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A B S T R A C T 
 
 

The goal of workload modeling is to simulate the expected workload, accurately 

enough to enable making correct design and administrative decisions. Several 

statistical features of production parallel computer workloads, which are not 

embodied in current models, have been identified. Their practical importance is 

demonstrated by two new kinds of schedulers – a key component in determining 

the overall performance of a parallel computer. The first is adaptive scheduling, 

which takes advantages of the locality of sampling and known cycles in parallel 

workloads, and achieves an average improvement of 10% in performance and 

35% in stability for the tested production workloads. The second is shortest-job-

backfill-first scheduling, which relies on runtime prediction, done by analyzing 

user and session histories. 

These schedulers cannot be correctly evaluated by existing workload models, 

and we argue that the correct approach for future workload models (as well as 

on-line algorithms) is user and session-based modeling, instead of modeling 

jobs directly as done today. As the basis for such a model, we use PCA to 

provide variable sets which explain over 80% of the variance between users and 

sessions, and clustering to identify five stable session clusters and four stable 

user clusters. We then model the distributions of the arrival and activity patterns 

of both users and sessions, including a complete analysis of their dependencies 

and temporal structure. The model is based on logs from seven different parallel 

supercomputers, spanning over 87 months, analyzed together to ensure that 

results are location and architecture-neutral. 
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I N T RODUC T I O N  

1. Overview 

Understanding the expected workload that a system will face is crucial to making the right 

decisions when designing and configuring it. Workload analysis for parallel computers has therefore 

attracted a large body of research, divided to two main flavors. The first is the construction of 

workload models (Downey, 1997; Jann et al., 1997; Feitelson and Jette, 1997; Cirne and Berman, 

2001; Lublin and Feitelson, 2003), which are statistical models based on observations from real-

world traces. These models can be used to create synthetic workloads, in order to compare resource 

management algorithms under different conditions (load or machine size, for example) or to gain 

general insights. 

The second flavor exploits features of parallel workloads directly, either by designing 

heuristic algorithms that exploit discovered workload features (Schroeder and Harchol-Batler, 2000; 

Talby and Feitelson, 2005) or by designing adaptive or prediction-based algorithms that learn the 

workload as they go (Dinda et al., 1999; Yoo and Jette, 2001; Dinda, 2002; Vazhkudai et al., 2002). 

Adaptive, learning and prediction-based algorithms always include a lot of prior knowledge about 

the workload – which parameters should be adaptive? What cues are used to change them? Which 

variables should be used to learn from history? Many times, their main innovation is discovering a 

particular workload phenomenon and modeling it well. 

In many areas, the basic resource management policies are well-known and understood – and 

the major performance advances in the past few years are the result of tuning the algorithms to exploit 

workload features found in many historic traces. Examples can be found in scheduling (Feitelson 

and Jette, 1997; Tsafrir et al., 2003; Talby and Feitelson, 2005), task allocation (Jarvis et al., 1997; 

Schroeder and Harchol-Batler, 2000), management of a computational grid (Jarvis et al., 1997), load 

balancing (Yu et al, 1997), soft real-time systems (Dinda et al., 1999), wide-area data replication 

(Vazhkudai et al., 2002) and others. All of these areas can potentially benefit from this work. 

The goal of this research is to provide new information, discovered by means of sound 

statistical techniques, which can benefit both worlds – synthetic workload modeling, and on-line 

resource management algorithms. Although this study began with the identification of several 

statistical properties found in production workloads and missing from current workload models, the 

first stage was not to create a new model which incorporates these features, but rather to design new 

on-line algorithms which take advantage of them. These algorithms prove the practical importance 

of these workload features, thus motivating the modeling effort. 
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The investigated algorithmic problem is parallel scheduling, for two reasons. First, parallel 

schedulers are very sensitive to their given workload, and particularly to its temporal structure 

(Downey and Feitelson, 1999; Feitelson, 2003; Talby and Feitelson, 2005). Second, the scheduler is 

a key component in a parallel computer, and has a dramatic effect on its overall performance. It is a 

software-only, relatively independent module of a parallel computer's operating system, making its 

improvement a relatively low-cost and highly practical opportunity. 

The second stage of this research is the construction of a user based parallel workload model. 

The model is motivated by both the new scheduling algorithm and a set of methodological problems 

regarding the current usage of workloads, which we have identified. We argue that a solution to 

these problems can be attained by building a new layered model: a user model, followed by a 

session model per user type, followed by a job model per session type. Such an approach has an 

extra benefit of providing new insight into the behavior of users of parallel machines. This is also 

the first parallel workload model to investigate several fundamental modeling questions, such as 

which variables should be modeled, and what the model's parameters should be. 

This thesis is constructed as follows. The two following sections provide basic background; 

additional context-specific background is embedded in later sections to enhance readability. The 

methodology chapter begins by providing a high-level view of the research plan, followed by three 

sections describing key applied techniques. The results chapter starts with two sections describing 

new scheduling algorithms which exploit some of these features, and continues with three sections 

describing the construction of the user-based workload model. The discussion and conclusions 

chapter summarizes and proposes future research directions. 

2. Parallel Schedulers 

The parallel computers considered in this work are of the most widespread type today, which 

uses variable partitioning: A new job requires a certain number of processors upon its arrival, and 

these processors are dedicated to it once it starts running. In addition, each job provides an estimate 

for its runtime; this is an upper bound, since if a job exceeds it, it is killed. Users also have an 

incentive to provide low estimates, since this enables promoting jobs from the back of the queue to 

fill idle processors – an optimization known as backfilling. 

The first backfilling scheduler was the EASY Scheduler (Skovira et al., 1996). It was used 

mainly in IBM SP2 machines since the mid ‘90s, but a recent survey (Etsion and Tsafrir, 2005) has 

found that its policies are still the default in the most popular schedulers deployed today. After 

starting all the jobs that can be in FCFS order, EASY makes a reservation for the first job left in the 

queue. The time at which the first job in the queue is going to run is called the shadow time; the idle 



9 

nodes after the first queued job starts running are called extra nodes. Subsequent jobs are backfilled 

(pass the first job in the queue and starts running immediately) if one of the following two 

conditions holds: 

1. They require no more than the currently free nodes, and will terminate by the shadow time. 

2. They require no more than the minimum of the currently free nodes and the extra nodes. 

The algorithm’s formal pseudo-code is given in Appendix A. EASY uses an aggressive 

backfilling strategy, in the sense that the above two conditions are only checked for the first (oldest) 

job in the queue – all other jobs can suffer unbounded delays. For example, consider the following 

scenario, in which job J1 is running, job J2 is waiting, and jobs J3, J4 and J5 arrive in this order. Job 

J3 cannot be backfilled, since this will delay the oldest waiting job (J2); however, J4 will be 

backfilled because it will terminate before the shadow time, and J5 will be backfilled since it 

requires less than the extra nodes. Job J5 would be backfilled even if it is very long and if J3 

requires all processors – as long as J3 isn’t the oldest waiting job, it can suffer an unbounded delay.  

 

 

 

 
 

 

 

Figure 1. EASY Backfilling Example 

As the example demonstrates, backfilling reduces fragmentation, and indeed, studies have 

shown that it improves utilization by about 15% (Jones and Nitzberg, 1999). The example also 

shows the current standard of fairness in parallel schedulers, which is composed of two rules: 

• Attempt FCFS scheduling before backfilling. 

• Backfilled jobs must not delay the first job in the queue. This prevents starvation, but also 

means that a job can be delayed for an unbounded amount of time (Mu'alem and Feitelson, 2001). 

Other backfilling schedulers define different fairness criteria. For example, the Conservative 

Scheduler (Mu'alem and Feitelson, 2001) uses a different rule: A job can be backfilled only if does 

not delay any previous job in the queue. This enables runtime guarantees and decreases starvation 

on one hand, but may hamper utilization and responsiveness for small jobs on the other. 
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A third scheduler is Maui (Jackson et al, 2001). Maui is a high-end scheduling system, 

successfully deployed in many computing sites over the past few years, from IBM SP2 machines to 

Linux clusters (Bode et al., 2000; Jackson et al., 2001). The scheduler supports backfilling, and is 

highly configurable: In particular, the number of jobs that cannot be delayed and the order in which 

jobs are backfilled can be controlled. The default and recommended configuration (which is used in 

all simulations in this paper) is essentially EASY: Make reservations for the first job in the queue 

only, and backfill jobs by FCFS. When a new job arrives, it is not the only one that the scheduler 

tries to backfill. Instead, all waiting jobs are sorted in order of ascending arrival time, and are then 

backfilled in that order. 

A fourth scheduler that we consider here is the Flex Scheduler (Talby and Feitelson, 1999). 

Flex takes a different approach from the above three algorithms, by trying to reach a global 

optimization of the entire queue, rather than just the head of the queue. This means that whenever a 

decision has to be made (job arrival, termination or cancellation events), all possible queues are 

compared, and the best one (according to a configurable criteria) is chosen. For example, if two jobs 

are queued and a third arrives, Flex will consider three alternative schedules: Running the new job 

first, in the middle, and last. Each possible schedule is graded, suffering a penalty for every job that 

must wait. To prevent starvation, Flex introduces the concept of slack: Each job is given a slack 

upon arrival, and it can never be delayed by more than its slack. This is safer than EASY and 

enables runtime guarantees, yet is more flexible than Conservative. 

The above four scheduling algorithms have been studied and compared in depth (Talby and 

Feitelson, 1999; Mu'alem and Feitelson, 2001). The bottom-line reported results are as follows: 

• Easy is generally better than Conservative under the response time metric, and sometimes also 

under bounded slowdown, mainly in high-load workloads. 

• Flex and Maui offer a level of performance 10%-20% better than that of Easy, depending on 

the workload and metric. 

Another scheduling strategy is to use Shortest-Job-First (SJF) (Gibbons, 1997) and neglect 

FCFS altogether; such a strategy is theoretically proven to improve response times, by favoring 

short jobs, and this was indeed verified by several empirical studies (Smith et al., 1999; Zotkin and 

Keleher, 1999; Chiang et al., 2002; Tsarir and Feitelson 2006b). However, this comes at the expense 

of fairness – resulting in starvation of long jobs – even if reservations of some kind are used 

(Chiang et al., 2002). 

Recently, a new backfilling scheduler has been proposed which combines the fairness criteria 

of EASY with the improved performance of SJF, by maintaing the basic EASY policy but selecting 
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the shortest jobs to be backfilled first (Tsafrir et al., 2006). The scheduler is called Shortest-Job-

Backfill-First (SJBF), and its pseudo-code is given in Appendix A. Determing the expected length 

of waiting and running jobs requires a runtime prediction scheme, and since a user's history 

provides the most accurate predictors, improving this scheduler's runtime prediction ability is a goal 

of this work. 

3. Parallel Workload Modeling 

A characterization of the workload a system will face is necessary in order to evaluate 

schedulers, processor allocators, and make many other design decisions. Two kinds of workloads 

are typically used: A trace of a real production workload, or a synthetic workload produced by a 

statistical model. For concreteness, we will consider traces and models of parallel supercomputer 

workloads in this paper. 

Production logs have the advantage of being more realistic, as they are a direct recording of a 

workload that has occurred in practice. However, they may suffer from various problems. For 

example, the trace may contain errors or otherwise unreliable data: mysterious jobs that exceeded 

the system's limits, undocumented downtime, dedication of the system to certain users, and patterns 

of activity that are not generally representative (Koldinger et al., 1991;  Windisch et al., 1996; 

Downey and Feitelson, 1999; Feitelson and Tsafrir, 2006). In addition, different workloads can be 

highly variable, and even the typical usage on the same machine can significantly change over time 

(Hotovy et al., 1996; Talby, Feitelson and Raveh, 1999). Such problems limit the degree to which 

we can draw conclusions from past workloads to predict future ones, or infer from one installation – 

one hardware configuration, user base, and scheduler – about other ones. It is therefore necessary to 

map invariants that are common to multiple workloads and can be relied upon to be representative. 

The alternative to using production traces is to generate synthetic models (Ferrari, 1972; 

Calzarossa and Serazzi, 1993), and several such models have been proposed for parallel workloads. 

Such models are based on measurements of real workloads (Agrawala et al., 1976; Feitelson and 

Tsafrir, 2006). Models have the advantage over production logs of putting all the assumptions "on 

the table", and of being more flexible, by allowing their user to easily vary the model's parameters. 

The currently available synthetic models are the following. The first model was proposed by 

(Feitelson, 1996). This model is based on observations from several workload logs. Its main features 

are the hand-tailored distribution of job sizes (i.e. the number of processors used by each job), 

which emphasizes small jobs and powers of two, a correlation between job size and running time, 

and the repetition of job executions. In principle such repetitions should reflect feedback from the 
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scheduler, as jobs are assumed to be re-submitted only after the previous execution terminates. Here 

we deal with a pure model, so we assume they run immediately and are resubmitted after their 

running time. The second model is a modification from '97 (Feitelson and Jette, 1997). 

The model by Downey is based mainly on an analysis of the SDSC Paragon log (Downey, 

1997 & 1997b). It uses a novel log-uniform distribution to model service times (that is, the total 

computation time across all nodes) and average parallelism. This is supposed to be used to derive 

the actual runtime based on the number of processors allocated by the scheduler. Again, as we are 

dealing with a pure model here, we instead use the average parallelism as the number of processors, 

and divide the service time by this number to derive the running time. 

Jann's model is based on a careful analysis of the CTC SP2 workload (Jann et al., 1997). 

Both the running time and inter-arrival times are modeled using hyper Erlang distributions of 

common order. A separate distribution is used for different ranges of number of processors, with the 

parameters derived by matching the first three moments of the empirical distribution from the log. 

The model by Lublin (Lublin and Feitelson, 2003) is based on a statistical analysis of four 

logs. It includes a model of the number of processors used which emphasizes powers of two, a 

model of running times that correlates with the number of processors used by each job, and a model 

of inter-arrival times. While superficially similar to the Feitelson models, Lublin based the choice of 

distributions and their parameters on better statistical procedures in order to achieve a better 

representation of the original data. 

The last and most recent model is by (Cirne and Berman, 2001). This is a comprehensive 

model for generating moldable jobs, based on the analysis of four SP2 logs. It is composed of two 

parts: A model for generating a stream of rigid jobs; and a model for turning rigid jobs into 

moldable ones. The model also addresses the issues of requested times for a job, and the possibility 

of job cancellation. Here we test the basic features of the model – the generation of arrival time, 

runtime, and parallelism for each job. The model takes into account workday cycles, and its inter-

arrivals pattern can be adjusted to match each of the logs used to build it. 

The problem with models is that they need to be representative of real workloads. In (Talby, 

Feitelson and Raveh, 1999 and 2007) we compared eleven production workloads with the generated 

output of six statistical models, and tested how the models measure up to reality. All models were 

found to be reasonable in the sense that they span the same range of variable combinations as the 

real workloads. However, we also found numerous problems in current models, which make them 

wanting for tasks such as comparing schedulers. The next chapter explains these issues in depth. 
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METHODO LOGY  

4. Methodological Issues in Workload usage 

4.1. Parameterization 

This chapter summarizes the evidence regarding statistical features which exist in production 

parallel workloads, but are missing from current workload models. The work is largely based on 

(Talby, Feitelson and Raveh, 1999 and 2007), and divided to two sections: This section focuses on 

methodological problems in the way current models are used, and the next focuses on the (mis-) 

representation of the temporal structure of workloads. These sections serve both to present the 

methodology of this research (i.e. some of the key analysis tools used), and to rationalize the 

research flow, which is presented in the final section. 

The Co-Plot method was used to compare the available production workloads among 

themselves, and against the workload models. Co-Plot is a technique which analyzes observations 

and variables simultaneously, in contrast to classical multivariate analysis methods, such as cluster 

analysis and principal component analysis.  This means that we are able to see, in the same analysis, 

clusters of observations (workloads in our case), clusters of variables, the relations between clusters 

(correlation between variables, for example), and a characterization of observations. Appendix B 

presents a more detailed overview of the Co-Plot algorithm. 

Co-plot is especially suitable for tasks in which there are few observations and relatively 

many variables – as opposed to regression based techniques, in which the number of observations 

must be an order of magnitude larger than the number of variables. This is crucial in our case, in 

which there are few workloads (eleven production ones and six synthetic ones), and a similar 

number of variables. Co-plot's output is a visual display of its findings: It is based on two graphs 

that are superimposed on each other. The first graph maps the n observations into a two-dimensional 

space. This mapping, if it succeeds, conserves relative distance: observations that are close to each 

other in p dimensions are also close in two dimensions, and vice versa. The second graph consists of 

p arrows, representing the variables, and shows the direction of the gradient for each one. 

Table 1 lists the production workloads in our dataset, which are freely available online from 

the Parallel Workloads Archive (Feitelson, 1999). Table 2 lists the values of the analysed variables. 

These variables include the median and 90% interval of job runtimes, actual and normalized (to a 
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128-nodes machine) number of processors, total used CPU time, and inter-arrival time between 

jobs, in addition to the number of jobs per day, number of distinct users and executables, and the 

machine's load (measured in two ways: CPU load measures actual CPU usage, and runtime load 

measure wall-clock runtime usage). The median and interval statistics were preferred since as 

shown in (Downey and Feitelson, 1999), the average and standard deviation of some of these fields 

are extremely unstable due to the very long tail of the involved distributions. Removing the top 

0.1% jobs from a workload, for example, could change the average by 5% and the CV by 40%. 

These findings follow similar ones in (Lazowska, 1977). 

