
The Importance of Feedback in Evaluating

and Designing Parallel Systems Schedulers

Thesis submitted for the degree of

“Doctor of Philosophy”

by

Edi Shmueli

Submitted to the Senate of the Hebrew University

September, 2008

This work was carried out under the supervision of

Prof. Dror G. Feitelson

Acknowledgments

Six years ago, when I began working on the Blue Gene/L project in IBM Haifa, Jose Moreira of

the IBM T.J. Watson Research Center who was a manager in the project at that time suggested

that we contact Dr. Dror G. Feitelson, a researcher from the Hebrew University in Jerusalem,

who investigates job scheduling for parallel-systems. A couple of weeks later, I found myself

waking up as early as 5:30am in the morning and driving to Jerusalem to meet Dr. Feitelson for

the first time. Who could have guessed that this one-time trip will turn into a routine, once a

week, every week, for the next six years.

Dror, you first accepted me as your M.A. student, though officially I belonged to the Haifa

University. In fact, my masters thesis, our thesis, was the first to be submitted in the newly

formed computer science department in Haifa; thank you. I never thought to pursue a third

degree; never cared much for academic research really, but “never” as I personally discovered,

can be open for interpretation. Our fruitful discussions, your vast comprehensive knowledge and

bright academic way of thinking captivated me. You accepted me, supported and guided me

throughout the entire course of the PhD, even when I was half a globe away. You thought me

uncompromising excellence, and got me to the peak of my academic performance. Thank you

again, deeply.

Dr. Michael Rodeh. Ten years ago I entered your office in our old IBM building in MATAM,

and asked to move to a research position in HRL. You said I should first have an academic

degree, and began to type something in your computer. The next day I got a call from the Haifa

University, asking me to come over and bring my grade chart. Two months later, I found myself

sitting in class taking my first B.Sc course; the rest is history. It is amazing how this one short

meeting totally changed my life. Ten years of who knows how many sleepless nights, depicted

in this dissertation are now coming to an end, and it starts to feel worthwhile. Thank you too.

Finally, to the team of the parallel-systems lab at HUJI, Dan Tsafrir, Yoav Etsion, Tal Ben-

Nun, Ahuva Mualem, Eitan Frachtenberg, Keren Quaknine, and all other past and present stu-

dents for your friendship and the enjoyable times we spent together.

Thank you all.

Abstract

An important goal of any parallel-system scheduler is to promote the productivity of its users.

To achieve high productivity the scheduler has to keep its users satisfied and motivate them to

submit more jobs. Due to the high costs involved in deploying a new scheduler, it is uncommon

to experiment with new designs in reality for the first time. Instead, whenever a new scheduler is

proposed, it is first evaluated in simulation, and only if it demonstrates significant improvements

in performance, it then becomes a candidate for an actual deployment. The role of simulations is

thus critical for the choices made in reality.

The conventional simulations presently used to evaluate the schedulers are trace-driven and

use an open-system model to play-back the trace and generate the workload for the evaluation.

This means that jobs get submitted during the simulation solely according to the timestamps from

the trace, and there is no feedback in the workload between the arrival of new jobs, the load in

the system, and the ability of the simulated scheduler to handle the load. The importance of this

feedback is the subject of this research.

We argue that the lack of feedback in the workload affects not only the evaluation of the

schedulers but also their design. It affects the evaluation since the generated workloads no longer

reliably represent real workloads, which causes the performance predicted by the simulation to

be inaccurate. It affects the design because the throughput metric which is the best indicator

for user productivity cannot be used in open-system evaluation. This forces the schedulers to

focus on the packing of jobs instead of on the users of the system directly, to try and optimize an

alternative set of metrics that are only conjectured to correlate with user satisfaction.

As an alternative, we propose a novel simulation methodology named site-level simulation

that uses user-models instead of traces to dynamically generate the workload for the evaluation.

These models, whose behavior in simulation is similar to the behavior of real users, interact with

the system and introduce feedback that improves the representativeness of the workload, and

allows user-aware schedulers to be reliably evaluated and hence effectively designed.

viii

The most important elements in a site-level simulation are the user-models. We present a

novel analysis methodology through which we demonstrate that it is possible to uncover the

users’ behavior patterns directly from traces of systems, without conducting live experiments

with real users. We show that users of parallel-systems are affected by the response times of

their jobs and not the slowdown as was previously assumed, and that the longer the response

the higher the probability for the users to abort their interactive sessions with the system. These

findings form the basis for the user models we use in our simulations.

To experiment with site-level simulations we present Site-Sim — a site-level simulator that

integrates users and schedulers under a single simulation framework, to reproduce the feedback

effects found in real sites workloads. We then carry a series of carefully designed experiments to

demonstrate the importance this feedback for the evaluation and the design of the schedulers.

We show that the conventional simulations tend to under or overestimate the performance of

the schedulers, and that the prediction errors may reach hundreds of percents. We demonstrate

how conventional load scaling further ruins the representativeness the workload by violating the

precedence relations that naturally exist between jobs in reality.

We present CREASY — a novel user-aware scheduler that exploits knowledge on user behav-

ior to try and improve user satisfaction, and compare its performance to the well-known EASY

scheduler that focuses solely on the packing of jobs. We show that user productivity improves

by tens of percents under the user-aware design, and that this stems from our scheduler’s ability

to maintain long user sessions under high loads. We also show that conventional performance

metrics such as the mean job response time do not necessarily correlate with productivity, which

means that it is even possible to dismiss potentially good design alternatives under the conven-

tional simulations.

This work was conducted solely in the context of parallel-systems scheduling. However,

the concept of incorporating feedback in the workload is applicable to many other types of sys-

tems such as I/O subsystems, memory hierarchies, and communication networks, that are still

evaluated using trace-driven, open-system simulations. We believe the ideas we present in this

work are applicable to these types of systems as well, which can similarly benefit from a highly

representative workload and a reliable evaluation.

Contents

1 Introduction 1

1.1 The Conventional Simulations . 1

1.2 Importance of Feedback in the Workload . 3

1.2.1 Scheduler Evaluations . 3

1.2.2 Scheduler Designs . 4

1.3 Site-Level Simulations . 5

1.4 Dissertation Structure . 7

2 Methodology 9

2.1 Site-Sim: Our Site-Level Simulator . 9

2.2 The Traces: Our Source of Data . 11

3 Feedback and Scheduler Evaluations 13

3.1 Background . 13

3.2 Conventional Simulations . 15

3.2.1 Feedback Signatures . 16

3.3 Site-Level Simulations . 18

3.3.1 Modeling Job Submissions . 19

3.3.2 Modeling Workpools . 22

3.4 Simulation Results . 29

3.4.1 Inaccurate Performance Predictions . 29

3.4.2 Safe Load Scaling . 33

3.4.3 Quantifying Productivity . 35

3.5 Related Work . 36

3.6 Summary . 38

x CONTENTS

4 Understanding User Behavior 39

4.1 Background . 39

4.2 Trace Data . 41

4.3 Metrics Correlation with User Behavior . 41

4.4 Jobs Response Time and User Sessions . 46

4.5 User Performance Expectations . 49

4.6 Related Work . 52

4.7 Summary . 54

5 Feedback and Scheduler Designs 57

5.1 Background . 57

5.2 Common Scheduler Designs . 59

5.2.1 Simulations Effect on Design . 62

5.3 Enhanced Site-level Simulations . 64

5.3.1 User Behavior Patterns . 65

5.3.2 Complete User Model . 67

5.4 User-Aware Scheduling . 74

5.4.1 Criticality of Jobs . 75

5.5 Simulation Results . 76

5.5.1 User Productivity . 77

5.5.2 Conventional Performance Metrics . 78

5.6 Related work . 81

5.7 Summary . 84

6 Discussion and Conclusions 85

Appendices 89

A Site-Sim Interfaces 89

A.1 User Primary Interfaces . 90

A.2 Scheduler Primary Interfaces . 90

Bibliography 93

List of Figures

1.1 Feedback in real workloads . 4

2.1 Sample execution of Site-Sim . 11

3.1 Feedback in real workloads . 17

3.2 Workload in site-level simulations . 19

3.3 CDF of think times in the traces . 20

3.4 Sessions and batches . 21

3.5 Distribution of batch widths . 23

3.6 Distribution of inter-submission times . 24

3.7 Distribution of think times between batches . 25

3.8 Distribution of job sizes . 26

3.9 Distribution of job runtimes . 27

3.10 Distribution of job size repetitions . 28

3.11 Experiment illustration . 30

3.12 Underestimated and overestimated performance 32

3.13 Submission and execution ordering violations 34

3.14 Load scaling in site-level simulations . 35

3.15 Load scaling in conventional simulations . 36

3.16 Utilization and throughput . 37

4.1 Metrics correlation with user behavior . 44

4.2 Graphical illustration of the bins . 45

4.3 CDF of think times in the traces . 47

4.4 CDF of think times in the response-bins . 48

4.5 Response times effect on user behavior . 49

xii LIST OF FIGURES

4.6 Graphical illustration of the bins . 51

4.7 Performance expectations and user behavior . 52

5.1 Three different schedules . 61

5.2 CDF of think times in the traces . 65

5.3 Response times effect on user behavior . 67

5.4 Two think time distributions . 69

5.5 CDF of job sizes and runtimes . 70

5.6 CDF of size repetitions . 71

5.7 Sessions and batches . 71

5.8 Daily and weekly cycles . 72

5.9 Models interaction during simulation . 74

5.10 Job throughput and session length . 78

5.11 Inconsistency in conventional metrics . 79

5.12 Per-class performance comparison . 80

5.13 Improvements relative to EASY . 82

Chapter 1

Introduction

P
ARALLEL-SYSTEMS SCHEDULERS are usually evaluated in simulation before they become can-

didates for an actual deployment. High setup costs involved in such deployments and the

negative impact an inefficient scheduler may have on the productivity of its users make the role of

simulations critical, and emphasize the need for a reliable simulation methodology. This research

exposes the shortcomings of the conventional, trace-driven, open-system simulations presently used

to evaluate the schedulers, that stem from a workload generation process that lacks any feedback. It

proposes and promotes a novel simulation methodology that uses user-models instead of traces to

dynamically generate the workload for the evaluation, and demonstrates through a series of carefully

designed experiments that it is more reliable. The first three sections in this introduction chapter

briefly describe the conventional simulations, the problems that arise from not having feedback in

the workload, and our proposed simulation methodology, respectively. Section 1.4 describes the

overall structure of the dissertation.

1.1 The Conventional Simulations

In its simplest form a parallel-system has a distributed memory model, in which every processor

in the system is associated with a private memory, and the processors are connected to each

other using a fast network. A parallel job in such a system is a unit of work that is composed of

multiple processes that need to execute in parallel and communicate over the network.

Furthermore, there is no time-sharing nor preemption support in the system. This means that

processors need to be allocated to the jobs using a one-to-one mapping — one processor for

every process of the job, and once allocated they remain dedicated to the job until it terminates.

This scheme is often referred to as space-slicing.

The system may need to serve tens or even hundreds of users simultaneously, so naturally

users are not allowed to access the system directly. Instead, they submit their jobs to the system

2 Introduction

scheduler which is the central software component that manages the system’s resources, and rely

on the scheduler to execute the jobs on their behalf.

Submitting a job implies providing to the scheduler a description of the jobs’ resource re-

quirements. For our type of system this typically includes two important attributes: the number

of processors the job requires in order to execute — which is often referred to as the job’s size,

and an estimated upper bound on the runtime of the job, to enable the scheduler to plan ahead.

The scheduler in turn accepts the jobs from the users and places them in a queue where they

wait for processors to become available. Whenever the state of the system changes, either due

to an arrival of a new job or a termination of a running job, it scans the queue and selects one

or more jobs for execution based on the current and optionally the projected processor usage.

Different schedulers use different heuristics to select the jobs, but all schedulers must prevent the

starvation of jobs.

An important goal of the scheduler is to promote the productivity of its users, and this requires

the scheduler to keep its users satisfied and motivate them to submit more jobs. When a new

scheduler is proposed, the only way to accurately measure its performance is to deploy it in a

real environment with live users, but this is often impractical due to high setup costs and the idle

time spent on training the users.

Theoretical analysis e.g., queuing theory, can be very useful in order to get a rough indica-

tion on performance, but the need to use abstraction to enable mathematical tractability limits

the detailed description of the scheduler. Since such details are often important, e.g., when com-

paring two closely related scheduling algorithms, evaluating the scheduler’s performance using

simulation becomes the only practical alternative.

The conventional simulations presently used to evaluate the schedulers are trace-drivenwhich

means that they use traces as the source for the workload. The traces come from real production-

use parallel-systems and contain records of the jobs that were submitted to the system by its

users over a period of time. Each record in the trace has several data fields that describe a job,

and which are later treated as requirements for resources by jobs, in the course of simulation.

The records also include a timestamp that indicates when the job was originally submitted.

To actually generate the workload, the conventional simulations use an open-system model that

simply plays-back the trace according to the timestamps and irrespectively of the system’s state.

Sometimes the timestamps are scaled by a certain factor before the simulation begins in order to

expand or reduce the inter-arrival times and change the load conditions for the simulation, but in

either case there is no feedback in the workload between the arrival of new jobs, the load in the

1.2 Importance of Feedback in the Workload 3

system, and the ability of the simulated scheduler to handle the load.

1.2 Importance of Feedback in the Workload

This lack of feedback in the workload manifests itself in several ways. We decided to structure

this dissertation around what we believe are the two most prominent domains affected by the

feedback: scheduler evaluations and scheduler designs. The next two sections briefly describe

the problems that arise from not having feedback in each of the domains.

1.2.1 Scheduler Evaluations

The premise underlying the conventional simulations is that the generated workloads, and re-

gardless of whether the load was modified or not, are indeed reliable representatives of real

workloads, otherwise the performance predicted by the simulation would be inaccurate.

We argue that this is not the case since in reality there is a continuous feedback between the

performance of the system and the behavior of its users: users submit fewer jobs if the system is

already loaded and response times are long, but on the other hand would exploit periods of low

load and short queuing times to submit as many jobs as possible.

Figure 1.1 illustrates these feedback effects in the workload. Each sub-figure represents a

trace of a real parallel-system. We partitioned the traces into weekly slices, and counted the

number of jobs submitted, and the average job node-seconds in every slice. When plotting one

against the other we see that when there are many jobs they tend to be smaller but when the jobs

are heavy, there are fewer of them.

Such feedback effects leave their signature in the traces in the form of timestamps. When

playing back the trace according to these timestamps, the generated workload then matches the

scheduling policy that was in effect when the trace was recorded instead of adapting itself to

the scheduler being evaluated, which causes the performance predicted by the simulation to be

highly inaccurate.

We also argue that load scaling as currently performed further ruins the representativeness of

the workload by generating conditions that cannot exist in reality. Since users often wait for their

jobs to complete before submitting additional jobs, some jobs simply cannot reside together in

the scheduler’s queue. However, when modifying the timestamps in the trace to simulate higher

loads, not only do such jobs get to coexist together, some jobs may even be picked for execution

while their predecessors are still queued.

4 Introduction

SDSC Paragon

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.775

CTC SP2

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.700

KTH SP2

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.609

LANL CM5

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.600

SDSC SP2

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.720

SDSC Blue

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.574

Figure 1.1: Feedback in real workloads: in weeks where many jobs are submitted they tend to

be smaller, and vice versa.

1.2.2 Scheduler Designs

Another problem which is attributed to the open nature of the simulations is that the throughput

of the scheduler being evaluated gets dictated solely by the timestamps from the trace, and it is

not affected by the actual performance of the scheduler. A scheduler capable of motivating its

users to submit more jobs will not cause more jobs to be submitted, and vice-versa. This means

that the throughput metric — which is the best indicator for user productivity, cannot be used in

the evaluation.

The common solution is to use an alternative set of metrics, which on one hand can be

affected by the scheduler’s actions, and on the other be also conjectured to correlate with user

satisfaction. More specifically, the jobs’ average response-time and slowdown are frequently

used in evaluations. The premise is that improving them in simulation will result in a higher

productivity in reality.

Consequently, all schedulers evaluated using the conventional simulations have evolved to

1.3 Site-Level Simulations 5

consider the users of the system only implicitly through these metrics. They often try to optimize

the packing of the jobs in the schedule, since tighter packing usually leads to lower average

simulated values.

We argue however, that the only way to truly maximize productivity is to consider the users

of the system directly — to strive to keep them satisfied and motivate them to submit more jobs

and that the conventional, packing-based approach to scheduling leads to sub-optimal designs.

We also argue the that these seemingly “user-friendly” metrics do not necessarily correlate with

productivity, which means that it is even possible to dismiss potentially good design alternatives

as poor under the conventional simulations.

1.3 Site-Level Simulations

As an alternative to these simulations we propose a novel simulation methodology named site-

level simulation, that uses user-models instead of traces to dynamically generate the workload

for the evaluation. These models, whose behavior in simulation is similar to the behavior of real

users, interact with the system and introduce feedback that not only improves the representative-

ness of the workload, but also allows user-aware schedulers to be effectively designed. The later

stems from the fact that the throughput metric in our simulations is in fact affected by the ac-

tions of the scheduler, which means that schedulers can be designed to improve user satisfaction

directly, and their effect on productivity will be reliably evaluated.

The basic and most important elements in a site-level simulation are the user models, and in

fact our entire methodology depends on the ability to understand the behavior of users, and to

capture this behavior in a model that can be used in the simulation. One of the major contributions

of this work is the analysis methodology we developed, through which we demonstrate that

it is possible to uncover the users’ behavior patterns directly from traces of systems, without

conducting live experiments with real users.

More specifically, we have found that the behavior of users of parallel-systems is affected by

the response times of their jobs, not the slowdown as was previously assumed. We also found

that response times affect the users’ decision to continue or abort their interactive sessions with

the system, and that this may relate to expectations that the users develop. These findings form

the basis for the user models we use in our simulations.

To experiment with site-level simulations we present Site-Sim — a site-level simulator that

integrates users and schedulers under a single simulation framework, to reproduce the feedback

6 Introduction

effects found in real sites workloads. We then carry a series of carefully designed experiments

to demonstrate the importance of the feedback in the workload for both the evaluation and the

design of the schedulers.

Our first set of experiments focuses on the representativeness of the workload. In a nutshell,

we run site-level simulations of low-end and high-end schedulers, and use the traces produced

by Site-Sim as input for conventional simulations. We show that the performance predicted by

these simulations tends to be under or overestimated, and that the prediction errors may reach

hundreds of percents. For example, the mean job response time of the FCFS scheduler is more

than 24 hours when simulated using a trace of the EASY scheduler, but it is only 31

3
hours when

evaluated in a site-level simulation having feedback in the workload.

We also use the traces to demonstrate how conventional load scaling further ruins the rep-

resentativeness of the workload. We record in the traces information on precedence relations

between the jobs, and modify the timestamps in the trace to simulate higher loads. We show that

the percentage of jobs that get submitted while their predecessors are still active in the system

increases rapidly with the load and furthermore, that the scheduler even picks jobs for execu-

tion that depend on the completion of other jobs that are still queued, which totally violates the

original orderings of the jobs.

For the second set of experiments we present CREASY — a novel user-aware scheduler that

inherits its backfilling algorithm from the original, packing-based EASY scheduler, but uses a

novel prioritization scheme that exploits knowledge on user behavior to prioritize jobs that are

critical to the users and improve user satisfaction. We compare the performance of our scheduler

to that of EASY’s and show that user productivity improves by more than 50% under the user-

aware design, and that this stems from CREASY’s ability to maintain long user sessions under

high loads.

We also compare the two schedulers according to the conventional performance metrics and

show that the average job response time under CREASY is 27% higher compared to EASY,

while the average slowdown is 66% lower. This inconsistency, which is the outcome CREASY’s

tendency to prioritize short jobs that mostly affect the slowdown metric at the expense of longer

ones that affect the response, makes it extremely difficult to identify the best scheduler for the

system, and may even lead to choosing EASY over CREASY as the preferred design alternative.

1.4 Dissertation Structure 7

1.4 Dissertation Structure

This dissertation evolves in three consecutive chapters, 3, 4 and 5, that together provide a com-

plete and deep understanding of the importance of the feedback in the workload. Each chapter is

self-contained and focuses on a subset of the problem. Chapter 3 focuses on the importance of

the feedback for the evaluation of the schedulers and Chapter 5 concentrates on its importance

for their design. Chapter 4 does not discuss the problems directly but provides important insights

as to how parallel systems affect the behavior of their users — insights that form the basis for the

user-models presented in Chapter 5.

All chapters begin with a Background section that introduces the problem, our approach

to solution, and briefly describes the results. All chapters end with a Summary section that

summarizes the chapter and motivates the next. Before that section we always include a Related

Work section that surveys publications in related contexts.

Table 1.2 on page 8 describes the overall structure of the dissertation. The table has three

main entries that correspond to chapters 3, 4 and 5, respectively. For consistency, we divided

each of these entries into five sub-entries that describe the problem each chapter tackles, our

proposed solution, what we believe are the main contributions of the chapter, the results, and

the next step which motivates the following chapter. Chapters 2 and 6 of the dissertation are

intentionally left out of the table; Chapter 2 discusses the methodological principles upon which

this work is based, and Chapter 6 concludes the entire research and suggests future research

directions.

The following table lists our refereed publications and the chapters to which they pertain.

Extended versions of these publications also appeared as technical reports.

Ref. Year Venue Chap. Comments

[55] 2006 MASCOTS 3 Nominated for Best Paper Award (1 of 3)

[56] 2007 MASCOTS 4

[57] 2008 TPDS 5

1’st reviewer: “This work has the potential to make a substantial

change to way future job scheduling research and development is

performed.”

2’nd reviewer: “I consider this paper one of great impact in the

field...I expect this paper to be widely cited in the community.”

Table 1.1: Our refereed publications and the chapters to which they pertain.

8 Introduction

Chapter 3: Feedback and Scheduler Evaluations

The problem
Workloads in conventional simulations are not reliable representatives of real work-

load, leading to performance prediction errors and unsafe load scaling.

Our solution
Use site-level simulations in which the workload is generated dynamically to evaluate

the performance of the schedulers.

