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Abstrat
The utilization of parallel omputers depends on how jobs are paked together: if thejobs are not paked tightly, resoures are lost due to fragmentation. The problem is thatthe goal of high utilization may on�it with goals of fairness or even progress for alljobs. The ommon solution is to use bak�lling, whih ombines a reservation for the�rst job in the interest of progress with paking of later jobs to �ll in holes and inreaseutilization. However, bak�lling onsiders the queued jobs one at a time, and thus mightmiss better paking opportunities. We propose the use of dynami programming to �ndthe best paking possible given the urrent omposition of the queue. We expet thatby maximizing the utilization on every sheduling step, the overall performane of thesystem will improve.We developed a dynami programming based sheduling algorithm that looks at theentire ontent of the waiting queue and hooses the set of jobs whih together maximizethe mahine utilization, while ensuring that long-waiting jobs will not be starved. Weimplemented the algorithm in a job sheduler we named LOS � an aronym for �Looka-head Optimizing Sheduler�, and integrated LOS into the framework of an event-drivenjob sheduling simulator. We then ran simulations of LOS on trae �les of real parallelsystems and ompared its results to those of traditional bak�lling algorithms.The results show that LOS indeed improves utilization, and thereby redues the meanresponse time and mean slowdown of all jobs whih are key metris used for on-linesystems. We also found that is not neessary to examine the whole waiting queue toreah high performane, and that we an limit the lookahead depth and still ahieve thesame results but with muh less omputation e�ort.Finally, we experimented with seletions among alternative groups of jobs that ahievethe same utilization in the interest of improving other performane metris. Surprisingv



simulation results indiate that hoosing the group at the head of the queue does notneessarily guarantee best performane. Instead, repeatedly seleting the group withthe maximal overall expeted slowdown boost performane when ompared to all otheralternatives.
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Chapter 1
Introdution
A distributed memory parallel mahine onsists of a set of proessors, eah assoiated witha private memory, whih are onneted using a fast network. A parallel job is omposedof a number of onurrently exeuting proesses ommuniating using message passing,whih olletively perform a ertain omputation. A rigid parallel job has a �xed numberof proesses (referred to as the job's size) whih does not hange during exeution [2℄. Toexeute suh a parallel job, the job's proesses are mapped to a set of proessors using aone-to-one mapping. In a non-preemptive regime, these proessors are then dediated torunning this job until suh time that it terminates [3℄. The set of proessors dediated toa ertain job is alled a partition of the mahine. To inrease utilization, parallel mahinesare typially partitioned into several non-overlapping partitions, alloated to di�erent jobsrunning onurrently, a tehnique alled spae sliing [1℄.To protet the mahine resoures and allow suessful exeution of jobs, users are notallowed to diretly aess the mahine. Instead, they submit their jobs to the mahine'ssheduler � a software omponent that is responsible for monitoring and managing themahine resoures. The sheduler typially maintains a queue of waiting jobs. The jobsin the queue are onsidered for alloation whenever the state of the mahine hanges.Two suh hanges are the submittal of a new job (whih hanges the queue), and thetermination of a running job (whih frees an alloated partition) [8℄. Upon suh events,so alled sheduling steps, the sheduler examines the waiting queue and the mahineresoures and deides whih jobs (if any) will be started at this time.1



1.1 The Goals of the Job ShedulerWhile the primary goal of all shedulers is to enable a suessful exeution of jobs, di�erentsheduling algorithms try to optimize ertain seondary global or loal goals aimed atsatisfying groups or individual needs respetively [2℄, and thus hoose to start di�erentjobs at di�erent sheduling steps.To better understand these goals, often referred to as metris, we will look at anexample in whih at t = 0 four jobs j1::j4, eah attributed with a size and an estimatedruntime time, had been submitted and plaed in the waiting queue of a parallel mahineof size N = 5.The queue state and a possible shedule of the four jobs are illustrated in Figures 1.1and 1.2 respetively.
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Figure 1.1: The waiting queue holds four jobs headed by j1.
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t=0 t=8Figure 1.2: A possible shedule of the four jobsThe following values are alulated for eah job j in the resulting shedule :� arrival time is the time at whih the job had arrived at the waiting queue.2



� start time is the time at whih the job had started exeuting.� termination time is the time at whih the job had terminated.� response time = termination time � arrival time, often referred to as flow time[5℄, is the total time the job has spent in the system, either waiting in the queue orrunning.� running time = termination time� start time is the atual runtime of the job.� wait time = response time� running time is the time the job had spent waiting inthe queue.� slowdown = response timerunning time is the ratio of the time it takes to run the job on a loadedsystem divided by the time it takes on dediated system.Table 1.1 shows the alulated values for the shedule in Figure 1.2ji arrival start termination response runtime wait slowdown1 0 0 2 2 2 0 12 0 0 4 4 4 0 13 0 4 6 6 2 4 34 0 6 8 8 2 6 4Table 1.1: Computed values for the example sheduleMinimizing makespan - the di�erene between the termination time of the last joband the arrival time of the �rst job is a ommon global goal, primarily used for o�-line1sheduling. As a metri it measures the performane of the system in the sense that theentire set of jobs will be sheduled in suh a way that it takes as little time as possible to�nish all jobs without fousing on a single job.In our example shedule, the makespan ahieved is 8.A seond and equally important global goal is to maximize the mahine utilizationwhih is the apaity of the mahine that was utilized over its ativity period. Utilizationis de�ned as1Where all jobs and their resoure requirements are known in advane3



Utilization = Pi ji:size� ji:running timemakespan�NIn our example, Utilization = 3�2+2�4+4�2+3�28�5 = 0:70.Makespan and utilization are highly related, but the utilization metri is also oftenused for on-line2 sheduling, sine it is largely dependent on the load [2℄. With low loadswhen all jobs an be servied, utilization is equal to the load, but as load inreases andthe mahine saturated, the utilization is equal to the saturation point. Shedulers thatfous on maximizing utilization will try to delay the onset of saturation to higher loads,but by doing so ertain jobs may be starved.Minimizing the mean job response time is a very ommon loal goal espeially ininterative (i.e. on-line) systems [2℄. Obviously, the lower bound on the response time ofa given job is its running time. The main problem with using mean job response timeas a performane metri is its use of absolute values. Two jobs that had responded inone hour, but one required a full hour of omputation while the other required only oneseond, might indiate a problem with the sheduler, but if both had been running for 50minutes than one hour of response is pretty good.A possible solution to this problem is to use the mean job slowdown metri instead,thus a job that takes twie as long to run due to system load, will su�er from a slowdownfator of 2 et. Slowdown is widely pereived as better mathing user expetations thata job's response time will be proportional to its running time. The problem with theslowdown metri is that it over emphasizes the importane of very short jobs [4℄. A jobwith omputation requirements of 100ms that had been delayed for 10 minutes will su�erfrom a slowdown of 6000 whereas a 10-seond job delayed by the same 10 minutes has aslowdown of only 60.To avoid suh e�ets, Feitelson et al. have suggested the bounded slowdown metri[3℄. The di�erene is that for short jobs, this measures the slowdown relative to some�interative threshold� rather than relative to the atual runtime. Denoting this thresholdby � , the de�nition is2Where future jobs and their resoure requirements are not known in advane4



bounded slowdown = max ( response timemaxfrunning time; �g ; 1)This metri behavior obviously depends on the hoie of � whih typially takes thevalues in the range of 10 seonds to several minutes.1.2 The Lookahead Optimizing ShedulerServing as a general-purpose omputation ore, the parallel mahine is shared over aperiod of time by wide range of users exeuting jobs with various resoure requirements.This mode of work is known as an on-line mode [4, 16℄ and is distinguished from ano�-line mode in whih all jobs and their resoure requirements are known in advane.The lak of knowledge regarding future jobs leads urrent on-line shedulers to usesimple heuristis to maximize utilization at eah sheduling step. The di�erent heuristisused by various algorithms are desribed in Chapter 2. These heuristis do not guaranteeto minimize the mahine's idle apaity.We propose a new sheduling heuristi seeking to maximize utilization at eah shedul-ing step. Unlike urrent shedulers that onsider the queued jobs one at a time, our shed-uler bases its sheduling deisions on the whole ontents of the queue. Thus we namedit LOS � an aronym for �Lookahead Optimizing Sheduler�. LOS starts by examiningonly the �rst waiting job. If it �ts within the mahine's free apaity it is immediatelystarted. Otherwise, a reservation is made for this job so as to prevent the risk of star-vation. The rest of the waiting queue is proessed using an e�ient, newly developeddynami-programming based sheduling algorithm that hooses the set of jobs whih willmaximize the mahine utilization and will not violate the reservation for the �rst waitingjob. The basi algorithm also respets the arrival order of the jobs, if possible. Whentwo or more sets of jobs ahieve the same maximal utilization, it hooses the set loserto the head of the queue. However, we show that performane an further improve if wedisregard the queue order and hoose the set whih ontains the maximal number of jobsor the jobs with the maximal overall slowdown. To reah these onlusions we developed5



