to solve NP-
omplete problems using the fa
t that inpra
ti
e it is su�
ient to solve the problem for a restri
ted set of inputs, in 
ontrast tothe unbounded values whi
h are 
onsidered in theoreti
al analysis. In our 
ase, it is therestri
tion on N whi
h allows the optimal s
hedule to be produ
ed in a �reasonable� time,feasible for pra
ti
al implementation.3.5.1 Runtime OptimizationsAs mentioned in Se
tion 3.5, the 
onstru
tion of M 0 depends on three parameters: jWQj� the length of the waiting queue, n � the ma
hine's free 
apa
ity at t, and extra� the shadow free 
apa
ity. Sin
e the values of these three parameters 
hange from ones
heduling step to the other, understanding the fa
tors whi
h e�e
t ea
h of the parametersis useful if one wishes to predi
t LOSs' runtime in up
oming s
heduling steps.Both n and extra fall in the range of 0 to N . Their values depend on the size andtime distribution of the waiting and running jobs. A termination of a small job 
ausesnothing but a small in
rease to the system's free 
apa
ity, thus n is in
reased by a smallamount. On the other hand, when a large job terminates, it leaves mu
h free spa
e and nwill 
onsequently be large. extra is a fun
tion of the size of the �rst waiting job, and thesize and time distribution of the running jobs. If wj1 is small but it 
an start only aftera large job terminates, extra will 
onsequently be large. On the other hand, if the size ofthe terminating job is small and wj1's size is relatively large, fewer extra pro
essors willbe available.jWQj on the other hand, depends on the system load. On heavy loaded systems themean waiting queue length 
an rea
h tens of jobs with peaks rea
hing sometimes hundreds� a fa
t that signi�
antly in
reases the runtime of the algorithm. Two enhan
ements 
anbe applied in the pre-pro
essing phase. Both result in a shorter waiting queue jWQ0j <jWQj and thus improve LOS runtime performan
e.The �rst enhan
ement is to ex
lude jobs larger than the ma
hine's 
urrent free 
apa
-ity. If wji:size > n it is 
lear that it will not be started in the 
urrent s
heduling step, so33



it 
an be safely ex
luded from the waiting queue without any e�e
t on the results.The se
ond enhan
ement is to limit the number of jobs examined by the algorithm byin
luding only the �rst C waiting jobs in WQ0 where C is a prede�ned 
onstant. We 
allthis approa
h limited lookahed sin
e we limit the number of jobs the algorithm is allowedto examine. It is often possible to produ
e a s
hedule whi
h maximizes the ma
hine'sutilization by looking only at the �rst C jobs, thus by limiting the lookahead, the sameresult are a
hieved, but with mu
h less 
omputation e�ort. Obviously this is not alwaysthe 
ase, and su
h a restri
tion might produ
e a s
hedule whi
h is not optimal. The e�e
tof limiting the lookahead on LOSs results is examined in Se
tion 4.4.| Looking at our initial waiting queue des
ribed in the table in Figure 3.4, it is 
learthat wj1 
annot start at t sin
e its size ex
eeds the ma
hine's 5 free pro
essors. Thereforeit 
an be safely ex
luded from the pro
essed waiting queue without e�e
ting the produ
eds
hedule. The resulting waiting queue WQ0 holds only four jobs as shown in Table 3.8.wj sizessize2 203 114 225 33Table 3.8: Optimized Waiting Queue WQ0We 
ould also limit the lookahead to C = 3 jobs, ex
luding wj5 fromWQ0. In this 
asethe produ
ed s
hedule will 
ontain jobs wj2, wj3 and wj4, and not only that it maximizesthe utilization of the ma
hine, but it is also identi
al to the s
hedule shown in Figure3.5. By limiting the lookahead we improved the algorithm runtime and a
hieved the sameresults.
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Chapter 4
Experimental Results
4.1 The Simulation EnvironmentWe implemented all aspe
ts of the algorithm in
luding the optimizations mentioned inSe
tion 3.5.1, in a job s
heduler we named LOS, and integrated LOS into the frameworkof an event-driven job s
heduling simulator. We used logs of the Cornell Theory Center(CTC) SP2, the San Diego Super
omputer Center (SDSC) SP2, and the Swedish RoyalInstitute of Te
hnology (KTH) SP2 parallel super
omputers (See Appendix B - WorkloadChara
teristi
s for details) as a basis [28℄, and generated logs of varying loads rangingfrom 0:5 to 0:95, by multiplying the arrival time of ea
h job by 
onstant fa
tors. Forexample, if the o�ered load in the CTC log is 0:60, then by multiplying ea
h job's arrivaltime by 0:60 a new log is generated with a load of 1:0. To generate a load of 0:9, ea
hjob's arrival time is multiplied by a 
onstant of 0:600:90 . We 
laim that in 
ontrast to otherlog modi�
ation methods whi
h modify the jobs' sizes or runtimes, our generated logsand the original ones maintain resembling 
hara
teristi
s. The logs were used as an inputfor the simulator, whi
h generates arrival and termination events a