Contribution
First attempt to understand user behavior from traces, identification of user sessions

and batches, development of user models and their integration in Site-Sim.

Results
Conventional simulations suffer from prediction errors of hundreds of percents, load

scaling generates conditions that cannot exist in reality.

Next step
Develop more realistic models of the users, so the simulation will not be limited to a

static number of active sessions. Calls for a deeper understanding of user behavior.

Chapter 4: Understanding User Behavior

The problem
Understanding user behavior typically requires research in psychology and the con-

duction of live experiments.

Our solution
A novel analysis methodology to uncover the effect of the system on its users directly

from traces of systems.

Contribution
Three questions are answered: which performance metric is most important to the

users, how does it affect their behavior, and why this happens.

Results

User behavior is correlated with the response times of their jobs, not the slowdown.

Response times affect the decision of users to continue or abort their sessions with

the system, and this may relate to expectations the users develop.

Next step
Use the above findings to develop more realistic models of the users, and a scheduler

that exploits this to improve productivity.

Chapter 5: Feedback and Scheduler Designs

The problem
Conventional simulations lead to sub-optimal scheduler designs, and may dismiss

potentially good design alternatives as poor.

Our solution
Site-level simulations with comprehensive user models allow the reliable evaluation

and hence the design of schedulers that focus on the users directly.

Contribution
Development of CREASY — the first truly user-aware scheduler that exploits knowl-

edge on user behavior to improve user satisfaction.

Results
Productivity under CREASY improves by 50% compared to existing designs, while

according to the conventional metrics its performance actually degrades.

Next step Further investigate user behavior, enhance the models and revise CREASY.

Table 1.2: Dissertation structure: this dissertation evolves in three consecutive chapters that

together provide a complete and deep understanding of the importance of the feedback. Each

chapter is self-contained and focuses on a subset of the problem.

Chapter 2

Methodology

W
E ARGUE that the conventional simulations lead to inaccurate performance predictions and

sub-optimal scheduler designs, but we lack a live environment with a real parallel system and

users to prove it. This imposed a great challenge that led us to seek alternative ways to demonstrate

our point in a convincing manner. We chose to concentrate on simulations and developed Site-Sim

— a site-level simulator that integrates users and schedulers under a single simulation framework,

to simulate the workloads that would have been observed by the scheduler had we had a live envi-

ronment. The most important elements in Site-Sim are the user models that generate the workload.

An even greater challenge was to understand the behavior of the users and to capture this behavior

in a model that can be used in simulation. Though intuitively it seems that this requires research

in psychology, we found that it is possible to uncover the users’ behavior patterns directly from

parallel-systems traces, without conducting live experiments with real users. Using one simulation

methodology to demonstrate the shortcomings of another, and relying on traces as the primary source

of data are therefore the two key principles upon which this work is based. In the following two sec-

tions we briefly describe Site-Sim and the traces. Due to its importance, we defer the discussion on

user behavior to Chapter 4.

2.1 Site-Sim: Our Site-Level Simulator

Site-Sim is a framework written in C++ that we developed specifically for running site-level sim-

ulations. We used Site-Sim extensively in all our experiments, both in Chapter 3 to demonstrate

the importance of the feedback for the evaluation, and in Chapter 5 to explore design alternatives

as we developed CREASY, our user-aware scheduler.

Site-Sim defines two types of entities, users and schedulers. The users generate the workload

for the simulation by submitting jobs to the scheduler, and the scheduler in turn schedules the jobs

and notifies the users when they complete. This interaction between the users and the scheduler

10 Methodology

continues throughout the entire course of the simulation, resulting in a workload that is generated

dynamically with respect to the temporal load conditions that exist in the system.

We refer to Site-Sim as a “framework” since it does not explicitly define how the users be-

have, or how the scheduler should schedule the jobs. Instead, it exploits class inheritance in C++

only to define the interfaces through which the different entities communicate. For example, to

submit a job the user needs to instantiate a job object and use the void User::submitJob(Job

j) interface to submit it. Site-Sim in turn will notify the scheduler on the job’s arrival using the

void Scheduler::arriveJob(Job j) interface, and will notify the user when the job

completes through the void User::completeJob(Job j) interface. The primary inter-

faces of Site-Sim are described in Appendix A.

Site-Sim maintains an internal event queue to guarantee the correct timing and delivery of

events, but the exact behavior of the scheduler upon job arrival, or the users’ upon job completion

is left to the implementor of the interfaces. This is where model accuracy plays a critical role in

the representativeness of the workload and the credibility of the simulation results.

While modeling the scheduler is relatively straightforward, modeling the users is obviously

much more involved. We therefore implemented the user interfaces in two phases. The first was

based on simplistic user models that do not support user arrivals or departures. We used these

models in Chapter 3 to demonstrate the importance of the feedback for the evaluation.

In the second phase we implemented much more advanced models that were based on our

findings from Chapter 4. This allowed us to simulate realistic user behavior which is affected

by the performance of the system, and to exploit it by CREASY in Chapter 5 to demonstrate the

feedback importance for schedulers design.

Site-Sim can also run conventional simulations by playing back traces in the standard work-

load format (SWF). These simulations use only one user model that reads the jobs from the input

trace, and submits them to the scheduler according to the timestamps. There is no feedback in

these simulations; job completion events are simply ignored.

Site-Sim accepts a number of command-line parameters that define its behavior. For those

that are not specified it provides default values. Figure 2.1 illustrates a sample execution of Site-

Sim. The command line parameters configure it to run five simulations in a loop, each with a

different number of users ranging from 50 to 250. The default length of the simulation is six

months of user activity; the scheduler to simulate is CREASY.

At the end of the simulation in addition to the system-wide statistics Site-Sim also generates

a SWF trace of all the jobs that were submitted in the course of the simulation. We used these

2.2 The Traces: Our Source of Data 11

#> ./sitesim -users=50-250 -step=50 -scheduler=CREASY

Users Utilization Throughput Jobs/Session Avg. Response Avg. Slowdown Scheduler

50 0.35 28.0 2.76 12.16 7.01 CREASY

100 0.55 44.9 2.70 29.91 15.28 CREASY

150 0.7 54.8 2.69 48.83 19.26 CREASY

200 0.8 62.7 2.69 72.88 21.98 CREASY

250 0.89 70.5 2.69 99.44 24.30 CREASY

Figure 2.1: Site-Sim accepts a number of command-line parameters that define its behavior. At

the end of the simulation it produces system-wide statistics and a SWF trace that can be used for

running conventional simulations.

Trace Site Duration Procs. Users Jobs

SDSC-PAR95-2.1-cln San-Diego Supercomp. Ctr. 1/1995–12/1995 400 98 53,970

CTC-SP2-2.1-cln Cornell Theory Center 6/1996–5/1997 430 679 77,222

KTH-SP2-2 Swedish Royal Inst. of Tech. 9/1996–8/1997 100 214 28,489

SDSC-SP2-3.1-cln San-Diego Supercomp. Ctr. 4/1998–4/2000 128 437 59,725

SDSC-BLUE-3.1-cln San-Diego Supercomp. Ctr. 4/2000–1/2003 1152 468 243,314

Table 2.1: Our five traces represent many years of activity by hundreds of users. When available,

we use the cleaned versions of the traces.

traces in Chapter 3 to quantify the prediction errors under the conventional simulations. For these

experiments we also used Site-Sim, naturally.

2.2 The Traces: Our Source of Data

System traces provide valuable information on past events that can be used not only for account-

ing, troubleshooting, and optimizations, but also for driving simulation studies of alternative

designs. For the purpose of simulations the traces can be either played-back directly to generate

the workload, or be analyzed and modeled first. Modeling is done by fitting probability distribu-

tions to the data in the trace, or alternatively by extracting empirical distributions from the data.

In both cases, the workload in the simulation is generated by sampling the distributions instead

of the raw data in the trace.

Traces of parallel systems are available from the Parallel Workloads Archive in a standard

format called the Standard Workload Format (SWF) [12]. For our study we chose five traces,

12 Methodology

each from a different system. Each trace contains records of the jobs that were submitted to the

system by its users over a period of time ranging from one to three years; together they represent

many years of activity by hundreds of users and guarantee that our results are not particular to a

certain location and time. Table 2.1 lists our traces. When available, we use the cleaned versions

of the traces where flurries and other extraordinary activity have been removed [66].

Job records in the traces contain several data fields which can be roughly divided into three

sets:

• Those that contain temporal information about the jobs.

• Those that describe the jobs requested and actual resource usage.

• And those that identify the owners of the jobs.

The first set of fields includes the submit time of the job, its wait time in the scheduler’s queue,

and its actual runtime. The second set includes its requested and allocated number of processors

and memory size, and the third includes the user and group identifiers of the job’s owner. There

are also several other fields like the estimated runtime, the return status of the job, the queue and

partition on which it executed, that may be related to the above sets, depending on the context.

The conventional simulations described in the introduction typically use the submit time, re-

quested processors, runtime, and optionally the estimated runtime to play back the trace. Work-

load models use distributions that are based on individual or a combination of fields. The jobs’

runtime for example can be modeled using solely the runtime field, or in correlation with the

processors field to improve model accuracy.

For our site-level simulations we combined the data from all five traces and extracted em-

pirical distributions from the joint data set. We modeled the characteristic of the jobs using the

processors and runtime fields, but we also modeled the way the users submit the jobs and their

reaction to their jobs when they complete. The later required a careful analysis of the traces to

find which performance metric affects the users most and the way it affects their behavior. Being

one of the major contribution of this work we dedicate Chapter 4 to this study of user behavior.

Chapter 3

Feedback and Scheduler Evaluations

T
HE CONVENTIONAL SIMULATIONS presently used to evaluate the performance of parallel-

systems schedulers use an open-system model to generate the workload for the evaluation. In

many cases recorded traces of real systems are simply played-back, assuming that they are reliable

representatives of real workloads, and leading to the expectation that the simulation results accu-

rately predict the schedulers’ true performance. We show that the lack of feedback in the simulated

workloads results in performance prediction errors that may reach hundreds of percents, and demon-

strate how load scaling as currently performed further ruins the representativeness of the workload

by generating conditions that cannot exist in reality. As an alternative, we propose a novel simulation

methodology in which we model not only the actions of the scheduler but also the activity of users

that in reality generate the workload for the scheduler. This advances the simulation in a manner

that reliably mimics the feedback effects found in reality, and leads to a better match between the

generated workloads and the scheduler’s capabilities.

3.1 Background

The conventional simulations presently used to evaluate the performance of parallel-systems

schedulers exercise the scheduler using a workload that is made of a stream of incoming jobs.

The source for the stream is usually a trace that was recorded on a real system. At the end of the

simulation, performance metrics collected for the scheduler predict its performance in reality.

To actually generate the workload, these simulations use an open-system model in which

the trace is simply played-back according to the timestamps from the trace, and there is no

feedback in the workload between the arrival of new jobs, the load in the system, and the ability

of the simulated scheduler to handle the load. To experiment with different load conditions, the

timestamps in the trace are modified before the simulation begins; inter-submission times are

reduced or expanded to increase or decrease the load, respectively.

14 Feedback and Scheduler Evaluations

Whether the load is modified or not, an underlying premise is that the generated workloads

are indeed reliable representatives of the workloads that are observed by the scheduler in reality.

We argue that this is not the case because these workloads lack the feedback effects that naturally

exist between users and the scheduler, and show this lack of feedback may result in prediction

errors of hundreds of percents. We also argue that load scaling as currently performed further

ruins the representativeness of the workload by violating precedence relations that naturally exist

between jobs in reality.

To get accurate performance predictions and allow for safe load scaling, we propose a novel

simulation methodology that we named site-level simulation, in which the workload is generated

not from traces, but dynamically, in a manner that reliably mimics the feedback effects found

in reality. A site-level model includes not only the scheduler but also the users that in reality,

generate the workload for the scheduler. When users wait for their jobs to complete they intro-

duce feedback in the workload that improves its representativeness, since the amount of waiting

depends on the load in the system and the scheduler’s ability to handle that load.

To study these feedback effects, we analyzed recorded system traces in an attempt to un-

derstand the way users submit jobs to the scheduler. To our best knowledge, this is the first

attempt to extract such information from the traces. We found that users’ job submissions can

be modeled using batches which are groups of jobs in which every job except the first is sub-

mitted asynchronously to its predecessor i.e. without waiting for it to complete, and with short

inter-submission times between the jobs. Furthermore, these submissions can be modeled inde-

pendently of the characteristics of the jobs themselves. The latter can be derived using a second

model that we named the workpool model. Together, the two models dynamically generate the

stream of jobs to be scheduled.

To experiment with site-level simulations we developed Site-Sim — a site-level simulator that

integrates users and schedulers under a single simulation framework. Site-Sim enables the easy

development of new job submission and workpool models, combining them in various ways to

change the characteristics of the workload, and the evaluation of schedulers in a reliable way. It

also generates a trace of all the jobs submitted in the course of the simulation, which we use to

demonstrate the shortcoming of the conventional simulations.

This chapter is organized as follows: Section 3.2 describes the conventional simulations, the

feedback signatures in the traces, and their effect on the evaluations. Section 3.3 introduces our

site-level simulations, and describes the job submittal and workpool models we use to generate

the workload. Section 3.4 describes Site-Sim and the experiments we performed to demonstrate

3.2 Conventional Simulations 15

the importance of the feedback for the evaluation of the schedulers. Section 3.5 surveys related

work, and Section 3.6 summarizes this chapter and motivates the next.

3.2 Conventional Simulations

Scheduling policies for parallel systems have been the subject of intensive research for many

years. This research is often based on simulations, due to the impracticality of performing eval-

uations on real production systems, and the reduced level of detail possible with mathematical

analysis. In the conventional simulations, a model of the scheduler is exercised using a workload

made of a stream of incoming jobs. Such a stream is often generated by playing-back traces

that contain a list of jobs that were actually submitted to and executed on production-use parallel

systems.

Within the trace, each job has a timestamp that indicates when the job was originally submit-

ted, and several other attributes that describe the resources used by the job. For space-sharing

parallel-systems executing rigid jobs, typical attributes include the job’s size — the number of

processors used by job, and its runtime — the interval of time during which these processors

were occupied and unavailable for use by other jobs. When the trace is used for simulation, these

attributes are treated as requirements for resources for the scheduler being evaluated. Jobs may

also have a runtime estimate — a rough estimation provided by the user at submission time that

the scheduler can use to plan ahead [70, 10, 63, 36, 65, 64].

To play-back the trace the conventional simulations use an open-system model in which jobs

get submitted solely according to the timestamps from the trace and irrespectively of the system’s

state. Sometimes these timestamps are scaled by a certain factor, so as to increase or decrease

the load conditions for the simulation but in either case, there is no feedback in the workload

between the arrival of new jobs, the load in the system, and the ability of the simulated scheduler

to handle the load.

The alternative to the open-system is the closed-system model that is characterized by having

unconditional feedback in the workload. In this model, the timestamps in the trace are ignored,

and new jobs gets submitted only after previous jobs complete. The problem is that this leads

to extreme regularity: there are no bursts of activity in the workload which severely limits the

optimizations that can be performed, and there is no way to manipulate the load for the evalua-

tions. For these reasons, the conventional simulations adopted the open model in generating the

workload.

16 Feedback and Scheduler Evaluations

During simulation statistics are recorded for each individual job which includes the wait time

— the time the job spent in the scheduler’s queue waiting for processors to become available, the

response time — the time elapsed between submission to completion (wait time + runtime), and

the slowdown — the response time normalized by the actual runtime, which shows how much

slower the job ran due to the load on the system. At the end of the simulation, the average for

each of these metrics is calculated, and is used to predict the scheduler performance in reality.

3.2.1 Feedback Signatures

We argue that workloads generated by playing-back traces are not reliable representatives of real

workloads, because the traces contain a signature of the feedback effects that existed between

the users and their scheduler when the trace was recorded, and that playing-back this signature

during simulation leads to inaccurate performance predictions.

Consider for example a loaded system where jobs wait for a long time in the scheduler’s

queue for processors to become available. Because users often wait for their jobs to complete

before submitting more jobs, such a high load will actually cause the submission rate to decrease,

eventually leading to a decrease in the load. As the load decreases, jobs wait less time in the

queue and respond faster, causing the submission rate to increase again, eventually leading to a

higher load, etc.

Figure 3.1 illustrates that such self regulation by users — avoiding submittal of additional

jobs if the system is already overloaded, indeed exists in real workload traces. The data is from

extensive logs of jobs executed on large scale parallel-systems1. In these scatter plots, each log is

partitioned into weekly slices, and each slice is represented by a dot. For each slice, the number

of jobs submitted is counted. In addition, the average node-seconds needed by these jobs is

tabulated. Plotting one against the other shows that when there are many jobs, they tend to be

smaller; when jobs are heavy, there tend to be fewer of them.

Such feedback effects leave their signature in the traces in the form of timestamps. When

playing-back the trace according to these timestamps, the generated workload then matches the

scheduling policy that was in effect on the traced system, instead of adapting itself to the sched-

uler being evaluated. This means that the rate of submissions will not decrease if the scheduler

fails to handle the load, nor will it increase if it handles the load easily. This causes the perfor-

mance predicted by the simulation to be highly inaccurate.

1Original data and additional information is available in the Parallel Workloads Archive [12].

3.2 Conventional Simulations 17

SDSC Paragon

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.775

CTC SP2

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.700

KTH SP2

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.609

LANL CM5

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.600

SDSC SP2

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.720

SDSC Blue

avg. node−sec

0 400K 800K

s
u
b
m

it
te

d
 j
o
b
s

0

500

1000

1500

2000

2500
CC=−0.574

Figure 3.1: Feedback in real workloads: in weeks where many jobs are submitted they tend to

be smaller, and vice versa.

We also argue that load scaling as currently performed further ruins the representativeness of

the workload by generating conditions that cannot exist in reality. One example is the violation of

dependencies between the completion of jobs and subsequent submissions. As noted above, users

often wait for their jobs to complete before submitting more jobs, which means that some jobs

simply cannot reside together in the scheduler’s queue. However, when modifying timestamps

to scale the load, not only that jobs get submitted while their predecessors are still active, the

scheduler may even pick jobs for execution that depend on the completion of other jobs that are

still queued.

Finally, the conventional simulations use performance metrics such as the average job re-

sponse time and slowdown that are only conjectured to be good proxies for user satisfaction.

They do not support metrics that quantify user productivity directly, e.g., throughput. This is due

to the open nature of the simulations, which causes the throughput to be dictated solely by the

timestamps from the trace, and not by the actions of the scheduler being evaluated.

The simulation methodology we propose below incorporates feedback into the workload to

18 Feedback and Scheduler Evaluations

get accurate performance predictions, but unlike the pure closed-system model described above,

it postulates bursts of jobs, allowing the scheduler to effectively perform optimizations. Load

scaling is safe and preserves the workload representativeness, and throughput (and hence pro-

ductivity) becomes a metric that can be directly measured.

3.3 Site-Level Simulations

We propose a novel simulation methodology named site-level simulation, to accurately predict

the performance of the schedulers. The essence of this methodology is that workloads are gen-

erated dynamically during the simulation in a manner that reliably mimics the feedback effects

found in real sites workloads. In particular, we simulate not just the scheduler but also the users

of the system, that in reality generate the workload for the scheduler. During their sessions of

activity with the system, users often wait for their jobs to complete and when they do — they

introduce feedback in the workload that improves its representativeness.

In addition to the scheduler and the users, a truly complete site-level simulation would also

include a detailed model of the system. This may be important because the performance of spe-

cific applications may be affected by the system’s architecture, or by interference from other

jobs [68, 43]. However, such detailed simulations require much more information about applica-

tions and take much longer to run. Since we wish to focus on the feedback effects related to the

workload generated by the users, we assume that job runtimes are not affected by the system’s

architecture. This assumption is also made by the conventional simulations.

As illustrated in Figure 3.2, at any given time during a site-level simulation the workload

observed by the scheduler is the combination of workloads generated by each individual user

session that is active at the system at that time. Each sessions is made of two models: a job sub-

mittal model and a workpool model. The submittal model defines the structure of the session,

i.e. when jobs are submitted and when the user waits for his jobs to complete. The workpool

model defines the actual characteristics of the jobs. Furthermore, the fact that these two models

are independent of each other contributes to the flexibility of the simulation, and allows to ex-

periment with combinations of models and alter the characteristics of the workload produced by

each session. Table 3.1 summarizes the main differences between the conventional and site-level

simulations.

3.3 Site-Level Simulations 19

Model
Workpool

Submittal
ModelModel

Workpool

Scheduler
Model

Seperating machine from scheduler
model, for simulating jobs execution
using a detailed machine model

Submittal
Model

Jobs Submit / Wait

A User’s Session

S

W

S

W

Wait queue

Concurrent Users Sessions

Performance

Metrics

Feedback to users

Parallel machine

Workload in Site−Level Simulation

Figure 3.2: At any given time during a site-level simulation the workload observed by the sched-

uler model is the combination of the workloads generated by all user sessions that are active

at the system at that time. Each such session is made of a job submittal model that introduces

feedback into the workload, and a workpool model that defines the characteristics of the jobs

being submitted.

3.3.1 Modeling Job Submissions

Users interact with computer systems in periods of continuous activity known as sessions [26, 1].

For parallel-systems, a session is made of one or more jobs being submitted to the scheduler.

Zilber et al. analyzed several parallel systems traces and classified user sessions [69]. A

preliminary step to extracting sessions data was to determine the session boundaries. This was

done by setting a threshold on the think times distribution: shorter think times are considered to

be think times within a session, while longer ones are considered breaks and the jobs that follow

them start a new session.

The CDF of think times in five of these traces, the SDSC-SP2, CTC-SP2, KTH-SP2, SDSC-

BLUE and SDSC-PAR95 is shown in Figure 3.3 (the data is available in the Parallel Workloads

Archive [12]). The plots indicate that at about twenty minutes of think time the CDF stops its

steep climb, which means that a large portion of the jobs are submitted within twenty minutes

20 Feedback and Scheduler Evaluations

Category Conventional Simulations Site-Level Simulations

Workload source Traces User sessions

Submission rate Pre-determined by trace timestamps Dynamic by submittal model

Job characteristics Job attributes in the traces Defined by workpool model

Load scaling Trace (de)-compression Changing the # of users

Table 3.1: Main differences between conventional and site-level simulations.