and examined a set of enhaned algorithms, built on top and oneptually similar tothe basi algorithm, whih in addition to maximizing the utilization of the mahine, alsoguarantee that the hosen set of jobs will maximize or minimize a prede�ned merit value.Chapter 3 provides a detailed desription of the algorithm. It ontinues with a desrip-tion of the enhaned algorithms and onludes with a disussion on omplexity, followedby performane optimizations. Chapter 4 desribes the simulation environment used inthe evaluation and presents the experimental results from the simulations in whih LOSwas tested using trae �les from real systems. It also presents, ompares and analyzesLOSs' results when using any of the enhaned algorithms. Chapter 5 onludes on thee�etiveness and appliability of our proposed sheduling heuristi.
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Chapter 2
Related Work
We will fous on the narrow �eld of on-line sheduling algorithms of non-preemptive rigidjobs on distributed memory parallel mahines, and espeially on heuristis that attemptto improve utilization.The base ase often used for omparison is the First Come First Serve (FCFS) algo-rithm [5℄. In this algorithm all jobs are started in the same order in whih they arrive inthe queue. If the mahine's free apaity does not allow the �rst job to start, FCFS willnot attempt to start any sueeding job. It is a fair sheduling poliy, whih guaranteesfreedom of starvation sine a job annot be delayed by other jobs submitted at a latertime. It is also easily implemented. Its drawbak is the resulting poor utilization of themahine. When the next job to be sheduled is larger than the mahine free apaity, itholds bak smaller sueeding jobs, whih ould utilize the mahine.In order to improve various performane metris it is possible to onsider the jobs insome other order. The Shortest Proessing Time First (SPT) algorithm uses estimationsof the jobs' runtimes to make sheduling deisions. It sorts the waiting jobs by inreasingestimated runtime and exeutes the jobs with the shortest runtime �rst [5℄. This algorithmis inspired by the "shortest job �rst" heuristi [11℄, whih seeks to minimize the averageresponse time. The rationale behind this heuristis is that if a short job is exeuted aftera long one, both will have a long response time, but if the short job gets to be exeuted�rst, it will have a short response time, thus the average response time is redued.The opposite algorithm, Largest Proessing Time First (LPT), exeutes the jobs withthe longest proessing time �rst [15, 16℄. This poliy aims at minimizing the makespan,7



but the average response time is inreased beause many small jobs are delayed signi�-antly.Other sheduling heuristis base their deisions on job size rather than on estimatedruntime. The Smallest Job First (SJF) algorithm [17℄ sorts the waiting jobs by inreasingsize and exeutes the smallest jobs �rst. Inspired by SPT, this algorithm turned out toperform poorly beause there is not muh orrelation between the job size and it's runtime.Small jobs do not neessarily terminate quikly [18, 19℄, whih results in a fragmentedmahine and thus a redution in performane.The alternative Largest Job First (LJF) is motivated by results in bin-paking thatindiate that a simple �rst-�t algorithm ahieves better paking if the paked items aresorted in dereasing size [20, 21℄. In terms of sheduling it means that sheduling largerjobs �rst may be expeted to ause less fragmentation and therefore higher utilizationthan FCFS.Finally, the Smallest Cumulative Demand First [17, 22, 23℄ algorithm uses both theexpeted exeution time and job size to make sheduling deisions. It sorts the jobs inan inreasing order aording to the produt of the jobs size and the expeted exeutiontime, so small short jobs get the highest priority. It turned out that this poliy does notperform muh better than the original smallest job �rst [17℄.The problem with all the above shemes is that they may su�er from starvation, andmay also waste proessing power if the �rst job annot run. This problem is solvedby bak�lling algorithms, whih allow small jobs from the bak of the queue to exeutebefore larger jobs that arrived earlier, thus utilizing the idle proessors, while the latterare waiting for enough proessors to be freed [3℄. Bak�lling is known to greatly inreaseuser satisfation sine small jobs tend to get through faster, while bypassing large ones.Note that in order to implement bak�lling, the jobs' runtimes must be known inadvane. Two tehniques, one to estimate the runtime through repeated exeutions of thejob [12℄ and the seond to get this information through ompile-time analysis [13, 14℄ havebeen proposed. Real implementations, however, require the users to provide an estimateof their jobs runtime, whih in pratie is often spei�ed as a runtime upper-bound.Surprisingly, it turns out that inaurate estimates generally lead to better performanethan aurate ones [10℄. 8



Bak�lling was �rst implemented on a prodution system in the "EASY" (the Ex-tensible Argonne Sheduling sYstem) sheduler developed by Lifka et al. [24, 25℄, andlater integrated with IBM's LoadLeveler. This version is based on aggressive bak�lling,in whih any job an be bak�lled provided it does not delay the �rst job in the queue.The objetive is to improve the urrent utilization as muh as possible but the prie isthat exeution guarantees annot be made beause it is impossible to predit how muheah job will be delayed in the queue. The EASY bak�lling algorithm is desribed inAppendix A.1. It is exeuted repeatedly whenever a new job arrives or a running jobterminates, if the �rst job in the queue annot start. In eah iteration, the algorithmidenti�es a job that an bak�ll if one exists.There are two interesting properties assoiated with this algorithm. First, queued jobsmay su�er an unbounded delay beause if a job is not the �rst in the queue, new jobs thatarrive latter may skip it in the queue and impose delays on it, whih makes preditabilityimpossible. Seond, there is no starvation beause the queuing delay for the job at thehead of the queue depends only on jobs that are already running sine bak�lled jobs willnot delay it. Thus, it is guaranteed to eventually run sine the running jobs will eitherterminate or be terminated when they exeed their estimated runtime. A detailed proofof the above two properties is found in [10℄.By using aggressive bak�lling EASY sari�es preditability for potentially improv-ing utilization. When preditability is required, one an use �Conservative� bak�llingwhih performs all sheduling deisions upon job submittal and thus, has the apabilityof prediting when eah job will run, giving the users exeution guarantees. With onser-vative bak�lling, users an plan ahead based on these guaranteed response times. In thisversion, bak�lling is done subjet to heking that it does not delay any previous job inthe queue. To perform alloations, onservative bak�lling maintains two data strutures.One is the list of queued jobs and the time at whih they are expeted to start exeution.The other is a pro�le of the expeted proessor usage at future times. Appendix A.2desribes the Conservative bak�ll algorithm. It is exeuted whenever a new job arrives.Note that Conservative bak�lling has no danger of starvation as a reservation is madefor eah job when it is submitted.Mu'alem and Feitelson [10℄ ompared EASY bak�lling to onservative bak�lling.9



Their simulation results show that for most ases the performane of the EASY bak�llingalgorithm was better than that of onservative bak�lling.One of the important parameters of bak�lling algorithms is the number of jobs thatenjoy reservations. In EASY, only the �rst job gets a reservation while in onservativebak�lling, all skipped jobs get reservations. The Maui sheduler [9℄ has a parameter thatallows the system administrator to set the number of reservations. When Maui shedules,it prioritizes the jobs in the queue aording to a number of fators and then ordersthe jobs in a highest priority-�rst sorted list. By default, Maui reserves only the highestpriority job resulting in a most liberal and aggressive bak�ll. This give Maui the freedomto optimize its shedule and thus to potentially result in a better job response times andoverall system utilization. While this reservation ensures that the highest priority jobwill not be delayed, other jobs lak a resoure protetion, and thus potentially ould besigni�antly delayed. A tunable parameter, RESERVATIONDEPTH provides the abilityto ontrol how deep in the priority queue reservation should be made. In its default value,1, Maui bak�lls aggressively with the purpose of maximizing utilization. As the valueinreases, the liberal bak�lling behavior moves toward a more onservative one in whihresoure protetion and thus preditability beome available.Srinivasan et al. [26℄ have studied the relative e�etiveness of onservative and ag-gressive bak�lling by grouping jobs into ategories based on their size and runtime, andexamining their e�et on jobs in di�erent ategories. They observed that onservative andaggressive bak�lling eah bene�t ertain job ategories while adversely a�eting otherategories. They proposed a ompromise strategy alled seletive bak�lling with the pur-pose of obtaining the best harateristis from both the onservative and the aggressivebak�lling. With seletive bak�lling, reservations are provided seletively only to jobswhos their expeted slowdown exeeds some threshold. By limiting the number of reser-vations the amount of bak�lling is greater than onservative bak�lling, but by assuringreservations to jobs after a limited wait, the disadvantage of potentially unbounded delaywith aggressive bak�ll is avoided.Additional variants of bak�lling allow the sheduler more �exibility. Talby and Fei-telson presented slak based bak�lling, an enhaned bak�ll sheduler that supports pri-orities [6℄. These priorities are used to assign eah waiting job a slak, whih determines10



how long it may have to wait before running: important jobs will have little slak inomparison with others. Bak�lling is allowed only if the bak�lled job does not delayany other job by more than that job's slak. Ward et al. have suggested the use of arelaxed bak�ll strategy, whih is similar, exept that the slak is a onstant fator anddoes not depend on priority [27℄.Lawson and Smirni presented amultiple-queue bak�lling approah in whih eah job isassigned to a queue aording to its expeted exeution time and eah queue is assigned toa disjoint partition of the parallel system on whih jobs from the queue an be exeuted[7℄. Their simulation results indiate a performane gain ompared to a single-queuebak�lling, resulting from the fat that the multiple-queue poliy redues the likehoodthat short jobs get delayed in the queue behind long jobs.