 Log  Location 
# of 

Nodes 

# of 

Jobs 

Machine 

Type 
Period 

1 NASA NASA Ames 128 42,264 iPSC/860 Oct 1993 – Dec 1993 

2 PAR5 San Diego Supercomputing Center 416 67,846 Paragon Dec 1994 – Dec 1995 

3 PAR6 San Diego Supercomputing Center 416 38,702 Paragon Dec 1995 – Dec 1996 

4 BLUE San Diego Supercomputing Center 1152 250,440 Blue Horizon Apr 2000 – Jan 2003 

5 SDSP San Diego Supercomputing Center 128 73,496 IBM SP/2 Apr 1998 – Apr 2000 

6 CTC Cornell Theory Center 512 79,302 IBM SP/2 Jun 1996 – May 1997 

7 KTH Swedish Institute of Technology 100 28,490 IBM SP/2 Sep 1996 – Aug 1997 

8 LACM Los Alamos National Lab 1024 201,384 CM-5 Oct 1994 – Sep 1996 

9 O2K Los Alamos National Lab 2048 121,989 Origin 2000 Nov 1999 – Apr 2000 

10 LLNL Lawrence Livermore National Lab 256 21,323 Cray T3D Jun 1996 – Sep 1996 

11 OSC Ohio Supercomputing Center 57 80,713 Linux Cluster Jan 2000 – Nov 2001 

Table 1: Parallel Computers in our data set 

  CTC KTH LACM5 O2K LLNL NASA BLUE PAR5 PAR6 SDSP2 OSC 

Variable: Sign: 1 2 3 4 5 6 7 8 9 10 11 

Processors in Machine TN 512 100 1024 2048 256 128 1152 416 416 128 57 

Jobs per Day JD 233.76 83.83 279.32 885.65 183.82 459.59 255.41 209.66 104.45 99.84 119.20 

Runtime Load RL 0.556 0.690 0.735 0.640 0.616 0.467 0.762 0.628 0.611 0.829 0.431 

CPU Load CL 0.464 0.690 0.478 0.391 0.616 0.467 0.627 0.667 0.685 0.734 0.590 

Users per KJobs UJ 8.56 7.51 1.06 2.76 7.18 1.63 1.87 1.28 1.55 5.95 2.63 

Executables per KJobs EJ 155.29 N/A 19.74 N/A 32.88 11.67 N/A N/A N/A 896.50 0.01 

Runtime Median Rm 946 847 68 569 36 19 210 25 174 318 383 

Runtime Interval Ri 57226 47861 9063 32243 9143 1170 21738 26535 29924 41583 64089 

Processors Median Pm 2 3 64 15 8 1 8 4 8 2 1 

Processors Interval Pi 37 31 224 127 62 31 128 63 63 48 5 

Norm. Procs. Median Nm 0.5 3.8 8.0 0.9 4.0 1.0 0.9 1.2 2.5 2.0 2.2 

Norm. Procs. Interval Ni 9.3 39.7 28.0 7.9 31.0 31.0 14.2 19.4 19.4 48.0 11.2 

CPU Work Median Cm 559 847 6 21 36 19 30 24 129 264 646 

CPU Work Interval Ci 54794 47861 3658 9624 9143 1170 15990 25788 29640 41079 92838 

Inter-Arrival Median Am 79 192 59 26 119 59 102 73 124 135 64 

Inter-Arrival Interval Ai 1487 3810 1356 357 1660 446 1256 1786 3838 3823 2496 

Table 2: Data of production workloads 
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Running the Co-Plot algorithm on a given data set is done in several iterations. At first, all 

observations and variables are used. Then outlier observations and low-correlation variables are 

removed, and runs on different combinations of the remaining data are done as well. Each run 

produces a different plot, which enables the analyst to see which observations are stable, and which 

tend to change. The conclusions presented in this paper are only ones that proved stable. 

Figure 2 includes all the observations – none of them is an extreme outlier. The variables 

used are those that had the highest correlations, which facilitates the creation of a slightly more 

accurate 2-D map of the observations (the full set of variables will be analyzed in the next section). 

The coefficient of alienation of this Co-Plot is 0.10, and the average correlation of variables is 0.85. 

These are generally considered as excellent goodness-of-fit values (Borg and Groenen, 1997). 

 
Figure 2: Co-plot output of all production workloads 

See Table 2 for variable signs 

The most obvious conclusion that can be drawn about the logs from this map is that they are 

not clustered. Architecture does not imply proximity – the CTC, KTH and SDSP logs are all IBM 

SP2 machines of similar size. Neither duration nor the year in which logs were recorded affects the 

distance between them. Even the two paragon logs are not as close as could be expected, which 

means that the workload changed over time. The location has a negligible effect as well – the SDSP, 

PAR5, PAR6 and BLUE logs are all from the San Diego Supercomputing Center, and are in the 

same vicinity; however, the Los Alamos CM5 and O2K log are far-off from one another. Also, the 
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San Diego logs range over six years (1995-2000 inclusive), during which many other factors could 

change as well. 

Note that although we can see that the workloads are ‘far’ from each other, and use terms 

such as ‘high’ and ‘low’ values, this notion of distance is always relative to the other observations in 

this analysis. This happens because all variables in a Co-Plot analysis must be normalized – 

otherwise we can’t compare relations between them – and means that we should beware of attaching 

real distance to Co-plot’s output. We consider the workloads "far" because they are far enough so 

that the results of comparing schedulers will depend on the workload being used, which it does 

(Feitelson, 2003). In addition, this observation map, especially because we have no outliers, defines 

an intuitive notion of the “parallel workloads space”. 

Since the workloads occupy all of this space, it is obvious that any single model – which will 

naturally occupy one point – can't represent all of them well within this space. The next section, 

with a Co-Plot that includes the available models as well, demonstrates this point. This also means 

that a parametric model is called for, and since we have successfully placed the data within a two-

dimensional space (otherwise the coefficient of alienation was higher), looking for two parameters 

to represent the location of a workload on this space seems like the best choice. 

4.2. Flurries 

A flurry (Tsafrir and Feitelson, 2006) is a burst of very high activity by a single user. In 

contrast to normal active work, a flurry is an extreme case in which the load created by a user, over 

a short period of time, is orders of magnitude higher than usual, and affects the entire workload in a 

significant way. Sometimes the runtimes or CPU work used in a flurry is above the declared limits 

of the system, which makes them even more questionable. The following figure shows two 

examples of this phenomenon, both of which caused by an unusually high number of jobs by a user 

over a short period of time. On the right, from the SDSC SP2 log, a single user (out of 428 users) 

created a stream of jobs in one week, that is about seven times higher than the maximum number of 

jobs per week created by all other users, anytime in that log. On the left, from the LANL CM-5 log, 

3 out of 213 users create similar short-term streams of a very large number of jobs – five to six 

times the maximum of all other users during the log. 
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Figure 3: Jobs-per-week flurries in the LANL CM-5 and SDSC SP2 logs 

As argued in (Feitelson and Tsafrir, 2006; Tsafrir and Feitelson, 2006), a workload model 

should in general not include flurries, since they are non-representative behavior, and should be 

modeled separately. Therefore, like any other case of outliers in a statistical data set, it is 

recommended to remove flurries from a data set before analyzing or modeling it. On the other hand, 

from the eleven inspected logs only four didn't have any flurries (KTH, LLNL, O2K and NASA). 

The NASA log did have a large number of system jobs, which were not user generated behavior 

(Feitelson and Nitzberg, 1995). Hence, flurries are almost to be expected when deploying a new 

supercomputing center, and when using workloads – to compare schedulers, for example – it would 

be highly advisable to test them both with and without flurries in the tested scenarios. Current 

workload models do not offer this feature, and cannot be easily extended to do so, since they do not 

recognize the notion of a job's user, or maintain a user's history and adjust the used distributions 

accordingly. 

In order to test that conclusions drawn form Figure 2 are maintained when flurries are 

removed from the examined workloads, and also to compare the production logs against the 

workload models, we analysed them in a joint Co-Plot, shown in Figure 4. Note that in this case the 

CPU Load (CL), Users per thousand jobs (UJ) and Jobs per Day (JD) no longer appear: When 

adding the synthetic models to the analysis, the correlation of these variables significantly drops, so 

they were removed from the analysis. In addition, the Cirne and Berman model, which was analysed 

using three variants (its inter-arrival time distribution can be configured to match either of the KTH, 

CTC or SDSP2 logs), was also an outlier, and was subsequently removed to prevent it from 

distorting the other results. 

Two insights can be drawn from Figure 4. The first is that cleaning the production logs 

(cleaned versions are marked with the letter c) didn't affect the results: The placement of workloads 
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  CTC OSC LACM5 O2K SDSP2 NASA BLUE PAR5 PAR6 

Variable: Sign: 1 2 3 4 5 6 7 8 9 

Processors in Machine TN 512 57 1024 2048 128 128 1152 416 416 

Jobs per Day JD 227.63 119.18 169.29 885.65 81.13 198.34 248.14 147.19 86.68 

Runtime Load RL 0.556 0.428 0.734 0.640 0.827 0.466 0.762 0.627 0.611 

CPU Load CL 0.464 0.583 0.477 0.391 0.732 0.466 0.627 0.666 0.685 

Users per Kjobs UJ 8.79 2.63 1.75 2.76 7.32 3.78 1.92 1.82 1.87 

Executables per Kjobs EJ 159.48 0.01 32.58 N/A 1103.21 27.03 N/A N/A N/A 

Runtime Median Rm 1114 382 414 569 237 86 219 38 207 

Runtime Interval Ri 57562 63952 11202 32243 47463 3716 22688 30478 31048 

Processors Median Pm 3 1 32 15 4 4 8 8 8 

Processors Interval Pi 39 5 480 127 64 63 128 63 63 

Norm. Procs. Median Nm 0.8 2.3 4.0 0.9 4.0 4.0 0.9 2.5 2.5 

Norm. Procs. Interval Ni 9.8 11.2 60.0 7.9 64.0 63.0 14.2 19.4 19.4 

CPU Work Median Cm 669 645 64 21 170 86 35 39 156 

CPU Work Interval Ci 55184 92580 7826 9624 47102 3716 16545 30305 30765 

Inter-Arrival Median Am 85 64 176 26 201 90 104 113 212 

Inter-Arrival Interval Ai 1527 2496 2048 357 4738 1217 1292 2467 4363 

Table 3: Data of flurry-free production workloads 

 
Figure 4. Co-Plot of cleaned logs versus models 

in 2D space remains almost the same, and the direction of all the variable arrows remains the same 

as well. This result repeats with other observation and variable groups, and also when the original 

and cleaned workloads are analysed together (no shown here due to shortage of space). Second, 

with the exception of the Cirne and Berman model, the remaining models are not outliers, but 

naturally each of them occupies a single point on the plot, so none of them can represent all 

production workloads well. 
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4.3. Load Manipulation 

Besides the need for a parametric model, which can optionally also model flurries, another 

serious problem resulting from figures 2 and 4 regards the current widespread methodology of 

manipulating the load of a given workload. Testing a new scheduling algorithm or comparing 

algorithms is often done by simulating how they schedule the same workload, over a range of loads. 

A graph of performance versus load is then drawn and analyzed. Such a test is usually carried out by 

taking a single workload, and manipulating its load (Majumdar et al., 1988; Lo et al., 1998). 

There are three basic ways to raise a workload’s load: Lowering the inter-arrival time, raising 

the runtimes, and raising the degree of parallelism. The most common (Majumdar et al., 1988; Lo et 

al., 1998) technique is to expand or condense the distribution of one of these three fields by a 

constant factor. Note that by doing so the median and interval (any interval) are also multiplied by 

the same factor. The choice of which field to alter in order to change a system’s load should depend 

on the correlations between the runtime load and these three variables. We would choose lowering 

inter-arrival times if it were negatively correlated with load, and raising runtimes or parallelism if 

they were positively correlated with it. By doing so, we minimize the side effects of raising the load 

on other features of the workload. 

Regrettably, this logical criterion does not seem to match the data. First, from Figure 2 it is 

clear that systems with a higher average load (CL) tend to have a higher inter-arrival time median 

(Am), not a lower one. Likewise, the median of jobs runtimes (Rm) is negatively correlated to the 

load, rather than being positively correlated. As for the degree of parallelism, while it is indeed 

correlated with the runtime load, this is only a weak correlation. In addition, raising parallelism is 

almost never possible, since it breaks the dominance of powers-of-2 requests, which completely 

alters the behavior of many algorithms for which the workloads are needed (schedulers are the most 

obvious example). 

These correlations mean that a correct way to raise a system's load would end up with 

somewhat higher inter-arrival times, a somewhat higher degree of parallelism, and shorter runtimes. 

None of the three simplistic methods to alter the load satisfy these requirements; rather, they 

contradict them. This puts in question any results achieved by employing these methods, in 

particular results that discuss how a given algorithm will perform in extremely high loads. Such 

high loads are likely to be very different in practice from what the results were based on. 
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5. The Temporal Structure of Parallel Workloads 

5.1. Locality of Sampling 

The existing workload models draw job attributes from distributions, which means that each 

job is independent of all other jobs in the workload. Exceptions are the repetitions of identical jobs 

in (Feitelson, 1997) and a tailored multi-parametric distribution of inter-arrival times to simulate the 

daily cycle in (Lublin and Feitelson, 2003). This approach is in sharp contrast to the fact that four 

layers of temporal correlations in the arrival patterns of parallel jobs have been recently identified. 

The first is locality of sampling (Feitelson, 2002a; Feitelson, 2006). 

Locality of Sampling is the name given to the phenomenon that although all job parameters 

tend to have a low diversity over short time frames (minutes to hours), they have a much higher 

diversity over long time scales (months to years). The distributions of all parameters of parallel jobs 

– arrival time, runtime, degree of parallelism and total CPU work – are typically continuous, 

possibly with a long tail (Downey and Feitelson, 1999; Feitelson, 2005; Feitelson and Tsafrir, 

2006). On the other hand, when looking at a single day instead of a whole year, it is easily visible 

that the distributions of workload attributes tend to be modal. On a given day, usually just a few 

users are working on the machine, each one repeatedly executing the same job or similar jobs. It 

seems that the overall effect of continuous distributions and larger diversity is caused by the 

aggregation of these sessions, triggered by independent users. This is in line with the self-similarity 

of parallel workload attributes, since one of the mathematical ways to simulate it is exactly by such 

an aggregation (Beran, 1994). 

(Feitelson, 2006) presents an overview of locality of sampling and provides the following. 

First, it shows that this phenomenon is distinct from other workload features, such as long-range 

dependence. Second, it provides a formal method of quantifying the effect in a given workload. 

Third, it shows that under this quantification the known production workloads exhibit significant 

locality – much more than what can be expected at random, as the current workload models work. 

And fourth, it suggests a simple way to model the phenomenon, by selecting jobs from a single 

global distribution, and then repeating them by a number of times distributed by a Zipf-like distribution. 

A simple and effective tool to show that locality of sampling exists in production workloads 

but not in current models is auto-correlation. Auto-correlation is defined as the correlation between 

a time series, and itself under some shift. For example, if we define a time series Jt such that its 
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value in time t is the total number of jobs submitted in the t'th day of the workload, then by 

computing the auto-correlation of this series with a shift of one, we'll test the correlation of the 

number of jobs between adjacent days. To test for locality of sampling, we computed the auto-

correlation with a shift of one for the workload aggregated at 15 minutes and at 150 minutes, for 

five workload attributes: Number of jobs, runtime, number of processors, total CPU work and inter-

arrival time. The full results for both logs and models are given in a table in Appendix C; the 

average correlations for all production logs are as follows: 

Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

15m 150m 15m 150m 15m 150m 15m 150m 15m 150m 

0.17 0.18 0.36 0.32 0.07 0.06 0.14 0.03 0.51 0.52 

Table 4. Locality of Sampling: Average Auto-Correlations in Production Logs 

Results show significant auto-correlation of job runtimes (0.17-0.18), number of processors 

(0.32-0.36), and the number of jobs (0.51-0.52); a significant auto-correlation (0.14) of inter-arrival 

times only in the 15-minutes time scale; and a negligible auto-correlation for the total CPU work 

parameter (0.06-0.07). This means that jobs tend to “cluster” in time near other jobs, which have 

similar runtimes and degree of parallelism as they do. This matches the intuition of users logged in a 

session, running the same or similar jobs over and over again. However, the inter-arrival time 

between jobs is not kept – users wait different times between successive runs of the same job – and 

the total CPU work of jobs changes as well. 

Testing the models (by generating over 100,000 jobs from each one) suggests that the models 

do not generally represent these phenomena correctly. Downey’s model does not capture locality of 

sampling, and in contrast exhibits a significant negative auto-correlation of inter-arrival times. 

Jann’s models capture about half of the real observed auto-correlation of the runtimes, parallelism 

and number of jobs, and share Downey’s model negative auto-correlation of inter-arrival times for 

the 150-minutes time scale. Feitelson’s models are the only ones to capture the locality of the 

runtime and parallelism. This is achieved in the models by directly repeating some of the simulated 

jobs, using the same runtime and parallelism. On the other hand, these models show no locality in 

the number of jobs, and exhibit undesirable auto-correlations in the total CPU work and inter-arrival 

time parameters. Lublin’s model shows no significant sign of locality in any of the parameters. 

Cirne’s models capture the 150-minutes real-world results very well, except for the inter-arrival 

times, but are misguided in the 15-minutes time scale for all except the total CPU work parameter. 
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5.2. The Daily Cycle 

The next layer of temporal correlations in parallel workloads is the daily cycle. It is caused 

by the simple fact that people generally work during the day and sleep at night. As Table 5 shows, 

the daily cycle is the dominant factor in determining temporal correlations between jobs in the 12-

hour and 24-hour time scales. The numbers are auto-correlations (this is the classic statistical tool to 

measure cycles in time series) of the workloads aggregated at a six-hour scale, shifted by 2 and by 4 

to compute the 12-hour and 24-hour auto-correlation figures respectively. The full data table for 

both logs and models in given in Appendix C. 

Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

12h 24h 12h 24h 12h 24h 12h 24h 12h 24h 

-0.03 0.26 0.05 0.21 -0.06 0.15 0.01 0.02 0.11 0.33 

Table 5. Daily Cycle: Average Correlations in Production Logs 

The 24-hour figures for the production logs are significantly positive for all except the inter-

arrival time parameter, showing that a daily cycle indeed exists. As with locality of sampling, the 

auto-correlation is higher in the number of jobs parameter, and lower in the total CPU work. 

The 12-hour figures, however, are near-zero for all parameters, except the number of jobs. 

One possible explanation is that this is caused by the combination of two opposing forces that 

cancel each other out. The first is locality of sampling, which pushes the 12-hour auto-correlation to 

be positive. The second is the daily cycle, in which the night workload is negatively correlated to 

the daytime workload. The combined result is that the 12-hour correlations are near-zero, except for 

the number of jobs metric, for which – as shown in the previous section – the locality of sampling 

correlation is stronger. 

Whether this hypothesis is accurate or not, the 12-hour figures prove one thing for sure: that 

the 24-hour auto-correlations are not caused by locality of sampling, but by some other 

phenomenon. This is because the effect of locality diminishes around the 12-hour time scale. The 

only candidate to explain the “other factor” is the daily cycle. 

The results about the models are as follows. Downey’s model is quite close to the average 

production logs in many of the parameters, except for the 24-hour cycle of runtimes and total CPU 

work. Jann’s models show no significant auto-correlations at both the 12-hour and 24-hour range, 

except for a small positive auto-correlation in the number of jobs parameter. Feitelson’s models 

show no significant auto-correlations in any of the parameters. Lublin’s model shows positive auto-
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correlations in the runtime and total CPU work parameters, and no auto-correlations in the other 

parameters. However, in the two parameters where correlation exists, in exists in both the 12-hour 

and the 24-hour scales. Cirne’s models show very strong auto-correlations, sometimes positive and 

sometimes negative, in all parameters except for the total CPU work (in which these models are 

close to the production logs’ average). In all other cases, the models’ auto-correlations are quite far 

from the observed real-world averages. 

5.3. The Weekly Cycle 

So far we have seen that locality of sampling is the dominant factor in determining the 

temporal correlations between jobs at the minutes-to-few-hours time scale, and that the daily cycle 

is the dominant factor around the 24-hour time scale. The weekly cycle is the dominant factor 

around the 7-day time scale. “Around” means that the borders are vague – just like the daily cycle 

dominates somewhere between the 12 hour to 48 hour range, the weekly cycle usually dominates 

between the 3 days to 20 days range. Figure 5 is an auto-correlation plot of a 1-day aggregation of 

the BLUE log: Note the peak every seven days due to the weekly cycle, in addition to the peek at 

Day 1 due to the daily cycle. 