 0

 0.2

 0.4

 0.6

 0.8

 1

+2h+1h+20m0-1h-2h

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Think time

S
e

s
s
io

n
 b

o
u

n
d

a
ry

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

Figure 3.3: CDF of think times in the five traces: a large portion of the jobs are submitted within

twenty minutes from the completion of a previous job, indicating sessions. A major fraction of

the think times is below zero, indicating asynchronous submissions.

from the completion of a previous job — indicating continuous activity periods by the users.

Furthermore, beyond twenty minutes and for rest of the time scale the think times are evenly

distributed, without any features indicating a natural threshold. Zilber et al. therefore defined

sessions to be sets of jobs submitted within twenty minutes from the completion of the previous

job. In our work we adopt this definition.

Another feature of the think time distribution, which has little importance for session classi-

fication but is highly important for understanding how users submit jobs, is the fact that a major

fraction of the think times, over 50% for some traces, are below zero. These negative values stem

from the definition of think time as the time between the completion of a job and the submission

of the next, and indicate that jobs are sometimes submitted before previous jobs complete.

3.3 Site-Level Simulations 21

Job

TT TTTT
Time

TT TT

Session 1 Session 2

ISG

TT − Thinktime (20 minutes max)

ISG − Inter−Session GapSession

Batch

Figure 3.4: Sessions and batches.

With respect to modeling these submissions it means that within sessions, users submit jobs

either synchronously or asynchronously. Synchronous submissions are those that may depend on

the completion of previous jobs, and hence provide the desired level of feedback which is based

on the load in the system and the ability of the scheduler to handler the load. Asynchronous

submissions on the other hand are totally independent of previous jobs and the system’s state.

We use the term batch to denote a set of jobs submitted asynchronously to one another, and

the term batch-width to denote the number of jobs in each batch. Thus, a single job submitted

synchronously is simply a special case of a batch that has a width of one.

Batches provide a convenient way to model the way users submit their jobs: a session is

made of a series of one or more batches, where each batch contains one or more jobs. The time

between the termination of the job submitted last in a batch and the submission of the first job

in the next batch must not exceed twenty minutes — the session’s think time boundary. Within

a batch, all jobs except the first are submitted asynchronously to one another, as illustrated in

Figure 3.4.

To model the way users submit jobs we thus need three sets of data:

• The distribution of batch widths.

• The distribution of inter-submission times within batches.

• The distribution of think times between batches, up-to twenty minutes.

Data for these distributions can naturally be obtained by analyzing traces of parallel systems.

Given the data, one can model it by fitting appropriate probability distribution. Alternatively, one

22 Feedback and Scheduler Evaluations

can use the empirical data directly. As fitting distributions is secondary to our primary goal of

demonstrating the importance of feedback, we used empirical distributions from the five traces.

Figure 3.5 shows the distribution of batch widths in our five traces. Obviously the distri-

butions are quite similar indicating that this data is representative of user job submissions in

general. The dominating fraction of batches are of width one. Batches of width 2 are the second

most common, accounting for about 10% in each trace. Larger batches are progressively rarer.

The distribution of inter-submission times for asynchronous submissions within batches, and

the distribution of the think times between batches are shown in Figures 3.6 and 3.7, respec-

tively. For our simulations we combined the data from all five traces into a single representative

distribution.

3.3.2 Modeling Workpools

We modeled the above job submissions independently of characteristics of the jobs themselves;

the later are derived using a second model called the workpool model. Though in principle

different sessions can use statistically different models e.g. one model for lightweight daytime

jobs and another for heavy nighttime jobs, in our current implementation the models use the

same empirical distributions.

A basic workpool model is essentially composed of two distributions that correspond to the

two main attributes of rigid parallel jobs:

• Size — the number of processors the job requires in order to execute, assuming pure space-

slicing.

• Runtime — the actual time the job will run once the processors have been allocated by the

scheduler.

Analyzing the traces also indicates that jobs display a “locality of sampling”: successive jobs

tend to be very similar to each other since users tend to submit the same jobs repeatedly. To

capture this effect, we also tabulate the distribution of such repetitions.

Just like the job submission model, we model workpools using empirical data drawn from

the five traces. The distribution of the job sizes in the traces is shown in Figure 3.8. As has been

observed before, this is a modal distribution with most jobs using power-of-two processors [20].

The distributions of runtimes and repetitions are shown in Figures 3.9 and 3.10, respectively.

Again, we combined the data from all five traces into a single representative distribution to be

used in the simulation.

3.3 Site-Level Simulations 23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

P
ro

b
a

b
ili

ty

Number of Jobs

sdsc_sp2_cln

(a) SDSC-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

P
ro

b
a

b
ili

ty

Number of Jobs

ctc_sp2_cln

(b) CTC-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

P
ro

b
a

b
ili

ty

Number of Jobs

kth_sp2

(c) KTH-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

P
ro

b
a

b
ili

ty

Number of Jobs

sdsc_blue_cln

(d) SDSC-BLUE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

P
ro

b
a

b
ili

ty

Number of Jobs

sdsc_par95_cln

(e) SDSC-PAR95

Figure 3.5: Distribution of batch widths in the five traces.

24 Feedback and Scheduler Evaluations

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 1 10 100 1000

P
ro

b
a

b
ili

ty

Seconds (log)

sdsc_sp2_cln

(a) SDSC-SP2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 1 10 100 1000

P
ro

b
a

b
ili

ty

Seconds (log)

ctc_sp2_cln

(b) CTC-SP2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 1 10 100 1000

P
ro

b
a

b
ili

ty

Seconds (log)

kth_sp2

(c) KTH-SP2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 1 10 100 1000

P
ro

b
a

b
ili

ty

Seconds (log)

sdsc_blue_cln

(d) SDSC-BLUE

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 1 10 100 1000

P
ro

b
a

b
ili

ty

Seconds (log)

sdsc_par95_cln

(e) SDSC-PAR95

Figure 3.6: Distribution of job inter-submission times within batches.

3.3 Site-Level Simulations 25

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 5 10 15 20

P
ro

b
a

b
ili

ty

Minutes

sdsc_sp2_cln

(a) SDSC-SP2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 5 10 15 20

P
ro

b
a

b
ili

ty

Minutes

ctc_sp2_cln

(b) CTC-SP2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 5 10 15 20

P
ro

b
a

b
ili

ty

Minutes

kth_sp2

(c) KTH-SP2

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 5 10 15 20

P
ro

b
a

b
ili

ty

Minutes

sdsc_blue_cln

(d) SDSC-BLUE

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 5 10 15 20

P
ro

b
a

b
ili

ty

Minutes

sdsc_par95_cln

(e) SDSC-PAR95

Figure 3.7: Distribution of think times between batches, up-to twenty minutes.

26 Feedback and Scheduler Evaluations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 4 8 16 32 64 128

P
ro

b
a

b
ili

ty

Processors (log)

sdsc_sp2_cln

(a) SDSC-SP2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 4 8 16 32 64 128 256 512

P
ro

b
a

b
ili

ty

Processors (log)

ctc_sp2_cln

(b) CTC-SP2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 4 8 16 32 64 128

P
ro

b
a

b
ili

ty

Processors (log)

kth_sp2

(c) KTH-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256

P
ro

b
a

b
ili

ty

Processors (log)

sdsc_blue_cln

(d) SDSC-BLUE

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 4 8 16 32 64 128 256 512

P
ro

b
a

b
ili

ty

Processors (log)

sdsc_par95_cln

(e) SDSC-PAR95

Figure 3.8: Distribution of job sizes in the five traces.

3.3 Site-Level Simulations 27

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 1 10 100 1000

P
ro

b
a

b
ili

ty

Minutes (log)

sdsc_sp2_cln

(a) SDSC-SP2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 1 10 100 1000

P
ro

b
a

b
ili

ty

Minutes (log)

ctc_sp2_cln

(b) CTC-SP2

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 1 10 100 1000

P
ro

b
a

b
ili

ty

Minutes (log)

kth_sp2

(c) KTH-SP2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 1 10 100 1000

P
ro

b
a

b
ili

ty

Minutes (log)

sdsc_blue_cln

(d) SDSC-BLUE

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 1 10 100 1000

P
ro

b
a

b
ili

ty

Minutes (log)

sdsc_par95_cln

(e) SDSC-PAR95

Figure 3.9: Distribution of job runtimes.

28 Feedback and Scheduler Evaluations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100

P
ro

b
a

b
ili

ty

Size repetitions (log)

sdsc_sp2_cln

(a) SDSC-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100

P
ro

b
a

b
ili

ty

Size repetitions (log)

ctc_sp2_cln

(b) CTC-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100

P
ro

b
a

b
ili

ty

Size repetitions (log)

kth_sp2

(c) KTH-SP2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100

P
ro

b
a

b
ili

ty

Size repetitions (log)

sdsc_blue_cln

(d) SDSC-BLUE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100

P
ro

b
a

b
ili

ty

Size repetitions (log)

sdsc_par95_cln

(e) SDSC-PAR95

Figure 3.10: Distribution of job size repetitions.

3.4 Simulation Results 29

3.4 Simulation Results

Our framework for site-level simulations, Site-Sim, enables the easy development and combina-

tion of job submittal and workpool models, and the reliable evaluation of schedulers using the

dynamically generated workloads.

Site-Sim defines two types of entities: users and schedulers. The users generate the workload

for the scheduler during their sessions of activity with the system, and the scheduler in turn

accepts the jobs from the users, and schedules the jobs for execution on their behalf. Though

in reality the number of concurrent sessions changes dynamically throughout the day as new

users arrive and active users depart the system, our simulations so far are limited to using a static

number of sessions. Such dynamics are discussed and incorporated into the simulation in the

following chapters.

Site-Sim can also run conventional simulations by playing-back traces in the standard work-

load format (SWF) as defined in http://www.cs.huji.ac.il/labs/parallel/workload/swf.html. For

these simulations only one user is defined; its job submission model uses the timestamps from

the trace, and its workpool model also uses the traces for the jobs’ characteristics.

In the simulations reported below we typically define 10 users that use the same job sub-

mission and workpool models. Simulation takes a few minutes on an Intel 1.86GHz Pentium

processor. At the end of each simulation, Site-Sim generates per-user and system-wide statistics,

and also an SWF trace of all the jobs submitted in the course of the simulation. These traces can

be used for post-mortem analysis, and also to drive conventional simulations.

As noted in Sections 3.3.1 and 3.3.2, both our job submittal and workpool models use empir-

ical distributions that are based on combining the data from all traces into a single representative

distribution. We tested this approach by running long simulations, comparing the simulated dis-

tribution against the original distributions from the traces, and validating that they are indeed

similar.

3.4.1 Inaccurate Performance Predictions

Users often wait for their jobs to complete before submitting additional jobs. If the system uses

a low-end scheduler, their jobs will suffer from long waits in the queue, and the submission of

new jobs will be delayed as a result. On the other hand, if the system is managed by a high-end

scheduler, queuing times will be short, jobs will complete faster, and the submission of additional

work will be accelerated.

30 Feedback and Scheduler Evaluations

1 High/Low

Signature
Load

3 2

Low/HighL H Low/HighL H

Performance

Performance Predictions Inaccuracy

Performance

>> overestimated performance >>

<< underestimated performance <<

Site−Level Simulation

Site−Level Simulation

Site Users

Site Users

Metrics Prediction

Scheduler
End

High/LowH L

Scheduler
End

Scheduler
End

Trace Replay

Conventional Simulation

Trace

Figure 3.11: Experiment illustration: (1) A site-level simulation generates a trace with a signa-

ture of one scheduler. (2) Conventional simulation driven by that trace predicts the performance

of a second scheduler. (3) A site-level simulation of the second scheduler produces performance

metrics used to quantify the prediction inaccuracies of the conventional simulation.

As explained above, system traces contain a signature of the feedback effects between the

users and the scheduler in the form of timestamps, which means that different schedulers produce

different signatures in the traces. A trace of a high-end scheduler is likely to contain a signature

that when played-back using the open-system model, would generate higher loads compared to

a trace of a low-end scheduler.

To quantify how inaccurate the performance predicted by the conventional simulations can

be, we designed an experiment in which a low-end scheduler is evaluated using a trace of a

high-end scheduler, and vice-versa, as illustrated in Figure 3.11. The idea is that the trace of

the high-end scheduler will generate such high loads that the low-end scheduler will simply not

be able to handle. Since there is no feedback in the workload, the submission rate of the jobs

will not decrease, and the simulation will predict poor performance for the low-end scheduler,

excessively underestimating its true capabilities. The high-end scheduler on the other hand will

be able to handle the load from the low-end scheduler trace easily, but since the submission rate

will not increase as it would have in reality, its performance will actually be overestimated.

3.4 Simulation Results 31

Metric

(average)

EASY

Site-level

FCFS

Conventional

FCFS

Site-level

Prediction

inaccuracy

Response [h] 2:22 24:16 3:18 634%

Wait [h] 38m 22:31 1:33 1345%

Slowdown 21.4 1127 78.7 1332%

Table 3.2: Underestimated performance for FCFS.

We used Site-Sim to generate the two traces. We ran site-level simulations of 10 concurrently

active user sessions that produce work for a parallel-system of 128 processors. For the high-end

scheduler we used EASY — a classic scheduler originally developed for the IBM SP system,

which employs backfilling to execute jobs from the back of the queue to reduce fragmentation

and improve responsiveness [39]. For the low-end scheduler we used plain FCFS (first-come-

first-served). Since EASY requires runtime estimates for the jobs, we chose to supply the jobs’

actual runtimes, that is, estimates in our simulations were perfectly accurate.

Underestimated Performance: We ran a site-level simulation of the high-end EASY sched-

uler, and used the resulting trace to drive a conventional simulation of FCFS. Our results indicate

extremely poor performance for FCFS: more than 24 hours on average for the jobs to respond,

and 221

2
hours of wait time in the queue. Obviously, given such performance predictions, one

would never consider using FCFS, especially when the average job response under EASY is less

than 21

2
hours.

We then repeated the site-level simulation, but used FCFS directly. The results this time

indicate that FCFS performs reasonably well considering its limitations: jobs respond on average

in 31

3
hours (just 39% more than EASY), and the average wait is 11

2
hours. Naturally, FCFS is

still outperformed by EASY, but it is not as bad as predicted by the conventional simulations. In

fact, these simulations underestimated FCFS’s average job response time by 634%, its average

wait by 1345%, and its average slowdown by 1332%, as summarized in Table 3.2.

Note that the comparison of EASY to FCFS using a site-level simulation is no longer based

on serving the same jobs as in conventional simulations, but on serving the same user population.

FCFS did actually serve fewer jobs, but its throughput was only 10% less than EASY’s for the

simulated load of 10 concurrent sessions. The throughput metric is further discussed in Section

3.4.3.

32 Feedback and Scheduler Evaluations

Metric

(average)

FCFS

Site-level

EASY

Conventional

EASY

Site-level

Prediction

inaccuracy

Response [h] 3:18 2:08 2:23 10%

Wait [h] 1:33 23m 38m 38%

Slowdown 78.7 17.3 21.4 19%

Table 3.3: Overestimated performance for EASY.

Overestimated Performance: We repeated the above experiment, in the opposite direction.

We ran a 10-user, site-level simulation of FCFS, and used the trace to drive a conventional sim-

ulation of EASY. The results indicate far too optimistic performance for EASY: two hours on

average for the jobs to respond, and just 23 minutes of wait in the queue. A site-level simulation

of EASY with feedback however indicates that its average job response time was overestimated

by the conventional simulations by 10%, its average wait by 38%, and its average slowdown by

19%, as shown in Table 3.3.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Mean Job
Slowdown

Mean Job
Wait

Mean Job
Response

U
n
d
e
re

s
ti
m

a
ti
o
n
 [
%

]

(a) Underestimated performance for FCFS

 0

 5

 10

 15

 20

 25

 30

 35

 40

Mean Job
Slowdown

Mean Job
Wait

Mean Job
Response

O
v
e
re

s
ti
m

a
ti
o
n
 [
%

]

(b) Overestimated performance for EASY

Figure 3.12: Underestimated and overestimated performance in conventional simulations.

To summarize, underestimated performance due to lack of feedback in the workload tends

to be much larger than the overestimated performance. The response time metric is the least

sensitive to performance prediction inaccuracies, while the wait is the most sensitive; slowdown

is somewhere in between. All this is summarized in Figure 3.12.

3.4 Simulation Results 33

3.4.2 Safe Load Scaling

One of the important uses of simulations is to predict the system performance under different

load conditions. In the conventional simulations, load is scaled by modifying the timestamps

in the trace before the simulation begins. The timestamps are multiplied by a constant factor

which causes the gap between the jobs to increase of decrease, depending on whether the factor

is greater or smaller than one, respectively. When played-back using the open-system model,

this changes the rate in which jobs are submitted to the scheduler, and alters the load conditions

for the simulation.

Such a modification to the traces however, may effect the representativeness of the workload

by generating conditions that cannot exist in reality, for example, violation of dependencies that

naturally exist between jobs. Since users often wait for their jobs to complete before submitting

more jobs, some jobs simply cannot reside together in the scheduler’s queue, but when modifying

the timestamps to simulate higher loads, not only that such jobs do get to coexist together, the

scheduler may even pick jobs for execution that depend on the completion of older jobs that are

still queued.

To quantify these violations, we ran two site-level simulation, the first with the FCFS sched-

uler, and the second with EASY, both with 10 concurrently active user sessions. We recorded

in the output traces information on the dependencies between the jobs, and used the traces to

drive conventional simulations of both FCFS and EASY. For these simulations, we modified the

timestamps to simulate a range of offered loads2. For FCFS we simulated offered loads ranging

from 0.2 to 0.65, and for EASY we simulated loads from 0.2 to 0.9, since EASY can sustain

higher loads. We instrumented Site-Sim to count the number of submission dependency viola-

tions — the number of times jobs get submitted to the scheduler but depend on the completion

of other jobs that are still active, and the number of execution ordering violations. — the number

of times the scheduler picks jobs for execution that depends on the completion of jobs that are

still queued.

Figure 3.13 shows the fraction of jobs whose submission or execution involved violations.

In all sub-figures, the dashed vertical line shows the original load from the trace, prior to any

timestamp modification.

For the FCFS trace in sub-figures (a) and (b), we see that for both schedulers, the fraction

of submission dependency violations starts to increase at the offered load of 0.5. For the FCFS

2Offered load is the load imposed on the system in an open-system model.

34 Feedback and Scheduler Evaluations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

Offered load

Submission Dependency Violations
Execution Ordering Violations

(a) FCFS trace / FCFS scheduler

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

Offered load

Submission Dependency Violations
Execution Ordering Violations

(b) FCFS trace / EASY scheduler

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

Offered load

Submission Dependency Violations
Execution Ordering Violations

(c) EASY trace / FCFS scheduler

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

Offered load

Submission Dependency Violations
Execution Ordering Violations

(d) EASY trace / EASY scheduler

Figure 3.13: Submission-dependency and Execution-ordering violations.

scheduler the increase is almost linear, while for EASY it is hyperbolic. Neurally, since FCFS

executes jobs purely according their arrival order, there are not execution ordering violations

under FCFS.

For the EASY trace in sub-figures (c) and (d), we see that when simulating FCFS the fraction

of submission dependency violations starts to increase far before the dashed line which represents

the original load from the trace. This is due to the high-load signature in the EASY trace, that is

too much for FCFS to handle, even when scaling the timestamps backwards, to simulate lower

loads. We also observe that few submission dependency violations occur at reduced loads even

under the EASY scheduler, but when reaching the dashed line, there are no violations of either

type under EASY. This is because the offered load equals the original load from the trace, so the

lack of feedback in the conventional simulations has no effect on the representativeness of the

3.4 Simulation Results 35

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 [
s
]

of concurrent sessions

easy
fcfs

(a) Average job response

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 J

o
b

 S
lo

w
d

o
w

n

of concurrent sessions

easy
fcfs

(b) Average job slowdown

Figure 3.14: Load scaling in site-level simulations: the results for the wait time metric are

similar to the response, only slightly shifted down.

workload.

Under site-level simulations on the other hand, the load is scaled by simulating a higher

number of users, which effectively increases the number of concurrently active sessions and

hence the rate in which jobs are submitted to the scheduler. There are no violations of any kind,

since the feedback in the workload ensures that a job that depends on the completion of other

jobs will not be submitted until its predecessors complete and after a period of think time.

Figure 3.14 compares the performance of EASY and FCFS as a function of the number of

concurrent sessions in a site-level simulation. As expected, EASY always outperforms FCFS,

but the more interesting phenomenon is the shape of the curves; instead of the curves often seen

in open-system simulations which tend to infinity when the load approaches the saturation point,

as shown in Figure 3.15, the degradation in performance when feedback is involved is much

milder, as the feedback curbs the creation of additional work.

3.4.3 Quantifying Productivity

An important goal of any parallel-system scheduler is to promote the productivity of its users,

but the conventional simulations lack a metric that directly quantifies productivity. The only

metric that may be considered related is the average system utilization which implicitly reflects

the amount of work that was performed. However, utilization in open-system simulations is

determined by the rate in which new jobs are submitted, and not the actual performance of the

scheduler.

36 Feedback and Scheduler Evaluations

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 [
s
]

Offered Load

easy_trace
fcfs_trace

(a) FCFS scheduler

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 [
s
]

Offered Load

easy_trace
fcfs_trace

(b) EASY scheduler

Figure 3.15: Load scaling in conventional simulations: the curves tend to infinity when the load

approaches the saturation point, due to the open nature of the simulation.

Site-level simulations on the other hand provide a metric that quantifies productivity directly:

the job throughout which is defined as the number of jobs executed by the system in a given time

frame. Figure 3.16(a) shows the average job throughput in a 24 hours time frame under FCFS

and EASY. For comparison, we also show the utilization of the system in figure 3.16(b). As can

be seen, the two metrics are highly correlated, and both level out when the system becomes satu-

rated. Beyond this point adding more concurrent sessions does not contribute to the throughput,

but only increases the average response time of the jobs.