11



Chapter 3
The LOS Sheduling Algorithm
The LOS sheduling algorithm examines all the jobs in the queue in order to maximize theurrent system utilization. Instead of sanning the queue in some order, and starting anyjob that is small enough not to violate prior reservations, LOS tries to �nd a ombinationof jobs that together maximize utilization. This is done using dynami programming.Setion 3.2 presents the basi algorithm, and shows how to �nd a set of jobs that togethermaximize utilization. Setion 3.3 then extends this by showing how to selet jobs thatalso respet a reservation for the �rst queued job. Setion 3.4 examines seletion amongalternative groups of jobs that ahieve the same utilization value in the interest of improv-ing other performane metris. Setion 3.5 analyzes the omplexity of the algorithm, and�nalizes the algorithm desription with two suggested optimizations aimed at reduingits omplexity.Before starting the desription of the algorithm itself, Setion 3.1 formalizes the stateof the system and introdues the basi terms and notations used later. To provide anintuitive feel of the algorithms, eah subsetion is followed by an on-going shedulingexample on an imaginary mahine of size N = 10: Paragraphs desribing the example areheaded by |.3.1 Formalizing the System StateAt time t our mahine of size N runs a set of jobs R = frj1; rj2; :::; rjrg, eah with twoattributes: their size, and estimated remaining exeution time, rem. For onveniene, R12



is sorted by inreasing rem values. The mahine's free apaity is n = N �Pri=1 rji:size.The queue ontains a set of waiting jobs WQ = fwj1; wj2; ::; wjqg, whih also havetwo attributes: a size requirement and a user estimated runtime, time. The task of thesheduling algorithm is to selet a subset S � WQ of jobs, referred to as the produedshedule, whih maximizes the mahine utilization. The produed shedule is saf e if itdoes not impose a risk of starvation.| As illustrated in Figure 3.1, at t = 25, our mahine runs a single job rj1 withsize = 5 and expeted remaining exeution time rem = 3. The mahine's free apaity isn = 5. The table at the right desribes the size and estimated runtime of the �ve waitingjobs in the waiting queue, WQ.
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wj size time1 7 42 2 23 1 64 2 45 3 5
Figure 3.1: System state and queue at t = 25

3.2 The Basi Algorithm3.2.1 Freedom of StarvationThe algorithm begins by trying to start the �rst waiting job.If wj1:size � n , it is removed from the waiting queue, added to the running jobs listand starts exeuting.Otherwise, the algorithm alulates the shadow time at whih wj1 an begin its exe-ution [24℄. It does so by traversing the list of running jobs while aumulating their sizesuntil reahing a job rjs at whih wj1:size � n +Psi=1 rji:size. The shadow time is then13



de�ned to be shadow = t+ rjs:rem. By ensuring that all jobs in S terminate before thattime, S is guaranteed to be a safe shedule, as it will not impose any delay on the �rstwaiting job, thus ensuring a freedom from starvation.To dismiss us of the onern of handling speial ases, we set shadow to1 if wj1 anbe started at t. In this ase every produed shedule is safe, as the �rst waiting job isassured to start without delay.| The 7 proessors requirement of wj1 prevents it from starting at t = 25. It willbe able to start at t = 28 after rj1 terminates, thus shadow is set to 28 as illustrated inFigure 3.2.
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TimeFigure 3.2: Computing the shadow time3.2.2 A Two Dimensional Data StrutureAfter handling the �rst job, we need to �nd the set of subsequent jobs that will maximizeutilization. To do so, the waiting queue, WQ, is proessed using a dynami-programmingalgorithm. Intermediate results are stored in a two dimensional matrix denoted M of size(jWQj+ 1)� (n + 1), and are later used for making suessive deisions.Eah ell mi;j ontains a single integer value util, and two boolean trae markers,seleted and bypassed.util holds the maximal ahievable utilization at t, if the mahine's free apaity is jand only waiting jobs f1::ig are available for sheduling.The seleted marker is set to indiate that wji was hosen for exeution (wji 2 S).14



The bypassed marker indiates the opposite. When the algorithm �nishes alulatingM ,the trae markers are used to trae the jobs whih onstrut S. It is possible that bothmarkers will be set simultaneously in a given ell, whih means that there is more thanone way to onstrut S. It is important to note that either way, jobs in the produedshedule will always ahieve the same overall maximal utilization.For onveniene, the i = 0 row and j = 0 olumn are initialized with zero values. Suhpadding eliminates the need of handling speial ases.| In the example, M is a 6 � 6 matrix. The seleted and bypassed markers, if set,are noted by - and " respetively. Table 3.1 desribes M 's initial values.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 � � � � �2 (2) 0 � � � � �3 (1) 0 � � � � �4 (2) 0 � � � � �5 (3) 0 � � � � �Table 3.1: M 's initial values3.2.3 Filling MM is �lled from left to right, top to bottom, as indiated in Algorithm 1. The values ofeah ell are alulated using values from previously alulated ells. The idea is that ifadding another proessor (bringing the total to j) allows the urrently onsidered job ito be started, we need to hek whether inluding wji in the produed shedule inreasesthe utilization. If not, or if the size of job i is larger than j, the utilization is simply whatit was without this job, that is mi�1;j:util.As mentioned in Setion 3.2.1, a safe shedule is guaranteed if all jobs in S terminatebefore the shadow time. The third line of Algorithm 1 ensures that every job wji thatwill not terminate by the shadow time is immediately bypassed, that is, exluded fromS. This is done to simplify the presentation of the algorithm. In Setion 3.3 we relax thisrestrition and present the full algorithm. 15



The omputation stops when reahing ellmjwqj;n at whih timeM is �lled with values.Algorithm 1 Construting M� Note : To slightly ease the reading, mi;j:util, mi;j:seleted, and mi;j:bypassed arerepresented by util, seleted and bypassed respetively.for i = 1 to jWQjfor j = 1 to nif wji:size > j or t + wji:time > shadowutil mi�1;j:utilseleted Falsebypassed Trueelse util0  mi�1;j�wji:size:util + wji:sizeif util0 � mi�1;j:utilutil util0seleted Truebypassed Falseif util0 = mi�1;j:utilbypassed Trueelse util mi�1;j:utilseleted Falsebypassed True| The resulting M is shown in Table 3.2. As an be seen, the seleted �ag is set onlyfor wj2, as it is the only job whih an be started safely without imposing any delay onwj1. Sine all other jobs are bypassed, the maximal ahievable utilization of the j = 5free proessors when onsidering all i = 5 jobs is m5;5:util = 2.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 0 " 0" 0" 0" 0"2 (2) 0 0 " 2 - 2 - 2 - 2 -3 (1) 0 0 " 2" 2" 2" 2"4 (2) 0 0 " 2" 2" 2" 2"5 (3) 0 0 " 2" 2" 2" 2"Table 3.2: Resulting M
16