ording to the jobs
hara
teristi
s of a spe
i�
 log.On ea
h arrival or termination event, the simulator invokes LOS whi
h examines thewaiting queue, and based on the 
urrent system state it de
ides whi
h jobs to start.For ea
h started job, the simulator updates the system free 
apa
ity and enqueues atemination event 
orresponding to the job termination time. For ea
h terminated job,35



the simulator re
ords its response time, bounded slowdown (applying a threshold of � = 10se
onds), and wait time.4.2 Improvement over EASYWe used the framework mentioned above to run simulations of the EASY s
heduler [24,25℄, and 
ompared its results to those of LOS whi
h was limited to a maximal lookaheadof 50 jobs. By 
omparing the a
hieved utilization vs. the o�ered load of ea
h simulation,we saw that for the CTC and SDSC workloads (Figures 4.1(a,b) ) a dis
repan
y o

ursat loads higher than 0.9, whereas for the KTH workload (Figure 4.1(
)) it o

urs onlyat loads higher than 0.95. As su
h dis
repan
ies indi
ate that the simulated system isa
tually saturated, we limit the x axis to the indi
ated ranges when reporting our results.As the results of s
hedulers pro
essing the same jobs may be similar, we need to
ompute 
on�den
e intervals to assess the signi�
an
e of observed di�eren
es. Ratherthan doing so dire
tly, we �rst apply the �
ommon random numbers� varian
e redu
tionte
hnique [29℄. For ea
h job in the workload �le, we tabulate the di�eren
e between itsresponse time under EASY and under LOS. We then 
ompute 
on�den
e intervals onthese di�eren
es using the bat
h means approa
h. By 
omparing the di�eren
e betweenthe s
hedulers on a job-by-job basis, the varian
e of the results is greatly redu
ed, and soare the 
on�den
e intervals.The results for response time are shown in Figure 4.2 , and for bounded slowdown inFigure 4.3. The results for wait time are the same as those for response time, be
ausewe are looking at di�eren
es. In all the plots, the mean job di�erential response time (orbounded slowdown) is positive a
ross the entire load range for all three logs, indi
atingthat LOS outperforms Easy with respe
t to these metri
s. This observation is reinfor
edby that fa
t that all lower boundaries of the 90% 
on�den
e interval measured at key loadvalues, remain above the load axis, indi
ating the a

ura
y of our results.
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4.3 Job Sele
tion E�e
t on Performan
e4.3.1 Sele
ting Instead of BypassingIn Se
tion 3.4 we introdu
ed the Sele
ted-First algorithm whi
h is a modi�
ation of theoriginal algorithm for 
onstru
ting S'. Unlike the original, Bypassed-First algorithm whi
hsele
ts jobs 
loser to the head of the queue, the Sele
ted-First algorithm favors jobs atthe queue tail.To 
ompare the two algorithms we used the framework des
ribed in Se
tion 4.1 andran two simulation of LOS whi
h was limited to a maximal lookahead of 50 jobs. The onlydi�eren
e between the two runs is that in the �rst, LOS used the unmodi�ed Bypassed-First algorithm, and in the se
ond, the Sele
ted-First algorithm was used to 
onstru
tS'. Following the explanation in Se
tion 4.2, we applied the �
ommon random numbers�varian
e redu
tion te
hnique [29℄. For ea
h job in the workload �le, we tabulate thedi�eren
e between its bounded slowdown in the �rst and the se
ond runs, 
omputed
on�den
e intervals on these di�eren
es and plotted the results. We de
ided to fo
us ouranalysis on the mean job bounded slowdown metri
 sin
e it does not use absolute values(See Se
tion 1.1 - The Goals of the Job S
heduler), and thus more a