3.5 Related Work

Parallel-systems schedulers have been traditionally evaluated using trace-driven, open-system

simulations, in which the arrival rate of the jobs in the workload is already given, and is not

affected by the performance of the system [60, 30, 45, 59, 67, 35, 54, 61, 46]. The alternative

is to use models to generate the workload, but most models either try to reproduce the arrivals

already found in the traces [6, 29, 11, 42], or even use a Poisson model to further simplify the

arrival process of the jobs [20, 16]. Models involving feedback have been suggested, but in other

contexts.

Ganger and Patt in their work on I/O subsystems evaluations observed that neither the open

nor the closed-system model are satisfactory in their pure form, because real workloads are a

mix with only some items being critical for progress [22]. This led to work by Hsu and Smith

3.5 Related Work 37

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
[J

o
b

s
/D

a
y
]

of concurrent sessions

easy
fcfs

(a) Average job throughput

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 U

ti
liz

a
ti
o

n

of concurrent sessions

easy
fcfs

(b) Average utilization

Figure 3.16: Utilization and throughput: implicit and explicit productivity measures.

who added feedback to I/O traces in order to study the effectiveness of various I/O optimization

techniques [27]. M. Borella studied the influence of hosts processing speeds on network packets

inter-arrivals in the context of gaming traffic [4]. Schroeder et. al observed that neither the closed

nor the open system model are entirely realistic, and that real-world applications often fit best

into partly-open models [49].

While the mechanics of using traces in simulations is straightforward, there is more than one

way to model users to generate the workload. Haugerud and Straumsnes used user models that

have different characteristics and whose behavior is affected solely by the time of the day, to

simulate interactive systems workloads [24]. Hlavacs et al. suggested a layered user model made

of sessions, application, and commands, and demonstrated its use for network simulations [26].

Arlitt analyzed the internal structure of user sessions to the 1998 World Cup Web server [1]. Liu

et al. presented a Web traffic model at the session level to evaluate the performance Web servers

[40], and Krishnamurthy et al. developed synthetic workloads with inter-request dependencies

to correctly stress-test session-based systems [33]. Zilber et al. presented a comprehensive study

of parallel-systems traces based on users and sessions, which can complement ours by defining

diverse submittal and workpool models [69].

All above models can be used to generate a more representative workload, but they lack a

description of how real users react to the performance observed from the system. In the next

chapter we show how we uncover the effect of the system on its users from the system traces,

and develop more realistic models of the users to be used in simulation.

The basic batch scheduling algorithm is First-Come-First-Serve (FCFS), in which jobs are

38 Feedback and Scheduler Evaluations

considered in their order of arrival [50]. The poor system utilization of FCFS led researchers to

explore alternatives to improve performance. Backfilling is one such optimization, that allows

small jobs from the back of the queue bypass larger jobs that arrived earlier, to fill holes in the

schedule.

Backfilling was first implemented in a production system in the context of EASY, the Exten-

sible Argonne Scheduling sYstem for the IBM SP1 system [39]. This specific version was based

on aggressive backfilling in which only the first job in the queue gets a reservation. The obvious

alternative is to use conservative backfilling in which every job gets a reservation, and which also

produces a more predictable schedule. Mu’alem and Feitelson compared the two approaches and

pointed that their relative performance may actually depend on the workload [45].

3.6 Summary

We have shown that user sessions on parallel-systems can be modeled as a sequence of batches

of jobs, where the jobs within each batch are submitted asynchronously, but each new batch is

only started a certain time (the think time) after the last job in the previous batch completes. This

imparts a measure of feedback on the workload generation process and results in a better match

between the workload and the scheduler capabilities. Ignoring this feedback leads to exaggerated

evaluations, that mix performance results related to the evaluated scheduler with results that are

due to the scheduler that was used when the trace was originally recorded.

The simulations presented in this chapter were limited to using a static number of active

sessions. Real users however, arrive and depart the system at different times and in response

to the performance observed from the system, so the number of concurrently active sessions

changes dynamically throughout the day. The next step is therefore to incorporate these dynamics

into the simulation, but this requires a preliminary study of user behavior in order to understand

which aspects in the performance of the system affect the users, and what exactly is the effect.

Though intuitively it seems that such a study requires research in psychology, we found

that it is possible to uncover the users’ behavior patterns directly from the traces of systems,

without conducting live experiments with real users. Chapter 4 presents the novel trace analysis

methodology that we developed for this purpose, and our findings regarding the effect of the

system on its users. In Chapter 5 we incorporate these findings into the simulation and introduce

much more realistic user models which we use to demonstrate the importance of the feedback

for the design of the schedulers.

Chapter 4

Understanding User Behavior

I
NTUITIVELY , it seems that understanding how the performance of a system affects its users re-

quires research in psychology and the conduction of live experiments. We demonstrate that it

is possible to uncover the effect from traces of systems. In particular, we show that the behavior

of users of parallel systems is correlated with the response times of their jobs, not the slowdown as

was previously assumed. We also show that response times affect the decision of users to continue

or abort their interactive session with the system, and that this may relate to expectations the users

develop. Though this study was conducted in the context of parallel systems, we believe our findings

are general enough and may pertain to other types of systems as well.

4.1 Background

Understanding how the performance of a system affects the behavior of its users helps improve

system design. In the context of parallel systems, for example, it will allow the design of better

job schedulers, with the goal of satisfying users by exploiting knowledge about user behavior to

better plan future actions.

Intuitively, it seems that exploring user behavior requires research in psychology and the

conduction of live experiments with real users. The problem is that live experiments are often

impractical to conduct; few users have the time or patience to actually record the reasons for their

behavior patterns.

We suggest a novel methodology to uncover the effect on users from traces of the system.

The traces we use contain records of jobs that were actually submitted by the users, scheduled,

and finally executed on real, production-use parallel systems. We show that using these traces

we are even able to reason about user motivation, not just about the causal relationship between

performance and behavior.

40 Understanding User Behavior

The performance of the system can be measured using different metrics, all which are as-

sumed to be important to the users. In particular, the response time of jobs (the time from sub-

mission to termination), and the slowdown (the response time normalized by the actual execu-

tion time) are two metrics often used in performance evaluations. The first question is therefore,

which of these metrics is most important to the users in the sense that it affects their subsequent

behavior.

Intuitively, the slowdown of jobs is important to users because it reflects the degree to which

the performance they actually observed from the system met their expectations. For example,

it may be fine for a 10-minute job to wait 5 minutes in the queue (a slowdown of 1.5), but for

a 1-minute job to be delayed 14 minutes (same response time of 15 minutes, but slowdown of

15), may be considered unacceptable. Somewhat surprisingly, we found that user behavior is

strongly correlated with the response time of their jobs, not the slowdown. This finding calls for

a reassessment of suggestions that jobs should be prioritized according to their slowdown [23].

The next question is how exactly response times affect the behavior. In reality, users tend to

submit several jobs one after the other in periods of activity that are known as sessions. Previous

work had already discovered how session data can be identified and extracted from the traces

[69]. We found that the decision of the users to continue submitting jobs, or alternatively to abort

their session, is affected by the response time of their jobs. Specifically, we show that the higher

the response time, the higher the probability for the user to abort his interactive session with the

system.

The third and final question this chapter answers is why this happens. It is well known that

user behavior is affected by expectations [58], but unfortunately, such informations does not

appear explicitly in the traces. Instead, we show that it is possible to isolate specific scenarios in

the traces. In particular, we examined the scenario where response times met the expectations of

the users, and the scenario where they did not. We found that although the users’ perception and

motivation are different in the two cases, their actual behavior happens to be very similar.

This chapter is organized as follows: Section 4.2 describes the traces we used for our analysis.

Section 4.3 answers the question of which performance metric is most important to the users.

Section 4.4 answers the question of how that metric affect their behavior, and Section 4.5 answers

the question of why this happens. Section 4.6 surveys related publications, and Section 4.7

summarizes the chapter.

4.2 Trace Data 41

Trace Duration Users Jobs

SDSC-Par-1995-2.1-cln 1/1995–12/1995 98 53,970

CTC-SP2-1996-2.1-cln 6/1996–5/1997 679 77,222

KTH-SP2-1996-2 9/1996–8/1997 214 28,489

SDSC-SP2-1998-3.1-cln 4/1998–4/2000 437 59,725

SDSC-BLUE-2000-3.1-cln 4/2000–1/2003 468 243,314

Table 4.1: The five traces we used for our analysis: together, they represent many years of

activity by hundreds of users.

4.2 Trace Data

The data we used for our analysis come from traces that contain records of jobs that were submit-

ted and executed on a variety of large-scale parallel machines over periods ranging from one to

three years. Each job record contains several fields, four of which are relevant for our study: the

user who submitted the job, the time of submission, the job’s wait time in the scheduler queue,

and the job’s actual execution time, once it got started. The first field allows us to analyze the data

on a user basis. The other three fields allow us to find when each job terminated, and to calculate

its response time, its slowdown, and the think time between the termination and the submission

of the next job by the same user.

We used five traces to ensure that our results are not particular to a certain location and time:

together, they represent many years of activity by hundreds of users. They are listed in Table 4.1,

and are available on-line from the Parallel Workloads Archive [12]. When available, we use the

cleaned versions of the traces, where flurries and other extraordinary activity have been removed

[66].

4.3 Metrics Correlation with User Behavior

When a user submits a job for execution, this is typically not an isolated event. Rather, users tend

to submit several jobs one after the other. In many cases there is a dependency between successive

jobs: when a job terminates, the user examines its result, makes corrections and adjustments, and

submits another job. The time between the completion of a job and the submission of the next

job is known as the think time.

The system scheduler, in turn, accepts these jobs from the users and places them in its wait

42 Understanding User Behavior

queue. When resources become available, it scans the queue and selects jobs for execution

according to some prioritization criteria, and subject to possible reservation constraints.

Obviously, the scheduler’s actions depend on the jobs submitted by the users, but user be-

havior is also dependent on feedback from the scheduler. An efficient scheduler that streams

jobs through the system at a high rate encourages users to submit more jobs, while an inefficient

scheduler that causes resources to be wasted and jobs to be delayed discourages the submittal of

additional work [55].

While existence of such a feedback to the users is intuitively clear, the effect on their behavior

is not. The performance of the system can be measured using different metrics, all of which may

be assumed to be important to the users. The challenge is to find the metric that is really important

to the users in the sense that it affects their subsequent behavior.

We focus on the response time and slowdown of the jobs. The response time of a job is the

time elapsed from its submission to termination; it is the sum of the time it spent waiting in the

scheduler’s queue and the time it actually executed. Intuitively, response time is important to

users because they must wait for their jobs to terminate before they can examine the results and

submit more jobs.

Slowdown is the response time normalized by the actual execution time. It is also intuitively

important to users because it reflects the degree to which the performance they actually observed

from the system matched their expectations: A slowdown value that is near 1 indicates that the

job response time was close to its execution time, whereas a high slowdown value indicates that

response time had lengthened far beyond what would have been expected based on the job’s

actual runtime.

Finding a metric that reflects the behavior of the users is more challenging. Metrics like

the average job submission rate are not useful because averages necessarily mix multiple effects

with multiple responses. Instead, we propose to use the think times that follow jobs in the traces.

The rationale is that think times capture the user’s immediate response to the job that has just

terminated. A short think time indicates that the user was waiting for his job to complete, that he

is satisfied with performance, and intends to continue the interaction. A long think time indicates

that the user was probably not waiting for the job, possibly because he had given up on using the

system.

Because different jobs receive different levels of service, and different users react differently

to their jobs, the response times, slowdowns, and think times of the jobs in the traces exhibit

large variance. Tabulating the interaction on an individual job basis in this case is not useful.

4.3 Metrics Correlation with User Behavior 43

Response time bin R1 R2 R3 R4 R5

Response range 0–5 5–15 15–45 45–135 135–∞

Table 4.2: Response-time bins (ranges are in minutes).

Slowdown bin S1 S2 S3 S4 S5

Slowdown range 1–1.41 1.41–2 2–4 4–16 16–∞

Table 4.3: Slowdown bins.

Instead, we partition the jobs into classes that represent different levels of feedback to the users,

and study the aggregate user reaction to the jobs in each class.

The classes are obtained by dividing the jobs into five bins, once according to the response

time metric, and again according to the slowdown. The levels of feedback represented by the

response-time bins are “very fast response”, “reasonably fast response”, “medium response”,

etc. and the levels of feedback represented by the slowdown bins are “very low slowdown”, “low

slowdown”, and so on. The boundary points between the bins are roughly logarithmic, as shown

in Tables 4.2 and 4.3. This has the advantage of resulting in classes of approximately the same

sizes in terms of the number of jobs assigned to each.

Once the jobs are grouped in bins, we can analyze the think times that follow the jobs on a

per-bin basis, and examine reaction of the users to the different classes of feedback. Figure 4.1

shows the median think times for the five response-time bins, and the five slowdown bins.

In the case of response time, the relationship between performance and subsequent user be-

havior is clear and consistent for all five traces studied. Jobs in bin 1, which had response times

of up to 5 minutes, have the smallest median think time — also about five minutes. The median

think time is larger — up to 20 minutes — for bin 2, 20 to 60 minutes for bin 3, etc. This means

that users’ subsequent behavior is correlated with the response time of their jobs: the faster their

jobs respond, the quicker users submit additional jobs.

In the case of slowdown, on the other hand, the relationship is much less clear. First, the

results for the different traces are highly dispersed, with the highest median think time a factor

of 20 or 30 larger than the lowest one for each bin. Second, the order of the traces varies too; for

example, the SDSC SP2 trace exhibits the lowest think time median for bin 2, and the highest

median for bin 4. Finally, some of the results are non-monotonic: in the SDSC Paragon trace,

the think times following jobs in slowdown bin 4 are lower than those following jobs in bins 1, 2,

and 3. Consequently, there is no easy and general way to characterize the relationship between

44 Understanding User Behavior

 1

 10

 100

 1000

R5R4R3R2R1

T
h

in
k
 t

im
e

 m
e

d
ia

n
 [

m
]

(l
o

g
)

Response Time Bin

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

 1

 10

 100

 1000

S5S4S3S2S1

T
h

in
k
 t

im
e

 m
e

d
ia

n
 [

m
]

(l
o

g
)

Slowdown Bin

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

Figure 4.1: Correlation of performance metrics with user behavior: Left: high response times

correlate with longer think times. Right: for slowdown there is only a weak correlation.

the jobs’ slowdown and the subsequent user behavior.

In the above, we considered the response-time bins to be homogeneous, but in reality, differ-

ent jobs in the same bin may have far different wait and execution times. This means that the

slowdown of the jobs within the same response bin exhibit a large variance. For example, a 15-

minutes job that waited 5 minutes in the queue and a 1-minute job that waited 19 minutes both

belong to the same response bin R3, since both responded in 20 minutes. The question is whether

these two jobs indeed trigger a similar user behavior, even though the first has a slowdown of

1.33 and the second has a slowdown of 20.

To answer this question, we need to examine our response bins more closely. The natural

way to do this is to simply divide each bin into sub-bins based on the slowdown metric. We used

the same ranges as for the original slowdown bins.

Figure 4.2 illustrates these bins graphically. The horizontal axis represents the jobs’ wait

time, and the vertical axis represents their execution time. The response bins are bounded be-

tween the solid lines, and create diagonal regions going from top-left to bottom-right. The slow-

down bins are bounded between the dashed lines, and create radial regions emanating from the

origin. The intersections of the two types of regions represent the sub-bins. We named these

sub-bins according to response and slowdown bins their jobs belong to, so for example sub-bin

R3S1 holds jobs whose response time belongs to response bin R3, and whose slowdown belongs

to slowdown bin S1, etc.

Table 4.4 shows the median think time following the jobs in each of the sub-bins, using data

combined from all five traces. As expected, this exhibits a strong dominant effect of the response

4.3 Metrics Correlation with User Behavior 45

5

5

15

E
x
ec

u
ti

o
n
 T

im
e

(m
in

u
te

s)

45

15

45

R4S2

R4S3

R4S4

R3S5

R3S4

R3S3

R3S2

R3S1

R4S1

Wait Time (minutes)

Figure 4.2: Graphical illustration of the bins: The response bins are bounded between the solid

lines, and the slowdown bins are bounded between the dashed lines.

Bin S1 S2 S3 S4 S5

R1 3.6 6.6 8.2 8.8 8.9

R2 9.5 14 18 19 18

R3 17 49 50 41 40

R4 119 149 159 195 119

R5 524 600 652 712 702

Table 4.4: Medians of think times for sub-bins.

46 Understanding User Behavior

times. In each column, we see that the median think time grows dramatically and monotonically

with the response-time bin. Looking at rows does not reveal any such pattern for slowdown.

However, jobs with the very lowest slowdowns do consistently tend to lead to lower think times

than the other jobs with the same response time.

The conclusion of the above discussion is that the response-time metric is the one most im-

portant to the users since it has the strongest correlation with their subsequent behavior. The

question that immediately follows is therefore how exactly these response times affect the be-

havior. We show in the next section that it affects users’ decision to continue or abort their

interactive session with the system.

4.4 Jobs Response Time and User Sessions

Sessions are periods of continuous activity by the users. This does not mean that their jobs must

be continuously active throughout the session. A job may complete, and the user may think for

a while before submitting the next job. If the think time is too long, on the other hand, it may

well indicate that the user took a break. In this case, subsequent jobs will belong to a different

session. The question is, therefore, how to distinguish between jobs that are separated by actual

think times and belong to the same session, from jobs that belong to different sessions.

Zilber et al. answered this question by examining the distribution of think times in the traces

[69]. Figure 4.3 reproduces part of their data (they used two additional traces in addition to our

five), showing the CDF of the think times in the traces. We first observe that think times can be

negative. This stems from the definition that think time is the time between the completion of a

job and the submission of the next job, and indicates that sometimes users submit jobs without

waiting for their previous jobs to complete. Such jobs are often submitted in batches — one after

the other with very short gaps between the successive submissions, and without being affected

by feedback from previous jobs [55]. Consequently, the negative think times are not useful for

our study of feedback to the users, and we therefore ignore them in rest of this chapter.

Focusing on the positive think times, we see a steep climb in the CDF curve of all traces

for think times of a few minutes, which levels off at about twenty minutes. This means that a

large portion of the jobs are submitted within twenty minutes of the completion of a previous

job, which is an indication for continuous activity periods by the users. Furthermore, beyond

twenty minutes the think times are evenly distributed, without any features indicating a natural

threshold. Zilber et al. therefore defined the sessions’ think time boundary to be twenty minutes;

4.4 Jobs Response Time and User Sessions 47

 0

 0.2

 0.4

 0.6

 0.8

 1

+2h+1h+20m0-1h-2h

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Think time

S
e

s
s
io

n
 b

o
u

n
d

a
ry

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

Figure 4.3: CDF of think times for the five traces: Negative values indicate that one job started

before the previous one completed. Session boundary is defined to be twenty minutes
.

jobs submitted after a think time that is longer than twenty minutes are considered to start a new

session. In our work we adopt this definition.

We remain focused on the response-time bins of the previous section, but this time we expand

our analysis, and consider not only the median think times, but the entire distribution of think

times following the jobs in each bin

The CDF of think times for the different bins is shown in Figure 4.4. The immediate impres-

sion is that the five sub-figures that represent the different traces are very similar. In all traces,

there is a noticeable and a similar gap between the CDF curves of the different bins. Further-

more, for all traces, the curves follow the same vertical order: response bin R1 has the highest

CDF, bin R2 has the second-highest CDF, etc.

A closer examination of the figure also reveals that in all traces, all bins exhibit the same

steep climb in the CDF up-to the session’s twenty-minutes think time boundary, and beyond that

point, all curves level off. In fact, the major difference between the curves is in the percentage of

the jobs that were submitted below the session boundary, and it is this difference that determines

the vertical order of the curves. For the SDSC-SP2 trace, for example, 72% of the subsequent

jobs for response-bin R1 were submitted below the session boundary. For response bin R2, only

55% of the jobs were submitted below this boundary, and so on. The higher the bin number, the

lower the percentage of jobs that were submitted below the session boundary.

48 Understanding User Behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time [m]

S
e

s
s
io

n
 b

o
u

n
d

a
ry

R1

R2

R3

R4

R5

(a) SDSC-SP2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time [m]

S
e

s
s
io

n
 b

o
u

n
d

a
ry

R1

R2

R3

R4

R5

(b) CTC-SP2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time [m]

S
e

s
s
io

n
 b

o
u

n
d

a
ry

R1

R2

R3

R4

R5

(c) KTH-SP2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time [m]

S
e

s
s
io

n
 b

o
u

n
d

a
ry

R1
R2
R3

R4

R5

(d) SDSC-BLUE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time [m]

S
e

s
s
io

n
 b

o
u

n
d

a
ry

R1

R2

R3

R4

R5

(e) SDSC-PAR95

Figure 4.4: CDF of think times for the five response-bins: The five sub-figures that represent a

different trace each are very similar. In all, the higher the bin number, the lower the percentage

of jobs that were submitted below the twenty-minutes session boundary.

4.5 User Performance Expectations 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

b
a
b
ili

ty
 t
o
 c

o
n
ti
n
u
e
 s

e
s
s
io

n

Job response time [m]

sdsc_sp2_cln
ctc_sp2
kth_sp2

sdsc_blue_cln
sdsc_par95_cln

Figure 4.5: Jobs’ response time effect on users’ behavior: The higher the response time of the

jobs, the lower the probability that users will continue submitting jobs within the same session.

The mapping is non-linear and is highly similar for all traces.

Figure 4.5 summarizes these results for all five traces. For each bin we extracted the percent-

age of subsequent jobs that were submitted below the session boundary, using the CDF of think

times of the bin. We also calculated the median of response time of the jobs in the bin, and used

the median to represent the bin. We then plotted one against the other. The result is a mapping

between the jobs response times, and the probability for the users to continue their sessions. We

see that for all traces, the higher the response time of the jobs, the lower the probability for users

to continue submitting jobs within the same session. The mapping itself is non-linear; the prob-

ability to continue the session initially drops rapidly as response time increases, and continues to

drop more slowly for higher response times.