 
Figure 5. Number of Jobs per Day Auto-Correlation Plot for the SDSC Blue Horizon Log  

Table 6 was created by doing a 1-day aggregation of the workloads and then computing the 

auto-correlation of each series at a shift of 7 – one week. As in the previous sections, the production 

logs show significant positive auto-correlations in all parameters, except the inter-arrival time. As 

for the models, none of them was designed with the weekly cycle in mind, so as in the previous 

sections – some of the models get it right for some of the parameters, but none of them is consistent. 
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Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

7 days 7 days 7 days 7 days 7 days 

0.30 0.20 0.17 0.00 0.28 

Table 6. Weekly Cycle: Average Correlations in Production Logs 

5.4. Self-Similarity 

Studies of traces of Ethernet network traffic (Leland et al., 1994), web server traffic (Crovella 

and Bestavros, 1996) and file system requests (Gribble et al., 1998) have revealed an unexpected 

property of these traces, namely that they are self-similar in nature. Intuitively, self-similar 

stochastic processes look similar and bursty across all time scales. Physical limitations, such as the 

finite bandwidth and lifetime of any network or server, inhibit true self-similar behavior, but the 

presence of self-similarity over considerably long amounts of time (months, in the case of parallel 

computers), makes this phenomenon of practical importance. 

Understanding self-similarity requires a short mathematical preface. Given a time series 

{Xi}i=1..n we look at it at various aggregation levels: X
(m) is a new time series defined by summing m 

elements of the original series into one element of the new one. For example, X(3) = { X1+X2+X3, 

X4+X5+X6, … }. The auto-correlation function r(k) of a time series measures how “similar” the 

series is to itself shifted by k time points. A self-similar time series is one that is “similar to itself” 

over many time scales, and so the official definition is: 

∀k  r(m)(k) = r(k) (exactly) (1a) 

∀k r(m)(k) → r(k) (asymptotically) (1b) 

This manifests itself in a number of mathematically equivalent ways: 

Slowly Decaying Variances: The variances of the aggregated series decay hyperbolically and 

not exponentially as in most familiar distributions: 

Var(X(m)) ∝ m-β     for some 0 < β < 2  and all m ≥ 1. )2(  

This also means that the original series X has infinite variance. 

Long Range Dependence: The auto-correlation functions decreases very slowly: 

r(k) ≈ k-βL(t)     for some 0 < β < 2  as k → ∞ )3(  

Where L(t) is a slowly changing functions (asymptotically constant). This implies that        

each Xi affects future Xi’s for a very long time into the future. Long-Range Dependence means that 
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the distribution of the original time series is Heavy-Tailed: Values that are extremely far from the 

mean will appear quite often. 

The Spectral Density obeys a power law (near the origin). The spectral density measures 

cycles in a time series. The formal definition is: 
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Where ϖ is a frequency. The Periodogram is a graph that is computed by plotting f(ϖi) 

against the frequencies ϖi = 2Πi / N for i = 1..N. 

If the original time series is self-similar, then the following property will hold: 

f(ϖ) ≈ c0ϖ
-(1-β) for some 0 < β < 2  as ϖ → 0 )5(  

The 0 < β < 2 parameter in the above equations has the same value in all of them, and it is a 

measure of how strong the self-similarity in the original times series is. However, for historical 

reasons we don’t use β but instead use the Hurst Parameter, simply defined as: 

2
1

β
−=H  )6(  

It is named after Hurst, who first discovered it in the late ‘50s. If H = ½ the process is not 

self-similar (it is a ‘random walk’), and when ½ < H < 1 it is self-similar with positive drift (most 

self-similar data to date are positive). Hurst worked on many time series from nature, and measured 

self similarity using the Rescaled Adjusted Range (R/S) Statistic. For a time series X having 

average )(nX  and sample variance S2(n) this statistic is given by: 

 R(n) / S(n) = [ 1 / S(n) ] × [ max(0, W1, W2, …, Wk) – min(0, W1, W2, …, Wk) ] 

Where: 

 Wk = (X1 + X2 + … + Xk) - k )(nX        (k ≥ 1) 

Short-range dependent observations seem to satisfy E[ R(n) / S(n) ] ≈ c0n
0.5, while long-range 

dependent data, such as self-similar processes, are observed to follow: 

E [ R(n) / S(n) ] ≈ c0n
H    (0 < H < 1) (7) 

This is known as The Hurst Effect, and can be used to differentiate self-similar from non-

self-similar processes. 
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The above equations give rise to three independent methods for testing for self-similarity and 

estimating the Hurst parameter of a given time series: 

Variance-Time Plot: Take a logarithm out of both sides of equation (2): 

log [ Var(X(m)) ] = c1 - β log(m) )8(  

In words: by plotting Var(X(m)) against log(m) on a log-log plot, we should get a straight line, 

and its  slope should give us an estimate of β, from which we have an estimate of H. 

R/S Analysis or Pox Plot: Here we call on the Hurst Effect for help. Taking a logarithm out 

of both sides of equation (7) gives: 

log [ R(n) / S(n) ] = c2 + H log(n) )9(  

So if we plot R/S(n) against n on a log-log plot, the slope will be an estimate of H.     This 

method is claimed to be the most robust to slight changes in the distribution. 

Periodogram: Here we take the logarithm from equation 5, and do the same: 

log [ f(ϖi) ] = c0 – (1- β) log(ϖi) )10(  

for a more comprehensive description of self-similarity see (Beran, 1994). Figure 6 presents a 

more intuitive explanation of self-similarity and its meaning. To the right are four plots presenting 

the number of used processors over time in the SDSP2 log; to the left are similar plots, for the 

SDSP2 variant of the Cirne and Berman model. From top to bottom, the aggregation level of the 

four plots are 100 minutes, 1000 minutes, 10000 minutes (≈1 week), and 50000 minutes (≥1 

month). The log is self-similar in the used processors parameter, with an average estimated Hurst 

parameter of 0.83, while the model is not – it has an average estimated Hurst parameter of 0.50. 

The end result is that the model’s burstiness at short time scales decays quickly, and at a 

weekly or monthly scale, the variance in its number of processors is negligible. On the other hand, 

the log demonstrates high variance even across weeks and months – this is “slowly decaying 

variances” in practice. This also means that there is a long-term dependence between jobs – to create 

month-long peaks, a job’s used processors count must be able to affect jobs that are weeks away. 

Table 6 summarizes our self-similarity results as follows. For each log and model, we 

computed the three tests of Variance-Time Plot, Pox Plot and Periodogram. Each test produced an 

estimate of the Hurst Parameter, between 0.50 and 1.0. Due to space constraints, table 6 contains 

only the average of these numbers for each log and parameter. 
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Cirne-SD Model, Used Processors SDSC-SP2 Log, Used Processors 

Figure 6. Visual Demonstration of Self-Similarity  

Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

Average Hurst parameter over all logs: 

0.72 0.75 0.69 0.67 0.77 

Average Hurst parameter over logs that are at least one year long: 

0.75 0.75 0.72 0.77 0.84 

Table 7. Self-Similarity: Average Hurst Parameter Estimates in Production Logs 
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The main result is that the production logs are self-similar in all the tested parameters. Note 

that we computed two averages: the first is over all logs, and the second is for the six logs that were 

at least one year long. The second average is higher and also more representative, since shorter logs 

are limited by definition by the time scale in which self-similarity can exist. The models, on the 

other hand, do not exhibit self-similarity (the full data table for all logs and models in given in 

Appendix C) . The only model to show significant Hurst parameter estimates is the Feitelson ’97 

model, probably due to its notion of repeating jobs. 

6. Towards a User-Based Parallel Workload Model 

The last two sections presented some of the techniques by which workload analysis is done, 

and have also provided us with a list of current limitations of existing workload models: 

Methodological Limitations: 

Need for a parametric model 

Inability to model flurries 

Lack of a correct way to manipulate load 

Need for direct user modeling 

Temporal Structure Limitations: 

Locality of Sampling 

The Daily Cycle 

The Weekly Cycle 

Self Similarity 

Methodological limitations hinder a researchers' ability to correctly evaluate new algorithms 

and policies for parallel computers (whether they use synthetic or production workloads), and 

temporal structure limitations hinder the ability to rely on synthetic models for such tasks. This is 

especially true for evaluating resource management policies (Feitelson, 2002 and 2003). The first 

two sections of the results chapter present two types of scheduling algorithms which specifically 

rely on the temporal structure of workloads, as well as on direct user modeling (i.e. the algorithm 

relies on knowing which user submitted each job). This provides motivation for developing the new 

parallel workload model which will address the above issues. 

We argue that building a user-based workload model, instead of directly modeling parallel 

jobs as done today, provides an elegant way to address all of the above issues. 

These problems have been identified from other angles (Feitelson, 2002a; Frachtenberg and 

Feitelson, 2005) before and during this research. (Jann et al, 1997), (Cirne and Berman, 2001) and 

(Lublin and Feitelson, 2003) manipulate parametric distributions to model the daily cycle. 

(Feitelson and Jette, 1997) create locality of sampling using exact job repetitions, and (Song, 
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Ernemann, and Yahyapour, 2004) create it by modeling runtime and parallelism using Markov 

chains. (Karatza and Hilzer, 2003) present a model which tackles the long-range dependency in the 

distributions of runtime and parallelism. (Song, Ernemann and Yahyapour, 2005) create a user 

based workload model based on four clusters of users, but model only runtime and parallelism, and do 

not relate to the temporal structure issues, which as we show are crucial to the user clustering process 

as well. None of these approaches scales well to a solution which covers the other limitations. 

Our modeling framework is multi-scale (Calzarossa and Serazzi, 1994; Menascé et al, 2003) 

and is based on users and sessions. From the modeling point of view, this means that we don’t 

model distributions of jobs, but instead model distributions of user classes. For each user class, we 

model distributions of session classes; and for each session class, we model jobs. To make things 

simple, the session classes are identical for all user types. A key part of the model construction 

process will be to uncover the session classes independently of user types – so the only difference 

between user types is the frequency of each session class. 

At the bottom line, such a model is used to generate a stream of synthetic jobs, like the 

existing models reviewed earlier. But the data for each job includes, in addition to its arrival time, 

runtime and number of processors, also an identifier of the user who submitted it, and an identifier 

of the session it belongs to. Sessions, although a natural and well-known aspect of human use of 

computers (Arlitt, 2000), have not been analyzed in the context of parallel workloads to date. The 

user identifier enables using this model when evaluating algorithms that rely on users directly, for 

example to predict a new job's runtime based on its user's history. This is the first advantage of a 

user-session-based model. 

Second, such a model is expected to be self similar. There are two ways to synthesize a self-

similar time series: directly or by aggregation. The direct method produces signals based on a self-

similar distribution, such as fractional Brownian motion or fractional ARIMA processes. These 

processes allow good control over the Hurst parameter, but they make it harder to control other 

desirable properties of the workload. The second method to produce self similarity is by aggregating 

the signals generated by a set of independent sources – intuitively, users – under the following 

conditions: users must switch between active and inactive periods – intuitively, sessions – and the 

duration of the "on" and "off" times must be from a heavy-tailed distribution. A distribution is 

called "heavy-tailed" if it has infinite variance; informally, this means that there is "significant" 
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probability for seeing values that are extremely far from the mean. Therefore, it seems likely that 

basing the workload model on an aggregation of users, each exhibiting on on/off behavior 

(sessions), will result in a self-similar model, as long as heavy-tailed distributions are used. 

Third, a user/session model provides a simple way to model time-dependent features, such as 

locality of sampling and cycles. Locality is very hard to model using a distribution on all jobs, since 

while the local diversity is very small, the overall diversity is very high. Users and sessions make it 

simple, by capturing that high diversity and separating the intra-session low diversity model in a 

natural way. Cycles are also easy to model, due to a similar kind of separation of concerns: the 

inter-arrival time of jobs within a session (which doesn’t have cycles) is modeled separately from 

the inter-arrival time between session, which obeys the daily and week cycles. We have also 

included locality and the known cycles as features used to define user and session classes, to ensure 

that our model will capture the differences between sessions that happen at different times (day 

versus night sessions, for example). These features were indeed found to be of major importance. 

Fourth, a user/session model captures flurries, as outlier sessions. Flurries were identified 

immediately in our analysis as outliers, and a full model can be configured to either include them, as 

a special kind of session, or not at all. This gives researchers the choice, which is vital (Tsafrir and 

Feitelson, 2006) since on one hand flurries are not characteristic of common workload, but on the 

other hand most long production traces contain at least one. 

Fifth, a user/session model provides a more natural way to manipulate load correctly. Beyond 

making the model parametric (which is not made easier or harder by building a user-based model), 

the load will be (optionally) one of the parameters. As we've seen, the problem with load 

manipulation of current production logs and models is that all three simple ways to manipulate their 

load are problematic. A user-based model opens new possibilities, such as having a higher load 

result in more active users, more sessions per user, or a higher proportion of intensive sessions. This 

provides a more natural model of how load increases are caused in real life, integrates easily into 

our modeling framework, and is more likely to maintain other statistical properties of the workload. 

And sixth, a user/session model is beneficial to understanding and exploiting workload 

features because it works: We succeeded in identifying the core variables that explain most of the 

variance between users and sessions, and then identified a small number of user and session classes 

that cover their entire spectrum. This proves the whole approach to be viable in practice. 
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R E S U L T S  

7. Adaptive Parallel Scheduling 

7.1. Introduction 

This study began with the observation that widespread scheduling systems in use today, such 

as Maui (Jackson et al., 2001) and EASY (Skovira et al., 1996), sometimes exhibit inconsistent and 

unstable behavior. As the next section will show, on a typical year these schedulers have several 

“good” months, a few “bad” ones, and one or two “major blunders”. In very bad months, the 

computer’s response time is several times slower than usual, making it far less usable. 

Another observation that we make is that another scheduling algorithm, Flex (Talby and 

Feitelson, 1999), offers comparable performance to Maui, with an important difference: Although it 

also has “good” and “bad” months, they are different than those of Maui in every case we examined. 

This raises an opportunity: If we could predict when each scheduler should be used, we can enjoy 

the best of both worlds. 

This section describes two algorithms that use different strategies to predict when each 

scheduler is most appropriate. One chooses by recent past performance, and the other by the recent 

degree of parallelism, which is shown to be correlated to algorithmic superiority. Simulation results 

for the algorithms on production workloads are analyzed, and illustrate unique features of the 

chaotic temporal structure of parallel workloads. Specifically, the adaptive schedulers rely on 

locality of sampling, the daily cycle and the weekly cycle. 

We provide best parameter configurations for each algorithm, which both achieve average 

improvements of 10% in performance and 35% in stability for the tested workloads. This is a useful 

and highly practical improvement, as it refers to the overall performance of the entire computer. 

7.2. The Inconsistent Performance Problem 

The study compares four backfilling parallel schedulers: EASY, Conservative, Flex and 

Maui, which have been studied and compared before (Talby and Feitelson, 1999; Mu'alem and 

Feitelson, 2001). We have repeated these experiments by simulation on logs from three parallel IBM 

SP2 computers – the SDSC Blue Horizon (BLUE), the SDSC IBM SP2 (SDSP2), and the KTH 

IBM SP2 (KTH). Together, these three logs constitute almost six years of real user activity. 
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 Wait Time Bounded Slowdown 

 Cons Easy Flex Maui Cons Easy Flex Maui 

BLUE 1878 2083 1661 1535 9.1 11.0 8.0 10.2 
SDSP2 6379 6033 5500 5612 28.4 29.2 25.7 17.6 
KTH 7302 6806 6250 6731 89.2 88.9 70.5 63.3 

Table 8. Backfilling Schedulers Performance for Entire Logs 

Table 8 uses both the average wait time and average bounded slowdown to compare the 

schedulers. The first metric is equal towards all jobs, while the second one penalizes causing short 

jobs to wait, encouraging better interactive behavior. This table confirms past results: Flex is the 

best scheduler in wait-time in two out of three cases, and in slowdown in one of the three; Maui is 

the best scheduler in the other cases, and Conservative and Easy typically have lower performance. 

However, this is not the whole picture. 

In order to gain a better understanding of the algorithms than previously done, we re-ran the 

simulations and gathered per-month results. This is significant since as shown in (Talby, Feitelson 

and Raveh, 1999) the usage pattern in production logs may change radically over time, and also 

because this gives us a total dataset of 67 unique workloads, instead of just three. This monthly 

breakdown uncovered an unexpected result, shown in Table 9. 

The table counts how many months, in absolute and relative terms, each scheduler “won” by 

providing the best performance among the four schedulers. As the data shows, Maui has a clear lead 

and “wins” about 70% of the months, under both metrics, consistently across all logs. When only 

Flex and Maui are compared, Maui “wins” about 75% of the months, and Flex wins the other 25%. 

This is surprising because as Table 8 shows, Maui’s overall yearly statistics are not better 

than Flex’s. This can only happen if Flex wins by very high margins when it does, and this is indeed 

what we found: about one month per year, Maui shows catastrophic performance, by presenting 

average wait times that are 2-4 hours longer than those of Flex. Such a wait time is about three 

times the yearly average on each of the machines we study, and is enough to make Flex the more 

responsive overall scheduler in two out of three cases. 

Wait Time Bounded Slowdown  

Cons Easy Flex Maui Cons Easy Flex Maui 

0 0 8 23 2 0 7 22 
BLUE 

0% 0% 26% 74% 6% 0% 23% 71% 

0 2 6 15 3 0 4 16 
SDSP2 

0% 9% 26% 65% 13% 0% 17% 70% 

0 1 2 8 0 0 3 8 
KTH 

0% 9% 18% 73% 0% 0% 27% 73% 

Table 9. Backfilling Schedulers Performance for Entire Logs 
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Figure 7. Monthly deviations from the average performance in the SDSP2 log 

 Months won by Flex Months won by Maui 

 Average Gap Maximal Gap Average Gap Maximal Gap 

BLUE 46% 251% 43% 189% 
SDSP2 44% 97% 29% 145% 
KTH 56% 158% 29% 53% 

 
BLUE cln 46% 144% 33% 147% 
SDSP2 cln 26% 95% 25% 93% 

Table 10. Average and Maximal Wait Time Gaps between Flex and Maui 

Flex shows considerable improvement over Maui in the months in which it leads, but this 

works the other way as well: Maui often outperforms Flex significantly. Table 10 shows both the 

average and maximum monthly gap in average wait time between these two schedulers; the gap is 

shown in percentage to make it possible to compare across logs. The numbers are consistently very 

high, which is an important unexpected fact, on which we base the second part of this chapter. 

Figure 7 shows this phenomenon visually. It shows the monthly deviation of each log from 

the average performance of all logs that month. The deviations are shown for the response time and 

bounded slowdown metrics, in the SDSP2 log. Similar results repeat for all other logs and metrics. 

The last two rows of table 10 prove that these results are largely not the result of outliers in 

the logs. Following the work on flurries in (Tsafrir and Feitelson, 2006), we re-ran the simulations 

on “cleaned” versions of the logs – such versions exist for the BLUE and SDSP2 logs, since no flurries 

where found in the KTH log. The results show that although the removals of flurries (which exist in 

real-life workloads) reduce some of the figures, most of the performance gap remains unexplained. 

Months in which the four schedulers greatly differ also do not stand out statistically as 

outliers. On the contrary – the statistics of workload attributes such as the inter-arrival time, runtime 
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and parallelism is often similar across months with very different scheduling performance. 