urately re�e
ts thedi�eren
es between the two algorithms.The results are shown in Figure 4.4. We see that for all three workloads, the mean jobbounded slowdown di�eren
e is positive a
ross the entire load range � a 
lear indi
ationthat the Sele
ted-First algorithm outperforms the original Bypassed-First with respe
t tothis metri
. On the other hand if we 
ompare the resulting plots to those of Figure 4.3where LOS was 
ompared to EASY, we see that the 
urves here are signi�
antly lowerand in fa
t some of the lower foundries of the 90% 
on�den
e interval bars fall below theload axis. For example, the mean job di�erential bounded slowdown at 90% load for theCTC workload in Figure 4.4(a) is 2, while in Figure 4.3(a) it is about 18. For the SDSCworkload in Figure 4.4(b) it is 16 while in Figure 4.3(b) it is 65 et
. The reason for thelow 
urves is the fa
t that unlike Se
tion 4.2 where we 
ompared LOS to a 
on
eptuallydi�erent s
heduling algorithm, we now 
ompare two versions of the same s
heduler, bothwhi
h fo
us and a
hieve the exa
t same maximal utilization, but only di�er in the set of40



jobs whi
h 
onstru
t the �nal s
hedule. Therefore we 
an expe
t the performan
e gapsto be smaller, but still we see that 
hoosing di�erent sets jobs e�e
t LOSs performan
e,a positive improvement in our 
ase.
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4.3.2 Maximizing the Number of Started JobsIn Se
tion 3.4.1 we introdu
ed the Maxjobs approa
h. We stated that 
onsidering thenumber of jobs whi
h will start, and sele
ting the path on whi
h this number is maximized,is expe
ted to improve LOS's performan
e sin
e less jobs will remain waiting.We followed the simulation paradigm of Se
tion 4.3.1 and ran two simulations of LOS.In the �rst, LOS used the unmodi�ed algorithm for 
onstru
tingM' (Algorithm 3). In these
ond, this algorithm was repla
ed with Algorithm 6 whi
h en
apsulates the Maxjobsapproa
h. Again, for ea
h job we tabulated the di�eren
e between its bounded slowdownin the �rst and the se
ond runs, 
omputed 
on�den
e intervals on these di�eren
es andplotted the results.The results are shown in Figure 4.5. The 
urve title �No_Merit - Max_Jobs� indi
atesthat the di�eren
es are between the original algorithm where no merit 
omputation wasinvolved and the Maxjobs algorithm whi
h starts the maximal number of jobs.The fa
t that for all three workloads and for the entire load range, the mean jobdi�erential bounded slowdown remain positive indi
ates that the Maxjobs algorithmoutperforms the original algorithm for 
onstru
ting M', and sin
e the time 
omplexity ofboth algorithms is identi
al, it is the preferable 
hoi
e in view of its results.
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4.3.3 Maximizing the Total SlowdownIn Se
tion 3.4.1 we introdu
ed theMax-Slowdown approa
h in whi
h the set S' is 
hosen ina way that its overall total slowdown is maximized. We followed the paradigm of Se
tions4.3.2 and 4.3.1, and run two simulations of LOS, one with the unmodi�ed algorithm for
onstru
ting M' and the se
ond with the modi�ed Algorithm 7 whi
h 
onsiders the jobsslowdown.The results in Figure 4.6 show that LOS performan
e is boosted when using the Max-Slowdown approa
h 
ompared to the results a
hieved when the original algorithm for
onstru
ting M' was used. In addition, the results far ex
eeds those of the Maxjobsapproa
h in Figure 4.5 and the sele
ted-�rst algorithm in Figure 4.4.Just for 
omparison, the maximal di�erential bounded slowdown for the KTH workloadin Figure 4.5(
) is 50, in Figure 4.4(
) it is 60 while for the Max-Slowdown in Figure 4.6it is 90. Similar observation hold for the CTC and SDSC workloads.To 
omplete the performan
e evaluation we 
ompared LOS when using the Max-Slowdown approa
h, to the EASY s
heduler. We followed the simulation paradigm ofSe
tion 4.2 and plotted the mean job di�erential bounded slowdown 
urve in Figure4.7. We then 
ompared the results to Figure 4.3, where the unmodi�ed algorithm for
onstru
ting M' was used. As 
an be seen, for all three workloads and for the entireload range, the mean job di�erential bounded slowdown 
urves in Figure 4.7 are higherthan the 
urves in Figure 4.3. The fa
t that the new 
urves are higher indi
ates that thedi�eren
e between the jobs bounded slowdown under EASY and under LOS has in
reased.Sin
e EASY was not modi�ed, it means the Max-Slowdown approa
h had further redu
edthe jobs slowdown and thus it outperforms the original algorithm for 
onstru
ting M'.It is also interesting to see how does the Max-Slowdown approa
h e�e
t other metri
ssu
h as jobs' response time. We plotted the mean job di�erential response time underEASY and LOS in Figure 4.8 and 
ompared the resulting 
urves to Figure 4.2. For allthree workloads the 
urves of the Max-Slowdown approa
h are higher than those of theunmodi�ed algorithm for 
onstru
ting M` whi
h means that this approa
h outperformsthe original algorithm with respe
t to other metri
s as well. As 
an be seen in Sub-�gures 4.8(b) and 4.8(
), in 90% load (95% in KTH) there is a slight advantage for the45