3.2.4 Construting SStarting at the last omputed ell mjwqj;n, S is onstruted by following the trae markersas desribed in Algorithm 2.It was already noted in Setion 3.2.2 that it is possible that in an arbitrary ell mx;yboth markers are set simultaneously, whih means that there is more than one possibleshedule. In suh ase, the algorithm will follow the bypassed marker.In terms of sheduling, wjx =2 S simply means that wjx is not started at t, but thisdeision has a deeper meaning in terms of queue poliy. Sine the queue is traversed byAlgorithm 2 from tail to head, skipping wjx means that other jobs, loser to the head ofthe queue will be started instead, and the same maximal utilization will still be ahieved.By seleting jobs loser to the head of the queue our produed shedule is more ommittedto the queue FCFS poliy, and is expeted to reeive a better sore from the evaluationmetris suh as average response time, slowdown et.Algorithm 2 Construting SS  fgi jWQjj  nwhile i > 0 and j > 0if mi;j:bypassed = Truei i� 1else S  S [ fwjigj  j � wji:sizei i� 1| The resulting S ontains a single job wj2, and its sheduling at t is illustrated inFigure 3.3. Note that wj1 is not part of S: It is only drawn to illustrate that wj2 doesnot e�et its expeted start time, indiating that our produed shedule is safe.3.3 The Full Algorithm3.3.1 Maximizing UtilizationOne way to reate a safe shedule is to require all jobs in S to terminate before the shadowtime, so as not to interfere with that job's reservation. This restrition an be relaxed17
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TimeFigure 3.3: Sheduling wj2 at t = 25in order to ahieve a better shedule S 0, still safe but with a muh improved utilization.This is possible due to the extra proessors left at the shadow time after wj1 is started.Waiting jobs whih are expeted to terminate after the shadow time an use these extraproessors, referred to as the shadow free apaity, and run side by side together with wj1,without e�eting its start time. As long as the total size of jobs in S 0 that are still runningat the shadow time does not exeed the shadow free apaity, wj1will not be delayed, andS 0 will be a safe shedule.If the �rst waiting job, wj1, an only start after rjs has terminated, than the shadowfree apaity, denoted by extra; is alulated as follows :extra = n+ sXi=1 rji:size� wj1:sizeTo use the extra proessors, the jobs whih are expeted to terminate before theshadow time are distinguished from those that are expeted to still run at that time, andare therefore andidates for using the extra proessors. Eah waiting job wji 2 WQ willnow be represented by two values: its original size and its shadow size � its size at theshadow time. Jobs expeted to terminate before the shadow time have a shadow size of0. The shadow size is denoted ssize, and is alulated using the following rule:wji:ssize = 8><>: 0 t+ wji:time � shadowwji:size otherwise18



If wj1 an start at t, the shadow time is set to 1. As a result, the shadow sizessize, of all waiting jobs is set to 0, whih means that any omputation whih involvesextra proessors is unneessary. In this ase setting extra to 0 improves the algorithmperformane.All these alulation are done in a pre-proessing phase, before running the dynamiprogramming algorithm.| wj1whih an begin exeution at t = 28 leaves 3 extra proessors. shadow andextra are set to 28 and 3 respetively, as illustrated in Figure 3.4. In the queue shown onthe right, we use the notation sizessize to represent the two size values. wj2 is the onlyjob expeted to terminate before the shadow time, thus its shadow size is 0.
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wj sizessize time1 77 42 20 23 11 64 22 45 33 5
Figure 3.4: Computing shadow and extra, and the proessed job queue3.3.2 A Three Dimensional Data StrutureTo manage the use of the extra proessors, we need a three dimensional matrix denotedM 0 of size (jWQj+ 1)� (n+ 1)� (extra + 1).Eah ell m0i;j;k now ontains two integer values, util and sutil, and the two traemarkers.util holds the maximal ahievable utilization at t, if the mahine's free apaity is j,the shadow free apaity is k, and only waiting jobs f1::ig are available for sheduling.sutil hold the minimal number of extra proessors required to ahieve the util valuementioned above. 19



The seleted and bypassedmarkers are used in the same manner as desribed in setion3.2.2.As mentioned in setion 3.2.2, the i = 0 rows and j = 0 olumns are initialized withzero values, this time for all k planes.| M 0 is a 6 � 6 � 4 matrix. util and sutil are noted utilsutil. The notation of theseleted and bypassed markers is not hanged and remains - and " respetively.Table 3.3 desribes the initial k = 0 plane. Planes 1::3 are initially similar.# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 �� �� �� �� ��2 (20) 00 �� �� �� �� ��3 (11) 00 �� �� �� �� ��4 (22) 00 �� �� �� �� ��5 (33) 00 �� �� �� �� ��Table 3.3: Initial k = 0 plane3.3.3 Filling M 0The values in every m0i;j;k ell are alulated in an iterative matter using values frompreviously alulated ells as desribed in Algorithm 3. The alulation is exatly thesame as in Algorithm 1, exept for an addition of a slightly more ompliated onditionthat heks that enough proessors are available both now and at the shadow time.The omputation stops when reahing ell m0jwqj;n;extra.| When the shadow free apaity is k = 0; only wj2 who's ssize = 0 an be shed-uled. As a result, the maximal ahievable utilization of the j = 5 free proessors, whenonsidering all i = 5 jobs is m05;5;0:util =2, as an be seen in Table 3.4. This is of oursethe same utilization value (and the same shedule) ahieved in Setion 3.2.3, as the k = 0ase is idential to onsidering only jobs that terminate before the shadow time.When the shadow free apaity is k = 1, wj3 who's ssize = 1 is also available forsheduling. As an be seen in Table 3.5, starting at m03;3;1 the maximal ahievable uti-lization is inreased to 3, at the prie of using a single extra proessor. The two seleted20



Algorithm 3 Construting M 0� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil, m0i;j;k:seleted, andm0i;j;k:bypassed are represented by util, sutil, seleted, and bypassed respetively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutilseleted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util + wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil + wji:ssizeif util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0seleted Truebypassed Falseif util0 = mi�1;j;k:util and sutil0 = mi�1;j;k:sutilm0i;j;k:bypassed Trueelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutilseleted Falsebypassed Truejobs are wj2 and wj3.As the shadow free apaity inreases to k = 2, wj4 who's shadow size is 2, joinswj2 and wj3 as a valid sheduling option. Its e�et is illustrated in Table 3.6 starting atm04;4;2, as the maximal ahievable utilization has inreased to 4 � the sum of wj2 andwj4 sizes. This omes at a prie of using a minimum of 2 extra proessors, orrespondingto wj4's shadow size.It is interesting to examine the m04;2;2 ell, as it introdues an interesting heuristideision. When the mahine's free apaity is j = 2 and only jobs f1::4g are onsidered forsheduling, the maximal ahievable utilization an be aomplished by either shedulingwj2 or wj4, both with a size of 2, yet wj4 will use 2 extra proessors while wj2 willuse none. The algorithm hooses to bypass wj4 and selets wj2 as it leaves more extra21



# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 00 " 20" 20" 20" 20"4 (22) 00 00 " 20" 20" 20" 20"5 (33) 00 00 " 20" 20" 20" 20"Table 3.4: k = 0 plane# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 31" 31"5 (33) 00 11 " 20" 31" 31" 31"Table 3.5: k = 1 planeproessors to be used by other jobs.# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20"? 31" 42- 42-5 (33) 00 11 " 20" 31" 42" 42"Table 3.6: k = 2 planeFinally the full k = 3 shadow free apaity is onsidered. wj5, who's shadow size is 3an now join wj1::wj4 as a valid sheduling option.As an be seen in Table 3.7, the maximal ahievable utilization at t = 25, when themahine's free apaity is n = j = 5, the shadow free apaity is extra = k = 3 and all�ve waiting jobs are available for sheduling is m05;5;3:util = 5. The minimal number ofextra proessors required to ahieve this utilization value is m05;5;3:sutil = 3.22



# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 42- 53-5 (33) 00 11 " 20" 31" 42" 53-"Table 3.7: k = 3 plane3.3.4 Construting S 0Algorithm 4 desribes the onstrution of S 0. It starts at the last omputed ellm0jwqj;n;extra,follows the trae markers, and stops when reahing the 0 boundaries of any plane.As explained in setion 3.2.4, when both trae markers are set simultaneously, thealgorithm follows the bypassed marker, a deision whih is loser to the FCFS poliy.Algorithm 4 Construting S 0S 0  fgi jWQjj  nk extrawhile i > 0 and j > 0if m0i;j;k:bypassed = Truei i� 1else S 0  S 0 [ fwjigj  j � wji:sizek  k � wji:ssizei i� 1| Both trae markers in m05;5;3, are set, whih means there is more than one way toonstrut S 0. In our example there are two possible shedules, both utilize all 5 free pro-essors, resulting in a fully utilized mahine. Choosing S 0 = fwj2; wj3;wj4g is illustratedin Figure 3.5. Choosing S 0 = fwj2; wj5g is illustrated in Figure 3.6.Both shedules fully utilize the mahine and ensure that wj1 will start without a delay,thus both are safe shedules, yet the �rst shedule (illustrated in Figure 3.5) ontains jobsloser to the head of the queue, thus it is more ommitted to the queue FCFS poliy.23
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TimeFigure 3.6: Sheduling wj2 and wj5 at t = 25.Based on the explanation in setion 3.2.4, hoosing S 0 = fwj2; wj3;wj4g is expeted togain better results when evaluation metris are onsidered.3.4 Improving Performane by Job SeletionIn Setion 3.2.4 we stated that in the ase where both trae markers are set in a give ell,following the bypassed marker is expeted to produe better results, sine by doing so westart jobs whih are loser to the head of the queue, and thus we are more ommitted tothe queue FCFS poliy. To verify this assumption we performed the following experiment:We modi�ed algorithm 4 so it will follow the seleted marker �rst, that is, whenever both24