The conclusion is that the jobs’ response times affect the users decision to continue or abort

their interactive session with the system. In the next section we show that this decision may stem

from expectations the users develop regarding the response time of their jobs.

4.5 User Performance Expectations

It is well known that user behavior is affected by expectations [58]. Live experiments conducted

in the context of the web have found that users’ tolerance to server delays is strongly affected by

50 Understanding User Behavior

their expectations regarding the duration of the delay [5]. Accordingly, one would expect users

of parallel systems to also develop expectations regarding the time frame by which their jobs

should respond. The question is how these expectations affect their behavior, and what happens

when response times lengthen beyond their expectations.

To answer this question we focus on a subset of our previous results. Specifically, we define

two bins, so that one holds jobs that had a short wait, and the other holds jobs that had a short

execution. Assuming that users expectations would be related to the execution time of their jobs,

and not the wait times which are an artifact of certain conditions that existed in the system, these

two bins actually represent two different scenarios: the one with the short waits represents the

scenario where response times met their expectations, and the other represents the case where

they expected a quick response, but it got lengthened because of long waits in the scheduler’s

queue. The threshold we chose for the bins is five-minutes of wait, and five-minutes of execution,

respectively.

Due to the nature of the bins, the response times of the jobs they hold exhibit a large variance.

The bin with the short waits for example, may hold two jobs that waited only a minute for

execution, but the first executed for a few seconds, and the other for several hours. We therefore

divided our bins into sub-bins, based on the response-time metric, and using the same ranges we

used before as indicated in Table 4.2. This enabled us to examine the user behavior under the

two scenarios, while also considering the effect of the response time of their jobs.

Figure 4.6 illustrates these bins graphically. Again, the horizontal axis represents the jobs’

wait time, and the vertical axis represents their execution time. Our two bins are bounded be-

tween the two solid lines: the vertical bin holds the jobs with the short waits, and the horizontal

bin holds the jobs with the short execution. The dashed diagonal lines represent the boundaries

of the response bins, which intersect with our main bins and define the sub-bins. The sub-bins

with the short waits carry the prefix ‘W’, and the ones with the short execution carry the prefix

‘E’. All carry a suffix that identifies the response bin to which their jobs belong to, e.g., R1, R2,

etc.

For each sub-bin we extracted the percentage of jobs that were submitted below the session

twenty-minutes boundary, and plotted this percentage against the median of response time of the

jobs in the sub-bin. The result is shown in Figure 4.7. The two curves represent the probability

for the users to continue their session as a function of the response time of their jobs. One curve

represents the scenario where response times met their expectations, and the second represents

the case where they did not.

4.5 User Performance Expectations 51

5

5

15

E
x
ec

u
ti

o
n
 T

im
e

(m
in

u
te

s)

45

15

45

Wait Time (minutes)

ER3

W
R

3

ER2

W
R

2

Figure 4.6: Graphical illustration of the bins: The vertical bin holds the jobs with the short

waits, and the horizontal bin holds the jobs with the short execution.

In accordance with our previous results, we see that in both scenarios the probability for users

to continue their session decreases as response time increases. What is surprising though is the

high level of similarity between the curves, despite of the fact that they represent two essentially

different scenarios.

Our proposed explanation to this difficulty is that the users’ perception and motivation are

indeed different in the two cases, but that their actual behavior just happens to be very similar. In

the first scenario, response times meet users expectation. The fact that the probability to continue

the sessions decreases as response times increase is then a straightforward result of the fact that

users expect long response times, and therefore tend not to wait for their jobs. The longer they

expect the response time to be, the higher the probability for them to discontinue their sessions.

In the second scenario execution times are short and users expect a quick response. They start

to wait for their jobs, but when response times lengthens beyond their expectation because the

jobs wait for a long time in the scheduler’s queue, they tend to lose their patience and abort their

52 Understanding User Behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

b
a
b
ili

ty
 t
o
 c

o
n
ti
n
u
e
 s

e
s
s
io

n

Job response time [m]

Response does not match expectations
Response matches expectations

Figure 4.7: Performance expectations and user behavior: The probability for users to continue

their sessions decreases as the response time of their jobs increases, regardless of whether they

expected that response or not.

sessions. In this case the user behavior is indeed affected by the performance of the scheduler,

but it happens in such a way that makes the end result appear similar to the behavior had they

anticipated the long response time in advance.

We can also examine the bins with respect to the slowdown metric. In the bin with the short

waits, slowdown decreases as response time increases. In the bin with the short execution times

on the other hand, slowdown increases with the response time of the jobs. Still, the behavior of

the users appears to be similar in both cases. This corroborates the results from Section 4.3, and

indicates that response time is a much more reliable predictor of user behavior than slowdown.

4.6 Related Work

Early studies of the interaction between users and computers were conducted in the context of

a single interactive system [7, 8, 58]. W. Tetzlaff described a system for recording state data on

users of the IBM’s vm/370 system, to help locate performance bottlenecks and their effect on the

users [62]. Embley and Nagy examined theoretical models and experimental results related to

the behavior of users during text editing tasks [18]. Klein et al. demonstrated how systems can

be designed to help users recover from negative emotional states [31].

4.6 Related Work 53

With the emergence of networked systems, studies began to appear which relate to the social

behavior of users. Henderson and Bhatti analyzed session-level traces of multi-player networked

games, and found that users decision to join a game is affected by the number of players already

playing the game [25]. Balachandran et al. examined the distribution of users and network load

in public-area wireless networks and found that there is not much correlation between the two

[3].

Studying user reaction to system performance was often assumed to require live experiments

with real users. G. N. Lambert for example, examined the effect of system response times on

user productivity in development projects [34]. Similarly, Bouch et al. used live experiments to

investigate the tolerance of users to web server delays [5], and Lee and Snavely examined user

satisfaction live, at the San Diego Supercomputer Center [36].

Others however, have shown that it is possible to uncover the effect of a system on its users

directly from the system traces. Tran et al. developed a model of web surfers reaction to network

congestion simply by analyzing HTTP packet-traces [15]. Similarly, Chen et al. developed a

model of Skype’s users satisfaction purely from their VoIP traces [9]. In the context of parallel-

systems however, we could not find any related reference.

In fact, when parallel-systems schedulers are evaluated, the workload used in the simulation

is usually generated from traces, which means that the arrival rate of the jobs is already given,

and is not affected by the performance of the system [60, 45, 59, 67, 35, 54]. The alternative

is to use models to generate the workload, but most models either try to reproduce the arrivals

already found in the traces [6, 29, 11, 42], or even use a Poisson model to further simplify the

arrival process of the jobs [20, 16]. In all cases, there is no feedback in the workload between

the performance of the system, user behavior, and the arrival of new jobs.

In the previous chapter we investigated the importance of this feedback and found it may

lead to performance prediction errors of hundreds of percents [55]. We proposed a simulation

methodology that uses user-models instead of traces to dynamically generate the workload, but

our models were simplistic and reacted uniformly to differences in system performance. The

findings presented in this chapter can help extend our models to support a more realistic behavior,

in which users may abort their sessions as a result of poor system performance.

There is no single consensus regarding the performance metric that is most important to the

users. More than 35 years ago, Brinch Hansen suggested to prioritize jobs using the slowdown

metric [23], but since then many scheduling policies have been proposed and each evaluated

differently. A few selected cases are listed in Table 4.5: all believe their metrics of choice

54 Understanding User Behavior

Year Scheduling policy Metrics

1999 Slack based backfilling [60] Wait time

2001 EASY and conservative backfilling [45] Response, Slowdown

2002 Selective reservation backfilling [59] Slowdown, Turnaround

2002 Relaxed backfilling [67] Total wait time

2002 Multiple queue backfilling [35] Slowdown

2005 Lookahead based backfilling [54] Response, Slowdown

2007 Probabilistic Backfilling [46] Wait time

Table 4.5: Scheduling policies and metrics used for their evaluation: All believe their metric is

the one that is most important to the users, but none had ever investigated why.

are the ones most important, but none had ever investigated why. Feitelson has examined the

convergence of a few common metrics in the course of simulation, and found that different

metrics converge differently depending on the workload and the scheduler being used [21]. User

reaction to the metrics however, was not part of his study. Lee and Snavely presented utility

functions as a mean to represent the value users attach to their jobs in a flexible manner [37].

Zilber et al. were the first to present a comprehensive study of parallel-systems traces based

on users and sessions [69]. In Section 4.4, we adopted their definition of sessions as sets of jobs

submitted within twenty minutes from the completion of a previous job.

4.7 Summary

A good scheduler should strive to promote the productivity of its users, but this requires an

understanding of user behavior. Surprisingly, in virtually all performance evaluations, the effect

of the scheduler on the users is ignored. The conventional simulations simply use traces to

generate the workload, but in the trace the arrival rate of the jobs is already given, and is not

affected by feedback from the scheduler. Furthermore, the metrics by which schedulers are

compared vary from one evaluation to the other. Each analyst believes their metric is the one that

is most important to users, but this is not justified.

In this study we investigated the effect of the performance of the system on the behavior of its

users, and found that user behavior correlates with the response times of the jobs, not the slow-

down as was previously sometimes assumed. We continued to investigate the actual type of the

effect and found that response times affect the users’ decision to continue of abort their sessions,

4.7 Summary 55

and that the higher the response times of the jobs, the lower the probability for users to continue

submitting jobs within the same session. Finally, we have shown that the decision to abort the

session may stem from certain performance expectation that the users develop, regarding the

time frame by which their jobs should respond.

We did not reach these findings using live experiments. Instead, all we did was to examine

traces that contain raw data on jobs that were submitted to real, production-use parallel systems.

We are not the first to examine these traces. In fact, some of the older traces were first analyzed

more than ten years ago. We are though the first to take a different, slightly less obvious look at

things. An important conclusion of this study is that a lot of interesting observations are still out

there in the traces. All it takes is different angle and a fresh way of thinking to extract them.

In the next chapter we incorporate these findings into the simulation and introduce realistic

user models whose behavior is affected by the performance of the system. We also present

CREASY — a novel user-aware scheduler that exploits knowledge on user behavior to improve

user satisfaction, demonstrate that it improves the productivity of its users by more than 50%

compared to existing designs, and complete our discussion on the importance of the feedback in

the workload.

Chapter 5

Feedback and Scheduler Designs

T
HE open-system, trace-driven simulations used to evaluate the performance of the schedulers,

have led the schedulers to focus on the packing of jobs in the schedule, as a mean to improve a

number of performance metrics that are only conjectured to be correlated with user satisfaction, with

the premise that this will result in a higher productivity in reality. We argue that the lack of feedback

in the workload in these simulations actually leads to sub-optimal scheduler designs, and to even

dismissing potentially good design alternatives. We incorporate our findings regarding the behavior

of users of parallel-systems into our site-level simulations, and introduce a much more realistic user

behavior which is affected by the performance of the system. We present a novel scheduler called

CREASY that exploits knowledge on user behavior to directly improve user satisfaction, and com-

pare its performance to the original, packing-based EASY scheduler. We show that user productivity

improves by up to 50% under the user-aware design, while according to the conventional metrics,

performance may actually degrade.

5.1 Background

An important goal of any parallel-system scheduler is to promote the productivity of its users.

To achieve high productivity the scheduler has to keep its users satisfied and motivate them to

submit more jobs. Due to the high costs involved in deploying a new scheduler, it is uncommon

to experiment with new designs in reality for the first time. Instead, whenever a new scheduler is

proposed, it is first evaluated in simulation, and only if it demonstrates significant improvements

in performance, it then becomes a candidate for an actual deployment.

The conventional simulations presently used to evaluate the schedulers are trace-driven and

use an open-system model to play-back the trace and generate the workload for the evaluation.

This means that jobs get submitted during simulation solely according to the timestamps from

58 Feedback and Scheduler Designs

the trace, irrespective of the system state, which further means that as long as the system is not

saturated, the throughput of the scheduler being evaluated also gets dictated by the timestamps,

instead of being affected by the actual performance of the scheduler. A scheduler capable of

motivating its users to submit more jobs will not cause more jobs to be submitted, and vice-

versa.

This inability to influence throughput is an inherent problem in open-system models. In our

case, job throughput is probably the best indicator for user productivity, but the metric simply

cannot be used in the evaluation. The common solution is to use an alternative set of metrics

which on one hand can be affected by the scheduler, and on the other be conjectured to correlate

with user satisfaction. More specifically, the jobs’ average response-time and slowdown are

frequently used in evaluations. The premise is that improving them in simulation will result in a

higher productivity in reality.

Consequently, all schedulers evaluated using the conventional simulations have evolved to

consider the users of the system only implicitly through these metrics. They often try to opti-

mize the packing of jobs in the schedule, since tighter packing usually leads to lower average

simulated values. We are not aware of any scheduler that considers its users explicitly, nor of

any attempt to investigate whether these seemingly “user-friendly” metrics indeed correlate with

higher productivity.

We argue however, that the only way to truly maximize productivity is for the scheduler to

consider the users of the system directly — to strive to keep them satisfied and motivate them

to submit more jobs, and that the conventional, packing-based approach to scheduling leads

to sub-optimal designs. We further argue the that the conventional performance metrics do not

necessarily correlate with productivity, which means that it is even possible to dismiss potentially

good design alternatives as poor under the conventional simulations.

To allow truly user-aware schedulers to be effectively designed, we enhance our site-level

simulations from Chapter 3, which as already described, use user-models instead of traces to

dynamically generate the workload for the evaluation. We incorporate our findings regarding

the behavior of users of parallel-systems from Chapter 4 into the simulation, and introduce a

much more realistic user behavior which is affected by the performance of the system. We also

incorporate daily and weekly cycles into the simulated workload, to produce levels of activity

similar to those found in reality.

These enhancements, and the fact that in site-level simulations, schedulers capable of moti-

vating their users to submit more jobs do actually cause the throughput of the jobs to increase,

5.2 Common Scheduler Designs 59

enable the design of user-aware schedulers that strive to improve user satisfaction, since their

effect on productivity can now be directly and reliably measured via the throughput metric.

We present such a scheduler and name it CREASY. Our scheduler inherits its backfilling algo-

rithm from the original, packing-based EASY scheduler, but uses a novel prioritization scheme

that exploits knowledge on user behavior to improve user satisfaction. It uses the fact that some

jobs are more critical to the users than others (hence “CR” stands for CRiticality) in the sense

that delaying them too much may cause their owners to leave the system. It assigns higher prior-

ities to these jobs to reduce the likelihood for session aborts, and to motivate the users to submit

more jobs.

We compare the performance of our scheduler, in simulation, to the performance of EASY,

and show that user productivity improves by more than 50% under the user-aware design. We

investigate the reason for this exceptional improvement and show that it stems from CREASY’s

ability to maintain long user sessions under high loads.

We also compare the two schedulers according to the conventional performance metrics and

show inconsistent results: the average job response-time under CREASY is 27% higher com-

pared to EASY, while the average slowdown is 66% lower. We show that the increase in re-

sponse time is the outcome CREASY’s tendency to prioritize short jobs at the expense of longer

ones that dominate the average, and that the decrease in slowdown is the result of the exact same

trade-off, and the fact that slowdown is affected mostly by the shorter jobs.

This chapter is organized as follows. Section 5.2 describes common schedulers designs and

how the conventional simulations led to these designs. Section 5.3 describes our enhanced site-

level simulations, our findings regarding the behavior of users in parallel systems, and the user

models we use in our simulations which are based on these findings. Section 5.4 presents our

novel user-aware scheduler, CREASY. Section 5.5 describes the experiments we performed to

demonstrate the importance of the feedback for the design of the schedulers. Section 5.6 surveys

related work, and Section 5.7 summarizes the chapter.

5.2 Common Scheduler Designs

There are different types of parallel systems, and each requires a scheduler that is tailored to its

own specific architecture. Though all schedulers are evaluated in simulation in a similar way, we

chose to focus, without loss in generality, on a specific type of system that is both common and

easy to describe.

60 Feedback and Scheduler Designs

Our system has a distributed memory model, in which every processor in the system is associ-

ated with a private memory, and the processors are connected to each other using a fast network.

A parallel job in such a system is a unit of work that is composed of multiple processes that need

to execute in parallel and communicate over the network.

There is no time-sharing nor preemption support in our system. This means that processors

need to be allocated to the jobs using a one-to-one mapping — one processor for every process

of the job, and once allocated they remain dedicated to the job until it terminates. This scheme

is often referred to as space-slicing.

The role of the scheduler in such a system is to accept the jobs from the users, to allocate

processors and to execute the jobs on the selected processors. For simplicity, we ignore issues

like network contention, heterogeneous node configurations, and security.

The users of the system submit their jobs by providing to the scheduler a description of

the jobs’ resource requirements. For our type of system this typically includes two important

attributes: the number of processors the job requires in order to execute, which is often referred to

as the job’s size, and an estimated upper bound on the runtime of the job, to enable the scheduler

to plan ahead.

The behavior of the schedulers upon job arrival differ greatly. Most schedulers maintain a

queue where the jobs wait for processors to become available [39, 54]. Whenever the state of

the system changes, either due to an arrival of a new job, or a termination of a running job, they

scan the queue and select jobs for execution. Some schedulers maintain a number of queues and

use, for example, the job’s runtime estimates to select the right queue for the job [35]. Other

schedulers maintain futuristic execution profile for the jobs; when a new job arrives, they insert

it into the profile in a location where it either does not conflict with any of the already existing

jobs [45], or in a place where it delays some of these jobs by a small factor [60].

It is difficult to determine which approach is the best, and in fact some studies have indicated

that the relative performance of schedulers may actually depend on the workload [45]. On the

other hand, there is one thing that all schedulers share in common: they all focus on the packing

of jobs in the schedule, which as we demonstrate below, may not be optimal for productivity.

Consider for example a loaded system, and three users numbered 1, 2 and 3, who submitted

three jobs to their scheduler at 11:00am, 11:10am, and 11:55am, respectively. Assume that the

time is 12:00pm and that none of these jobs had started executing yet. By this time, there is a

high probability that users 1 and 2 have given up waiting for their jobs and that they have left the

system already. On the other hand, there is a good chance that user 3 who had just submitted his

5.2 Common Scheduler Designs 61

1

2

Time

P
ro

ce
ss

o
rs

R

3

(a) FCFS Schedule

1
2

3

Time

P
ro

ce
ss

o
rs

R

(b) EASY Schedule

1

2

3

Time

P
ro

ce
ss

o
rs

R

(c) User-aware Schedule

Figure 5.1: Three different schedules for the jobs: (a) Poor system utilization under FCFS, (b)

Improved utilization but not user-optimal schedule under EASY, and (c) User-aware schedule to

motivate user 3 to submit more jobs.

job is still active at the system, and is excepting a fast response.

Figure 5.1 illustrates how three different schedulers would have treated these jobs. In all

sub-figures, the system processors are laid out vertically, and time is running from left to right,

starting at 12:00pm. Our three jobs are labeled 1, 2 and 3, after their users. There is also one

more job that is labeled R and is currently running, and enough free space beside that job to

accommodate job 2 or 3, but not job 1.

The simplest scheduler, First-Come-First-Served (FCFS) in Figure 5.1(a), would simply ex-

ecute the jobs in their arrival order. Since job 1 must wait for job R to terminate before it can

start executing, a large space at the beginning of the schedule remains un-utilized. Jobs 2 and 3

will start executing together under FCFS, but only after job 1 terminates.

The problem with FCFS is of course the poor system utilization. This led to the development

of a new class of schedulers that relax the strict execution order of the jobs to improve utilization.

When the jobs reside in a wait queue in their arrival order, such schedulers pick small jobs from

the back of the queue, and execute them before larger jobs that arrived earlier, to fill holes in the

schedule. This behavior was given the name backfilling.

Backfilling can be implemented in different ways. Figure 5.1(b) illustrates the schedule under

the EASY scheduler — a classic backfilling scheduler that was originally developed for the IBM

SP parallel system, and is used ever since as a reference for performance comparison in virtually

any job scheduling research [39].

EASY prioritizes the waiting jobs according to their arrival order, and uses the jobs’ runtime

estimates to calculate when the highest priority job — the earliest arriving job — will be able

to execute in the future. It then examines the remaining jobs in descending priority order, and

62 Feedback and Scheduler Designs

backfills any job that fits into the currently free processors, as long as it will not conflict with the

projected execution of the highest priority job. Concentrating on the highest priority job is done

to guarantee the execution of all jobs: once this job starts executing, the next earliest-arriving job

will become the highest priority job, and it also will no longer be delayed.

In our example, job 1 is the earliest arriving job, so EASY determines that it will be able to

execute only after job R terminates. It then examines job 2 that has the second-highest priority,

and backfills that job since it will not conflict with the execution of job 1. Finally it examines

job 3 and determines that there are not enough free processors to backfill that job too. Job 3 will

therefore be delayed to a later time, and execute only after job 1 terminates.

At first glance it seems that EASY’s schedule is optimal: the space beside job R has been

utilized by job 2, and job 1 will execute without delay — but this is just an impression that is

based on a static view of the system. The problem is that by the time job 3 will terminate, there

is a high probability that user 3 will give up waiting for it and leave the system. In other words,

EASY backfilling may be apparently good for utilization, but it is not optimal for the users.

Figure 5.1(c) illustrate a user-aware schedule in which job 3 is backfilled before job 2, al-

though it has arrived last. The idea is to get job 3 to respond while its owner is still active at the

system, to motivate user 3 to continue the interaction and submit more jobs. Though initially it

seems less intuitive, this schedule is in fact based on the anticipated dynamics of the system and

speculating about future user behavior, and should result in a higher productivity.

5.2.1 Simulations Effect on Design

Though it is clear from the above example that scheduling jobs without considering the users

might not be optimal, virtually all schedulers would backfill, similar to EASY, job 2 ahead of

job 3. We argue that the reason they do not explicitly consider the users is rooted in the way the

conventional simulations are carried out to evaluate the performance of the schedulers.

In these simulations, the workload is usually generated from traces that contain records of

jobs that were submitted to real, production-use parallel systems over long periods of time. Each

record in the trace contains several attributes that describe a job, and includes a timestamp that

indicates when the job was originally submitted.