unmodi�ed algorithm. This does not mean theMax-Slowdown has failed to perform and infa
t a positive mean response di�eren
e of 14000 (20000 in KTH) is a major improvementover EASY. What this means is that on extremely high loads when the ma
hine almostsaturates, a 
hange in the heuristi
 may be 
onsidered if the s
heduler target is to minimizethe response time of the jobs.
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4.4 Limiting the LookaheadSubse
tion 3.5.1 proposed an enhan
ement 
alled limited lookahead aimed at improvingthe runtime performan
e of LOS. We explored the e�e
t of limiting the lookahead onLOS's results by performing six LOS simulations with a limited lookahead of 10, 25, 35,50, 100 and 250 jobs respe
tively. Figure 4.9 presents the e�e
t of the limited lookaheadon the mean job response time. Figures 4.10 and 4.11 present its e�e
t on the mean jobbounded slowdown and mean job wait time respe
tively.The notation LOS.X is used to represent LOS's result 
urve, where X is the maximalnumber of waiting jobs that LOS was allowed to examine on ea
h s
heduling step (i.e.its lookahead limitation). We also plotted EASY's result 
urve to allow a 
omparison.We observe that for the CTC log in Figure 4.9(a) and the KTH log in Figure 4.9(
),when LOS is limited to examine only 10 jobs at ea
h s
heduling step, its resulting meanjob response time is relatively poor, espe
ially at high loads, 
ompared to the resulta
hieved when the lookahead restri
tion is relaxed. The same observation also applies tothe mean job bounded slowdown for these two logs, as shown in Figures 4.10(a,
) andto the mean job wait time as shown in Figures 4.11(a,
). As most 
learly illustrated in�gures 4.9(a), 4.10(a) and 4.11(a), the result 
urves of LOS and EASY interse
t severaltimes along the load axis, indi
ating that the two s
hedulers a
hieve the same results withneither one 
onsistently outperforming the other as the load in
reases. The reason forthe poor performan
e is the low probability that a s
hedule whi
h maximizes the ma
hineutilization a
tually exists within the �rst 10 waiting jobs, thus although LOS produ
esthe best s
hedule it 
an, it is rarely the 
ase that this s
hedule indeed maximizes thema
hine utilization. However, for the SDSC log in Figures 4.9(b), 4.10(b) and 4.11(b),LOS manages to provide good performan
e even with a limited lookahead of 10 jobs.As the lookahead limitation is relaxed, LOS performan
e improves but the improve-ment is not linear with the lookahead fa
tor, and in fa
t the resulting 
urves for all threemetri
s are relatively similar for lookahead in the range of 25�250 jobs. Thus we 
an safelyuse a bound of 50 on the lookahead, thus bounding the 
omplexity of the algorithm.The explanation is that at most of the s
heduling steps, espe
ially under low loads, thelength of the waiting queue is kept small, so a lookahead of hundreds of jobs has no e�e
t50
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in pra
ti
e. As the load in
reases and the ma
hine advan
es toward its saturation point,the number of waiting jobs in
reases, and the e�e
t of 
hanging the lookahead is more
learly seen. Figure 4.12 
ompares the mean queue length under EASY and LOS whi
hwas limited to a lookahead of 50 jobs. We 
an make two interesting observation basedon the results. First, with LOS, the mean queue length is a
tually shorter 
ompared toEASY, and the reason is its e�
ien
y in pa
king jobs, whi
h allows them to terminatefaster. The se
ond observation is that only for the KTH log in Sub-�gure 4.12(
), the meannumber of waiting jobs ex
eeds the lookahead limitation of 50 jobs, and this happens onlyat loads higher than 90%. The problem with Figure 4.12 is that the mean queue lengthprovides only a brief summary to what happened over the entire simulation and thattime-dependent information su
h as peaks in whi
h the queue length 
an rea
h hundredsof jobs are absorbed in the mean 
al
ulation.A detailed time-dependent analysis of the queue behavior is presented in Se
tion 4.5where the queue length is examined at every s
heduling step a
ross the entire simulation.The results show that although peaks of hundreds of jobs a