markers are set in a given ell, it will start the urrent job instead of bypassing it. Thee�et of this modi�ation is that jobs whih are loser to the tail of the queue are givenpreedene over jobs whih where submitted at earlier times. We named the modi�edalgorithm the �Seleted-First� algorithm to distinguish it from the original �Bypassed-First� behavior, and desribe it formally in Algorithm 5.Algorithm 5 Construting S 0- Seleted-First AlgorithmS 0  fgi jWQjj  nk extrawhile i > 0 and j > 0if m0i;j;k:seleted = TrueS 0  S 0 [ fwjigj  j � wji:sizek  k � wji:ssizei i� 1else i i� 1We expeted the Seleted-First algorithm to perform poorly sine its produed shed-ule, S', is no longer ommitted the queue's FCFS poliy, but simulation results have proventhe opposite and LOS performane has improved against expetations. (The simulationresults are presented in Setion 4.3.1).Suh surprising results have proven that basi assumptions whih are often basedon pure intuition, suh as the one stating that seleting jobs loser to the head of thequeue will improve performane, might be misleading. This opened the door to a setof experiments aimed at the purpose of improving LOS's performane and exploring theause for the results di�erenes. In all experiments, we enhane our three dimensionaldata struture whih was desribed in Setion 3.3.2 by inluding an additionalmerit valuein every m0i;j;k ell, in addition to the existing, util, sutil, and the two trae markers. Wealso modi�ed LOS's ore algorithm for onstruting M 0 (Algorithm 3) to onsider themerit value. Whenever the same utilization value an be ahieved, either by seletingor bypassing job i, a ase in whih both the seleted and the bypassed markers were setby the original algorithm, the modi�ed algorithm onsiders the merit value in order toeliminate one of the options, if possible. By doing so, the number of optional seletions25



is minimized and the produed shedule, S', is optimized in view of the merit.It is important to note that the use of the merit does not hange any of the utilizationvalues in any ofM's ells when ompared to the values omputed by the original algorithm,and that the produed shedule, S', will still maximize the mahine utilization. The onlydi�erene is that now there are less ells in whih both trae markers are set, and thus, lessfreedom to hoose the set of jobs whih onstrut S'. It is also important to understandthat the onstrution of M' has not hanged and that M' is still �lled using the sameiterative algorithm as desribed in Setion 3.3.3, thus the use of the merit does not hangethe omplexity of the algorithm.We started with a simple experiment in whih the merit value was simply the numberof seleted jobs in the path, with the purpose of hoosing the set S' whih ontains themaximal number of jobs. We named this the Maxjobs approah and it is desribed inSubsetion 3.4.1. Simulation results have shown that by starting the maximal number ofjobs (in addition to maximizing utilization), the performane of LOS is improved. Thereason for the improvement is that less jobs remain waiting and thus the mean responsetime and slowdown are redued.Next we examined various merit values suh as the total jobs response time with thepurpose of hoosing S' with the maximal or minimal total response time, and total jobsslowdown with the purpose of maximizing or minimizing that fator also. Simulationresults indiate that the performane of LOS has improved or redued with respet to thehosen merit.Peak performane was observed when the merit was the total jobs slowdown with thepurpose of hoosing the set S' whih maximizes this fator. Again, this goes againstintuition whih states that when several sets of jobs exist, all of whih ahieve the sameutilization value, it is expeted that hoosing the set with the minimal total slowdown willimprove performane, sine if we delay those jobs in the waiting queue, their slowdown(and response time) will inrease. Unfortunately, intuition fails here also and performaneis boosted when starting the set with the maximal total slowdown. The reason is thatthe slowdown metri is mostly e�eted by the shortest jobs and thus, a set with largetotal slowdown is likely to ontain shorter jobs. By starting these jobs we omply withthe shortest jobs �rst heuristi desribed in Chapter 2, whih states that by starting26



short jobs before other time onsuming jobs, their response time and slowdown will beredued, while the response time and slowdown of the longer jobs will not be severelye�eted and thus, the mean response and slowdown will be redued. We named thisthe Max-Slowdown approah and desribe it in Setion 3.4.2. Simulation results for theMax-Slowdown approah are shown in Setion 4.3.3.3.4.1 Maximizing the Number of Started JobsThe purpose of this experiment is to explore the e�et of the number of started jobs ineah sheduling step on the performane of LOS. In a ase where both the seleted and thebypassed markers are set in a given ell, following the path on whih the maximal numberof jobs will start, is expeted to improve performane sine in addition to maximizingthe system utilization, fewer jobs will remain waiting and thus improvement is expetedin the mean jobs response time and slowdown metris. We refer to this as the Maxjobsapproah.We enhane our three dimensional data struture whih was desribed in Setion 3.3.2by inluding an additional integer value, num_jobs, in every m0i;j;k ell, in addition tothe existing, util, sutil, and the two trae markers. The role of num_jobs is to reord thenumber of jobs whih will start when following a path through that ell. We also modi�edAlgorithm 3 whih onstrutsM 0, to onsider the value of num_jobs. Whenever the sameutilization value an be ahieved, either by seleting or bypassing job i, the following ruleis applied: If more jobs will start by bypassing job i - only the bypassed marker willremain set to fore the bypassing of that job. On the other hand, if seleting or startingjob i maximizes the number of started jobs, then leaving only the seleted marker willfore the starting of that job. This does not hange any of the utilization values in anyof the ells when ompared to the values omputed by the original algorithm, but it doeslimit the number of optional seletions when the two trae markers are set, by eliminatingone of the options � the one on whih less jobs will start. Algorithm 6 formally desribesthis approah.The �nal phase is to onstrut S' as desribed in Setion 3.3.4. Sine M' is onlyenhaned with a single integer value in eah ell, onstruting S' does not require any27



modi�ations and Algorithm 4 (or 5) remains the same. The only di�erene is in the�nal result � this time the number of jobs in the resulting S 0 is maximized, that isj S 0 j!MAX.Simulation results presented in Setion 4.3.2 show that the Maxjobs approah indeedimproves LOS performane and thus our assumption was proven to be orret.
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Algorithm 6 Construting M 0 - The Maxjobs Approah� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil, m0i;j;k:seleted,m0i;j;k:bypassed and m0i;j;k:num_jobs are represented by util, sutil, seleted,bypassed and num_jobs respetively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutilnum_jobs m0i�1;j;k:num_jobsseleted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util + wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil + wji:ssizenum_jobs0  m0i�1;j�wji:size;k�wji:ssize:num_jobs + 1if util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0if util0 > m0i�1;j;k:util or sutil0 < m0i�1;j;k:sutilnum_jobs num_jobs0seleted Truebypassed Falseelse if num_jobs0 < m0i�1;j;k:num_jobsnum_jobs m0i�1;j;k:num_jobsseleted Falsebypassed Trueelse num_jobs num_jobs0seleted Trueif num_jobs0 = m0i�1;j;k:num_jobsbypassed Trueelse bypassed Falseelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutilnum_jobs m0i�1;j;k:num_jobsseleted Falsebypassed True 29



3.4.2 Maximizing the Total SlowdownIn this experiment we took the enhaned three dimensional data struture, M', whih wasdesribed in Setion 3.4.1, and replaed the num_jobs ounter in every eah m0i;j;kwitha tot_slowdown aumulator. tot_slowdown reords the aumulated slowdown valuesof jobs when following a path through that ell.It is important to understand how the algorithm omputes a jobs' slowdown. Slowdownwas de�ned in Setion 1.1 to be the ratio of the time it takes to run the job on a loadedsystem divided by the time it takes on dediated system, formally slowdown = response timerunning time .Sine response time = wait time + running time and the jobs' atual running time isunknown at the time the slowdown is alulated, we use the user-estimated runtime forthat job instead, sine it is the best (and only) indiation to how long that job will run.Thus for eah onsidered job wji, its slowdown is omputed as follows:wji:slowdown = wji:wait time + wji:estimated runtimewji:estimated runtime = (t� wji:arrival) + wji:timewji:timeWe also took theMaxjobs algorithm as a basis and modi�ed it to onsider the value oftot_slowdown in the following matter: When the same utilization an be ahieved eitherby seleting or bypassing job i, then if the total slowdown ahieved by seleting job i isgreater than the total slowdown ahieved by bypassing that job, then only the seletedmarker remains set. On the other hand if the total slowdown is greater by bypassing jobi then setting the bypassed marker will fore job i to be bypassed. We named this theMax-Slowdown approah and formally desribe it in Algorithm 7.Simulation results presented in Setion 4.3.3 have shown that LOS's performane isboosted when using this approah, ompared to all other tested merit values.
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Algorithm 7 Construting M 0 - The Max-Slowdown Approah� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil, m0i;j;k:seleted,m0i;j;k:bypassed and m0i;j;k:tot_slowdown are represented by util, sutil, seleted,bypassed and tot_slowdown respetively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutiltot_slowdown m0i�1;j;k:tot_slowdownseleted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util + wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil + wji:ssizetot_slowdown0  m0i�1;j�wji:size;k�wji:ssize:tot_slowdown+(t� wji:arrival + wji:time)=wji:timeif util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0if util0 > m0i�1;j;k:util or sutil0 < m0i�1;j;k:sutiltot_slowdown tot_slowdown0seleted Truebypassed Falseelse if tot_slowdown0 < m0i�1;j;k:tot_slowdowntot_slowdown m0i�1;j;k:tot_slowdownseleted Falsebypassed Trueelse tot_slowdown tot_slowdown0seleted Trueif tot_slowdown0 = m0i�1;j;k:tot_slowdownbypassed Trueelse bypassed Falseelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutiltot_slowdown m0i�1;j;k:tot_slowdownseleted Falsebypassed True 31