There are two models for actually generating the workload from the trace, the closed-system

model, and the open-system model. The closed model ignores the timestamps and issues new

requests only after a previous job completes. The problem is that it leads to extreme regularity:

5.2 Common Scheduler Designs 63

there are no bursts of activity in the workload which severely limits the optimizations that can be

performed by the scheduler, and there is no easy way to manipulate the load for the evaluation.

The open model on the other hand plays-back the trace solely according to the timestamps

and without any feedback between the completion of jobs and the arrival of new jobs. It supports

bursts as imposed by the timestamps, and the load can be easily manipulated by modifying the

timestamps in the trace before the simulation begins. Since real workloads often exhibit bursts

and varying load conditions, the conventional simulations adopted this model in generating the

workload, but the choice is more of a compromise than an optimal selection, and it even seems

to have affected the way schedulers are designed.

In open-system simulations, as long as the system is not saturated, the throughput of the

scheduler that is being evaluated gets dictated solely by the timestamps from the trace, and it

is not affected by actual performance of the scheduler. A scheduler capable of motivating its

users to submit more jobs will not cause more jobs to be submitted, and an inefficient scheduler

that ignores its users and causes them to leave the system will not de-accelerate the creation of

additional work.

This inability to influence throughput is an inherent problem in open models in general. In our

case, job throughput is probably the best indicator for user productivity, and improving it should

therefore be an important goal for any parallel-system scheduler, but the metric simply cannot

be used in the evaluation. The common solution is to use an alternative set of metrics which on

one hand can be affected by the scheduler, and on the other be conjectured to correlate with user

satisfaction. More specifically, the jobs’ average response-time which is the time the jobs spent

in the system from submission to termination, and their slowdown which is the response time

normalized by the actual runtime of the job, are frequently used in evaluations. The premise is

that improving them in simulation will result in a higher productivity in reality.

Consequently, all schedulers evaluated using the conventional simulations have evolved to

consider the user of the system only implicitly by trying to improve these metrics. They often

try to optimize the packing of the jobs in the schedule, since tighter packing usually leads to

lower average values. We are not aware of any parallel-system scheduler that considers its users

explicitly, nor of any investigation as to whether these seemingly “user-friendly” metrics indeed

correlate with higher productivity.

64 Feedback and Scheduler Designs

Category Conventional Simulations Site-Level Simulations Site-Level Enhanced

Workload source System traces User models

Workload generation Open-system model User-scheduler interaction

Load scaling Trace (de)-compression Number of users

Performance metrics Response time, slowdown Throughput, session length

Number of sessions Dictated by trace Static Dynamic

Cycles of activity Dictated by trace Not incorporated Incorporated

Table 5.1: Conventional, Site-level, and Enhanced site-level simulations.

5.3 Enhanced Site-level Simulations

As described above, the conventional simulations lead to the design of schedulers that consider

the system users only implicitly. To enable truly user-aware schedulers to be effectively de-

signed, we enhance our site-level simulations from Chapter 3 with our findings regarding the

behavior of users from Chapter 4. More specifically, instead of simulating only a static number

of user sessions, we introduce user models that dynamically start and end their sessions with the

system as a reaction to the performance they observe from their jobs. We also divide the user

population into different classes to simulate daily and weekly cycles, similar to those found in

real workloads.

These enhancements, and the fact that in site-level simulations, schedulers capable of moti-

vating their users to submit more jobs do actually cause the throughput of the jobs to increase,

enable the effective design of truly user-aware schedulers. These schedulers should strive to im-

prove user satisfaction to reduce the likelihood for session aborts, which in turn translates into

higher overall productivity that can be measured directly via the throughput metric. Table 5.1

summarizes the differences between the conventional, our original site-level simulations, and the

above mentioned enhancements.

In the following section we briefly describe our findings regarding the behavior of users of

parallel-systems, and focus only on those that directly pertain to our user models. More details

on the methodology we develop to uncover the users’ behavior patterns from traces of parallel-

systems can be found in Chapter 4 and in [56]. These findings form the basis for the session

dynamics model described below, which is the first of three models that together comprise the

complete user model we use in our simulations.

The dynamics model handles the dynamic aspects in the user behavior — the starting and the

5.3 Enhanced Site-level Simulations 65

 0

 0.2

 0.4

 0.6

 0.8

 1

+2h+1h+20m0-1h-2h

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Think time

S
e

s
s
io

n
 b

o
u

n
d

a
ry

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

Figure 5.2: CDF of think times in the five traces: negative values indicate that sometimes users

submit jobs without waiting for their previous jobs to terminate. The steep climb in all curves

which levels-off at about twenty minutes lead to defining the sessions think time threshold to be

twenty-minutes.

ending of user sessions as a reaction to the performance of their jobs. The other two models are

the job submission model that handles the actual submission of jobs during the sessions, and the

activity cycles model that incorporates daily and weekly cycles into the simulation.

Our user model is described in Section 5.3.2. We implemented and integrated it into Site-Sim

— a framework we developed for site-level simulations to enable the reliable evaluation of user-

aware schedulers. We used Site-Sim extensively to explore design alternatives as we developed

CREASY — the first truly user-aware parallel-system scheduler, described in Section 5.4. The

simulation results of our scheduler reported in section 5.5 were also obtained using Site-Sim.

5.3.1 User Behavior Patterns

In reality, users tend to submit several jobs one after the other in periods of activity that are

known as sessions. The time between the termination of a job and the submission of the next is

globally known as the think time, but the fact is that if the think time is too long, it may actually

indicate a break which is not part of the session. The question is therefore what is the think time

threshold that separates jobs that belong to the same session from those that belong to the next.

Zilber et al. answered the question by simply observing the distribution of the think times in

66 Feedback and Scheduler Designs

Trace Duration Users Jobs

SDSC-Par-1995-2.1-cln 1/1995–12/1995 98 53,970

CTC-SP2-1996-2.1-cln 6/1996–5/1997 679 77,222

KTH-SP2-1996-2 9/1996–8/1997 214 28,489

SDSC-SP2-1998-3.1-cln 4/1998–4/2000 437 59,725

SDSC-BLUE-2000-3.1-cln 4/2000–1/2003 468 243,314

Table 5.2: The five traces we used for our analysis: together, they represent many years of

activity by hundreds of users.

different traces of parallel systems [69]. Figure 5.2 shows the CDF of the think times in five of

these traces, which are listed in Table 5.2, and are available on-line from the Parallel Workloads

Archive [12]. Two important observation can be made on this figure. The first is that think times

can be negative, which means that sometimes users submit jobs without actually waiting for their

previous job to terminate.

The second observation is the steep climb in all curves at zero, which starts to level off at

around twenty minutes. This means that a large portion of the jobs are submitted within twenty

minutes from the completion of a previous job, and that beyond twenty minutes the think times

are evenly distributed, without any features indicating a natural threshold. Zilber et al. therefore

defined the threshold to be twenty minutes; above twenty minutes the think times are considered

breaks, and the jobs that follow them are considered to belong to the next session.

In our work we adopted this definition, but also tried to understand what may cause the users

to continue their sessions or to take breaks. We found that in all traces, there is a strong corre-

lation between the response times of the jobs and the think times: the longer the response, the

higher the think times that follow the jobs. This led us to speculate that user behavior is affected

by the response times of their jobs — that short response times encourage the users to quickly

submit more jobs, and that longer ones may cause them to abort their sessions. Similar obser-

vations regarding the relation between job response and user behavior were reported through the

use of live-experiments in [36].

Due to the large variance that naturally exists in the traces, we divided the jobs into classes

according to their response times, and for each class we calculated the percentage of jobs that

were submitted below the twenty minutes think time threshold. The result was a mapping be-

tween the response times of the jobs and the probability for the users to continue their sessions,

which indicates that the longer the response the lower the probability for the users to continue

5.3 Enhanced Site-level Simulations 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

b
a

b
ili

ty
 t

o
 c

o
n

ti
n

u
e

 s
e

s
s
io

n

Job response time [m]

sdsc_sp2_cln
ctc_sp2
kth_sp2

sdsc_blue_cln
sdsc_par95_cln

(a) Original trace data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

b
a

b
ili

ty
 t

o
 c

o
n

ti
n

u
e

 s
e

s
s
io

n

Job response time [m]

0.8
P =

0.05 x response time + 1

(b) Data combined and curve smoothened

Figure 5.3: Jobs response time effect on user behavior: (a) In all traces the longer the response,

the lower the probability for the users to continue their sessions, and (b) Trace data combined

and resulting curve smoothened.

and submit more jobs. The mapping is illustrated in Figure 5.3(a) and it forms the basis for

session dynamics model described in Section 5.3.2.1.

It is important to note that the response times of jobs is only one of many factors that affect

the users, and that user behavior in reality is far more involved than what our current model

depicts. However, for the purpose of demonstrating the effect of the feedback on the design of

the schedulers, our simple models suffice.

5.3.2 Complete User Model

Our user model is composed of three sub-models that interact with each other during simulation

to simulate a realistic user behavior. The session dynamics model, the job submission model, and

the activity cycles model are described in detail in the following sections. In section 5.3.2.4 we

provide examples as to how these models interact during simulation.

5.3.2.1 Session Dynamics Model

As described above, one of the important factors that affect user behavior is the response times

of their jobs: the longer the response, the lower the probability for the users to continue their

sessions. This means that response times in effect, affect the users’ decision to continue or abort

their interactive sessions with the system.

68 Feedback and Scheduler Designs

There are two reasons why it is extremely important to accurately model this decision. First,

it is an integral part in the behavior of users, representing their satisfaction with the performance

of the system. Second, since the length of the sessions directly affects the throughput metric,

schedulers can try to influence this decision as a mean to improve productivity. In other words,

the accurate modeling of this decision is essential for both the evaluation and the design of user-

aware schedulers.

The session dynamics model is responsible for taking these decisions for the user models

during simulation, and based on the outcome to determine when will they submit more jobs to

the system. In its essence, the dynamics model handles the dynamic starting and the ending of

user sessions during simulation.

To model the decision, we first combined the data from all five traces of Figure 5.3(a) and

smoothened the resulting curve, as shown in Figure 5.3(b). We found that the curve can be

roughly described by Equation 5.1. Next, during simulation whenever job j terminates, we cal-

culate the response time of the job, and use Equation 5.1 to determine the probability p cont(j)

that the user who submitted the job will continue his session with the system.

p cont(j) =
0.8

0.05 × resp time(j) + 1
(5.1)

To make the final call we perform a single Bernoulli trial, with probability p cont(j) for

success and 1 − p cont(j) for failure. If the trial ends in a success, the user will continue his

session with the system, otherwise he will take a break. The trial is summarized in Equation 5.2.

decision =

continue session with probability p cont(j)

abort session with probability 1 − p cont(j)
(5.2)

Once we know whether the session continues or not, the next step is to determine when will

the user submit his next job. As described above, jobs within the same session are submitted with

up to twenty-minutes of think time from the completion of a previous job, whereas between ses-

sions the think times are longer and are considered breaks. We therefore need two distributions:

one with short think times to be used for sessions that continue, and the other with longer think

times to be used for breaks.

We used distributions that are based on empirical data we extracted from the same five traces

of Table 5.2. In these traces, breaks may sometimes be as long as several months, since real

users do not necessarily use the system continuously throughout the year. To avoid such long

pauses in user activity during simulation, we limited the breaks to a maximum of eight hours by

5.3 Enhanced Site-level Simulations 69

 0

 0.2

 0.4

 0.6

 0.8

 1

20m15m10m5m0

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time

sdsc_sp2_cln
ctc_sp2_cln

kth_sp2
sdsc_blue_cln

sdsc_par95_cln

(a) Think times < 20m

 0

 0.2

 0.4

 0.6

 0.8

 1

8h7h6h5h4h3h2h1h20m

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Think time

sdsc_sp2_cln
ctc_sp2_cln

kth_sp2
sdsc_blue_cln

sdsc_par95_cln

(b) 20m < Think times < 8h

Figure 5.4: The two think time distributions in the traces: (a) short think times are used for

sessions that continue, and (b) longer think times are used for breaks.

filtering-out longer think times during trace analysis. The two distributions as they appear in the

traces are shown in their CDF format in Figure 5.4. For the simulations, we combined the data

from all five traces into a single representative distribution.

5.3.2.2 Job Submission Model

The session dynamics model described above does not handle the actual submission of jobs. This

is the role of the job submission model: it generates the attributes for the jobs, and submits the

jobs to the scheduler in a realistic manner.

To generate the attributes, we once again used distributions that are based on empirical data

from the traces. The CDFs of the job sizes and runtimes are shown in Figure 5.5. The first is

a modal distribution with most jobs using power-of-two processors, and the second is a rather

skewed distribution dominated by small runtime values, usually in the order of a minute or less.

Similar observation regarding size and runtimes were reported in several studies [20].

Though the above distributions are based on empirical data, using them “as-is” will still not

generate a truly realistic workload. The reason is that in reality, users tend to submit the same

jobs over and over again, which means that successive jobs by the same user tend to be similar

to each other. This temporal locality in the workload will therefore be lost if we simply sample

these distributions in the course of simulation.

The solution is to use a two-level sampling process, with the top level generating the attributes

70 Feedback and Scheduler Designs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Processors (log)

sdsc_sp2_cln
ctc_sp2_cln

kth_sp2
sdsc_blue_cln

sdsc_par95_cln

(a) CDF of jobs’ sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

1h45m30m15m0

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Job runtime

sdsc_sp2_cln
ctc_sp2_cln

kth_sp2
sdsc_blue_cln

sdsc_par95_cln

(b) CDF of jobs’ runtimes

Figure 5.5: CDF of job sizes and runtimes in the traces: (a) sizes is a modal distribution with

most jobs using power-of-two processors, and (b) runtimes is rather skewed distribution, domi-

nated by small runtime values.

for the jobs1, and the bottom level repeating them to generate effects of locality [13]. For the

bottom level, we chose the jobs’ sizes to be the leading distribution, and extracted the number

of times jobs of the same size appear successively in the traces. The CDF of size repetitions

in the different traces is shown in Figure 5.6(a). Again, we combined all traces into a single

representative distribution for use in the simulation.

To actually submit the jobs, we closely examine Figure 5.2 and observe that a large fraction of

the think times in the traces — more than 50% in some cases — are in fact negative. This stems

from the definition of think time as the time from the termination of a job to the submission of

the next, and indicates that sometimes users submit jobs without waiting for their previous jobs

to terminate.

An effective way to model this behavior is to use batches which are groups of jobs submitted

asynchronously to one another, without being affected by the performance of previous jobs.

Sessions will thus consist of series of one or more batches, each containing one or more jobs,

and the session dynamics model described above will only be used to derive the think time from

the last job in a batch, to the first job in the following batch. The relationship between sessions,

batches and think times is illustrated in Figure 5.7. The jobs marked with an X are those used to

derive the think time.

The CDF of the width of the batches — the number of jobs submitted asynchronously within

1Further accuracy can be achieve be considering the correlation between size and runtime.

5.3 Enhanced Site-level Simulations 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Job size repetitions

sdsc_sp2_cln
ctc_sp2_cln

kth_sp2
sdsc_blue_cln

sdsc_par95_cln

(a) Size repetitions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Batch width

sdsc_sp2_cln
ctc_sp2_cln

kth_sp2
sdsc_blue_cln

sdsc_par95_cln

(b) Batch widths

Figure 5.6: CDF of job size repetitions and batch widths in the traces: for the simulations, we

combined the data from all five traces into a single representative distribution.

BatchSession

TT TT TT TT TTBreak

Break: 20m < Think time < 8hTT: Think time < 20m: Job

x

x x x

xx

x

Time

Figure 5.7: Sessions, batches, and think times: the jobs marked with an X are those used by the

session dynamics model to derive the think time until the next job.

batches is shown in Figure 5.6(b). As can be seen, the distributions are reasonably similar in all

traces which indicates that our data is representative of job submission behavior in general.

5.3.2.3 Activity Cycles Model

Daily and weekly cycles are universal human traits. Most users arrive to work in the morning

and leave for home in the evening. Normally, they work during week-days, and rest over week-

ends. Incorporating these cycles of activity in the simulation is important, not just because they

constitute a fundamental characteristic of real workloads, but also since they introduce periodic

intervals of low loads that enable the scheduler to stabilize the state of the system and prepare

for the next interval of high load [41].

Figure 5.8(a) shows the distribution of job submissions during the 24-hours daily cycle in the

72 Feedback and Scheduler Designs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

23pm18pm12pm6am0am

F
ra

c
ti
o

n
 o

f
s
u

b
m

is
s
io

n
s

Time of day

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

(a) Daily Cycles

 0

 0.05

 0.1

 0.15

 0.2

SatFriThuWedTueMonSun

F
ra

c
ti
o

n
 o

f
s
u

b
m

is
s
io

n
s

Day of week

sdsc_sp2_cln
ctc_sp2_cln
kth_sp2
sdsc_blue_cln
sdsc_par95_cln

(b) Weekly Cycles

Figure 5.8: Daily and weekly cycles in the traces: (a) 70% of the jobs are submitted during

daytime, 7:30am to 17:30pm, and (b) 80% of them are are submitted during week-days, Monday

to Friday.

traces. Not surprisingly, all traces indicate higher levels of activity during the daytime compared

to the nighttime. What is interesting though is the high level of similarity among the traces,

which in fact enables us to roughly define a boundary between day and night. Accordingly, we

defined daytime to be from 7:30am to 17:30pm, and nighttime from 17:30pm to 7:30am the next

morning. Our analysis indicates that approximately 70% of all job are submitted during the 10

hours of daytime, and the reset during the nighttime.

Similarly, Figure 5.8(b) shows the distribution of submissions during the weekly cycle. As

expected, weekdays Monday to Friday are busier than weekends, accounting for 80% of all

submissions. The remaining 20% occur during the weekends, Saturday and Sunday.

The role of the activity cycles model is to incorporate these daily and weekly cycles into

the simulation. At simulation start, it performs two Bernoulli trials for each user model: the

first to determine whether the user will be active during the day or the nighttime, and the sec-

ond to determine its days of activity — weekdays or weekends. The probabilities we used in

these trials are 70% and 80%, respectively. This effectively divides the user population into

four classes: (a) daytime-weekdays, (b) daytime-weekends, (c) nighttime-weekdays, and (d)

nighttime-weekends, and guarantees that the levels of activity in the simulated workload will be

similar to those found in reality.

The model then continuously monitors the time of day and the day of week during the simu-

lation, and determines for each user model, based on its class, whether it should continue to be

5.3 Enhanced Site-level Simulations 73

active or be temporarily suspended. For the daytime-weekday users for example, if a job termi-

nates after 17:30pm, the model will determine it is sleep time for these users, and suspend their

activity until the next morning, or even until the next weekday, if it is already a weekend.

To prevent bursts of activity at shift transition, the cycles model also attaches a random num-

ber between -60 and 60 to each user model, and uses this number to personalize the user’s

window of activity. For example, if the number 20 was attached to a certain daytime user, the cy-

cles model will shift its window of activity by 20 minutes from the “official”, 7:30am - 17:30pm

daytime window. This means that the user will submit his first job at 7:50am and be suspended

at 17:50pm.

5.3.2.4 Models Interaction During Simulation

The three models described above interact with each other in order to simulate a realistic user

behavior. We provide two examples for this interaction, both for the daytime-weekday users. The

first happens entirely during the day, and demonstrate how sessions start and end dynamically

during simulation. In the second example, the cycles model intervenes, and suspends the user

until the next morning. In both cases, we assume the user only submits a single job at a time.

The first example is illustrated on the left side of Figure 5.9. Our user arrives to work at

7:30am sharp, and the job submission model is immediately called to submit the first job to

the scheduler. When the job responds five minutes later, the activity cycles model is called to

determine whether the user is still active at work. Since 7:35am is just the beginning of the

workday for our daytime-weekday user, the session dynamics model is called to determine if its

session should continue or not.

The dynamics model determines that five minutes of response are satisfactory, and decides

on a short think time of 10 minutes following this job. Ten minutes later, at 7:45am, the activity

cycles model is called once again to verify the time, and the submission model is called to submit

the second job by the user. When this job responds 10 minutes later, the cycles model verifies

the time again, and the dynamics models decides on a 15 minutes think time until the next job.

At 8:10am our user submits the third job to the scheduler. This time, the job responds after a

whole hour, so the dynamics model determines that the session should not continue, and decides

on a long, three hours break for the user. Three hours later, at 12:10pm, the cycles model verifies

the time once again, and our user submits the fourth job, and so forth.

The second example is illustrated on the right side of the figure. Our user submits a job at

17:10pm that responds five minutes later. The time is verified, and the dynamics model decides

74 Feedback and Scheduler Designs

5m response

M
o
d
el

M
o
d
el

A
ctiv

ity
 C

y
cles

Jo
b
 S

u
b
m

issio
n

M
o
d
el

Jo
b
 S

u
b
m

issio
n

M
o
d
el

M
o
d
el

A
ctiv

ity
 C

y
cles

M
o
d
el

S
essio

n
 D

y
n
am

ics

S
essio

n
 D

y
n
am

ics

1h response

10m thinktim
e

15m th
inktim

e

5m response
5m response

10m thinktim
e

10m thinktim
e

10m thinktim
e

10m response

10m response

10m response

Active user sessions

17:10pm

17:15pm

17:25pm

17:35pm

7:30am

7:35am

7:45am

7:55am

8:10am

9:10am

3h
 b

re
ak

12:10pm

12:15pm

12:25pm

13
:5

5h
 s

le
ep

7:30am

7:40am

7:50am

Figure 5.9: Two examples for the models interaction during simulation: active user sessions are

shown in the dark gray.

on a think time of 10 minutes until the next job. At 17:25pm our user submits one more job that

responds at 17:35pm. This time the cycles model determines that it is late for the user, and send

him on a long sleep of 13 hours and 55 minutes, until 7:30am the next morning.