tually exist, they are relativelyrare, and that LOS manages to keep the queue length well below 50 jobs at times whenit rea
hes a length of hundreds under EASY.4.5 The LOS S
heduler and Users Satisfa
tionIn Se
tion 3.5.1 we stated that on a heavily loaded system the waiting queue length 
anrea
h tens of jobs, so a s
heduler 
apable of maintaining a shorter queue a
ross a largefra
tion of the s
heduling steps, in
reases the users' satisfa
tion with the system.It is interesting to examine if and how LOS manages to maintain a shorter waitingqueue when 
ompared to EASY. It is also interesting to examine the queue behavior whenthe Max-Slowdown approa
h is used by LOS.To explore the queue length behavior, we instrumented the simulator with a waiting-queue length 
ounter and re
orded its 
hanging value on every s
heduling step (i.e arrivalor termination of jobs) a
ross the entire simulation.As su
h instrumentation produ
es large amounts of data, we enabled it only for thetwo most high o�ered loads on whi
h the simulation is still stable, that is, for the SDSC54
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and CTC workloads, 
ounter re
ording has been enabled for 0.85 and 0.90 loads and forthe KTH workload results were re
orded for 0.90 and 0.95 loads.A detailed 
omparison of the queue length behavior of the EASY s
heduler and LOSwhi
h was limited to a lookahead of 50 jobs is presented in Figures 4.13 to 4.15. Figure4.13 presents the simulation results for the CTC workload. Figures 4.14 and 4.15 presentsthe results for the SDSC and KTH respe
tively. In all �gures, the 
urves in Sub-�gures(a) and (
) are those of the unmodi�ed algorithm and in Sub-�gures (b) and (d) are forthe Max-Slowdown algorithm.As 
learly seen in all �gures, LOS maintains a shorter queue 
ompared to EASY a
rossa dominating portion of the s
heduling steps. The reason is LOS's e�
ien
y in pa
kingjobs. As jobs are pa
ked in an optimal manner, more pro
essors are utilized and thusmore 
omputation is performed. As a result more jobs will terminate whi
h allows waitingjobs to start, thus the waiting queue length is redu
ed.Following the results analysis we 
an safely state that in addition to improving spe
i�
metri
s su
h as response time or slowdown , LOS will also in
rease users satisfa
tion when
ompared to the EASY s
heduler.
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Chapter 5
Con
lusions
Ba
k�lling algorithms have several parameters. In the past, two parameters have beenstudied: the number of jobs that re
eive reservations, and the order in whi
h the queue istraversed when looking for jobs to ba
k�ll. We introdu
e a third parameter: the amountof lookahead into the queue. We show that by using a lookahead window of about 50jobs it is possible to derive mu
h better pa
king of jobs under high loads, and that thisimproves both the mean job response time and mean job bounded slowdown metri
s.In addition, improving pa
king positively e�e
ts se
ondary metri
s su
h as the queuelength behavior. We show that on heavily loaded systems under the 
ontrol of tradi-tional ba
k�lling s
hedulers, the waiting queue length 
an rea
h tens of jobs with peakssometimes rea
hing hundreds. On the other hand, when lookahead is used and pa
king isoptimized, the waiting queue is maintained shorter a
ross large fra
tion of the s
hedulingsteps and this in
reases the users' satisfa
tion with the system.There is often more than a single way to pa
k jobs and a
hieve the same utilizationvalues. We explored the various alternatives by in
luding merit 
al
ulation in the looka-head pro
ess and 
hoosing the set of jobs whi
h maximizes or minimizes the merit value.We show that performan
e 
an improve or redu
e with respe
t to the 
hosen merit. Sur-prisingly, performan
e is boosted when 
hoosing the set of jobs, S 0, with the maximaltotal slowdown. The reason is the nature of the slowdown metri
 whi
h is mostly e�e
tedby the shorter jobs and thus, a set with a large total slowdown is likely to 
ontain theshortest jobs. By starting these jobs ahead of longer ones, the mean job response time isredu
ed and performan
e mu
h improve. 60