3.5 Complexity AnalysisThe most time and spae demanding task is the onstrution of M 0 whih depends onthree input parameter: jWQj � the length of the waiting queue, n � the mahine's freeapaity at t, and extra � the shadow free apaity. jWQj depends on the system load.Both n and extra are bounded by N � the size of the mahine, whih is a onstant. Sineeah m0i;j;k ell is omputed in a onstant time and there are maximum jWQj � N � Nells to ompute, the time omplexity of the algorithm for onstruting M 0 and thus forproduing the optimal shedule is:(1) O(jWQj �N �N) = O(jWQj �N2)It is important to understand that the algorithm is not polynomial in the size of itsinput � the list of jobs sizes and in fat, there is an exponential relationship between thesize of the input and the algorithm runtime. To ompute the size of the input we �rstneed to enode eah of the waiting jobs' sizes in a binary format. The length of enodingan integer x is logx, and thus the length of enoding any of the waiting jobs' sizes islogwji:size. If wjl is the largest waiting job, than the size of enoding the entire input is:(2) O(jWQj � logwjl:size)At this point we an use the fat that N is at-most the sum of all waiting jobs sizes,otherwise all jobs an be started and the solution beomes trivial. Sine wjl is the largestof all waiting jobs, we an safely state that N � jWQj � wjl:size. Thus by substitutingN in (1) we �nd that the time omplexity of the algorithm is:(3) O(jWQj3 � (wjl:size)2)Sine logwjl:size in (2) and wjl:size in (3) hold an exponential relationship and nota polynomial one, it is lear that the time omplexity is not polynomial in the size of theinput alone. In fat, it is polynomial in the size of the input and the size of the largestwaiting job. 32



Suh algorithms whih have their runtime bounded by a polynomial in the size inthe input and the value of any integer in the input are known as pseudo-polynomialalgorithms. They are designed to solve NP-omplete problems using the fat that inpratie it is su�ient to solve the problem for a restrited set of inputs, in ontrast tothe unbounded values whih are onsidered in theoretial analysis. In our ase, it is therestrition on N whih allows the optimal shedule to be produed in a �reasonable� time,feasible for pratial implementation.3.5.1 Runtime OptimizationsAs mentioned in Setion 3.5, the onstrution of M 0 depends on three parameters: jWQj� the length of the waiting queue, n � the mahine's free apaity at t, and extra� the shadow free apaity. Sine the values of these three parameters hange from onesheduling step to the other, understanding the fators whih e�et eah of the parametersis useful if one wishes to predit LOSs' runtime in upoming sheduling steps.Both n and extra fall in the range of 0 to N . Their values depend on the size andtime distribution of the waiting and running jobs. A termination of a small job ausesnothing but a small inrease to the system's free apaity, thus n is inreased by a smallamount. On the other hand, when a large job terminates, it leaves muh free spae and nwill onsequently be large. extra is a funtion of the size of the �rst waiting job, and thesize and time distribution of the running jobs. If wj1 is small but it an start only aftera large job terminates, extra will onsequently be large. On the other hand, if the size ofthe terminating job is small and wj1's size is relatively large, fewer extra proessors willbe available.jWQj on the other hand, depends on the system load. On heavy loaded systems themean waiting queue length an reah tens of jobs with peaks reahing sometimes hundreds� a fat that signi�antly inreases the runtime of the algorithm. Two enhanements anbe applied in the pre-proessing phase. Both result in a shorter waiting queue jWQ0j <jWQj and thus improve LOS runtime performane.The �rst enhanement is to exlude jobs larger than the mahine's urrent free apa-ity. If wji:size > n it is lear that it will not be started in the urrent sheduling step, so33



it an be safely exluded from the waiting queue without any e�et on the results.The seond enhanement is to limit the number of jobs examined by the algorithm byinluding only the �rst C waiting jobs in WQ0 where C is a prede�ned onstant. We allthis approah limited lookahed sine we limit the number of jobs the algorithm is allowedto examine. It is often possible to produe a shedule whih maximizes the mahine'sutilization by looking only at the �rst C jobs, thus by limiting the lookahead, the sameresult are ahieved, but with muh less omputation e�ort. Obviously this is not alwaysthe ase, and suh a restrition might produe a shedule whih is not optimal. The e�etof limiting the lookahead on LOSs results is examined in Setion 4.4.| Looking at our initial waiting queue desribed in the table in Figure 3.4, it is learthat wj1 annot start at t sine its size exeeds the mahine's 5 free proessors. Thereforeit an be safely exluded from the proessed waiting queue without e�eting the produedshedule. The resulting waiting queue WQ0 holds only four jobs as shown in Table 3.8.wj sizessize2 203 114 225 33Table 3.8: Optimized Waiting Queue WQ0We ould also limit the lookahead to C = 3 jobs, exluding wj5 fromWQ0. In this asethe produed shedule will ontain jobs wj2, wj3 and wj4, and not only that it maximizesthe utilization of the mahine, but it is also idential to the shedule shown in Figure3.5. By limiting the lookahead we improved the algorithm runtime and ahieved the sameresults.
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Chapter 4
Experimental Results
4.1 The Simulation EnvironmentWe implemented all aspets of the algorithm inluding the optimizations mentioned inSetion 3.5.1, in a job sheduler we named LOS, and integrated LOS into the frameworkof an event-driven job sheduling simulator. We used logs of the Cornell Theory Center(CTC) SP2, the San Diego Superomputer Center (SDSC) SP2, and the Swedish RoyalInstitute of Tehnology (KTH) SP2 parallel superomputers (See Appendix B - WorkloadCharateristis for details) as a basis [28℄, and generated logs of varying loads rangingfrom 0:5 to 0:95, by multiplying the arrival time of eah job by onstant fators. Forexample, if the o�ered load in the CTC log is 0:60, then by multiplying eah job's arrivaltime by 0:60 a new log is generated with a load of 1:0. To generate a load of 0:9, eahjob's arrival time is multiplied by a onstant of 0:600:90 . We laim that in ontrast to otherlog modi�ation methods whih modify the jobs' sizes or runtimes, our generated logsand the original ones maintain resembling harateristis. The logs were used as an inputfor the simulator, whih generates arrival and termination events aording to the jobsharateristis of a spei� log.On eah arrival or termination event, the simulator invokes LOS whih examines thewaiting queue, and based on the urrent system state it deides whih jobs to start.For eah started job, the simulator updates the system free apaity and enqueues atemination event orresponding to the job termination time. For eah terminated job,35