5.4 User-Aware Scheduling

Site-level simulations allow user-aware schedulers to be reliably evaluated and effectively de-

signed. We developed such a scheduler and compared its performance, in simulation, to the

original EASY scheduler which is not user-aware. Our scheduler is describe below, and its sim-

ulation results are presented in Section 5.5.

5.4 User-Aware Scheduling 75

5.4.1 Criticality of Jobs

Our scheduler is similar to the EASY scheduler from Section 5.2 in the sense that they both use

backfilling to improve performance. Furthermore, our scheduler actually inherits its backfilling

algorithm from the EASY scheduler. In fact, the only difference between the two schedulers is

in the way they prioritize the waiting jobs: while EASY accounts only for the jobs’ arrival order

in the interest of fairness [47, 48], our scheduler tries to assess the criticality of the jobs for the

users, and assigns its priorities accordingly. We therefore named our scheduler CREASY, with

“CR” standing for CRiticality, and “EASY” to denote the backfilling algorithm internally used.

The criticality of a job is determined by the way it affects the behavior of its owner. We

already know that user behavior is affected by the response times of the jobs. A closer look

at Figure 5.3 also reveals that the mapping between the response times and user behavior is

non-linear: the probability for users to continue their sessions drops rapidly as response times

increase for short response times, and continues to drop more slowly for higher response times.

This means that jobs with short response times are much more critical to the users in the

sense that any delay incurred by these jobs, even the smallest one, dramatically increases the

chances for a session abort. We therefore defined the criticality of jobs using Equation 5.3,

which is the derivative of Equation 5.1 in absolute values, and hence accurately accounts for

these differences in criticality: it assigns high values to jobs with short response times, and

near-zero values to those whose effect on user behavior is marginal. This differs from plain

shortest-job-first scheduling in the sense that short jobs are given high priorities only provided

that they have not been delayed too much.

criticality(j) =
0.04

(0.05 × estimated response time(j) + 1)2
(5.3)

Note that in the denominator of Equation 5.3 we only use an estimate for the response time

of the job, since exact response times can only be determined after the jobs terminate. For the

estimate we sum the time the job had already spent waiting in the scheduler’s queue, and the time

it is expected to run, which is based on the user estimate. Together, the two values represent the

total time the job is expected to spend in the system, from submission to termination.

If Equation 5.3 will be used to prioritize the jobs, it will increase the chances for critical

jobs to execute before other jobs, which should reduce the likelihood for sessions abort, and

motivate the users to submit more jobs. The problem is that this is not enough, because the

76 Feedback and Scheduler Designs

EASY algorithm internally used to backfill the jobs can guarantee the execution of all jobs only

if every waiting job will eventually become the highest priority job.

While this is true under EASY’s original prioritization scheme, it is not guaranteed in our

case since according to Equation 5.3, senior jobs whose response time is already long will never

become more critical than short executing jobs that keep getting submitted. In other words, the

combination of criticality-based prioritization and EASY backfilling may lead to starvation.

The solution is to combine a seniority factor in the priority calculation, as shown in Equation

5.4: the criticality part on the left is taken directly from Equation 5.3, and the seniority factor

is simply the time, in minutes, that the job is waiting for execution in the scheduler’s queue.

Finally, the weight α is used to set the relative importance of the two factors in the calculation,

and at the same time to adjust the different units used.

priority(j) = α × criticality(j) + seniority(j) (5.4)

If α = 0, jobs will be prioritized solely according to their seniority, resulting in a prioriti-

zation scheme which is effectively identical to EASY’s original scheme. Non-zero α values on

the other hand will cause the criticality factor to take an increasing effect, and performance to

improve as we demonstrate below. However, since the largest possible value of the criticality

factor according to Equation 5.3 is 0.04, and the seniority of jobs steadily increases with time,

it is guaranteed that for any α value that we choose, senior jobs will eventually reach higher

priorities, and their execution will be guaranteed by the EASY algorithm.

5.5 Simulation Results

We used Site-Sim to run site-level simulations of CREASY, and compared its performance to

the performance of the original EASY scheduler. As described above, setting α to 0 in Equation

5.4 results in a prioritization scheme which is effectively identical to EASY’s original scheme,

which means that the behavior of the two schedulers becomes identical. We therefore didn’t even

need to explicitly implement EASY — we simply simulated it using CREASY.

We found that α values of 1500, 3000, 4500 and 6000 have a noticeable and a progressive ef-

fect on the performance of our scheduler. When α = 1500 its performance is closest to EASY’s,

and beyond 6000 changes in performance are marginal. In total, we experimented with five

schedulers: the original EASY scheduler (simulated using CREASY with α = 0), and the four

variants of CREASY, each with one of the above non-zero α values.

5.5 Simulation Results 77

To compare the performance of the schedulers under different loads we ran five simulations

of each scheduler, using a different number of users models in each run. We used 50 users to

simulate low loads and gradually increased the size of the site by adding 50 users each time,

until we reached 250 user models. In each run we simulated six months of user activity, which

produces enough data to allow us to base our conclusions on statistically significant results. We

also compared key attributes of the resulting data to their original distributions from the traces to

validate the correctness of our simulations.

5.5.1 User Productivity

Improving productivity is an important goal for any parallel system scheduler, and the best indi-

cator for user productivity is the throughput — the number of jobs the users submit to the system

over a period of time.

Figure 5.10(a) shows the average job throughput under the five schedulers as a function of

the size of the site. As seen in the figure, for the smallest site of 50 users, all schedulers perform

similarly since the load is too low for any optimization to take effect. Only when the load begins

to increase, the differences in performance become noticeable.

For the largest site we simulated, of 250 users, the throughput under the EASY scheduler is

47 jobs/hour, while under CREASY with α = 6000 it is 71 jobs/hour which is an exceptional

improvement of more than 50%. Improvement is milder but is still very significant for CREASY

with lower α values: 21%, 36%, and 44% for αs of 1500, 3000, and 4500, respectively. A similar

improvement is seen in the measured system utilization, which increased from 57% to 85% for

the largest α value. This happens since the two metrics are strongly correlated: as long as the

system is not saturated, increasing throughput directly leads to an increase in utilization.

To understand this exceptional improvements in throughput we need to examine the behavior

of the users under the five schedulers. We chose to focus on the users sessions and in particular

on the length of their sessions with the system. Session length is defined as the number of jobs

the users submit during their sessions of activity with the system, and hence it serves as a good

indicator for user satisfaction.

Figure 5.10(b) shows the average session length under the five schedulers, as a function of

the size of the site. Under the EASY scheduler, session length drops significantly from 2.69

jobs/session on average for the small 50 users site, to 1.73 jobs/session for the 250 users site —

a 36% drop. The drop becomes milder with higher α values, and it is hardly noticeable when

α = 6000.

78 Feedback and Scheduler Designs

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250

T
h

ro
u

g
h

p
u

t
[J

o
b

s
/H

o
u

r]

Number of Users

 EASY (α=0)
 CREASY (α=1500)
 CREASY (α=3000)
 CREASY (α=4500)
 CREASY (α=6000)

(a) Average job throughput

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250

J
o

b
s
 /

 S
e

s
s
io

n

Number of Users

 EASY (α=0)
 CREASY (α=1500)
 CREASY (α=3000)
 CREASY (α=4500)
 CREASY (α=6000)

(b) Average session length

Figure 5.10: Average job throughput and session length: the higher the value of α, the higher

the throughput (a), and the milder the drop in session length (b).

The reason session length drops is rooted in the core design of the schedulers. The original

EASY scheduler does not consider the critically of the jobs. As a consequence, when the load

begins to increase more and more users under EASY abort their sessions as a result of their jobs

being delayed by the scheduler. This causes average session length to decrease, and explains the

poor throughput of the scheduler in Figure 5.10(a).

As we increase the value of α, the chances for critical jobs to execute before other jobs also

increase: the higher the value of α, the higher the priority of critical jobs, and the more critical

jobs that respond in time, which causes more users to continue their sessions with the system,

and the overall job throughput to improve.

Finally, when α = 6000, the drop in session length is hardly noticeable even under the highest

loads. This means that CREASY was capable of virtually isolating the interactive users from the

load conditions that exist in the system, successfully providing them with a highly responsive

environment even under the most extreme load conditions.

5.5.2 Conventional Performance Metrics

While throughput remains the best indicator for user productivity, there are other, more con-

ventional metrics that can be measured in site-level simulations as well. Figure 5.11 shows the

performance of our five schedulers according to two of the most commonly used metrics: the

average job response time and the slowdown.

5.5 Simulation Results 79

0

20

40

60

80

100

50 100 150 200 250

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 [
m

]

Number of Users

 EASY (α=0)
 CREASY (α=1500)
 CREASY (α=3000)
 CREASY (α=4500)
 CREASY (α=6000)

(a) Average response time

0

10

20

30

40

50

60

70

80

50 100 150 200 250

A
v
e

ra
g

e
 J

o
b

 S
lo

w
d

o
w

n

Number of Users

 EASY (α=0)
 CREASY (α=1500)
 CREASY (α=3000)
 CREASY (α=4500)
 CREASY (α=6000)

(b) Average slowdown

Figure 5.11: Inconsistency according to the conventional metrics: the schedulers with the lower

α values outperform the ones with the higher values according to the response-time metric (a),

but according to the slowdown, the ones with the higher values have significantly better perfor-

mance (b).

Similar to Figure 5.10, we see that the differences in performance between the schedulers

become significant only when the load begins to increase. In contrast from Figure 5.10 though,

it is the schedulers with the lower α values that outperform the ones with the higher values, but

only according to the response-time metric of Figure 5.11(a). The ones with the higher values

still have significantly better performance according to the slowdown.

Under the highest 250 users load for example, the average job response time under the EASY

scheduler is 78 minutes, while under CREASY with α = 6000 it is 99 minutes, which is a 27%

degradation in performance for CREASY. On the other hand, the average job slowdown under

EASY is 71, while under CREASY it is only 24, which is a 66% improvement.

The above results are surprising. We would expect performance to improve with higher α

values according to both metrics, since the metrics are conjectured to be correlated with user

satisfaction, and thus should improve along with the throughput metric of Figure 5.10(a). Ob-

viously, this is not the case, and the response-time metric is in fact inversely correlated with

productivity.

To understand the reason for this inconsistency, we divided the jobs into classes according to

their runtimes, and examined the average response-time and slowdown in each class. We chose

to use three classes: one for short jobs of up to 1 minute of runtime, the second for medium jobs

whose runtime is between 1 and 10 minutes, and the third for longer jobs that execute for more

80 Feedback and Scheduler Designs

 0

 50

 100

 150

 200

 250

 300

All JobsLongMediumShort

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 [
m

]

Job runtime class

 EASY (α=0)
 CREASY (α=6000)

(a) Per-class average job response time

 0

 50

 100

 150

 200

All JobsLongMediumShort

A
v
e

ra
g

e
 J

o
b

 S
lo

w
d

o
w

n

Job runtime class

 EASY (α=0)
 CREASY (α=6000)

(b) Per-class average job slowdown

Figure 5.12: Per-class performance comparison of the two schedulers: (a) the 27% increase in

the average response is the outcome CREASY’s tendency to prioritize short jobs at the expense

of longer ones that dominate the average, and (b) the 66% decrease in the average slowdown is

the result of the exact same trade-off, and the fact that the metric is affected mostly by the shorter

jobs.

than 10 minutes. We chose these boundaries based on the distribution of runtimes from Figure

5.5(b), in order to create classes of approximately the same size.

Figure 5.12 compares the performance of the EASY scheduler with CREASY using α =

6000, under the highest, 250-user load, on a per-class basis. For the response time metric in

Figure 5.12(a), we see that under both schedulers the response times of the jobs is correlated

with their runtimes: the higher the runtimes, the higher the average response time in the class.

The difference, though, is that under EASY the increase in the average response time is

rather moderate, while under CREASY it is more extreme. Furthermore, in the class with the

short jobs the average under CREASY is 83% lower than the average under EASY, in the class

with the medium runtimes it is only 44% lower, while in the third class, the average response

under CREASY is 81% higher compared to EASY.

These differences are, once again, rooted in the core design of the schedulers. Short jobs have

naturally more backfilling opportunities than jobs with longer runtimes. While this is true under

both schedulers, the effect is intensified under CREASY as it further prioritizes the short jobs

which are also much more critical to the users. The outcome is a large reduction in the response

of the short jobs, at the expense of an increase in response for the longer jobs — a trade-off

resulting in a 27% higher average response-time for CREASY, because the long jobs dominate

5.6 Related work 81

the average.

The slowdown metric in Figure 5.12(b) behaves exactly the opposite: the average slowdown

is inversely correlated with the runtimes, decreasing under both schedulers as the runtimes in-

crease. But this time, the decrease is steep under EASY, and very small under CREASY.

Slowdown is the response time normalized by the actual runtime, which causes the metric

to be affected mostly by the shorter jobs. This means that although the relative differences in

the average slowdown between EASY and CREASY in each class are similar to the differences

in the average response time, the absolute values of the metric are intensified in the class of the

short jobs, and lessened in the class of the longer jobs. This changes the relative contribution of

each class of jobs to the overall average, and results in a 66% lower absolute average slowdown

for CREASY.

Figure 5.13 summarizes the change in performance under CREASY for all four metrics: the

average job throughput, session length, the average job slowdown, and the average response

times. The results were measured under the highest 250-users load, and are all relative to the

performance of the original EASY scheduler.

When α = 0, there are no gains or losses in performance under CREASY since its behavior

is identical to the behavior of the EASY scheduler. When the value of α increases, performance

improves under CREASY but only for the first three metrics; for the response time metric per-

formance degrades with higher α values. In either case, both improvements or degradations are

not linear, and the curves begin to level-off at the right side of the scale.

5.6 Related work

The basic batch scheduling algorithm is First-Come-First-Serve (FCFS), in which jobs are con-

sidered in their order of arrival [50]. If there are enough free processors to run the first job, it is

started immediately, but if there are not enough processors available, the job is delayed, and all

subsequent jobs are delayed as a result, so as not to violate the FCFS order.

The poor system utilization of FCFS led researchers to explore alternatives to improve perfor-

mance. Inspired by Shortest-Job-First (SJF)2, Shortest-Processing-Time-First (SPT) scheduling

tries to produce optimal average response times for the jobs [32, 2]. The opposite algorithm,

Largest-Processing-Time-First (LPT) executes the longest jobs first so as to minimize make-

span, at the expense of longer average response [53]. Similarly, Smallest-Job-First (SJF) and

2CREASY differs from SJF in that it considers the response time rather than the runtime of the jobs.

82 Feedback and Scheduler Designs

-40%

-20%

0%

20%

40%

60%

80%

α=6kα=4.5kα=3kα=1.5kα=0

Im
p

ro
v
e

m
e

n
t

o
v
e

r
E

A
S

Y

Backfilling behaviorSeniority Criticality

Slowdown

Session length

Throughput

Response

Figure 5.13: Improvements in performance for CREASY relative to the original EASY scheduler:

performance improves with higher α values according to the throughput, session-length, and the

slowdown metrics, but degrades according the response-time metric.

Largest-Job-First (LJF) execute the jobs with the smallest and largest size first, respectively

[44, 17]. Finally, the Smallest-Cumulative-Demand-First (SCD), executes the jobs in the or-

der of the product of their size and runtime [52]. All the above algorithms however, may expose

jobs to starvation under some circumstances.

Backfilling is an optimization that tries to balance between the goals of performance and

execution guarantees. Backfilling in general allows small jobs from the back of the queue to

bypass larger jobs that arrived earlier, to fill holes in the schedule. Backfilling algorithms differ

in the way they reserve processors for the older jobs, and in the way they prioritize the jobs in

the queue, which may affect their order of execution.

Backfilling was first implemented in a production system in the context of EASY, the Ex-

tensible Argonne Scheduling sYstem for the IBM SP1 system [39]. This version was based on

aggressive backfilling in which only the first job in the queue gets a reservation, but this was

shown to be enough to guarantee the execution of all jobs. The obvious alternative is to use

conservative backfilling in which every job gets a reservation, and which also produces a more

predictable schedule. Mu’alem and Feitelson compared the two approaches and pointed that

their relative performance may actually depend on the workload [45].

The MAUI scheduler also used in production includes a tunable parameter that allows the

5.6 Related work 83

administrator to set the number of reservations [28]. Chiang et al. suggested that making 2–4

reservations is a good compromise [10]. Alternatively, one can set the number of reservations

dynamically. Srinivasan et al. suggested a selective approach in which a job gets a reservation

only if its slowdown exceeds a certain threshold [59]. This is essentially equivalent to Talby

and Feitelson’s “flexible backfilling”, in which every job gets a reservation, but backfilling may

violate these reservations up to a certain slack that is determined dynamically [60]. Ward et al.

suggested a relaxed backfilling strategy that also uses slacks, but whose width is static [67].

The original EASY scheduler, as well as many other schedulers, prioritize the jobs accord-

ing to their arrival order [39]. Flexible backfilling, however, combines administrative, user, and

scheduler priorities in setting the slacks for the jobs [60]. Keleher et al. evaluated the effec-

tiveness of SJF prioritization with randomness [30]. Chiang et al. proposed prioritization that

is based on the resource consumption of the jobs [10]. Lawson and Smirni demonstrated the

effectiveness of having multiple queues for different jobs classes, based on the jobs’ projected

execution times [35]. Shmueli and Feitleson demonstrate the use of lookahead for optimizing

the packing of the jobs in the schedule [54], and Talby and Feitelson showed how to combine

different scheduling policies in an adaptive manner [61].

In all the above examples, however, the schedulers were evaluated using trace-driven, open-

system simulations, without any feedback in the workload. In Chapter 3 we investigated the

importance of this feedback and demonstrated it may lead to performance prediction errors of

hundreds of percents [55]. We proposed a simulation methodology that uses user-models instead

of traces to dynamically generate the workload, but our early models were simplistic and reacted

uniformly to differences in system performance.

In this chapter we extended our models to support a more realistic behavior, in which users

may abort their sessions as a result of poor system performance. Our new models are based on

our findings from Chapter 4, that users are affected by the response times of their jobs, and that

long response may cause users to abort their sessions with the system [56]. This was the basis

for the session-dynamics model presented in Section 5.3.2.1, that depicts the users’ reaction to

their jobs. We also enhanced our models with awareness for activity cycles; Lo and Mache

demonstrated the benefits of having prime and non-prime time queues for batch scheduling and

defined rules of thumb for each queue [41]. Feitelson and Nitzberg analyzed the distribution of

jobs during the day, nights, and weekends on the NASA Ames iPSC/860 system [19].

The use of feedback in system design was demonstrated in several contexts. Ganger and

Patt demonstrated how modeling an entire systems can help improve I/O subsystems perfor-

84 Feedback and Scheduler Designs

mance [22]. Similarly, Hsu and Smith added feedback to I/O traces in order to study various

I/O optimization techniques [27]. Scott and Sohi demonstrated how feedback schemes in net-

worked systems can be used to avoid congestion and improve overall system performance [51].

Feedback control theory was also shown to be highly effective. Diao et al. used multiple-input,

multiple-output control theory to dynamically tune various system parameters in the Apache Web

server, to enforce policies of interrelated metrics [14], and Lee et al. used feedback control in

shared storage to assure agreed-upon response time to applications, and to maximize aggregate

throughput [38].

5.7 Summary

For more than two decades parallel-systems schedulers are being evaluated using simulations

that suffer from severe limitations. In particular, the lack of feedback in the workload in these

simulations led to the design of schedulers that focus solely on the packing of jobs instead of on

the users of the system directly, to try and improve an alternative set of performance metrics that

are only conjectured to be correlated with user satisfaction.

Through a combination of a novel simulation methodology that incorporates feedback in

the workload, and a user-aware scheduler that considers the criticality of the jobs to the users,

we have demonstrated that the conventional, packing-based approach to scheduling is far from

optimal, and highlighted the potential in user-aware designs. We have further shown that the con-

ventional performance metrics do not necessarily correlate with productivity, which means that

it is even possible to dismiss potentially good design alternative as poor, under the conventional

simulations.

The user models presented in this chapter differ from those of chapter 3. In particular, the ses-

sion dynamics model that handles the dynamic starting and ending of user sessions as a reaction

to the performance of their jobs, and the activity cycles model that incorporates daily and weekly

cycles into the simulation, result in a much more realistic user behavior, which we exploited in

CREASY to demonstrate the importance of the feedback for the design of the schedulers.

Our journey to explore the importance of the feedback ends here, but there are still many

research directions left to investigate. In the next chapter we conclude the entire research, and

suggest future research directions which we feel are both interesting and challenging.

Chapter 6

Discussion and Conclusions

The conventional simulations presently used to evaluate the performance of parallel-systems

schedulers are trace driven. To generate the workload from the trace they use an open-system

model that simply plays-back the trace according to its timestamps, and there is no feedback

in the workload between the arrival of new jobs, the load in the system, and the ability of the

simulated scheduler to handle the load.

This lack of feedback manifests itself in several ways, affecting both the evaluation of the

schedulers and their design. It affects the evaluation since the generated workloads no longer

reliably represent real workloads, which causes the performance predicted by the simulation to

be inaccurate. It effects the design because the throughput metric which is the best indicator for

user productivity cannot be used in open-system evaluations. This leads the schedulers to focus

on the packing of jobs instead of on the users of the systems directly, to try and optimize an

alternative set of metrics which are only conjectured to correlate with user satisfaction.

In this research we presented an alternative simulation methodology named site-level simu-

lation, that uses user-models to dynamically generate the workload for the evaluation, instead of

using traces which pre-determine the workload even before the simulation begins. These models,

whose behavior in simulation is similar to the behavior of real users, interact with the system and

introduce feedback, which not only improves the representativeness of the workload, but also

allows user-aware schedulers to be reliably evaluated and hence effectively designed.

To experiment with site-level simulations we developed Site-Sim — a site-level simulator

that integrates users and schedulers under a single simulation framework. We also developed

CREASY — a novel user-aware scheduler that exploits knowledge on user behavior and priori-

tizes jobs that are critical for the users to improve user satisfaction. We then carried out a series of

86 Discussion and Conclusions

carefully designed experiments to demonstrate the importance of the feedback for the evaluation

and the design of the schedulers.