A future study should further explore the various ways to optimize the algorithmruntime. In Se
tion 3.5.1 we suggested two enhan
ements whi
h result in a shorter waitingqueue and showed that runtime performan
e 
an improve without e�e
t on the results.Cal
ulating the utilization in an on-going fashion and stopping the 
onstru
tion of M 0when utilization rea
hes a 
ertain threshold is another improvement whi
h we suggestas a study 
ase. In addition, extending our algorithm to perform reservations for morethan a single job and exploring the e�e
t of su
h a heuristi
 on performan
e presents aninteresting 
hallenge.
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Appendix A
Ba
k�lling Algorithms
A.1 The EASY Ba
k�lling AlgorithmThe EASY ba
k�lling algorithm is exe
uted repeatedly whenever a new job arrives or arunning job terminates, if the �rst job in the queue 
annot start. In ea
h iteration, thealgorithm identi�es a job that 
an ba
k�ll if one exists.Algorithm 8 EASY Ba
k�ll1. Find the shadow time and extra nodes:(a) Sort the list of running jobs a

ording to their expe
ted termination time.(b) Loop over the list and 
olle
t nodes until the number of available nodes issu�
ient for the �rst job in the queue.(
) The time at whi
h this happens is the shadow time.(d) If, at this time, more nodes are available than needed by the �rst queued job,the ones left over are the extra nodes.2. Find a ba
k�ll job:(a) Loop on the list of queued jobs in order of arrival.(b) For ea
h one, 
he
k whether either of the following 
onditions hold:i. It requires no more than the 
urrently free nodes and will terminate bythe shadow time, orii. It requires no more than the minimum of the 
urrently free nodes and theextra nodes.(
) The �rst su
h job 
an be used for ba
k�lling.66



A.2 The Conservative Ba
k�lling AlgorithmConservative ba
k�lling maintains two data stru
tures. One is the list of queued jobsand the time at whi
h they are expe
ted to start exe
ution. The other is a pro�le of theexpe
ted pro
essor usage at future times. The algorithm is exe
uted whenever a new jobarrives.Algorithm 9 Conservative Ba
k�ll1. Find an
hor point:(a) S
an the pro�le and �nd the �rst point where enough pro
essors are availableto run this job. This is 
alled the an
hor point.(b) Starting from this point, 
ontinue s
anning the pro�le to as
ertain that thepro
essors remain available until the job's expe
ted termination.(
) If not, return to (a) and 
ontinue the s
an to �nd the next possible an
horpoint.2. Update the pro�le to re�e
t the allo
ation of pro
essors to this job, starting fromits an
hor point.3. If the job's an
hor is the 
urrent time, start it immediately.
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Appendix B
Workloads Chara
teristi
s
B.1 The CTC WorkloadThe Cornell Theory Center (CTC) log 
ontains 79302 job re
ords submitted to a 512nodes IBM SP2 System. Log re
ording started at Wednesday, 26 Jun 96, 16:06:00 andended at Saturday, 31 May 97, 22:11:26.Information :1. http://www.t
.
ornell.edu2. http://www.
s.huji.a
.il/labs/parallel/workload

68



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  50  100  150  200  250  300  350

N
um

be
r 

of
 J

ob
s

Job Size

Jobs Size Distribution

Easy

Figure B.1: Jobs size distribution - CTC logB.2 The SDSC WorkloadThe San Diego Super
omputer Center (SDSC) log 
ontains 67667 job re
ords submitted toa 128 nodes IBM SP2 System. Log re
ording started at Wednesday, 29 Apr 98, 16:05:28,16:06:00 and ended at Sunday, 30 Apr 00, 04:08:32.Information :1. http://joblog.npa
i.edu2. http://www.
s.huji.a
.il/labs/parallel/workload
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Figure B.2: Jobs size distribution - SDSC logB.3 The KTH WorkloadThe Swedish Royal Institute of Te
hnology (KTH) log 
ontains 28490 job re
ords sub-mitted to a 100 nodes IBM SP2 System. Log re
ording started at Monday, 23 Sep 96,12:00:31 and ended at Friday, 29 Aug 97, 08:55:01.Information:1. http://www.pd
.kth.se2. http://www.
s.huji.a
.il/labs/parallel/workload
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Figure B.3: Jobs size distribution - KTH log
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