Therefore, we suspect that the cause of the performance gaps is the temporal structure of the 

workload, or the correlations between adjacent jobs. More specifically, it is likely that self-

similarity – shown in (Talby, Feitelson and Raveh, 1999) to exist in parallel workloads – plays a 

role here, since it exhibits itself in long-term correlations between jobs, that cause long-term (i.e. 

over months) load patterns that change chaotically over time. However, the focus of this section is 

not the theoretical explanation of the performance gap phenomenon, but rather a practical utilization 

of it, by using the most practical tool to handle chaos in dynamic systems: adaptability. 

7.3. Performance Based Adaptive Scheduling 

7.3.1. Rationale 

The practical opportunity that the performance gap presents is clear: we can theoretically 

improve performance by 30-40%, if we could predict in advance which scheduler will win each 

month. In practice, we can’t predict the future but can afford mistakes, since a 10% gain will be a 

significant and very useful achievement as well. 

An adaptive algorithm makes sense only if we can make one very basic assumption – that 

past behavior predicts future behavior. Using the terms we defined in the previous chapter, we are 

heavily relying here on locality of sampling. We will also need to rely on the daily and weekly 

cycle, since it's not enough to know that the past predicts the future: We also need to know what is 

the right time scale to look at the past with. For example, the daily cycle suggests that using the last 

24 hours to predict the next 24 hours is smarter than using the last 17 hours to predict the next 17 

hours. However, we will not assume this in advance when designing the algorithm, but rather test it 

using a wide range of time frames, and see if the 24-hour and 7-day time frames result in superior 

performance. Such a result will be evidence that exploiting these cycles is useful and practical. 

7.3.2. Algorithm 

The performance-based adaptive scheduler (PBAS), summarized in figure 4, assumes that the 

scheduler that performed best in the recent past is likely to perform best in the near future. A nice 

feature of adaptive algorithms is simplicity: Run a set of candidate schedulers in the background, at 

each point in time use only one of them as the active one; at regular intervals, review the 

performance of all schedulers, and for the next time frame activate the best-performing one. 
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Performance-Based Adaptive Scheduler Algorithm 

• Initialization 

o Initialize each of the candidate schedulers. 

o Select one of them arbitrarily as the active scheduler. 

• On Job Arrival Event 

o Notify each of the candidate schedulers of the arrival. 

o Start running only the jobs that the active scheduler decided to run. 

• On Job Termination or Cancellation Event 

o Notify each of the candidate schedulers of the event. 

o Only start running jobs the active scheduler decided to run. 

• On Switch Schedulers Event 

o Measure the performance of each of the candidate schedulers during 

the last measurement period. 

o Set the active scheduler to be the one which performed the best 

according to a preferred metric. 

o Synchronize all schedulers to the current real state, which may be 

different than the state they reached (since they don’t “know” that 

their output is not used to drive the actual system). 

o Set another ‘switch’ event to happen after another time interval. 

Figure 8. Performance-Based Adaptive Scheduler Algorithm 

7.3.3. Empirical Results 

The PBAS algorithm can be configured by four parameters: The candidate schedulers set, the 

time frame between switching events, the metric used to compare schedulers’ performance, and the 

history time frame to consider when comparing performance. In our runs, the history time frame 

was always identical to the switching time frame, because using a longer history period has an 

unclear semantics when switching happens during that period, and we did not want to add to the 

algorithm’s complexity. 

The six graphs of Figure 9 summarize the PBAS results for different metrics and switching 

time frames. Results are given in terms of both average wait time and bounded slowdown for each 

log. The candidate schedulers set includes only Flex and Maui, for a reason that will be explained 

later. The time scale is logarithmic, since we tested over five orders of magnitude of time – from 

one minute to fifty days. The metrics whose results are presented are response time (PBAS-Resp), 
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bounded slowdown (PBAS-BSld), and utilization (PBAS-Util). The wait time and slowdowns 

metrics were tested as well, and result in similar or worse performance; they were left out of the 

graphs only to improve their readability. 

Perhaps the most surprising result of Figure 9 is the fact that performance is highly non-

continuous: it seems to be very sensitive to the time frame, and does not lend itself to any elegant 

explanation. There are several unique points which are consistent across logs, but most of the time, 

behavior can only be predicted by experimentation. The same happens across metrics: using 

different metrics for the same time frames results in inconsistent and non-continuous performance. 

Also, with a few rare exceptions, using a certain metric does not guarantee good results in that metric. 

Maui and Flex are shown as straight lines in the plots, since they are not adaptive. The 

visuals show that most PBAS runs are between the Maui and Flex results for that log, which is 

expected – after all, the adaptive scheduler can only run one of them at any given time. It is also visible 

that the wrong selection of parameters can lead to performance that is worse than both Easy and 

Flex, but on the other hand – the right selection can result in outperforming both. It is expected and 

doesn’t matter than most parameter combinations don’t work, as long as one or more combination 

consistently improves performance. In our case, there are two consistently winning combinations, 

presented in Table 11. The numbers show the percent of improvement over Maui, both in average 

wait time (performance), and in standard deviation between wait times of different months (stability). 

The average performance gain of the Utilization-7 Days configuration is 10%, and its average 

stability gain is 36%. The numbers for the Response Time-12 Hours configuration are 9% and 25%. 

Another good configuration was Bounded Slowdown-1 Hour, which worked very well for KTH and 

SDSP2, but caused a small decline in BLUE’s performance. 

 

 Performance Gain Stability Gain 

 KTH SDSP2 BLUE KTH SDSP2 BLUE 

PBAS Utilization 

            7 Days 
13% 8% 9% 63% 29% 17% 

PBAS Response Time 

           12 Hours 
5% 11% 12% 24% 27% 24% 

Table 11. Best parameter combinations for PBAS, and overall improvement over Maui 
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                    Figure 9. Performance-Based Adaptive Backfilling                                                                                            
   by Time frame and metric. 

   X axis is log(minutes), for example: 
   log(5 minutes) ≈ 0.5, log(1 hour) ≈ 1.8, 
   log(1 day) ≈ 3.15, log(7 days) ≈ 4 
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7.3.4. The Performance Gap Revisited 

In light of our experience with Maui and Flex, it is required to examine the performance of 

PBAS on a monthly basis as well. This would show us whether stability has indeed improved, and 

may again lead to opportunities for further optimization. Figure 10 presents the same information 

given in Figure 7 – monthly deviations from the average wait time and bounded slowdown in the 

SDSP2 log – for four PBAS configurations. The chosen configurations are the best-performing 

representatives of four orders of magnitude of time: five minutes, one hour, twelve hours and a week. 

Flex and Maui are included in the graphs to visually demonstrate that they are the most 

fluctuating schedulers – the PBAS algorithms show considerable variations among months, but 

generally succeed in avoiding the extremes that Flex and Maui reach. Data from the other logs 

supports this conclusion. 

On the other hand, Figure 10 does show that there are considerable per-month differences 

between different PBAS configurations. These four schedulers perform at the same overall level, 

but each one has “strong” and “weak” months. This leads back to the idea we started from: Why not 

build an adaptive scheduler – that will dynamically switch between different PBAS candidate 

configurations at runtime? This algorithm is called Indirect Performance-Based Adaptive 

Scheduling, after the extra level of delegation, and its formal description is identical to that of PBAS 

(Figure 8). Since both algorithms use the candidate schedulers as black boxes, they are in fact the 

same algorithm, with a different configuration. 

Indirect PBAS was tested on a large variety of configurations, and for the most part, results 

were disappointing. Most results were random and highly inconsistent across logs. The best 

configuration that we found was the 7 Days-Utilization Indirect PBAS, which internally used the 

two top PBAS configurations listed in table 5. Its average performance improvement over Maui was 

6%, and the average stability gain was 20% – less than each of the two schedulers it relied on. 

Our hypothesis, as for why adaptability doesn’t work in this case, is that it requires that the 

core schedulers being used be different enough from one another. For example, Flex and Maui use a 

completely different “mindset” when approaching the scheduling problem. On the other hand, 

different PBAS configurations are much more likely to make the same decisions – for better or 

worse – since the different metrics are correlated, and high-impact workload phenomena influence 

over long durations. As a general principle in adaptive algorithm design (Eiben et al., 2003), each 

candidate must posses some unique added value – special cases with which it can cope well – and 

we believe that this principle worked here. 
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7.3.5. Candidate Schedulers 

All the PBAS experiments analyzed so far use only Maui and Flex, for a simple reason – 

using any other candidate set, and in particular the set of all four schedulers, provides significantly 

worse results. Figure 11 demonstrates this visually, for specific logs and PBAS configurations – but 

the results repeat for other configurations and logs as well. 

The explanation is as follows. Since the adaptive scheduler makes local decisions, there are 

occasions when Easy or Cons will be chosen. Since these algorithms are generally weaker than Flex 

and Maui, the probability that their past success indicates future success is smaller than for Flex and 

Maui. This means that erroneous choices are made more often, and overall performance suffers. 
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Table 12 illustrates this from a different point of view, by listing the portion of time that 

PBAS uses each scheduler. The five first rows are results for the BLUE log, using utilization as the 

switching metric, and all four schedulers as the candidate set. As the table shows, Cons and Easy are 

used together between 21% and 47% of the time, depending on the time frame. This means that 

during this portion of the time, PBAS uses an inferior scheduler – and as Figure 11 shows, this is 

apparent in its performance. To borrow an analogy from sports: If an adaptive algorithm is a team’s 

coach, it should prefer to use a strong player on a bad day, than a mediocre player on a winning streak. 

To complete the presentation of Performance-Based Adaptive Scheduling, Table 12 also 

includes the absolute and relative number of switch points in which switches actually happened. 

Note that the portion of time spent using each scheduler is relatively constant across time scales – 

evidence that locality is a dominant factor here. 

  % Flex % Maui % Easy % Cons # Taken 

Switches 

% Taken 

Switches 

30 min 27% 52% 17% 4% 2295 5% 
4   hours 22% 47% 23% 8% 627 30% 
24 hours 21% 52% 19% 9% 278 28% 
7   days 11% 43% 40% 7% 44 31% 

4
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u
le
rs
 

50 days 17% 44% 33% 6% 10 51% 

30 min 41% 59% - - 1761 4% 

4   hours 37% 63% - - 678 12% 

24 hours 36% 64% - - 214 22% 

7   days 46% 54% - - 32 23% 

2
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ch

ed
u
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rs
 

50 days 41% 59% - - 6 31% 

Table 12. Switching Behavior for PBAS with the utilization metric, on the BLUE log 

7.4. Workload Based Adaptive Scheduling 

7.4.1. Rationale 

Performance-Based Adaptive Scheduling takes a greedy approach to profit from the 

performance gap. The ability to bypass the need to understand the root cause of a phenomenon and 

still benefit from it is the key advantage of adaptive algorithms – but yet, if such an understanding 

can be reached, then the rewards in terms of performance are usually high (Eiben et al., 2003). On 

the other hand, some dynamic environments are too complex to fully “understand”, and then an 

adaptive heuristic behavior is the best practical choice. 
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Workload-Based Adaptive Scheduling is an intermediate path between these extremes. 

Instead of blindly following the best-performing candidate scheduler, we will examine which local 

features of the workload cause a given scheduler to be preferred. Afterwards, our on-line algorithm 

will work by monitoring that feature, and switching schedulers accordingly. This should enable us 

to benefit by identifying and reacting to a new trend in the workload as its first jobs enter the queue 

– instead of when the first jobs terminates, when performance statistics are first available to PBAS. 

The workload variables that were tested are the number of jobs and users, the load, and the 

medians and intervals of the runtime, parallelism, total CPU work, inter-arrival time, and number of 

jobs of the workload. The average and standard deviation metrics were not used, since they are 

known to be unreliable in parallel workloads due to the long tails of some of the distributions 

(Downey and Feitelson, 1999). These variables were compared against two measures of relative 

algorithmic superiority: the absolute difference between the wait times of Flex and Maui, and the 

relative difference (in percent) between the wait times of the two algorithms. The first measure tests 

correlation to “major blunders” since large absolute values dominate the computation, while the 

second (relative) regards small and large wait times equally. 

Log Jobs 
Count 

Runtime 
Load 

Users 
/TJobs 

Runtime 
Median 

Runtime 
Interval 

Procs 
Med. 

Procs 
Int. 

CPU 
Med. 

CPU 
Int. 

Inter-
Arrival 
Med. 

Inter-
Arrival 
Int. 

Correlations to relative Flex/Maui difference: 
KTH 0.44 -0.35 0.13 0.83 -0.38 -0.05 -0.60 N/A N/A -0.46 0.64 
SDSP2 0.01 0.11 -0.05 -0.04 0.28 -0.30 -0.19 -0.02 0.29 0.02 -0.11 
BLUE 0.20 -0.05 -0.09 0.14 -0.02 -0.33 -0.24 0.00 0.09 -0.21 -0.13 

Correlations to absolute Flex-Maui difference: 
KTH 0.39 -0.03 0.11 0.32 -0.28 -0.14 -0.72 N/A N/A -0.52 -0.14 
SDSP2 0.10 0.08 -0.16 -0.24 0.16 -0.19 -0.21 -0.16 0.19 -0.11 -0.28 
BLUE -0.01 -0.12 0.07 0.02 0.13 -0.09 -0.02 0.01 0.17 -0.11 0.08 

Table 13. Correlations between workload attributes and relative Flex-Maui performance 

In Table 13, positive correlations mean that large values of that workload variable indicate 

better performance of Maui over Flex. Negative values indicate that large values correlate with 

better Flex performance. The correlations were computed between the statistics of each month of a 

log, to the difference between Flex and Maui’s performance for that month. As the table shows, 

most variables do not consistently indicate a preference towards a certain algorithm, and this dataset 

is too small to assume that a majority means anything. There are two exceptions: the number of 

processors (both median and interval) for both the absolute and relative performance measures, and 

the median of inter-arrival times for the absolute measure only. 
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7.4.2. Algorithm 

The Workload-Based Adaptive Scheduler (WBAS) uses the number of processors as an 

indicator of scheduler preference. It was chosen because it works for both the relative and absolute 

measures, and because its correlations were the most consistent across logs. 

  Workload-Based Adaptive Scheduler Algorithm 

• Initialization 

o Select one of the candidate schedulers arbitrarily as the active scheduler. 

• On Job Arrival Event 

o Update the moving average of parallelism AP using the number of 

processors requested by the new job Pnew and this formula: 

AP  ←  (1 – MAF 
 –1

) x AP  +  MAF 
– 1

 x Pnew 

o Start running only the jobs that the active scheduler decided to run. 

• On Job Termination or Cancellation Event 

o Only start running jobs the active scheduler decided to run. 

• On Switch Schedulers Event 

o Measure the average level of parallelism of jobs that arrived during 

the last time frame: APlast. 

o If AP < APlast , then activate Flex, else activate Maui. 

o If the active scheduler changed, synchronize it to the current situation. 

o Set another ‘switch’ event to happen after another time interval. 

Figure 12. Workload-Based Adaptive Scheduler Algorithm 

The algorithm is adaptive and works in the following manner. When a switching event 

occurs, it checks if the number of processors requested in the last time frame is greater than the 

long-term average parallelism of the workload – which indicates that Flex should be activated – or 

not, which means that Maui should be chosen. The long-term average parallelism of the workload is 

updated each time a job arrives, using an exponential moving average, to enable the global average 

to slowly adjust even after the scheduler has been running for a long time. 

7.4.3. Empirical Results 

The WBAS can be configured by two parameters: The switching time frame, and the moving 

average factor (MAF) which determines the length of the “long-term memory” of the algorithm. 

The candidate set and history time frame, in the sense used in PBAS, are irrelevant here. Since both 
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parameters are continuous, we could not test all possible combinations in order to find the best one, 

and therefore took the following approach to find the best combination. In Figure 13, all the 

performance-per-switch-time graphs use MAF=5000, and all the performance-per-MAF graphs use 

one day as the switch time. These values were chosen after preliminary test runs, which indicated 

that these values both perform well and are relatively stable to small changes. The performance 

measure in Figure 13 is wait time in all graphs; the scales for both MAF and switch times are 

logarithmic, since as usual we tested values from several orders of magnitude. 

The first question to answer, before analyzing patterns in the above graphs, is whether 

WBAS improves overall performance. The answer is a clear yes, and table 8 shows the best 

configurations that do so. As was done in table 5, the results are the percentage of improvement 

compared to Maui. The performance gain is measured by the average wait time, and the stability 

gain is measured by the standard deviation of monthly wait times. 

The average performance gain of the first two combinations is 10%, and their average 

stability gains are 35% and 22%. The third combination’s average improvement is 9%, and its 

average stability gain is 33%. These averages are similar to the improvements achieved using 

PBAS, with the distinction that PBAS achieved much better gains for the BLUE log, while WBAS 

achieved better gains for the KTH log. The specific difference between the KTH and BLUE logs 

that is responsible for this result is unknown at this time. 

Another difference between PBAS and WBAS, made obvious by visually comparing Figure 

9 and Figure 13, is that the performance of WBAS is less sensitive to parameter changes. This is not 

to say that the WBAS results are “well-behaved”: we still cannot see continuous and predictable 

lines, and the best way to know the results for a given parameter combination is to run it in a 

simulation. But there is still an improvement compared to PBAS: For example, changing a MAF of 

5000 by several hundreds has a moderate effect, and performance changes are usually visible only 

when crossing the borders to a higher or lower order of magnitude. The switching time frame is 

more sensitive than that, but we can still observe some common features in the three logs’ graphs. 

 Performance Gain Stability Gain 

 KTH SDSP2 BLUE KTH SDSP2 BLUE 

WBAS 7500 MAF 

             1 Day 
20% 10% 1% 60% 32% 14% 

WBAS 7500 MAF 

             2 Hours 
15% 7% 8% 28% 22% 17% 

WBAS 750 MAF 

             1 Day 
17% 11% 0% 62% 31% 5% 

Table 14. Best parameter combination for WBAS, and overall improvement over Maui 
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Figure 13. Workload-Based Adaptive Backfilling by Time Frame and MAF                                                                                                                                                                                                                                                                   
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A month-by-month analysis of WBAS reconfirms the conclusions that WBAS contributes to 

stability, and that its parameters are more robust to change than in PBAS. Parameter combinations 

that result in very different per-month results can be demonstrated, but as discussed in section 4.3.4, 

this is not a real opportunity for further improvements. 

Since both PBAS and WBAS show the same average overall performance, the selection 

between them can be based on secondary considerations. Most of these are in favor of WBAS: Its 

parameters are more robust to minor errors, it is simpler to implement since it doesn’t require 

simulating both schedulers in memory at runtime, and it is slightly more efficient since only one 

scheduler needs to run at any given time. 

A final word is due about the algorithms’ performance. The runtime of adaptive algorithms is 

the sum of runtimes of the candidate algorithms, plus the time required to synchronize between 

them. This means that the performance of an adaptive scheduler is the same, in the Big-O sense, as 

that of its slowest candidate. In practice, both algorithms run an entire log simulation in several 

dozen seconds on a strong PC, which equals millisecond-range time per scheduling event. 

Moreover, switching events are done asynchronous to user requests, so users experience the same 

service times that Flex and Maui provide alone. 

7.5. Summary 

This study makes three contributions. First, it identifies a practical problem – the 

performance gap. The problem is shared by all the logs we examined, has a dire affect on a system’s 

usability, and cannot be gracefully handled once it starts. Since our study focuses on the most 

widely used schedulers today, deployed on several platforms, we suspect that this problem is 

widespread and often ignored. 