the simulator reords its response time, bounded slowdown (applying a threshold of � = 10seonds), and wait time.4.2 Improvement over EASYWe used the framework mentioned above to run simulations of the EASY sheduler [24,25℄, and ompared its results to those of LOS whih was limited to a maximal lookaheadof 50 jobs. By omparing the ahieved utilization vs. the o�ered load of eah simulation,we saw that for the CTC and SDSC workloads (Figures 4.1(a,b) ) a disrepany oursat loads higher than 0.9, whereas for the KTH workload (Figure 4.1()) it ours onlyat loads higher than 0.95. As suh disrepanies indiate that the simulated system isatually saturated, we limit the x axis to the indiated ranges when reporting our results.As the results of shedulers proessing the same jobs may be similar, we need toompute on�dene intervals to assess the signi�ane of observed di�erenes. Ratherthan doing so diretly, we �rst apply the �ommon random numbers� variane redutiontehnique [29℄. For eah job in the workload �le, we tabulate the di�erene between itsresponse time under EASY and under LOS. We then ompute on�dene intervals onthese di�erenes using the bath means approah. By omparing the di�erene betweenthe shedulers on a job-by-job basis, the variane of the results is greatly redued, and soare the on�dene intervals.The results for response time are shown in Figure 4.2 , and for bounded slowdown inFigure 4.3. The results for wait time are the same as those for response time, beausewe are looking at di�erenes. In all the plots, the mean job di�erential response time (orbounded slowdown) is positive aross the entire load range for all three logs, indiatingthat LOS outperforms Easy with respet to these metris. This observation is reinforedby that fat that all lower boundaries of the 90% on�dene interval measured at key loadvalues, remain above the load axis, indiating the auray of our results.
36
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4.3 Job Seletion E�et on Performane4.3.1 Seleting Instead of BypassingIn Setion 3.4 we introdued the Seleted-First algorithm whih is a modi�ation of theoriginal algorithm for onstruting S'. Unlike the original, Bypassed-First algorithm whihselets jobs loser to the head of the queue, the Seleted-First algorithm favors jobs atthe queue tail.To ompare the two algorithms we used the framework desribed in Setion 4.1 andran two simulation of LOS whih was limited to a maximal lookahead of 50 jobs. The onlydi�erene between the two runs is that in the �rst, LOS used the unmodi�ed Bypassed-First algorithm, and in the seond, the Seleted-First algorithm was used to onstrutS'. Following the explanation in Setion 4.2, we applied the �ommon random numbers�variane redution tehnique [29℄. For eah job in the workload �le, we tabulate thedi�erene between its bounded slowdown in the �rst and the seond runs, omputedon�dene intervals on these di�erenes and plotted the results. We deided to fous ouranalysis on the mean job bounded slowdown metri sine it does not use absolute values(See Setion 1.1 - The Goals of the Job Sheduler), and thus more aurately re�ets thedi�erenes between the two algorithms.The results are shown in Figure 4.4. We see that for all three workloads, the mean jobbounded slowdown di�erene is positive aross the entire load range � a lear indiationthat the Seleted-First algorithm outperforms the original Bypassed-First with respet tothis metri. On the other hand if we ompare the resulting plots to those of Figure 4.3where LOS was ompared to EASY, we see that the urves here are signi�antly lowerand in fat some of the lower foundries of the 90% on�dene interval bars fall below theload axis. For example, the mean job di�erential bounded slowdown at 90% load for theCTC workload in Figure 4.4(a) is 2, while in Figure 4.3(a) it is about 18. For the SDSCworkload in Figure 4.4(b) it is 16 while in Figure 4.3(b) it is 65 et. The reason for thelow urves is the fat that unlike Setion 4.2 where we ompared LOS to a oneptuallydi�erent sheduling algorithm, we now ompare two versions of the same sheduler, bothwhih fous and ahieve the exat same maximal utilization, but only di�er in the set of40



jobs whih onstrut the �nal shedule. Therefore we an expet the performane gapsto be smaller, but still we see that hoosing di�erent sets jobs e�et LOSs performane,a positive improvement in our ase.
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4.3.2 Maximizing the Number of Started JobsIn Setion 3.4.1 we introdued the Maxjobs approah. We stated that onsidering thenumber of jobs whih will start, and seleting the path on whih this number is maximized,is expeted to improve LOS's performane sine less jobs will remain waiting.We followed the simulation paradigm of Setion 4.3.1 and ran two simulations of LOS.In the �rst, LOS used the unmodi�ed algorithm for onstrutingM' (Algorithm 3). In theseond, this algorithm was replaed with Algorithm 6 whih enapsulates the Maxjobsapproah. Again, for eah job we tabulated the di�erene between its bounded slowdownin the �rst and the seond runs, omputed on�dene intervals on these di�erenes andplotted the results.The results are shown in Figure 4.5. The urve title �No_Merit - Max_Jobs� indiatesthat the di�erenes are between the original algorithm where no merit omputation wasinvolved and the Maxjobs algorithm whih starts the maximal number of jobs.The fat that for all three workloads and for the entire load range, the mean jobdi�erential bounded slowdown remain positive indiates that the Maxjobs algorithmoutperforms the original algorithm for onstruting M', and sine the time omplexity ofboth algorithms is idential, it is the preferable hoie in view of its results.
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4.3.3 Maximizing the Total SlowdownIn Setion 3.4.1 we introdued theMax-Slowdown approah in whih the set S' is hosen ina way that its overall total slowdown is maximized. We followed the paradigm of Setions4.3.2 and 4.3.1, and run two simulations of LOS, one with the unmodi�ed algorithm foronstruting M' and the seond with the modi�ed Algorithm 7 whih onsiders the jobsslowdown.The results in Figure 4.6 show that LOS performane is boosted when using the Max-Slowdown approah ompared to the results ahieved when the original algorithm foronstruting M' was used. In addition, the results far exeeds those of the Maxjobsapproah in Figure 4.5 and the seleted-�rst algorithm in Figure 4.4.Just for omparison, the maximal di�erential bounded slowdown for the KTH workloadin Figure 4.5() is 50, in Figure 4.4() it is 60 while for the Max-Slowdown in Figure 4.6it is 90. Similar observation hold for the CTC and SDSC workloads.To omplete the performane evaluation we ompared LOS when using the Max-Slowdown approah, to the EASY sheduler. We followed the simulation paradigm ofSetion 4.2 and plotted the mean job di�erential bounded slowdown urve in Figure4.7. We then ompared the results to Figure 4.3, where the unmodi�ed algorithm foronstruting M' was used. As an be seen, for all three workloads and for the entireload range, the mean job di�erential bounded slowdown urves in Figure 4.7 are higherthan the urves in Figure 4.3. The fat that the new urves are higher indiates that thedi�erene between the jobs bounded slowdown under EASY and under LOS has inreased.Sine EASY was not modi�ed, it means the Max-Slowdown approah had further reduedthe jobs slowdown and thus it outperforms the original algorithm for onstruting M'.It is also interesting to see how does the Max-Slowdown approah e�et other metrissuh as jobs' response time. We plotted the mean job di�erential response time underEASY and LOS in Figure 4.8 and ompared the resulting urves to Figure 4.2. For allthree workloads the urves of the Max-Slowdown approah are higher than those of theunmodi�ed algorithm for onstruting M` whih means that this approah outperformsthe original algorithm with respet to other metris as well. As an be seen in Sub-�gures 4.8(b) and 4.8(), in 90% load (95% in KTH) there is a slight advantage for the45