Our first set of experiments focused on the representativeness of the workload. Using the

traces produced by Site-Sim we demonstrated that the conventional simulations may under or

overestimate the performance of the schedulers by hundreds of percents. We also showed how

conventional load scaling further ruins the representativeness the workload by violating prece-

dence relations that naturally exist between jobs in reality.

In the second set of experiments we compared the performance of CREASY to the original,

well-known packing-based EASY scheduler, and demonstrated that user productivity improves

by tens of percents under the user-aware design. We also compared the two schedulers using the

conventional performance metrics and showed that these metrics do not necessarily correlate with

productivity, which means that it is even possible to dismiss potentially good design alternatives

under the conventional simulations.

Though we feel we have clearly demonstrated the advantage in using our simulation method-

ology, we also acknowledge the fact that as opposed to traces which are easy to collect and

straightforward to use, relying on user models to generate the workload will always be open for

interpretation. We understand the need to keep the simulations simple, and empathize with the

researchers’ reluctance to conduct time and resource consuming experiments to understand user

psychology.

Recognizing it is of critical importance to our simulations, we devoted approximately one

third of our research effort to the study of user behavior. We developed a novel analysis method-

ology through which we demonstrated that it is possible to uncover the users’ behavior patterns

directly from parallel-systems traces, without conducting live experiments with real users. We

believe that this is one of the major contribution of our work, and a necessary step toward the

general acceptance of our methodology among its critics.

Nevertheless, we have only scratched the surface of the virtually endless domain of human

behavior study. Real users for example are known to be influenced by contextual factors such

as the type of task they perform, their experience, and the cumulative time they interact with the

system. They are also sensitive to fairness in the system, and might consider fairness to be more

important than productivity. Understanding these factors will help improve our models accuracy,

and doing so using only the traces is one of the major challenges we leave behind.

Another factor to consider is the jobs the users submit. Daytime jobs are known to be different

from the jobs submitted during the night; interactive jobs are usually lighter and much more

87

critical to the users compared to the heavy batch jobs that execute over nights and weekends.

In our simulations we intentionally chose not to make this distinction and to incorporate the

minimal level of details we felt is necessary for discussing feedback. However, with a relatively

small amount of effort it is possible to isolate different job classes in the traces and to model

these classes for a better use in the simulations.

The final step, once the models get improved and the workload refined, is to revise CREASY

to consider the aggregate effect of all these factors on the users, to re-evaluate its performance and

demonstrate that it can still significantly improve user productivity under the new, much more

complex but realistic conditions. This task alone is extremely challenging, but it is a necessary

step toward the actual deployment of the first truly user-aware parallel-system scheduler.

Appendix A

Site-Sim Interfaces

Site-Sim is a framework written in C++ that we developed specifically for running site-level sim-

ulations. It defines two types of entities, users and schedulers. The users generate the workload

for the simulation by submitting jobs to the scheduler, and the scheduler in turn schedules the

jobs and notifies the users when they complete.

Site-Sim does not explicitly define how the users behave, or how the scheduler schedules the

jobs. Instead, it exploits class inheritance in C++ only to define the interfaces through which

the different entities communicate. The exact behavior of the scheduler upon job arrival, or the

users’ upon job completion, is left to the implementor of the interfaces.

Modeling the scheduler actions is relatively straightforward and requires the implementation

of an internal job queue and an allocation algorithm to process the queue. Modeling the users on

the other hand is much more involved and we therefore implemented the user interfaces in two

phases: first for Chapter 3 without supporting user arrivals or departures, and then for Chapter

5 with a dynamic arrival and departure behavior which is affected by the system’s performance

and the time-of-day.

In the remainder of this appendix we briefly describe only the primary user and scheduler

interfaces. It is important to note that Site-Sim’s architecture is far more complex. It uses an

internal event queue to guarantee the correct timing and delivery of events to the users and the

scheduler. This mechanism which constitutes the heart of the framework is totally hidden from

the implementors of the interfaces, which are only exposed to the high level details of the archi-

tecture that are required for implementing the models.

90 Site-Sim Interfaces

A.1 User Primary Interfaces

• void User::completeJob(Job j) and void User::wakeUp() — Site-Sim

uses these interfaces to notify the users that their jobs have completed, and to wake up

sleeping users, respectively.

• long User::getTime()— Users use this interface to query the time-of-day in order

to decide whether to continue and submit more jobs or to go to sleep. The return value

is specified in seconds from the beginning of the simulation. It is the responsibility of the

interface implementor to translate this value into meaningful time-of-day units.

• void User::sleep4(long time) — This sends the user to sleep for time sec-

onds. It is the responsibility of the interface implementor to translate time-of-day units

into seconds for sending the users to long night sleeps when supporting daily cycles.

• void User::submitJob(Job j) — The user submits his jobs to the scheduler us-

ing this interface. Prior to submission, the job attributes in the job object must be cor-

rectly initialized, e.g., with the number of required processors and runtime. Site-Sim uses

standard-error to report illegal values.

• int User::queueLength() — This allows the user to query the number of jobs

currently present in the scheduler’s queue. Advanced user models can use this number to

estimate the load in the system in order to decide on whether to continue and submit more

jobs or to take breaks.

• int User::getSeed() — At initialization Site-Sim assigns a unique seed value to

each user. The getSeed() interface allows the user to query his seed and call the POSIX

void srand(unsigned int seed) function to set this seed prior to using random

number generators. This is useful when the user samples distributions to generate job

attributes and wishes to reproduce the exact same sequence of numbers across simulations

and regardless of how other entities in the simulation use the random number generator.

A.2 Scheduler Primary Interfaces

• void Scheduler::arriveJob(Job j) and void Scheduler::termJob(Job

j) — Site-Sim uses these interfaces to notify the scheduler on job arrivals and termina-

A.2 Scheduler Primary Interfaces 91

tions, respectively. Typical schedulers implement an internal job queue to which they add

new jobs upon arrival, and notify the users that their jobs have completed upon termination.

• void Scheduler::Allocate()— Since several jobs may arrive to the scheduler at

the same time it is useful to first add these jobs to the queue and only then run the allocation

algorithm on the populated queue. Site-Sim therefore separates job arrival events from

allocation events. It uses the Allocate() interface to notify the scheduler that no more

jobs will arrive at the present time unit, to allow the scheduler to execute its allocation

algorithm in an optimal manner.

• void Scheduler::notifyUser(Job j, long time) — Schedulers use this

interface to notify the users on job completions. The user ID is part of the job object and is

transparently set by Site-Sim when the user submits his job. The time field can be used

by the scheduler to delay the notification event to a later time.

• int Scheduler::getMachineSize()and int Scheduler::getUsedSize()

— The scheduler uses these two interfaces to query the total number of processors in the

system, and the number of processors currently used, respectively. The system size can be

set through command-line parameters at simulation start; the default size is 128 processors.

• void Scheduler::downProc(int p) and void Scheduler::upProc(int

p) — Site-Sim uses these interfaces to notify the scheduler that a certain processor in the

system has been shut-down or reactivated, respectively. Such events are needed when in-

corporating failure models into the simulation to simulate a truly realistic system behavior.

In our simulations we assumed a 100% reliable hardware and did not use these interfaces.

Bibliography

[1] M. F. Arlitt. Characterizing web user sessions. SIGMETRICS Perform. Eval. Rev.,

28(2):50–63, 2000.

[2] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. A comparative study of online schedul-

ing algorithms for networks of workstations. Cluster Computing, 3(2):95–112, 2000.

[3] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan. Characterizing user behavior

and network performance in a public wireless lan. SIGMETRICS Perform. Eval. Rev.,

30(1):195–205, 2002.

[4] M. S. Borella. Source models of network game traffic. Comput. Commun., 23(4):403–410,

Feb 2000.

[5] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in the eye of the beholder: meeting

users’ requirements for internet quality of service. In CHI ’00: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 297–304, New York, NY, USA,

2000. ACM Press.

[6] M. Calzarossa and G. Serazzi. A characterization of the variation in time of workload

arrival patterns. IEEE Trans. Comput., C-34(2):156–162, Feb 1985.

[7] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model for user performance

time with interactive systems. Commun. ACM, 23(7):396–410, 1980.

[8] S. K. Card, A. Newell, and T. P. Moran. The Psychology of Human-Computer Interaction.

Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1983.

[9] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei. Quantifying skype user satisfaction.

In SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technologies,

94 BIBLIOGRAPHY

architectures, and protocols for computer communications, pages 399–410, New York, NY,

USA, 2006. ACM Press.

[10] S.-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon. The impact of more accurate re-

quested runtimes on production job scheduling performance. In Job Scheduling Strategies

for Parallel Processing, number 8, pages 103–127. Springer-Verlag, Jul 2002. Lect. Notes

Comput. Sci. vol. 2537.

[11] W. Cirne and F. Berman. A comprehensive model of the supercomputer workload. In 4th

Workshop Workload Characterization, Dec 2001.

[12] D. G. Feitelson. Parallel workload archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

[13] D. G. Feitelson. Locality of sampling and diversity in parallel system workloads. In 21st

Intl. Conf. Supercomputing (ICS), pages 53–63, Jun 2007.

[14] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury. Using mimo feedback

control to enforce policies for interrelated metrics with application to the apache web server.

In Proceedings of the IEEE/IFIP Network Operations and Management Symposium, pages

219–234, 2002.

[15] Y. T. Dinh Nguyen Tran, Wei Tsang Ooi. Sax: A tool for studying congestion-induced

surfer behavior. In In Proceedings of Passive and Active Measurement Conference, Ade-

laide, Australia, March 30-31 2006.

[16] A. B. Downey. A parallel workload model and its implications for processor allocation.

Cluster Computing, 1(1):133–145, 1998.

[17] J. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin

packing: a survey. pages 46–93, 1997.

[18] D. W. Embley and G. Nagy. Behavioral aspects of text editors. ACM Comput. Surv.,

13(1):33–70, 1981.

[19] Feitelson and Nitzberg. Job characteristics of a production parallel scientific workload

on the NASA ames iPSC/860. In D. G. Feitelson and L. Rudolph, editors, Job Schedul-

ing Strategies for Parallel Processing – IPPS’95 Workshop, volume 949, pages 337–360.

Springer, 1995.

BIBLIOGRAPHY 95

[20] D. G. Feitelson. Packing schemes for gang scheduling. In D. G. Feitelson and L. Rudolph,

editors, Job Scheduling Strategies for Parallel Processing, pages 89–110. Springer-Verlag,

1996. Lect. Notes Comput. Sci. vol. 1162.

[21] D. G. Feitelson. Metrics for parallel job scheduling and their convergence. Job Scheduling

Strategies for Parallel Processing, 2221:188–206, 2001.

[22] G. R. Ganger and Y. N. Patt. Using system-level models to evaluate I/O subsystem designs.

IEEE Trans. Comput., 47(6):667–678, Jun 1998.

[23] P. B. Hansen. An analysis of response ratio scheduling. In IFIP Congress (1), pages 479–

484, 1971.

[24] H. Haugerud and S. Straumsnes. Simulation of user-driven computer behaviour. In LISA

’01: Proceedings of the 15th USENIX conference on System administration, pages 101–

108, Berkeley, CA, USA, 2001. USENIX Association.

[25] T. Henderson and S. Bhatti. Modelling user behaviour in networked games. In MULTI-

MEDIA ’01: Proceedings of the ninth ACM international conference on Multimedia, pages

212–220, New York, NY, USA, 2001. ACM.

[26] H. Hlavacs and G. Kotsis. Modeling user behavior: A layered approach. In MASCOTS ’99:

Proceedings of the 7th International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, page 218, Washington, DC, USA, 1999. IEEE

Computer Society.

[27] W. Hsu and A. J. Smith. The performance impact of I/O optimizations and disk improve-

ments. IBM J. Res. Dev., 48(2):255–289, 2004.

[28] D. B. Jackson, Q. Snell, and M. J. Clement. Core algorithms of the Maui scheduler. In

JSSPP ’01: Revised Papers from the 7th International Workshop on Job Scheduling Strate-

gies for Parallel Processing, pages 87–102, London, UK, 2001. Springer-Verlag.

[29] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan. Modeling of workload

in MPPs. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel

Processing, pages 95–116. Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

96 BIBLIOGRAPHY

[30] P. J. Keleher, D. Zotkin, and D. Perkovic. Attacking the bottlenecks of backfilling sched-

ulers. Cluster Computing, 3(4):245–254, 2000.

[31] J. Klein, Y. Moon, and R. W. Picard. This computer responds to user frustration. In CHI

’99: CHI ’99 extended abstracts on Human factors in computing systems, pages 242–243,

New York, NY, USA, 1999. ACM.

[32] S. Krakowiak. Principles of operating systems. MIT Press, Cambridge, MA, USA, 1988.

[33] D. Krishnamurthy, J. A. Rolia, and S. Majumdar. A synthetic workload generation tech-

nique for stress testing session-based systems. IEEE Transactions on Software Engineering,

32(11):868–882, 2006.

[34] G. N. Lambert. A comparative study of system response time on program developer pro-

ductivity. IBM Systems Journal, 23(1):36–43, 1984.

[35] B. G. Lawson and E. Smirni. Multiple-queue backfilling scheduling with priorities and

reservations for parallel systems. SIGMETRICS Perform. Eval. Rev., 29(4):40–47, 2002.

[36] C. B. Lee and A. Snavely. On the user-scheduler dialogue: Studies of user-provided runtime

estimates and utility functions. Int. J. High Perform. Comput. Appl., 20(4):495–506, 2006.

[37] C. B. Lee and A. E. Snavely. Precise and realistic utility functions for user-centric per-

formance analysis of schedulers. In HPDC ’07: Proceedings of the 16th international

symposium on High performance distributed computing, pages 107–116, New York, NY,

USA, 2007. ACM Press.

[38] H. D. Lee, Y. J. Nam, and C. Park. Regulating I/O performance of shared storage with

a control theoretical approach. In NASA/IEEE Conference on Mass Storage Systems and

Technologies (MSST), April 2004.

[39] D. Lifka. The ANL/IBM SP scheduling system. In D. G. Feitelson and L. Rudolph, editors,

Job Scheduling Strategies for Parallel Processing, pages 295–303. Springer-Verlag, 1995.

Lect. Notes Comput. Sci. vol. 949.

[40] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva. Traffic model and performance evaluation

of web servers. Perform. Eval., 46(2-3):77–100, 2001.

BIBLIOGRAPHY 97

[41] V. Lo and J. Mache. Job scheduling for prime time vs. non-prime time. In Intl. Conf.

Cluster Comput., number 4, pages 488–493, Sep 2002.

[42] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: Modeling the

characteristics of rigid jobs. J. Parallel & Distrib. Comput., 63(11):1105–1122, Nov 2003.

[43] J. Mache, V. Lo, and S. Garg. Job scheduling that minimizes network contention due to

both communication and I/O. In 14th Intl. Parallel & Distrib. Proc. Symp., pages 457–463,

May 2000.

[44] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed parallel sys-

tems. SIGMETRICS Perform. Eval. Rev., 16(1):104–113, 1988.

[45] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user runtime

estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst.,

12(6):529–543, 2001.

[46] A. Nissimov and D. G. Feitelson. Probabilistic backfilling. In E. Frachtenberg and

U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Processing, pages 102–

115. Springer Verlag, 2007. Lect. Notes Comput. Sci. vol. 4942.

[47] D. Raz, H. Levy, and B. Avi-Itzhak. A resource-allocation queueing fairness measure. In

SIGMETRICS ’04/Performance ’04: Proceedings of the joint international conference on

Measurement and modeling of computer systems, pages 130–141, New York, NY, USA,

2004. ACM Press.

[48] G. Sabin and P. Sadayappan. Unfairness metrics for space-sharing parallel job schedulers.

In D. G. Feitelson, E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, editors, Job

Scheduling Strategies for Parallel Processing, pages 238–256. Springer Verlag, 2005. Lect.

Notes Comput. Sci. vol. 3834.

[49] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed: a cautionary tale.

In NSDI’06: Proceedings of the 3rd conference on 3rd Symposium on Networked Systems

Design & Implementation, pages 18–18, Berkeley, CA, USA, 2006. USENIX Association.

[50] U. Schwiegelshohn and R. Yahyapour. Analysis of first-come-first-serve parallel job

scheduling. In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium on

98 BIBLIOGRAPHY

Discrete algorithms, pages 629–638, Philadelphia, PA, USA, 1998. Society for Industrial

and Applied Mathematics.

[51] S. L. Scott and G. S. Sohi. The use of feedback in multiprocessors and its application to

tree saturation control. IEEE Trans. Parallel & Distributed syst., 1(4):385–398, Oct 1990.

[52] K. C. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel

processing systems. Perform. Eval., 19(2-3):107–140, 1994.

[53] J. Sgall. line scheduling – a survey. Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1997.

[54] E. Shmueli and D. G. Feitelson. Backfilling with lookahead to optimize the packing of

parallel jobs. J. Parallel Distrib. Comput., 65(9):1090–1107, 2005.

[55] E. Shmueli and D. G. Feitelson. Using site-level modeling to evaluate the performance of

parallel system schedulers. In MASCOTS ’06: Proceedings of the 14th IEEE International

Symposium onModeling, Analysis, and Simulation, pages 167–178, Washington, DC, USA,

2006. IEEE Computer Society.

[56] E. Shmueli and D. G. Feitelson. Uncovering the effect of system performance on user

behavior from traces of parallel systems. In 15th Modeling, Anal. & Simulation of Comput.

& Telecomm. Syst. (MASCOTS), pages 274–280, Oct 2007.

[57] E. Shmueli and D. G. Feitelson. On simulation and design of parallel-systems schedulers:

Are we doing the right thing? IEEE Transactions on Parallel & Distributed systems., To

appear.

[58] B. Shneiderman. Designing the user interface: strategies for effective human-computer

interaction. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[59] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective reservation

strategies for backfill job scheduling. In JSSPP ’02: Revised Papers from the 8th In-

ternational Workshop on Job Scheduling Strategies for Parallel Processing, pages 55–71,

London, UK, 2002. Springer-Verlag.

[60] D. Talby and D. G. Feitelson. Supporting priorities and improving utilization of the IBM SP

scheduler using slack-based backfilling. In IPPS ’99/SPDP ’99: Proceedings of the 13th

BIBLIOGRAPHY 99

International Symposium on Parallel Processing and the 10th Symposium on Parallel and

Distributed Processing, page 513, Washington, DC, USA, 1999. IEEE Computer Society.

[61] D. Talby and D. G. Feitelson. Improving and stabilizing parallel computer performance

using adaptive backfilling. In IPDPS ’05: Proceedings of the 19th IEEE International Par-

allel and Distributed Processing Symposium (IPDPS’05) - Papers, page 84.1, Washington,

DC, USA, 2005. IEEE Computer Society.

[62] W. H. Tetzlaff. State sampling of interactive VM/370 users. IBM Systems Journal,

18(1):164–180, 1979.

[63] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling user runtime estimates. In Workshop

on Job Scheduling Strategies for Parallel Processing (JSSPP), pages 1–35. Cambridge,

Massachusetts, June 2005. Lecture Notes in Computer Science, volume 3834.

[64] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling using system-generated predictions

rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst., 18(6):789–803, June

2007.

[65] D. Tsafrir and D. G. Feitelson. The dynamics of backfilling: solving the mystery of why

increased inaccuracy may help. In IEEE International Symposium on Workload Character-

ization (IISWC), pages 131–141, San Jose, California, October 2006.

[66] D. Tsafrir and D. G. Feitelson. Instability in parallel job scheduling simulation: the role of

workload flurries. In IEEE International Parallel and Distributed Processing Symposium

(IPDPS), page 10, Rhodes Island, Greece, April 2006.

[67] J. William A. Ward, C. L. Mahood, and J. E. West. Scheduling jobs on parallel systems

using a relaxed backfill strategy. In JSSPP ’02: Revised Papers from the 8th International

Workshop on Job Scheduling Strategies for Parallel Processing, pages 88–102, London,

UK, 2002. Springer-Verlag.

[68] A. Wong, L. Oliker, W. Kramer, T. Kaltz, and D. Bailey. System utilization benchmark

on the Cray T3E and IBM SP2. In D. G. Feitelson and L. Rudolph, editors, Job Schedul-

ing Strategies for Parallel Processing, pages 56–67. Springer Verlag, 2000. Lect. Notes

Comput. Sci. vol. 1911.

100 BIBLIOGRAPHY

[69] J. Zilber, O. Amit, and D. Talby. What is worth learning from parallel workloads? a user

and session based analysis. In Proc. 19th intl. conf. Supercomputing, pages 377–386, Jun

2005.

[70] D. Zotkin and P. J. Keleher. Job-length estimation and performance in backfilling sched-

ulers. In HPDC ’99: Proceedings of the 8th IEEE International Symposium on High Per-

formance Distributed Computing, page 39, Washington, DC, USA, 1999. IEEE Computer

Society.

	Introduction
	The Conventional Simulations
	Importance of Feedback in the Workload
	Scheduler Evaluations
	Scheduler Designs

	Site-Level Simulations
	Dissertation Structure

	Methodology
	Site-Sim: Our Site-Level Simulator
	The Traces: Our Source of Data

	Feedback and Scheduler Evaluations
	Background
	Conventional Simulations
	Feedback Signatures

	Site-Level Simulations
	Modeling Job Submissions
	Modeling Workpools

	Simulation Results
	Inaccurate Performance Predictions
	Safe Load Scaling
	Quantifying Productivity

	Related Work
	Summary

	Understanding User Behavior
	Background
	Trace Data
	Metrics Correlation with User Behavior
	Jobs Response Time and User Sessions
	User Performance Expectations
	Related Work
	Summary

	Feedback and Scheduler Designs
	Background
	Common Scheduler Designs
	Simulations Effect on Design

	Enhanced Site-level Simulations
	User Behavior Patterns
	Complete User Model

	User-Aware Scheduling
	Criticality of Jobs

	Simulation Results
	User Productivity
	Conventional Performance Metrics

	Related work
	Summary

	Discussion and Conclusions
	Appendices
	Site-Sim Interfaces
	User Primary Interfaces
	Scheduler Primary Interfaces

	Bibliography