Second, we propose a practical solution, in the form of adaptability. The combination of the 

different approaches of Maui and Flex, with the recommended parameter sets that we found, 

significantly improves the stability and predictability of the tested systems. The average 

improvement for our dataset was 35% using the recommended configurations. 

Moreover, the new algorithms enable a 10% gain in overall performance over existing 

algorithms, which makes them useful for any large parallel computer. Compared to other 

alternatives for boosting performance, improving the scheduler is easy: It is a software-only, 

relatively independent module of the operating system; implementing the algorithms described here 

requires writing several thousand lines of code. 
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What adaptive algorithms don’t explain is why they do or don’t work. Our results provide 

many hints, but the overall picture is still a complex and highly chaotic one. Future research is 

required to further investigate this issue, which will require an understanding of the temporal 

structure of parallel workloads, the dynamics of backfilling and the specific candidate schedulers 

used here, and the dynamics of the switching decisions of the adaptive scheduler. 

The third contribution of this study is by showing that locality of sampling, the daily cycle 

and the weekly cycle are not just statistical features – they are of practical importance. Further, it is 

clear that models which do not exhibit these phenomena cannot be used to evaluate such schedulers: 

They are likely to provide answers that will contradict what will really happen. This provides 

motivation for the upcoming modeling effort of these features. 

 

8. Runtime Predictors for Backfilling Schedulers 

This section presents joint work with Dan Tsafrir and  Zviki Goldberg. 

8.1. Introduction 

The scheduler is implemented in most systems today using FCFS with backfilling (Etsion 

and Tsafrir, 2005). Recent findings about backfilling (Tsafrir and Feitelson, 2006b) suggest that past 

work, showing that inaccurate runtime estimates improve its performance, have actually traded off 

fairness in exchange for this improvement. In addition, a Shortest-Job-Backfill-First strategy can 

achieve superior performance when equipped with an accurate runtime prediction algorithm, while 

maintaining the originally intended fairness criteria (Tsafrir et al., 2006). 

This scheduler’s effectiveness relies on providing it with accurate runtime predictions for 

incoming jobs. This motivates two research goals: To find new prediction algorithms that 

outperform current ones, both in accuracy and in the resulting bottom-line performance; and to gain 

new understandings about the value of different strategies and types of information in the context of 

parallel runtime prediction.  

To achieve these goals, we define a framework for comparing on-line runtime prediction 

algorithms, including metrics for accuracy and for isolating the predictor’s effect on performance. 

We apply our framework to existing predictors, and then define and analyze a set of new prediction 

algorithms, comparing a large variety of potential strategies: Session-based versus user-based 

partitioning of history, recent versus far history, exact matching of job attributes, and use of the user 
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estimate. This provides a quantifiable view of the value of information of each such concept in the 

context of runtime prediction. 

Recommended predictors, in terms of both performance and accuracy, are given for the 

general case, the case of unavailable user estimate, and the case of no available information. The 

two later cases are likely to be encountered in grid environments, where jobs migrating between 

different sites do not generally travel with their entire user's history. 

The most successful runtime predictors rely heavily on the user who submitted each job and 

on locality of sampling – specifically within the list of jobs of a single user. In addition, we 

investigate the effectiveness of directly taking advantage of the concept of sessions: Can we benefit 

by identifying a set of jobs as belonging to the same session, and assuming that the user's next job 

within the same session is likely to be similar? 

8.2. The Need for Accurate User Estimates 

8.2.1. Accuracy of User Estimates 

When submitting a job to any backfilling parallel scheduler, users are required to submit an 

estimate of how long the job will run. This estimate is in fact an upper bound, since jobs that exceed 

it are killed by the system. On the other hand, users also have an incentive not to overestimate, since 

this undermines a job's chance to backfill (and run much sooner than originally queued), and may 

also cost the user more 'CPU seconds' under some accounting systems. 

The popularity of the EASY scheduler has enabled empirical studies of how it works in 

practice, based on accounting logs from multiple installations (Feitelson, 1999). These studies 

showed that user estimates are generally inaccurate (Mu'alem and Feitelson, 2001), and are 

reproduced in Figure 14. There seem to be three types of jobs: Jobs that used only a fraction of their 

estimate, and presumably failed on startup (20-30% of jobs, shown in green); jobs that exceeded 

their runtime estimates and were killed by the system (10-20% of jobs, shown in red), and jobs that 

terminated regularly (in grey), for which the histogram is quite flat – meaning that for such jobs, any 

level of accuracy is almost equally likely to happen. 

The conclusion is that user estimates are actually rather poor, probably since users find the 

motivation to overestimate, so that jobs will not be killed, much stronger than the motivation to 

provide accurate estimates and potentially enable the scheduler to perform better packing. However, 

a recent study indicates that users are actually quite confident of their estimates, and most probably 

would not be able to provide much better estimates (Lee et al., 2004). 
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Figure 14. Relative Accuracy of User Estimates 

8.2.2. Using Accuracy to Improve Performance 

The search for accurate runtime prediction of parallel jobs attracted little attention in recent 

years, because of two reasons: Findings which suggested that accuracy hinders performance, instead of 

improving it; and lack of other needs for accuracy. Both of these reasons have been recently refuted. 

First, using the EASY scheduler produced a surprising yet consistent result: Backfilling 

schedulers actually perform better with less accurate estimates, in particular large over-estimations. 

Several studies (Zotkin and Keleher, 1999; Mu'alem and Feitelson, 2001) suggested doubling the 

user estimates, and investigated the effect of multiplying it by higher factors as well. Some of these 

results are reproduced in Figure 15, and show that indeed doubling the estimates improves overall 

performance. This effect is observed even when the actual runtimes are used as estimates (perfect 

accuracy), allegedly showing that accuracy has a marginal role in improving performance. 

These results are in contrast to the initial intuition, that more accurate predictions should lead 

to better packing opportunities, and thus to better utilization and performance. However, as a recent 

study (Tsafrir and Feitelson, 2006) discovered, this intuition is not faulty. Instead, the cause of this  
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Figure 16. EASY Backfilling Example Revisited 

behavior is a much stronger trend, which affects in the opposite direction: Exchanging performance 

for fairness, by weakening the reservation guarantee for the first job, and thus allowing more short 

jobs to be backfilled. 

This happens as follows. The only effect of the estimate is on the computation of the shadow time 

and its use. Therefore, if a running job will actually terminate within one hour, but has an estimated 

termination time of two hours, then the reservation guarantee for the first waiting job is two hours 

away. This means that short jobs (ones that are estimated to terminate within two hours) can be 

backfilled, and start running. This improves utilization and response time, but at the direct expense 

of the first waiting job. This is because even through the first job will terminate ahead of its 

estimated time, the waiting job may not be able to start running then, because of the backfilled jobs. 

This happens because once a job starts running, it cannot be preempted or killed by the scheduler. 

A visual example is given in Figure 16, which is a continuation of Figure 1, after J4 and J5 

have been backfilled. Assume that all estimates have been doubled. A few seconds later, J1 

terminates – way ahead of its estimate, which has been doubled. Because of J4, J2 can’t exploit this 

early termination and start running: It cannot kill or preempt it. Note that J3 still can’t start running 

as well – its estimate has been doubled as well – but new, short jobs can and will be backfilled. For 

example, a job such as J6, whose doubled estimated is less than that of J4, could start running. Since 

J4 will terminate ahead of time as well (after all, it is reserved twice the upper bound of its runtime), 

J2 could later be delayed by J6, and later by other shorter jobs as well. Figure 17 illustrates the 

outcome of this process in the logs: When doubled estimates are used, a larger fraction of jobs are 

backfilled. 
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Figure 17. Percent of Backfilled Jobs under the Estimation Methods from Figure 15 

To conclude, the real tradeoff of doubling estimates is not performance versus accuracy, but 

performance versus fairness. This is very similar (in both concept and empirical performance) to the 

Flex scheduler (Talby and Feitelson, 1999), which introduces the notion of reservation slack 

explicitly. This recent understanding also led to a scheduling algorithm (Tsafrir and Feitelson, 

2006b) that improves performance and accuracy but maintains the fairness guarantees inspired by 

EASY. This algorithm, to be presented in the next section, improves in direct relation with the 

quality of runtime predictions, thus raising the importance of this research direction. 

8.2.3. Other Needs for Accuracy 

In addition to performance, two other recent developments raise the requirement for accurate 

runtime predictions of parallel jobs. The first is advanced reservation for grid co-allocation, shown 

to considerably benefit from better accuracy (Smith et al., 2000). The second is batch scheduling of 

moldable jobs – Jobs that can run on any number of processors (Downey, 1997c; Smith et al., 

1999). Since the goal of the scheduler is to minimize response time, it must decide whether it is 

preferable to start running a job on the processors that are available now, or wait until more 

processors are available. A good prediction of how long current jobs are expected to run is 

obviously crucial to making the correct decisions. 

8.3. Prediction Algorithms Comparison Framework 

8.3.1. Predictors Defined 

This section is devoted to comparing a set of runtime prediction algorithms, and analyzing 

the root causes for their empirical performance and accuracy. We thus need a framework for 

comparing prediction algorithms: The exact scope of a prediction algorithm, how to measure 

accuracy and how to measure performance are all non-trivial issues. This section defines them. 
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To begin with, we need a standard definition for a prediction algorithm. A prediction 

algorithm is an event-based program, used internally by a scheduler. It is activated by the scheduler 

in four events, specified in Listing 1, and in each of these events, the algorithm may return a list of 

updated predictions for waiting or running jobs. The only constraints are that a prediction must be 

given for a job on its arrival; must be given when a job has missed its deadline (meaning that it is 

still running, and its runtime is greater than its current prediction); and must not be smaller than the 

job’s actual runtime, if it already began to run. 

struct Prediction { Job job, int prediction } 

list<Prediction> OnJobArrival ( Job job ) 

list<Prediction> OnJobStart ( Job job ) 

list<Prediction> OnJobTermination ( Job job ) 

list<Prediction> OnJobDeadlineMissed ( Job job ) 

Listing 1. A Predictor’s Interface. 

8.3.2. Measuring Accuracy 

Defining and measuring the accuracy of predictions is non-trivial. First, since a prediction 

may be lower than a job’s actual runtime, it may have to be changed during its execution – so one 

job can have several different predictions during its lifetime. Second, since most prediction 

algorithms rely on history, they must rely on the list of terminated and running jobs – which means 

that their accuracy also depends on the scheduler being used, in addition to the workload. Third, 

different metrics may be sensitive to different aspects of accuracy, as is the case in performance 

metrics. For example, the wait time and bounded slowdown metrics don’t always agree, since wait 

time is dominated by long jobs, while slowdown is more sensitive to changes to short jobs. This is 

why more than one metric is required in many situations. 

We define and measure two accuracy metrics. The first is Absolute Error, defined as the 

absolute difference between the prediction and the actual runtime. It is analogous to the wait time 

metric used to measure performance, and similarly desired to be as small as possible. The second is 

the Relative Accuracy metric, defined as the relation between the prediction and the actual runtime, 

where the smaller of them is the numerator. It is inspired by the slowdown metric, and is always 

between 0% and 100%. When analyzing a full log we will consider the averages of these metrics, 

meaning that Absolute Accuracy will be dominated by large prediction mistakes in long jobs, while 

Relative Accuracy gives similar weight to short and long jobs. Note that a bounded variant of 

Relative Accuracy is not needed, since its denominator is always greater than the numerator. 

Equation 11 defines the two metrics; R stands for Runtime and P for Prediction. 
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Equation 11a. Absolute Accuracy. Equation 11b. Relative Accuracy. 

These definitions only work for jobs that have a single prediction throughout their lifetime. In 

the frequent case of under-predictions (and in general in other cases as well), a job’s prediction may 

have to be changed several times during its lifetime. For such cases, we define its accuracy (of both 

kinds) to be the weighted average of its accuracies, where the weights are given by durations in 

which each prediction was active. Formally, if T0 and TN are a job’s submission and termination 

time, and we denote by Ai its accuracy (again, either absolute or relative) from time Ti-1 to Ti 

(where Ti-1 ≤ Ti), then its accuracy is: 
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Equation 12. Accuracy (Absolute or Relative) Under Multiple Active Predictions. 

8.3.3. Measuring Performance: The SJBF Scheduler 

The effect of a prediction algorithm on system performance is derived from and highly 

dependant on the scheduler which activates the predictor. This chosen scheduler should satisfy all of 

the following criteria: 

1. More accurate predictions should result in higher performance (as measured by wait time and 

bounded slowdown). This means that EASY is not an option – as shown in section 8.2.2, 

more accurate predictions degrade EASY’s performance. 

2. The scheduler should provide the level of fairness required for the original EASY, or better. 

This means that Shortest-Job-First (SJF), which may lead to starvation, is not a legitimate 

option, although its performance improves with accuracy. 

3. The scheduler should perform better than EASY, when a good predictor is used. The 

performance gain comes in addition to the improved accuracy and fairness. 

4. The scheduler should be practical – easy to implement and integrate in current systems. 

The scheduler which we will use in this section, which satisfies all of the above criteria, is the 

Shortest Job Backfill First (SJBF) algorithm proposed by (Tsafrir et al. 2006). The algorithm is 

identical to EASY except for three places: 



53 

1. Use predictions instead of user estimates to compute the shadow time. 

2. Use predictions instead of estimates to test if a job terminates before the shadow time. 

3. Backfill jobs in order of ascending predictions (shortest job first), instead of ascending arrival 

time (first come first serve). 

The algorithm’s pseudo-code is given in Appendix A, where the three words that need to be 

replaced in EASY to turn it into SJBF are underlined. The SJBF algorithm has been shown to 

improve performance with improved accuracy, and do so without sacrificing fairness. It is also very 

easy to implement in practice, particularly in existing EASY or Maui based installations. 

The scheduler’s improved performance stems from prioritizing shorter jobs. Most of the 

studies dealing with predictions and accuracy indicate that improved performance due to increased 

accuracy is most evident when shorter jobs are favored (Smith et al., 1999; Zotkin and Keleher, 

1999; Chiang et al., 2002; Tsarir and Feitelson 2006b). Again, this means that the problem with 

applying improved predictions to improve performance is not with the accuracy of predictions, but 

with the scheduler which uses them. As explained in section 8.2.2, this is also the real reason behind 

the performance boost caused by doubled estimation: more short jobs are able to backfill, at the 

expense of longer ones. The SJBF algorithm does this explicitly. Thus, as the empirical results will 

show in later sections, it is able to enjoy similar performance benefits. 

On the other hand, SJBF maintains and even improves the fairness guarantees defined by the 

original EASY. Note that the algorithm only changes the order in which the backfilling optimization 

is attempted: Jobs are still scheduled by FCFS before activating backfilling, and the reservation is 

still made for the oldest waiting jobs (not the shortest one). In addition, SJBF does not reduce the 

reservation guarantees for the first job by artificially raising the estimate of running jobs – as done 

by EASY with doubled estimates. In contrast, since the algorithm works with accurate predictions, 

it actually provides tighter reservation guarantees than the original EASY. This happens because, as 

the empirical results will show, most of the analyzed predictors are more accurate than user estimates. 

The dataset used in this study consists of the following four logs from Table 1: SDSP2, CTC, 

KTH and BLUE. Together, these logs constitute over 400,000 jobs and six years of real user 

activity, from three different sites. These four logs have been chosen since they have all been 

extensively cleaned and studied before, and in particular include user estimates which are widely 

considered to be representative and of good quality (Tsafrir et al., 2005). 
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8.4. Simple Prediction Algorithms 

Now that our framework for comparing predictors is in place, we can explore the search 

space for prediction algorithms, starting with three very simple predictors. The first is the perfect 

predictor, which guesses the actual runtime. This is a theoretic predictor, since the actual runtime is 

not known in advance, but will provide a reference point for what can be reached with full 

information. The second predictor is the constant predictor: predict the same, constant runtime for 

all jobs. Again, this predictor is only meant as a reference to what can be achieved with no 

information. The third predictor is the estimate predictor: use the user estimate as the predictor. 

Listing 2 specifies these simple predictors formally. 

PERFECT Predictor: OnJobArrival (Job job): return <job, job.runtime> 

CONSTANT Predictor: OnJobArrival (Job job): return <job, Constant> 

ESTIMATE Predictor: OnJobArrival (Job job): return <job, job.estimate> 

Listing 2. Reference Predictors 

Note that SJBF with the Estimate Predictor is different than the original EASY/Maui, in two 

aspects. First, it backfills jobs by order of ascending estimates, instead of ascending arrival time 

(FCFS). Second, it updates its prediction in deadlines misses – events in which the job’s runtime 

exceeds its prediction. This can happen if a job’s runtime exceeds its estimate (which happens in 

practice in rare cases), and is handled, as suggested in (Tsafrir et al., 2006), by gradually increasing 

the prediction by predefined increasing values. This is also the strategy used in the Constant 

Predictor, if the runtime exceeds the constant. All other predictors in this paper use the following 

strategy: If a deadline is missed and the current prediction is smaller than the user estimate, then 

raise it to be equal to the user estimate; else, raise it by the predefined gradual increments. 

The fourth predictor we will compare ourselves to is the Recent User History Predictor, 

presented in (Tsafrir et al., 2006) and named EASY++ there. To the best of our knowledge, it is the 

highest performing scheduler/predictor combination to date abiding our fairness criteria. It is based 

on SJBF as well, as predicts runtimes based on a very simple rule: A job’s prediction is the median 

of the runtimes of the three last jobs of the same user. 

OnJobArrival (Job job):  

 if there exist at least three terminated jobs of job’s user then 

  return [job, median of last three terminated jobs of job’s user 

 else  

  return [job, job.estimate]; 

Listing 3. Recent User History (RUH) Predictor 
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Predictor: Improvement over EASY, Average over all logs: 

 Wait Time B.Slowdown Abs. Error Rel. Acc. 
Perfect 22% 47% 100% 176% 

Estimate 11% 22% 0% 0% 

Constant 1 second 16% 13% 41% 37% 

1
 RUH without Propagation 18% 32% 40% 69% 

1 RUH with Propagation 17% 32% 41% 71% 

Table 15. Simple and RUH Prediction Algorithms and their Improvement over EASY 

 

     KTH    CTC        SDSP2     BLUE 

 EASY     Estimate     Const-1Sec     RUH-NoProp     RUH-Prop     Perfect 

Figure 18. Performance and Accuracy Comparison of Reference Predictors 

 

                                                 
1 This comparison was made against the best RUH configuration known at the time of this study. 
An improved version was later developed and reported in (Tsafrir et al., 2006). 
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The RUH Predictor can be configured by several parameters, underlined in the above pseudo-

code: how many past jobs to consider, which metric to use on them, should running or only 

terminated jobs be considered, and how to handle the first jobs of a new user. We have simulated it 

under its best published parameter configuration1, in two variants – with and without propagation. 

Propagation is an optional optimization, which forwards new information on a job – specifically, its 

actual runtime when it terminates or its updated prediction on a deadline miss event – to the rest of 

the waiting and running jobs of the same user. The predictions of these jobs are recomputed, based 

on the updated information. 