unmodi�ed algorithm. This does not mean theMax-Slowdown has failed to perform and infat a positive mean response di�erene of 14000 (20000 in KTH) is a major improvementover EASY. What this means is that on extremely high loads when the mahine almostsaturates, a hange in the heuristi may be onsidered if the sheduler target is to minimizethe response time of the jobs.
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4.4 Limiting the LookaheadSubsetion 3.5.1 proposed an enhanement alled limited lookahead aimed at improvingthe runtime performane of LOS. We explored the e�et of limiting the lookahead onLOS's results by performing six LOS simulations with a limited lookahead of 10, 25, 35,50, 100 and 250 jobs respetively. Figure 4.9 presents the e�et of the limited lookaheadon the mean job response time. Figures 4.10 and 4.11 present its e�et on the mean jobbounded slowdown and mean job wait time respetively.The notation LOS.X is used to represent LOS's result urve, where X is the maximalnumber of waiting jobs that LOS was allowed to examine on eah sheduling step (i.e.its lookahead limitation). We also plotted EASY's result urve to allow a omparison.We observe that for the CTC log in Figure 4.9(a) and the KTH log in Figure 4.9(),when LOS is limited to examine only 10 jobs at eah sheduling step, its resulting meanjob response time is relatively poor, espeially at high loads, ompared to the resultahieved when the lookahead restrition is relaxed. The same observation also applies tothe mean job bounded slowdown for these two logs, as shown in Figures 4.10(a,) andto the mean job wait time as shown in Figures 4.11(a,). As most learly illustrated in�gures 4.9(a), 4.10(a) and 4.11(a), the result urves of LOS and EASY interset severaltimes along the load axis, indiating that the two shedulers ahieve the same results withneither one onsistently outperforming the other as the load inreases. The reason forthe poor performane is the low probability that a shedule whih maximizes the mahineutilization atually exists within the �rst 10 waiting jobs, thus although LOS produesthe best shedule it an, it is rarely the ase that this shedule indeed maximizes themahine utilization. However, for the SDSC log in Figures 4.9(b), 4.10(b) and 4.11(b),LOS manages to provide good performane even with a limited lookahead of 10 jobs.As the lookahead limitation is relaxed, LOS performane improves but the improve-ment is not linear with the lookahead fator, and in fat the resulting urves for all threemetris are relatively similar for lookahead in the range of 25�250 jobs. Thus we an safelyuse a bound of 50 on the lookahead, thus bounding the omplexity of the algorithm.The explanation is that at most of the sheduling steps, espeially under low loads, thelength of the waiting queue is kept small, so a lookahead of hundreds of jobs has no e�et50
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in pratie. As the load inreases and the mahine advanes toward its saturation point,the number of waiting jobs inreases, and the e�et of hanging the lookahead is morelearly seen. Figure 4.12 ompares the mean queue length under EASY and LOS whihwas limited to a lookahead of 50 jobs. We an make two interesting observation basedon the results. First, with LOS, the mean queue length is atually shorter ompared toEASY, and the reason is its e�ieny in paking jobs, whih allows them to terminatefaster. The seond observation is that only for the KTH log in Sub-�gure 4.12(), the meannumber of waiting jobs exeeds the lookahead limitation of 50 jobs, and this happens onlyat loads higher than 90%. The problem with Figure 4.12 is that the mean queue lengthprovides only a brief summary to what happened over the entire simulation and thattime-dependent information suh as peaks in whih the queue length an reah hundredsof jobs are absorbed in the mean alulation.A detailed time-dependent analysis of the queue behavior is presented in Setion 4.5where the queue length is examined at every sheduling step aross the entire simulation.The results show that although peaks of hundreds of jobs atually exist, they are relativelyrare, and that LOS manages to keep the queue length well below 50 jobs at times whenit reahes a length of hundreds under EASY.4.5 The LOS Sheduler and Users SatisfationIn Setion 3.5.1 we stated that on a heavily loaded system the waiting queue length anreah tens of jobs, so a sheduler apable of maintaining a shorter queue aross a largefration of the sheduling steps, inreases the users' satisfation with the system.It is interesting to examine if and how LOS manages to maintain a shorter waitingqueue when ompared to EASY. It is also interesting to examine the queue behavior whenthe Max-Slowdown approah is used by LOS.To explore the queue length behavior, we instrumented the simulator with a waiting-queue length ounter and reorded its hanging value on every sheduling step (i.e arrivalor termination of jobs) aross the entire simulation.As suh instrumentation produes large amounts of data, we enabled it only for thetwo most high o�ered loads on whih the simulation is still stable, that is, for the SDSC54
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and CTC workloads, ounter reording has been enabled for 0.85 and 0.90 loads and forthe KTH workload results were reorded for 0.90 and 0.95 loads.A detailed omparison of the queue length behavior of the EASY sheduler and LOSwhih was limited to a lookahead of 50 jobs is presented in Figures 4.13 to 4.15. Figure4.13 presents the simulation results for the CTC workload. Figures 4.14 and 4.15 presentsthe results for the SDSC and KTH respetively. In all �gures, the urves in Sub-�gures(a) and () are those of the unmodi�ed algorithm and in Sub-�gures (b) and (d) are forthe Max-Slowdown algorithm.As learly seen in all �gures, LOS maintains a shorter queue ompared to EASY arossa dominating portion of the sheduling steps. The reason is LOS's e�ieny in pakingjobs. As jobs are paked in an optimal manner, more proessors are utilized and thusmore omputation is performed. As a result more jobs will terminate whih allows waitingjobs to start, thus the waiting queue length is redued.Following the results analysis we an safely state that in addition to improving spei�metris suh as response time or slowdown , LOS will also inrease users satisfation whenompared to the EASY sheduler.
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(d) The Max-Slowdown ApproahFigure 4.13: Queue Length Behavior Comparison- CTC log
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(d) The Max-Slowdown ApproahFigure 4.14: Queue Length Behavior Comparison - SDSC log
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(d) The Max-Slowdown ApproahFigure 4.15: Queue Length Behavior Comparison - KTH log
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Chapter 5
Conlusions
Bak�lling algorithms have several parameters. In the past, two parameters have beenstudied: the number of jobs that reeive reservations, and the order in whih the queue istraversed when looking for jobs to bak�ll. We introdue a third parameter: the amountof lookahead into the queue. We show that by using a lookahead window of about 50jobs it is possible to derive muh better paking of jobs under high loads, and that thisimproves both the mean job response time and mean job bounded slowdown metris.In addition, improving paking positively e�ets seondary metris suh as the queuelength behavior. We show that on heavily loaded systems under the ontrol of tradi-tional bak�lling shedulers, the waiting queue length an reah tens of jobs with peakssometimes reahing hundreds. On the other hand, when lookahead is used and paking isoptimized, the waiting queue is maintained shorter aross large fration of the shedulingsteps and this inreases the users' satisfation with the system.There is often more than a single way to pak jobs and ahieve the same utilizationvalues. We explored the various alternatives by inluding merit alulation in the looka-head proess and hoosing the set of jobs whih maximizes or minimizes the merit value.We show that performane an improve or redue with respet to the hosen merit. Sur-prisingly, performane is boosted when hoosing the set of jobs, S 0, with the maximaltotal slowdown. The reason is the nature of the slowdown metri whih is mostly e�etedby the shorter jobs and thus, a set with a large total slowdown is likely to ontain theshortest jobs. By starting these jobs ahead of longer ones, the mean job response time isredued and performane muh improve. 60



A future study should further explore the various ways to optimize the algorithmruntime. In Setion 3.5.1 we suggested two enhanements whih result in a shorter waitingqueue and showed that runtime performane an improve without e�et on the results.Calulating the utilization in an on-going fashion and stopping the onstrution of M 0when utilization reahes a ertain threshold is another improvement whih we suggestas a study ase. In addition, extending our algorithm to perform reservations for morethan a single job and exploring the e�et of suh a heuristi on performane presents aninteresting hallenge.
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Appendix A
Bak�lling Algorithms
A.1 The EASY Bak�lling AlgorithmThe EASY bak�lling algorithm is exeuted repeatedly whenever a new job arrives or arunning job terminates, if the �rst job in the queue annot start. In eah iteration, thealgorithm identi�es a job that an bak�ll if one exists.Algorithm 8 EASY Bak�ll1. Find the shadow time and extra nodes:(a) Sort the list of running jobs aording to their expeted termination time.(b) Loop over the list and ollet nodes until the number of available nodes issu�ient for the �rst job in the queue.() The time at whih this happens is the shadow time.(d) If, at this time, more nodes are available than needed by the �rst queued job,the ones left over are the extra nodes.2. Find a bak�ll job:(a) Loop on the list of queued jobs in order of arrival.(b) For eah one, hek whether either of the following onditions hold:i. It requires no more than the urrently free nodes and will terminate bythe shadow time, orii. It requires no more than the minimum of the urrently free nodes and theextra nodes.() The �rst suh job an be used for bak�lling.66



A.2 The Conservative Bak�lling AlgorithmConservative bak�lling maintains two data strutures. One is the list of queued jobsand the time at whih they are expeted to start exeution. The other is a pro�le of theexpeted proessor usage at future times. The algorithm is exeuted whenever a new jobarrives.Algorithm 9 Conservative Bak�ll1. Find anhor point:(a) San the pro�le and �nd the �rst point where enough proessors are availableto run this job. This is alled the anhor point.(b) Starting from this point, ontinue sanning the pro�le to asertain that theproessors remain available until the job's expeted termination.() If not, return to (a) and ontinue the san to �nd the next possible anhorpoint.2. Update the pro�le to re�et the alloation of proessors to this job, starting fromits anhor point.3. If the job's anhor is the urrent time, start it immediately.
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Appendix B
Workloads Charateristis
B.1 The CTC WorkloadThe Cornell Theory Center (CTC) log ontains 79302 job reords submitted to a 512nodes IBM SP2 System. Log reording started at Wednesday, 26 Jun 96, 16:06:00 andended at Saturday, 31 May 97, 22:11:26.Information :1. http://www.t.ornell.edu2. http://www.s.huji.a.il/labs/parallel/workload
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Figure B.1: Jobs size distribution - CTC logB.2 The SDSC WorkloadThe San Diego Superomputer Center (SDSC) log ontains 67667 job reords submitted toa 128 nodes IBM SP2 System. Log reording started at Wednesday, 29 Apr 98, 16:05:28,16:06:00 and ended at Sunday, 30 Apr 00, 04:08:32.Information :1. http://joblog.npai.edu2. http://www.s.huji.a.il/labs/parallel/workload
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Figure B.2: Jobs size distribution - SDSC logB.3 The KTH WorkloadThe Swedish Royal Institute of Tehnology (KTH) log ontains 28490 job reords sub-mitted to a 100 nodes IBM SP2 System. Log reording started at Monday, 23 Sep 96,12:00:31 and ended at Friday, 29 Aug 97, 08:55:01.Information:1. http://www.pd.kth.se2. http://www.s.huji.a.il/labs/parallel/workload
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Figure B.3: Jobs size distribution - KTH log
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