Table 15 and Figure 18 compare the above predictors. As expected, EASY is substantially 

inferior to SJBF, even under the Estimate predictor. RUH behaves almost the same with and without 

propagation, and improves both performance and accuracy further, up to about two thirds of the 

potential gain, as assessed by the results of the Perfect predictor. 

The Constant predictor, using a constant of one second (higher values produce far worse 

results), provides a very surprising result. Although it uses no information to make predictions – not 

the job’s user estimate, not past jobs, not other attributes of the job – it succeeds to match the 

performance of RUH in the wait time and absolute error metrics, and significantly outperforms 

EASY in the two other metrics. Note that the accuracy is achieved here by first guessing one 

second, and gradually increasing the prediction as the job runs longer. The initial low guess enables 

to backfill any job, regardless of its attributes – and the algorithm indeed backfills on average 22% 

more jobs than EASY. However, this is not done at the expense of long jobs (since all jobs have an 

equal chance to backfill). Also, the gradual ascent in prediction during runtime maintains a small 

gap between a job’s runtime and its reserved shadow time, thus maintaining a high level of fairness 

as well. 

8.5. Session-Based Prediction 

8.5.1. Rationale 

It is well known that human users typically work in sessions – periods of intense, repetitive 

work. A recent study (Zilber, Amit and Talby, 2005 – see Section 9 below) formalized this notion, 

and identified five stable clusters of sessions in parallel workloads. It was also found that in four of 

the session clusters, consisting of over 95% of the observed sessions, the diversity between jobs in 

the session is very small – a median of less than two unique runtimes and levels of parallelisms 

within a session. This explains why the Recent User History Predictor is successful, but also 

suggests that basing a predictor explicitly on sessions may be even better. 



57 

CTC, 20 Sep 1996, User #289 BLUE, 21 Apr 2001, User #315 
Arrival Procs Estimate Exec # Runtime 

19:49:20 16 300 3012 91 

19:52:32 12 300 3012 67 

19:57:45 12 300 3012 348 

19:58:33 16 300 3012 342 

20:05:25 16 300 3012 105 

20:08:17 16 300 3012 87 

20:10:07 200 300 3032 332 

20:15:54 100 300 3033 314 

20:22:15 200 300 3033 389 

20:31:34 200 1800 3033 168 

20:31:45 200 1800 3033 352 

20:33:25 200 1800 3033 348  

Arrival Procs Estimate Exec # Runtime 

04:29:56 8 30600 N/A 31 

04:30:14 8 30600 N/A 28 

04:33:16 8 30600 N/A 31 

04:36:26 8 30600 N/A 28 

04:37:09 8 30600 N/A 43 

04:40:33 8 30600 N/A 33 

04:43:29 8 30600 N/A 29 

04:46:34 8 30600 N/A 29 

04:49:40 8 30600 N/A 28 

04:54:37 8 30600 N/A 28 

04:58:04 8 30600 N/A 30 

05:06:57 8 30600 N/A 28  
Table 16. Two Sample Sessions 

Table 16 shows two stereotypical sessions. On the right is a session from the BLUE log, in 

which the user repeatedly ran the same job; note how runtimes are easy to predict based on history, 

but on the other hand have no correlation to the user estimate. On the left is a session from the CTC 

log, which shows how sometimes the user hints about changes in runtime by changing the number 

of processors, the estimate or the executable. Based on these observations, we designed the session-

based predictor to use both proximity in time and similarity in job attributes to decide on which jobs 

a new prediction should be based. 

8.5.2. Algorithm 

The Session-Based History (SBH) Predictor works as follows. It maintains each user’s past 

jobs partitioned by sessions, where two jobs are defined to be in the same session if the think time 

between them (the time between the termination of the first one and the arrival of the next) is 

smaller than twenty minutes. This threshold is taken from (Zilber, Amit and Talby, 2005), where 

sensitivity analysis showed that it is stable to changes within the same order of magnitude. We have 

ran simulations using different thresholds, including ones far different than 20 minutes, and 

concluded that other values sometimes show comparable performance, but cannot be used to obtain 

consistent superior performance or accuracy. These results will not be presented here due to lack of 

space. All simulation results presented here use the 20-minutes value. 

In addition, the SBH Predictor requires an ordered list of similarity criteria, by which jobs in 

a session are matched to the job for which a prediction is required. Each criterion defines whether 

the number of processors (P), the user estimate (E) and the executable (X) should match; the 

algorithm only uses jobs that match the given criterion to generate a prediction. For example, if the 

criteria list is [PEX,PX,EX], then the algorithm will first look only for jobs that match the new job  
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OnJobArrival (Job job):  

 for each criterion in the similarity criteria list 

  for each of the last three sessions of job’s user, by descending start time 

   if there exists at least one terminated job in the session, 

which matches the current similarity criterion, then 

                        return <job, median of all jobs in session that match criterion> 

 // (the following line is only reached if no matching job was found) 

return <job, job.estimate> 

Listing 4. Session Based History (SBH) Predictor 

in parallelism, estimate and executable; if there is no such job in the current session, it will 

look for jobs that match in parallelism and executable; and if there is no such job as well, it will 

look for jobs that match in estimate and executable. If no matching job is found at all, then the 

algorithm repeats the search in the previous sessions, in descending order. If no matching job is 

found in any session (for example, in the first job of a new user, or when a user starts working with 

a new executable), the algorithm resorts to using the user estimate as the prediction. 

The algorithm can be configured in several ways, which are underlined in the above pseudo-

code. We found two parameters to be the most influential. The first is the similarity criteria list, 

since it defines the balance between predicting by exact matches, and not being able to predict at all 

(when the criteria are too strict). The second is the order of the algorithm’s two loops. The algorithm 

as explained above and defined in Listing 4 uses “Depth-First Search” (DFS): Its first priority is to 

find an exact match to the current criterion, at the expense of relying on the further past. For 

example, if the setting is [PEX,PX,EX], then this algorithm will prefer to predict based on a job that 

matches in parallelism, estimate and executable three sessions ago, then predict based on a job that 

matches only in parallelism and executable, from the current session. An alternative strategy would 

be “Breadth-First Search”, in which the two loops are exchanged, and the algorithm first looks at 

the current session for any match to the similarity criteria list, and only search past sessions if no 

match to any criterion is found. 

8.5.3. Performance and Accuracy 

The SBH Predictor can be configured in a vast number of ways, but most parameters and 

combinations have a marginal effect. Table 17 and Figure 19 compare the performance and 

accuracy of RUH with the two best SBH configurations we have found. 
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Configuration: Improvement over RUH, Average over all logs: 

 Wait Time B.Slowdown Abs. Error Rel. Acc. 
Unlimited DFS, [PE,P,E,*], Propagation 5% 4% 5% 2% 
Unlimited DFS, [E,P,X], Propagation 4% 8% 9% 3% 

Table 17. Best SBH Configurations and Their Performance Gain over RUH 
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RUH-Prop     SBH-[PE,P,E,*]     SBH-[E,P,X]     NoEst-Balanced     NoEst-Unbal. 

Figure 19. Performance and Accuracy Comparison of RUH, SBH and No-Estimate Predictors 

After thousands of simulations, we have reached the following conclusions: 

• Depth-First Search is significantly better than Breadth-First Search. Over a large set of 

simulations, DFS performed better than the equivalent BFS configuration in over 90% of 

the cases. The average gap in favor of DFS, over all four logs, was 5% in average wait time 

and 17% in average absolute error. Note that this happens even though we use DFS to 

unlimited depth (not just 3 sessions back). This means that exact similarity is more 

important than proximity in time for runtime prediction. 
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• Session-Base Prediction based on proximity in time alone in not enough. Using similarity 

criteria such as [*] (match any job) or [PEX,*] resulted in performance that is even worse 

than that of RUH. It seems that separating sessions by means of the think time between 

jobs alone is not enough to distinguish between different activities of the user, at the level 

of precision that is required for accurate runtime prediction. 

• Propagation is generally better than non-propagation. Enabling propagation means taking 

advantage new information sooner, and indeed using this optimization was preferable in 

75% of the cases, resulting in an average improvement (over all four logs) of 10% in 

average wait time and 6% in average absolute error. 

• Searching in sessions far back in history is useful. In contract to the RUH Predictor, SBH 

prediction requires users’ entire history to work optimally. Limiting the algorithm to look 

for less than 10 sessions back deteriorates performance, and surprisingly, even limiting the 

algorithm to 30 sessions results in performance that is 2%-3% worse, in all logs, than that 

of the unlimited configuration. Only a small fraction of a system’s users have that many 

sessions, so the effect must be caused by a better fit of these few extremely active users. 

8.6. Predicting Without User Estimates 

Another interesting research question is whether our predictions algorithms are good enough 

to rid users of the annoying need to specify estimates (which they do not do well anyway). As 

shown in section 8.4, the Constant-1-Second Predictor doesn’t use estimates and outperforms 

EASY, but this is not enough, since we have also shown that estimates can be used by other 

predictors to achieve even better results. So even given the entire history of all users, the value of 

information in a new job’s estimate is not nil. 

On the other hand, Session-Based Predictors enable us to build the highest performing 

predictors to date that don’t use estimates, since SBH relies on estimates less than previous 

algorithms. By measuring the performance and accuracy loss caused by discarding estimates, we 

enable making an informed decision. Building a No-Estimate SBH Predictor requires replacing the 

estimates in the three places where they are potentially used: 

1. As a default prediction in case no matching past job is found (the last line in Listing 4 is 

reached). This happens in slightly less than 1% of the jobs in the predictors given in section 

8.5.3. The estimate can be replaced here by always predicting 1 second. 

2. As a strategy for dealing with missed deadlines, as long as the job’s current runtime is 

smaller than its estimate. The way to replace the estimate here (as we found empirically) is 

by multiplying the current prediction by a factor of 10 on every miss. 
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3. As a similarity criterion for matching past jobs to the predicted job. Obviously, Estimates 

cannot be used in similarity criteria lists if they are not available. 

Table 18 and Figure 19 present two high-performing SBH variants that do not use estimates. 

Both variants don’t use propagation, and using it has a negligible effect. The “Balanced” variant 

stops the exponential growth of predictions after it hits a certain (high) threshold, while the 

“Unbalanced” variant does not. Not stopping the exponential growth results in better performance in 

three of the four logs. However, this comes at the expense of an out-of-bounds absolute error, and 

also at some cost to fairness, since the high over-estimations that are inevitably created enable more 

backfilling of short jobs (that is, predicted-to-be-short jobs), at the expense of long ones. 
 

Configuration: Comparison with RUH, Average over all logs: 

 Wait Time B.Slowdown Abs. Error Rel. Acc. 
Balanced, DFS, [PX,P,X,*] -5% -4% -13% 1% 

Unbalanced, DFS, [PX,P,X,*] -8% -11% N/A 1% 

Table 18. Best No-Estimate SBH Configurations, Compared with the Best RUH Configuration 
Negative values mean that SBH is inferior, positive values indicate improvement. 

8.7. Summary 

This study benefits both our scheduling and workload modeling goals. With respect to 

scheduling, it defines a standard framework for comparing the performance and accuracy of 

predictions algorithms, under common fairness criteria, based on recent new insights about the 

underlying interactions between the scheduler, predictor, workload and the framework’s metrics. It 

then analyzes a set of new predictions algorithms – the Constant Predictor, the Session-Based 

Predictor, and the No-Estimate Predictors based on it – and summarizes conclusions drawn from a 

thorough empirical study of their many possible configurations. These conclusions also provide an 

intuitive sense of the value of each piece of information that can be used to design future predictors: 

Recent versus far history, user versus session partitioning of history, exact similarity, a given job’s 

attributes, and in particular its user estimate. An interesting future research direction would be to 

quantify fairness, in a similar manner as done with accuracy in this paper, and compare scheduling 

and prediction algorithms quantitatively along the fairness axis as well. 

With respect to workload modeling, a first and obvious conclusion from this study is the need 

for a workload model that models users directly, i.e. provides a user identifier for each generated 

job. Moreover, the better predictors analyzed here strongly rely on locality of sampling, and in a 

particular way: locality within the same user. We have also shown that directly applying the concept 

of sessions to runtime prediction can be beneficial – which reinforces the idea of a workload model 

which directly models users and sessions. 
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9. User and Session Analysis of Parallel Workloads 

This section presents joint work with Julia Zilber and Ofer Amit, done while guiding their final 

project at Hadassah College. This section is largely based on (Zilber, Amit and Talby,2005). 

9.1. Introduction 

Having established the motivation for a user and session based workload model, we now 

begin the model construction phase. We begin by answer two very basic questions, which haven't 

been previously addressed. 

The first is: Which variables should be modeled? Or in an algorithm-designer’s words: 

which features of parallel workloads are important enough to affect performance? As the next 

section shows, first-generation models focused on modeling the most visible workload attributes, 

such as runtime and parallelism, but neglected other vital features such as the temporal structure of 

the workload, user behavior and so forth.  

But the question is deeper: after we found these several previously unmodeled features, how 

do we know that this is “enough”? In other words, how do we know that a given set of variables 

explains most of the variance found in parallel workloads? To measure exactly that, we use 

Principal Components Analysis (PCA): a statistical technique used to find the important 

differentiating variables in a given dataset and measure the proportion of information they represent 

out of the total variance in the data. We also provide a concrete set of variables, which explains 

most of the variance between users and sessions in parallel workloads. 

The second question we address is: Which user and session classes exist? This is required 

to build the multi-class hierarchical model we aim for, and also to gain first insights about who are 

the users of typical parallel computers, and what do their work habits look like. To do this, we 

analyze a set of production workload traces, and use clustering to identify four classes of users and 

five classes of sessions in parallel workloads. Since we mixed several traces before clustering, this 

classification is both architecture- and location-neutral – and as can be observed, is mostly focused 

on universal human traits, such as work in sessions and the daily cycle. In addition, we provide the 

observed distributions of both user classes and session classes – so that together with the concrete 

set of variables to model given by the PCA analysis, this study provides a major step towards a 

complete user-based workload model. 

This study is based on the following seven production logs: SDSC Paragon, KTH IBM SP2, 

CTC IBM SP2, SDSC IBM SP2, LANL CM-5, LANL Origin 2000 and SDSC Blue Horizon. 

Together these logs contain more than 700,000 jobs that span over 87 months, and come from four 

different locations and five architectures. While all seven logs come from typical high-performance 
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computing centers, there are obvious differences caused by architectures, user population, and 

technical and administrative policies. In order to provide insights that are location- and architecture-

neutral, which is our major goal, we analyzed all logs together. We extracted session and user 

statistics from each log, but then combined all sessions to a single list for the PCA and clustering 

analyses. All users were combined to a single list in the same manner. This ensures that log-specific 

features will disappear in the cumulative lists, and the main features left will be those that are 

universal to users of massive parallel computers. 

At the end of our clustering analysis, we remapped the clusters – of both users and sessions – 

to the original logs, to verify that we haven’t clustered according to the logs. The full data is not 

given here due to lack of space, but the bottom-line results are that the session and user classes that 

we identified exist clearly in all logs, and are indeed unrelated to particular locations or architectures. 

9.2. Principal Components of Sessions 

9.2.1. Sessions Defined 

A session is intuitively a period of continuous work of one user. This does not mean that jobs 

of the user are active 100% of the session’s time – a user may run a job to completion, think about 

the result, and run another job, all within the same session. The time between the completion of the 

previous job and the submission of the current job is called the think time of the current job. 

Intuitively, jobs are considered to be within a single session if there is a short think time between 

them. There is no other formal definition of a session, and no widely accepted think time that is 

considered as a session boundary (Arlitt, 2000). In order to decide what the boundary should be, we 

checked the cumulative distribution of think times in the logs.  

  
Figure 20. CDF of Think Times 
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The first observation from Figure 20 is that the different logs are strikingly similar. This is 

the main reason that enabled us to analyze all logs together and draw meaningful conclusions. The 

second observation is that most work is indeed done in sessions: while some think times are very 

high (not within the same session) or way below zero (next job started before previous one was 

finished), most of the jobs have think times around zero – within the same session. 

Following Figure 20, we defined the session boundary to be twenty minutes. This is inspired 

by the fact that for all logs, around that time the CDF stops its steep climb and settle on a slow, 

steady rise – meaning that the number of jobs started after 25, 55 or 85 minutes after their previous 

jobs is about the same. We took this as a cue that above this imaginary boundary the dominating 

distribution is that of session inter-arrivals, and not the intra-session one. 

Twenty minutes is obviously not the only possible choice, but we are confident in it for two 

reasons. First, we’ve done a sensitivity analysis, by repeating the following analyses using 15-

minutes and 30-minutes boundary values, and received virtually the same results. Second, from a 

practical point of view, this choice works: Using this definition we received stable and consistent 

PCA and clustering results, which are useful for future modeling and algorithmic research. 

9.2.2. Variables Set 

The variables that we used in our analysis are divided to traditional ones, focused on the size 

of the incoming workload, and newer ones, measuring aspects of the workload’s temporal structure. 

The traditional variables are summarized in Table 19. The median and interval were preferred over 

the average and standard deviation, as explained in section 4.1. 

 

Symbol Description 

J Number of Jobs 
D Duration 
Rm Median of Runtime 
Ri 90% Interval of Runtime 
Pm Median of Parallelism 
Pi 90% Interval of Parallelism 
Im Median of Inter-Arrival Time 
Ii Interval of Inter-Arrival Time 
Tm Median of Think Time 
Ti 90% Interval of Think Time 

Table 19. Workload Variable Definitions 
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There are three kinds of temporal structure aspects to represent: locality of sampling, daily 

cycle and weekly cycle. Note that self-similarity cannot be measured within one session: it is by 

definition a long-range phenomenon. Locality of a session is represented by two simple variables: 

the number of unique job sizes (UP) of jobs in that session, and the number of unique runtimes (UR) 

of jobs in that session, where jobs are considered unique if there is a 5% difference. For most 

sessions these numbers are very small, which implies locality: they use only a fraction of the overall 

parallelism and runtime distributions. 

The daily cycle is represented by two variables: a binary variable which equals 1 if the 

session started during the day and 0 otherwise (?D), and a continuous variable measuring the 

percent of the session that occurred during daytime (%D). The definition of daytime has been 

derived from the Figure 21, which shows the distribution of job arrivals during the day (corrected 

for time zone shifts), for all logs. 

  
Figure 21. Job Arrivals Across Hours of the Day 

 
Figure 22. Job Arrivals Across Days of the Week 
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The results are surprisingly similar for all logs – probably because the daily cycle is a 

universal human trait, and not a technical one. Based on Figure 21, we defined daytime to be 

between 7:30 and 17:30. 

The weekly cycle is represented by two similar variables: a binary variable that equals 1 if 

and only if the session started during a weekday (?W), and another one that measures the percentage 

of the session done during weekdays (%W). According to Figure 22 (in which day number 1 is 

Sunday), we defined workdays to be Monday to Friday. 

9.2.3. Principal Components Analysis 

Principal component analysis (PCA) is a statistical procedure that transforms a number of 

(possibly) correlated variables into a (smaller) number of uncorrelated variables called principal 

components. The first principal component accounts for as much of the variability in the data as 

possible, and each succeeding component accounts for as much of the remaining variability as 

possible. The objectives of PCA are to identify patterns in data of high dimensionality, and to 

discover or reduce its dimensionality. 

For a full presentation of PCA, see (Giudici, 2003); here we’ll provide a short summary. 

Given a matrix of observations – for example, a row for each session – we normalize it, compute the 

covariance matrix, and calculate the eigenvectors and eigenvalues of the covariance matrix. We then 

sort the eigenvectors by decreasing eigenvalues – the ones with the highest eigenvalues are the 

principal components. The size of each eigenvalue is proportional to the percent of variability in the 

original data its corresponding eigenvector captures. 

The original data can be transformed to uncover principal variables by multiplying the sorted 

eigenvectors matrix (called a feature vector) by the transposed matrix of original data. The first 

columns of the resulting matrix will contain the principal component values of the data for each 

observation. 

Our input matrix for sessions has a row for each of the 145,582 sessions (in all logs 

combined), and 18 columns, one for each variable defined in section 9.2.2. Our focus is on finding 

the dimensionality of the data – hopefully discovering that a select subset of our variables is enough 

to explain most of the variance between sessions in parallel workloads. 

A positive answer to this question would mean that the variables we chose indeed capture 

most of the variance between sessions. This is the most important point in using PCA – in contrast 
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to some statistical techniques, the wrong variables won’t produce arbitrary results that can be 

misinterpreted. We have experienced this over a long period of time during this research – starting 

only with the 12 traditional workload variables from Table 19, many eigenvalues were near equal, 

and almost no dimensionality reduction was possible. The gradual addition of the temporal structure 

variables raised the percentage to their current level, in which the first 8 of 18 eigenvectors capture 

85% of the variance. 

9.2.4. PCA of Sessions 

Table 20 describes the nine largest eigenvectors of the sessions’ PCA analysis; the last line 

contains the weight of each vector – its eigenvalue divided by the sum of all eigenvalues – and the 

cumulative weight. 

The next step is to interpret what each of the vectors means in terms of the original variables. 

To do so, the largest coefficients of each vector are highlighted. For example, the second vector 

gives most of its weight to the weekly cycle – the coefficients of the other variables in that vector 

are negligible in comparison. Analogically, the third vector is focused on locality, the fourth on the 

daily cycle, the fifth and seventh on parallelism, and the sixth on inter-arrival time. 

The first – most important vector – contains several variables with similar coefficients. The 

reason is that these variables are correlated: The (linear) correlation coefficients between Tm and Ti 

is -0.75 (!), between Ti and Ri is 0.41, between Ti and Ii is 0.38, and between Ii and D is 0.42. Other 

pair-wise correlations of these variables are high as well, and match the findings in (Talby, Feitelson 

and Raveh, 1999). 

 #1 #2  #3 #4  #5 #6 #7 #8 #9 

J -.09 .11 -.36 -.01 .40 .27 -.45 -.17 .17 

D -.34 -.02 .11 -.04 .03 .21 -.26 .00 -.71 

Rm -.26 -.09 .22 .06 .10 -.18 .01 -.69 -.25 

Ri -.34 .01 .00 -.05 .10 -.19 .35 -.42 .40 

Tm .39 .02 -.12 .07 -.18 .36 .16 -.37 -.06 

Ti -.44 .00 .07 -.09 .14 -.33 -.06 .33 .12 

Im -.28 -.02 .17 -.06 -.23 .56 .15 .03 .22 

Ii -.39 -.01 .16 -.08 -.16 .42 .12 .11 .12 

?D .08 .03 .05 -.70 .00 -.04 -.05 -.15 -.04 

%D .14 .05 .03 -.69 .00 .00 -.02 .01 .02 

UP -.17 .18 -.50 -.06 -.17 -.08 .30 .01 -.21 

UR -.17 .16 -.50 -.03 .27 .16 -.06 -.03 .08 

?W .04 .67 .21 .06 .05 -.01 .02 -.01 -.01 

%W  .03 .67 .22 .06 .05 .00 .02 -.01 -.02 

Pm -.08 .06 .00 .05 -.56 -.13 -.66 -.19 .29 

Pi -.16 .16 -.36 -.04 -.52 -.19 .12 .01 -.17 

          

% 19 12 12 11 8 8 6 4 4 

C%  19 31 43 54 62 69 75 81 85 

Table 20. Principal Eigenvectors of Sessions’ PCA 
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The intuition behind these correlations is clear: Think time is computed by summing runtimes 

and inter-arrival times, and high runtimes or inter-arrival times imply higher session duration. As a 

result, these variables’ weights are correlated as well. However, there is still a difference between 

the first vector, focused on the overall session (duration), and the eighth vector, focused on the 

structure of jobs in the session (note how the duration and inter-arrival variables are negligible there). 

High linear correlations explain the pairing of variables in the other vectors as well: the 

correlation between ?W and %W is 0.93, between ?D and %D is 0.74, between UP and UR is 0.45, 

between Pm and Pi is 0.24, and between Im and Ii is 0.61. PCA captures these correlations by 

placing correlated variables in the same vectors; this allows us to relate to the “feature” each vector 

represents, rather than perfecting the way each feature is measured, or making sure that it’s 

measured once (and that variables are uncorrelated). In contrast, this will be an issue in the clustering 

analysis in the next section, where highly correlated variables will be filtered out from the analysis. 

To verify the stability of the results in Table 20, we repeated the analysis several times, 

slightly varying the variables set each time. The resulting vectors and the corresponding features they 

represent always stay the same; however, the order of the vector may change. For example, if only 1 

out of 16 variables measures locality (for example, if UR is removed), then the locality vector would 

move from 3rd vector to 5th place, because the locality feature is now less evident in the dataset. 

However, the main features and proportion of explained variance is about the same in all analyses. 

To conclude, the following features explain most of the variance between sessions: 

• Interval of Inter-arrival / think times 

• Weekly cycle 

• Locality 

• Daily cycle 

• Parallelism 

• Inter-arrival time 

Arguably, these variables alone are not enough, since although they dominate certain 

eigenvectors, there are also non-zero coefficients in each eigenvector, which are required to build it, 

and ignoring them spoils the results. However, this is more than compensated in the seven smallest 

eigenvectors (not shown in Table 20), all of which are also dominated by the above variables. 

Note the high dominance of the temporal structure variables, which synthetic models to date 

have largely ignored. In contrast, the runtime seems to play a surprisingly minor role. 
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9.3. Clusters of Sessions 

9.3.1. Methodology 

Identifying and characterizing a small number of consistent session clusters is of high 

practical importance to both algorithm design and workload modeling. We will use the classic  

K-means clustering algorithm (Giudici, 2003), which in a nutshell works by iterating until 

convergence a two step process: compute estimated centers of clusters, and tag each observation to 

belong to the cluster to which it is closest. 

The algorithm requires the number of clusters as input, and finding the “right” number of 

clusters is highly problem-specific and sometimes subjective (Giudici, 2003). We have 

experimented with a large number of clustering results (a practice required anyway to verify the 

stability of our results), and concluded that using five clusters gives the most stable and useable results. 

Another methodological issue is the variables set by which the clustering is performed. In 

contrast to the PCA analysis in which we used all candidate variables, here it is desirable to remove 

highly correlated variables, so that each feature is represented once and the algorithm is not 

distorted to cluster by any one particular feature. The variables used for the clustering shown here 

are Duration, Think-time interval, Day time part, Work week part, Unique processors count, 

Parallelism median and Runtime median. 

Table 21 shows the mean, median and interval of each variable in each cluster. Figure 24 

shows some of the full distributions of sessions, ordered and colored by cluster using the same 

colors of Table 21 and Figure 23. Analysis of the data confirms that the clusters correspond to 

intuitive session types: interactive versus batch work, day versus night, and weekday versus 

weekend. This enables giving each cluster a significant name. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Int. Workday 
Daytime 

Int. Workday Night Interactive Weekend Batch Highly 
Parallel 

Batch High Duration 

 Mean Med Int Mean Med Int Mean Med Int Mean Med Int Mean Med Int 
J 3.4 2.0 10.0 5.0 2.0 15.0 4.2 2.0 12.0 2.5 1.0 6.0 22.4 6.0 48.0 

D 5634 2626 28371 45445 16452 179584 19560 4186 93611 55788 20713 237677 363495 186533 1246071 

Rm 2418 383 12006 11322 2008 53114 5076 485 29682 8068 2774 34182 24304 10828 92299 

Ri 2265 9 12821 5583 18 37010 3723 14 24118 3786 0 19284 32825 18104 119838 

Tm -1123 0 6948 -6101 0 40581 -3311 0 21876 -5863 0 34675 -103705 -40434 396074 

Ti 4035 112 23819 13423 155 75626 8620 161 53907 13782 0 83244 259850 200832 750768 

Im  428 32 1966 1160 17 5751 701 28 2921 2086 0 10984 19722 420 102109 

Ii 1435 136 7529 6264 87 41378 3126 128 14006 7822 0 44333 90006 32286 344532 

?D 0.95 1.00 0.00 0.37 0.00 1.00 0.72 1.00 1.00 0.67 1.00 1.00 0.66 1.00 1.00 

%D 0.97 1.00 0.27 0.18 0.00 0.52 0.65 1.00 1.00 0.55 0.46 1.00 0.47 0.42 1.00 

UP 1.28 1.00 2.00 1.27 1.00 2.00 1.30 1.00 2.00 1.25 1.00 1.00 3.33 2.00 7.00 

UR 2.49 2.00 6.00 2.75 2.00 7.00 2.63 2.00 7.00 1.93 1.00 4.00 6.55 4.00 17.00 

?W 1.00 1.00 0.00 0.95 1.00 0.42 0.02 0.00 0.16 0.78 1.00 1.00 0.73 0.76 1.00 

%W 1.00 1.00 0.00 0.95 1.00 1.00 0.04 0.00 0.00 0.79 1.00 1.00 0.77 1.00 1.00 

Pm 4.99 3.56 15.94 5.54 2.56 21.27 4.32 1.78 15.94 61.76 64.00 60.62 9.59 6.00 31.38 

Pi 1.77 0.00 10.24 1.95  0.00 12.00 1.80 0.00 10.00 9.52 0.00 56.89 13.54 5.29 62.00 

Table 21. Characteristics of the Five Session Classes 
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9.3.2. The Five Session Classes 

Interactive, workday, daytime sessions. This is the most common session class (43%). It 

occurs always in weekdays, and starts during daytime in 95% of its sessions. Each session has very 

few jobs (median is 2.0 and mean is 3.4), resulting in high locality. Runtimes and parallelism are 

low, typical for interactive work. 

Interactive, workday, nighttime sessions. These 29% of the sessions are active mostly 

during the night (82%) although only 63% start at night. The number of jobs, inter-arrival times and 

think times are short and typical of interactive work; locality is high as well. On the other hand, 

runtimes are much higher (median of 33 minutes in contrast to 6 minutes in the daytime cluster). The 

most plausible explanation is that these sessions often represent someone who works interactively 

during the day, and towards the evening starts one or more long job that run during the night. 

Interactive, weekend sessions. The weekly cycle is the next important differentiator 

between sessions, according to these results. 98% of sessions in this cluster start during weekends. 

The statistics are typical of interactive work, and are mostly in between the values of the previous 

two weekday clusters. 

43%

29%

21%

4% 3%

Int. Weekday Daytime

Int. Weekday Night

Int. Weekend

Batch Highly Parallel

Batch High Duration

 
Figure 23. Distribution of Session Classes 

 

Duration             Inter-Arrival Median      Processors Median                  % in Daytime                         % in Workday 

 
Figure 24. Distribution of Selected Variables by Session Cluster 
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Batch, highly parallel sessions. The last two clusters obviously represent batch work, and 

are divided between parallelism and runtime. Both clusters are active near-equally at day vs. night 

and weekday vs. weekend – note that as we defined it daytime is 42% of each 24-hour day, and 

workdays are 71% of a week. This cluster has sessions with usually one job (median 1.0, mean 2.5), 

very high parallelism (median 64.0, meaning half the machine since it’s normalized across logs), 

and much higher runtimes than the interactive sessions. 

Batch, high duration sessions. These batch sessions have higher parallelism than the 

interactive sessions (5.29 median), and most evidently – a runtime median of 51.8 hours and mean 

of 100.9 hours, hinting that the runtime distribution has a long tail. This is in sharp contrast to a 

median runtime of 5.75 hours in the other batch sessions cluster, and much less in the interactive 

ones. This session class has the most jobs (median 6.0, mean 22.4), but this may be caused in part 

by the way we defined sessions using think times. Most of the think times in this session class are 

highly negative – that is, the user does not wait for a job that runs several hours to complete and 

then submits another one within 20 minutes; the typical case is submitting several jobs concurrently. 

9.4. Principal Components of Users 

9.4.1. Variables Set 

Our data has 2,048 users in all the logs combined. The traditional variables were kept, 

computed on all the jobs submitted by each user: median and 90% interval of runtime, parallelism, 

inter-arrival time and think time. The total number of jobs J and the total number of sessions S are 

used to quantify the user’s activity. To measure how continuous and intensive that activity was, a 

jobs per week (JW) variable was added; we also computed a sessions per week variable, but its 

linear correlation to JW was full (1.0), so it was dropped. Duration D in days was not used in the 

PCA analysis, but was measured and will be given in the table of clusters. 

Some of the temporal structure variables make no sense to measure at the user level – the UP, 

UR, ?D and ?W variables lose their meaning when jobs from different sessions are combined. The 

%D and %W variables over each user’s jobs were measured, as they describe the user’s habits 

outside a single session scope. 

The suggested way to analyze users’ temporal behavior, including aspects such as locality, is 

to take advantage of our analysis of sessions. For each user, we add five more variables, each 

counting the proportion of each session type in that user’s sessions. This encapsulates many aspects 

of the user’s work patterns, and as the analysis will show, provides good results. The variable names 

correspond to the initials of the session classes’ names from section 5.2, and in the same order are 
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%IWD, %IWN, %IW, %BHP and %BHD. Note that the proportion of session of each class is used 

and not the number of sessions, to decouple the amount of work (measured using the J and S 

variables) from the measurement of work patterns. 

The first nine eigenvectors of the PCA analysis of the above 18 variables are given in Table 

22. The two think time variables (Tm, Ti) are absent, since they have a correlation of 1.0 and 0.99 

with the Im and Ii variables and therefore have exact similar values. 

9.4.2. PCA of Users 

The first 9 out of 18 eigenvectors in the users’ PCA capture 83% of the variable between 

users. However, the next five eigenvectors are a repetition of eigenvectors 5,6,2,3 and 4 respectively 

– meaning they have the same dominant variables – so with the same set of variables used for the 

first eight eigenvectors, 96.7% of the variability is captured. 

As with sessions, each eigenvector represents a feature, and variables are grouped by 

correlation. These features explain most of the variance between users: 

• Daily Cycle 

• Parallelism 

• Runtime 

• Number of jobs / sessions 

• Weekly cycle 

• Inter-arrival time 

• Jobs per week 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 

J -.01 .13 -.01 -.64 .06 -.26 .15 -.06 .04 

S .04 .19 .00 -.62 .05 -.23 .03 .20 .01 

Rm -.24 .07 -.44 .12 .30 -.07 .06 .36 -.16 

Ri -.20 .16 -.50 .07 .22 .00 .07 .22 -.01 

Pm -.08 .51 .18 .16 -.04 .00 .02 .13 -.07 

Pi .01 .50 .13 .03 -.07 .05 -.05 -.17 .05 

Im .01 .01 -.08 .19 -.25 -.63 .21 -.04 -.12 

Ii .09 -.02 -.13 .25 -.26 -.54 .06 -.09 .25 

%D .49 .11 -.28 .08 .10 .06 .12 .18 -.03 

%W .07 -.02 .20 .08 .47 -.32 -.32 -.22 -.66 

%IWD  .57 -.05 .08 .05 .25 -.02 .13 .10 .13 

%IWN -.53 -.19 .18 .01 .10 -.13 -.10 .13 .19 

%WD .01 -.05 -.35 -.17 -.59 .17 -.16 -.08 -.51 

%BHP   -.04 .54 .21 .15 -.14 .02 -.03 .20 -.07 

%BHD -.14 .23 -.30 .01 .23 .09 .26 -.75 .11 

JW -.12 -.13 .26 .03 -.02 .12 .83 .08 -.36 

          

% 16 15 11 10 8 7 6 5 5 

C%  16 30 41 51 60 67 73 78 83 

Table 22. Principal Eigenvectors of Users’ PCA 
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9.5. Clusters of Users 

Users were clustered with the same methodology used for session clustering. The variables 

selected to perform the clustering are Day time part, Parallelism median, Runtime median, Number 

of jobs, Work week part, Inter-arrival time median, Jobs per week, and the proportion of batch high-

duration sessions. These variables include the dominant coefficients in all eigenvectors of the users’ 

PCA analysis. The best results were obtained with four clusters, and as with sessions, it is possible 

to assign meaningful names to each user class, corresponding to intuitive user types. 

Long-term, Light users. 55% of users belong to this class, whose members have a median 

of 26 sessions over a period of 125 days. The means are much higher, indicating a long tail of the 

respective distributions. According to the proportions of session classes for these users, their focus 

on interactive work is higher than the overall average – this class seems to represent people whose 

day job involves use of the parallel computer. The runtimes, parallelism, inter-arrival times and 

number of jobs per week are all in accord with a mainly interactive style of work. 

Long-Term, Heavy users. These 20% of the users are the source of most of the load on the 

computer. 6% of their sessions are BHP and 13% of their sessions are BHR, in contrast to 1-2% in 

all other user classes. These users produce most of the sessions of these two batch classes. These 

users are also the heaviest users of the machine in terms of number of jobs, sessions and duration, 

by a significant margin. They work both day and night, workday and weekends in equal 

proportions. Their runtime, parallelism and inter-arrival statistics are high, a mix of their interactive 

and batch sessions. 

 Long-Term Light User Long-Term Heavy User Short-Term Weekend User Short-Term Workday User 

 Mean Med Int Mean Med Int Mean Med Int Mean Med Int 
J 259 68 1252 526 171 1529 48 8 242 170 10 683 

S 70 26 281 82 50 223 12 4 47 26 4 117 

Rm 2,569  241  13,092  12,292  4,668  48,951  1,653  91  9,679  1,984  107  10,822  

Ri  11,853  5,269      43,228  54,460  56,064  117,519  7,609  821  43,205  3,750  256  23,333  

Pm 3.22 1.78 14.94 8.45 3.56 31.75 2.98 1.00 10.18 3.20 1.25 10.18 

Pi 11.06 3.75 60.00 18.31 8.98 64.00 5.40 0.19 30.00 5.30 0.00 28.00 

Im 33,349  390  71,072  -7,063  6  125,444  50,996  147  29,381  21,784  0 21,522  

Ii 1,135,229 261,020  5,025,950  776,389  396,090  2,684,896  1,058,137  119,341  4,899,134  471,280  34,469  2,499,302  

Tm 39,299  1,419  88,965  31,567  2,659  133,638  56,819  548  69,745  24,742  204  38,180  

Ti 1,134,561  256,335  5,023,631  693,984  283,564  2,340,145  1,060,989  106,129  4,899,777  471,995  28,530  2,497,021  

%D 0.82 0.86 0.47 0.66 0.67 0.61 0.60 0.67 1.00 0.18 0.18 0.48 

%W 0.80 0.78 0.46 0.72 0.72 0.42 0.22 0.25 0.50 0.90 1.00 0.33 

%IWD  55% 51% 83% 24% 23% 48% 36% 30% 100% 17% 10% 50% 

%IWN  22% 20% 53% 38% 38% 69% 36% 25% 100% 65% 60% 100% 

%WD 20% 20% 44% 19% 19% 38% 25% 10% 100% 17% 3% 67% 

%BHP  2% 0% 11% 6% 0% 47% 2% 0% 3% 1% 0% 2% 

%BHD  1% 0% 7% 13% 8% 43% 1% 0% 7% 1% 0% 4% 

JW 126.30 6.03 502.65 25.13 4.86 47.57 1139.86 10.51 6951.26 1247.26 20.48 7114.54 

D (days) 239 125 789 323 260 848 97 12 583 110 7 636 

Table 23. Characteristics of the Four User Classes 
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Figure 25. Distribution of User Classes 

 

Short-term, Weekend users. The last two user classes represent users who worked on the 

computer for a short period – a median of 4 sessions, with median durations of 12 and 7 weeks, and 

a small total number of jobs (8 and 10, although the means are much higher). These seem to be 

users who received access to the computer for one computationally demanding project. The two 

user classes differ by their temporal work patterns, as measured by %D, %W and the session 

classes’ proportions. The third “weekend” cluster, consisting 10% of the user population, has 78% 

of jobs starting on weekends, and the proportions between the three interactive session classes are 

much closer than in the overall distribution of session classes. 

Short-term, Workday users. 15% of the users belong to this fourth cluster, composed of 

short-term users with two strong habits: they prefer workdays over weekends (90% of jobs ran in 

workdays), and they prefer the night over day time (82% of jobs ran during the night). This is 

reflected by the fact that 65% of their sessions are interactive workday night sessions. 

Both short-term user classes consist mostly of interactive work, reflected by low runtime and 

parallelism statistics, and very intensive work, reflected by a very high number of jobs per week. 

Figure 26 contains several graphs that visualize these differences between the user clusters, and 

Figure 25 summarizes the distribution of user classes. 

Runtime Median                 % in Day Time                 % in Workweek                       % Session Classes  

0.00%

10.00%
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70.00%

IWDIWNIWBHDBHP 
Figure 26. Distribution of Selected Variables by User Cluster 
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Since we have conducted all our analyses on the combined workload of seven logs, it is 

necessary to remap the clusters – of both users and sessions – to the original logs, to verify that we 

haven’t clustered according to the logs. The full data is not given here due to lack of space, but the 

bottom-line results are that the session and user classes that we identified exist clearly in all logs, 

and are indeed unrelated to particular locations or architectures. 

9.6. Summary 

This study provides the basis for our user-based workload model. The PCA analysis answers 

a basic methodological question – what needs to be modeled? The temporal structure variables in 

particular have been shown to be of great importance, while some other variables have not. The 

PCA analysis was also a precondition to a meaningful clustering, since it ensures us that we are 

clustering according to a suitable set of variables – which wasn’t known before. 

In addition, we provided a very specific blueprint for constructing such a model: the set of 

variables, the user classes and their distribution, and the session classes and their distribution. To 

complete the model, full distribution fitting of each modeled variable in each user and session class 

is required, as well as a distribution for the inter-arrival times of new users and new sessions. Before 

doing so, the next section will address the issues of parameterization and load manipulation, which 

will be used to adjust these distributions. 

A second use of this work is algorithm design. Consider for example an algorithm that relies 

on good runtime prediction, such as a backfilling scheduler (Section 8), a grid management system 

(Jarvis et al., 2004) or a soft real-time task mapping service (Dinda et al., 1999). When a job arrives, 

it needs to be attached to a session, made simple using the same-user, 20-minute think time rule. If 

the job is starting a new session, then its class must be determined, which is also easy: if it exceeds a 

certain requested runtime or parallelism – half the machine’s maximum, for example – the session is 

tagged as BHD or BHP respectively. Otherwise, the session type is determined solely by the day of 

the week and the time of the day. 

Once the session class is determined, we know its distribution of runtimes. This distribution 

is far narrower – and thus more informative – than what can be known a-priori by other means. Three 

layers of narrowing are at work here: the user level, the session level, and the session class level. 

If a given job is not the first within its session, then locality enables us to predict its runtime 

with great accuracy, based on the past jobs of that session. For example, In the IWD session class – 

to which 43% of sessions belong – the mean unique number of runtimes is just 1.28. Sessions, as we 

defined them, are a natural way to capture and exploit locality, especially since determining a 
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session’s class is so easy. Using only the user, or the last hour or day, is open to much more noise 

and thus to inferior results. 

This is not to say that a learning algorithm is not necessary – but given the a-priori 

knowledge embodied in this study, there is much less left to learn. We believe this should lead to 

reassessing existing predictors, and in particular to the preference of simple “knowledge-packed” 

algorithms overly highly sophisticated AI techniques (Yu et al., 1997; Jarvis et al., 2004) that 

assume little in advance. 

Similar to runtime prediction is the problem of load prediction, found in load balancing (Yu 

et al., 1997), grid or multi-cluster scheduling (Jarvis et al., 2004) and soft real-time or general QoS 

enabled systems (Dinda et al., 1999). Here we must predict both runtime and parallelism, and 

sometimes the number of jobs as well. Regardless of the specific problem and of whether the 

algorithm that tries to solve it is predictive, adaptive, dynamic, learning or plain heuristic – this 

work provides a lot of sound prior knowledge on parallel workloads it can easily use. Due to the 

large size of our data, the architecture-neutrality of the analysis, and the stability of the results, we 

believe that they can be highly useful for a large variety of applications. 

10. Parameters for a Parallel Workload Model 

10.1. Introduction 

The goal of this section is to find and validate the parameters for our new workload model, 

thus addressing both the parameterization and load manipulation methodological issues. The output 

of this section is a meta-model, which directs how the two selected parameters define all the other 

workload-level variables. This section is largely based on (Talby, Feitelson and Raveh, 2007), 

where the Co-Plot technique is used to find the number of required parameters, the parameters 

themselves, and then to validate the resulting meta-model. 

Load manipulation is tackled by enabling load to be one of the two parameters, and defining 

the required equations to compute the other workload-level variables accordingly. This will later 

enable load to affect the user and session models, rather than the jobs model directly. However, the 

results in this section are relevant to parameterizing any parallel workload model – including 

models that are not user- or session-based. 

Note that this section only builds a meta-model of summary statistics of entire workloads, 

and therefore its validation is also by statistical means. Validation against the adaptive and 

prediction-based schedulers will require the full model. 
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10.2. The Two Axes of Parallel Workload Variation 

Perhaps more important than analyzing individual variables, the Co-Plot analysis enables us 

to understand the correlations between all the variables at once, and to define clusters of variables 

and the relations between them. In order to do so, Figure 27 includes the arrows from Figure 2, plus 

two imaginary perpendicular dotted axes, to make our explanation easier.  

  
Figure 27. Variable Arrows from Figure 2 

The two dotted axes are perpendicular – meaning not correlated in the plot. All the variables 

along each axis are highly correlated – for example, the CPU load (CL) and normalized number of 

jobs (JD) are very highly correlated, although that correlation is negative. This correlation does not 

have to be linear – note the definition of distance and alienation in Appendix B – but it means that the 

variables grow together, by some relationship. The two axes were drawn since most of the variable 

arrows fall very close to one of them, and they define the two main variable clusters of this data set: 

• The Multiple Jobs Axis – includes the number of jobs per day (JD), the median and interval 

of the inter-arrival times (Am and Ai), and the CPU load (CL). The interval of the normalized 

degree of parallelism (Ni) and the total number of nodes in the machine (TN) are also 

members of this axis (this conclusion is drawn from other runs of the analysis as well), 

although their correlation with the axis is not full. 

• The Single Job Axis – includes the median and interval of runtimes (Rm and Ri), the median 

and interval of total CPU work (Cm and Ci), and the median and interval of parallelism (Pm 

and Pi). The normalized number of users (UJ) also belongs to this cluster; its correlation to 

the axis is not full, but actually stronger in most runs than it appears in Figure 27. 
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The runtime load (RL) and the median of normalized parallelism (Nm) seem to be between 

the two axes. However, as mentioned above, these two variables have a low correlation in this Co-

Plot, so it’s hard to conclude anything about them. Since the runtime load is an important parameter 

in many studies in this area, it should be noted that the CPU load – which exhibits high correlation 

in this Co-Plot – can possibly be used to represent it, as the two variables are highly correlated, in 

the usual linear sense of correlation. 

The names of the two axes reflect the fact that one axis gathers the variables that define a 

single job, while the other axis gathers variables that define the relations between jobs. Although we 

are making a generalization here, as some important variables are not fully correlated with either 

axis, we can still say that these two axes define the two-dimensional workload space. The low 

coefficient of alienation (0.10 and below) achieved in our analyses means that the workloads space 

can be hosted in a 2-D space without much loss of information. The two axes we identified clarify 

what each dimension stands for. 

The Single Job Axis provides us with the following information. Logs with high runtimes (on 

average, relative to other logs) also have high total CPU work, and in contrast have low parallelism. 

This is true for both the median and the interval of the three distributions involved. Also, logs with 

high runtimes have more users per job. This is important, because the number of users is one of the 

only variables that can be estimated in advance, before a system is built. The strong correlation 

between the number of users and the medians and intervals of runtimes or degrees of parallelism 

means that these variables too can now be predicted in advance. This is why the number of users 

was normalized by the number of jobs, and not by the job’s duration (like the JD variable): this was 

required in order to decouple it – i.e. make it uncorrelated – to the Multiple Jobs Axis. The number-

of-users-per-day (UD) variable was also computed: it enters the Co-Plot with a high correlation, and 

is usually drawn between the two axes. 

The Multiple Jobs Axis also provides valuable information about its variables. First, logs 

with many jobs per day (JD) are usually found on machines with a lot of processors (TN). The TN 

variable is not fully correlated to this axis, since – as expected – it has a small positive correlation 

with parallelism (it is expected that machines with more nodes will have higher parallelism, 

although this effect seems to be weak). As expected, logs with many jobs per day have very low 

inter-arrival times (more jobs over the same time frame must be temporally closer to one another). 

On the other hand, they also have very low CPU loads and runtime loads, which is counterintuitive. 

The median and interval of the normalized number of processors are between axes. The 

median of the normalized parallelism has an obvious positive correlation to the (un-normalized) 
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parallelism, and is uncorrelated to the total number of nodes in the machine (as expected by its 

definition). The interval is somewhat closer to the Multiple Jobs Axis, but the correlation is far from 

full, so it’s safest not to conclude anything about it. 

One should be careful not to misinterpret these findings – note that they relate to whole 

workloads, not jobs. For example, the negative correlation between the degree of parallelism and 

runtime means that systems with high average parallelism exhibit lower runtimes, not that jobs that 

use many processors are shorter – the opposite of which was indicated in (Feitelson and Rudolph, 

1998; Downey and Feitelson, 1999). The reason for this may be, for example, that systems with 

more processors tend to enforce tighter runtime limits on jobs. This would fit in with the conjecture 

that systems with fewer processors may try to compensate for this by offering more flexible policies. 

10.3. A Parametric Meta-Model 

As described in section 4.1, one of the first results of our analysis was the fact that real 

workloads are rather different from one another, so a single model cannot represent all systems. As 

any specific model will also occupy a given place in the "workloads space" represented by the Co-

Plot, it too will be far from most of the logs. 

The good news is that another result of the Co-Plot analysis was the identification of 

variables that can be used to parameterize a workload model. As we saw the analyzed workloads fit 

well into a two-dimensional space, and each can be placed in this space by defining its position on 

two axes. The variables on each axis are highly correlated with each other, so that once one is given, 

the others can be well approximated. Moreover, the two axes are largely independent, so there is no 

need for multiple regression, for example. It is therefore clear that a parametric workload model 

should take one parameter from each axis. 

The main criterion for selecting a representative parameter from each axis is that this should be a 

variable that can be estimated for a future system, before that system is built. This is required 

because a model of a system's workload is most useful before it is built and deployed. Specifically, 

we found that the Multiple Jobs axis can be represented by the number of jobs per day (JD), or to a 

lesser degree (but trivial to know in advance) the total number of nodes in the machine. The Single 

Jobs Axis does not contain an easy-to-predict variable, except for the users per job parameter, to 

which it is only weakly correlated. Experimenting with different possible lead variables led to the 

conclusion that the highest correlations are achieved when the Single Jobs Axis is represented by 

the median of CPU work (Cm). Table 24 summarizes the equations and R2 values for fitting the 

other main variables to the two selected representative variables. These values were generated based 

on all the data from the production workloads (Table 2). 
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 Equation  R
2

 

Ci = 14052  × ln(Cm) – 31068 0.75 

Rm = 0.8346 × Cm + 131.0012 0.60 

Ri = 10423  × ln(Cm) – 14441 0.76 

Pm = -1.531 × ln(Cm) + 12.261 0.28 

Pi = 74.69  × e
-0.002×Cm

 0.44 

UJ = 0.7633 × Cm
0.3073

 0.45 

CL = 2.2024 × JD
-0.2534

 0.75 

Am = 2764.4 × JD
-0.6582

 0.74 

Ai = 580400 × JD
-1.1079

 0.96 

Table 24. Fitting equations and coefficients to the JD and Cm variables 

Note that the correlation is not always linear, as this is not the type of correlation that Co-Plot 

uses (see Appendix B). If variables are plotted along the same axis, it means that the variables grow 

together, by some relationship. Limiting this relationship to be linear would make Co-Plot far less 

useful in practice, since far fewer datasets would fit into a two-dimensional space under such a 

limitation. The imperfection of the R2 values in Table 6 are caused by a combination of the 

imperfect plot they are based upon (a coefficient of alienation of 0.10 and not 0.0), and our choice to 

use only simple fitting equations, to keep the model simple and avoid over-fitting. 

In order to test whether this meta-model is good enough for practical use, we test our ability 

to generate parameter combinations that will locate a model in a specific place in the Co-Plot map. 

For this we generated four synthetic observations, using combinations of two pairs of “low” and 

“high” values of the two proposed parameters, as shown in Table 25. 

The resulting Co-Plot is shown in Figure 28, using the same variable set as in Figure 1, and the 

same dataset augmented by Gen1 to Gen4. The coefficient of alienation is 0.11 and the average of 

correlations is 0.85. The results are very positive in two respects. First, the Figure itself is not 

affected at all by the addition of the four new observations: All the observations and all the variables 

are exactly where they were in Figure 2, and retain all their relative positions and directions. 

 

 
 
 
 
 

Table 25. Parameter values for the four synthetically generated workloads 

Observation JD Cm 

Gen1 100 25 

Gen2 300 25 

Gen3 100 600 

Gen4 300 600 
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Figure 28. Verifying the parametric JD/Cm meta-model via synthetic observations 

Second, the four synthetic observations are each placed in a different quadrant of the plot, as 

marked by the center and directions of the two axes. Moreover, each is placed in the quarter it is 

expected to belong to, as dictated by Table 25. We therefore conclude that the meta-model specified 

by Table 24 is a good representation of the current known world of production parallel workloads. 

10.4. A Meta-Model for Load Manipulation 

In section 4.3, we concluded that the three most common methods to manipulate the load of a 

workload – multiplying its inter-arrival times, runtimes or parallelism by a factor – are flawed. A 

possible solution to this problem, based on the parametric meta-model, is to make load a first-class 

model parameter. This will later enable load to affect workload attributes other than the above three, 

particularly at the user and session levels, in ways that will preserve other correlations. 

Although the runtime load is not fully correlated to either axis, the CPU load (CL) is highly 

correlated to the Multiple Jobs Axis, and it can replace the jobs-per-day variable as the lead variable 

representing that axis in the meta-model. Note that current models do not differentiate between 

runtime load and CPU load – they implicitly assume that jobs use 100% of the available CPU during 

their entire run. Table 26 defines the meta-model equations based on the CL variable rather than the 

JD variable; only equations for CL are given, since the ones for Cm remain as they were in Table 24. 
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Equation  R
2

 

JD = 39.309 * CL
-2.9549

 0.75 

Am = 285.72 * CL
2.208

 0.72 

Ai = 10103  * CL
3.3032

 0.73 

Table 26. Fitting equations and coefficients to the CL variables instead of the JD variable 

Note that under this meta-model, changing the load affects the runtimes, parallelism, and 

inter-arrival times as specified in section 4.3. This is not a recipe for manipulating a given workload 

to achieve a desired load level; but a model that will be based on this meta-model will handle load 

manipulations correctly. Again we validate this model using four synthetically generated observations, 

as done in Table 25 for the JD/Cm meta-model. The low and high values used for the CPU load were 

0.45 and 0.65 respectively, and the Co-Plot which merges Figure 2 with the four generated 

observations is given in Figure 29. Its coefficient of alienation is 0.11, and its average of correlations is 

0.85. As the figure shows, the CL/Cm meta-model is just as successful as the JD/Cm meta-model. 

  
Figure 29. Verifying the parametric CL/Cm meta-model via synthetic observations 

10.5. Machine Size 

Another workload parameter which must be addressed by a workload model is the machine 

size: How many processors does the computer have? On one hand, this parameter was removed at 

the early stages of the Co-Plot analysis, because it did not correlate well with all the other variables. 

On the other hand, this parameter must be determined, and in the case of a synthetic workload built 

to simulate a future system, the machine size may be the only parameter known with certainty (in 
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contrast to CPU time, jobs per day or load). In addition, the machine size determines the range of 

job sizes that the model must produce. 

The user-based model is based on the same seven production logs used to find user and 

session clusters and principal components. These seven logs are broadly assumed to represent 

"mainstream" parallel computer workloads well, and are the most heavily used in current research. 

These logs have a range of machine sizes – 100, 128, 400, 430, 1024, 1152 and 2048 processors – 

representative of current supercomputers. In comparison, the most recent Top 500 supercomputers 

list (Top500.Org, 2006) includes 48 computers with 257-512 processors, 264 computers with 513-

1024 processors, and 124 computers with 1025-2048 processors. Note that the average size of a new 

parallel computer today would be less than the average observed on the world's Top 500 list. 

To understand how to relate machine size (MS) to the model's parameters as given in the 

previous sections (Cm, JD, CL), and how to cope with the situation in which the machine size is 

given as input to the model, we computed the correlation between machine size and the model's 

parameters, using only the seven logs on which the model is built. The results were surprising. 

Correlation of MS and Cm –0.67 

Correlation of MS and JD 0.93 

Correlation of MS and CL –0.74 

Correlation of Cm and JD –0.45 

Table 27. Correlations between machine size and model parameters 

The strongest observation is that a bigger machine results in more jobs – not bigger jobs or 

higher load. People use bigger machines to complete more jobs, but these jobs are actually "lighter" on 

average (in terms of CPU work). Why this happens can only be speculated: It may be because large 

supercomputers are badly managed and highly underutilized, or it may be because users program their 

jobs to split into many small jobs, to enhance their backfilling opportunities. In addition, there's a 

negative correlation between machine size and load: Smaller machines are more heavily utilized. 

These correlations are higher than those observed for the Co-Plot analysis which involved all 

logs, so they should be considered with caution. However, although they are based on a small 

dataset, it is a representative one, and it offers the best advice which can be given today on how to 

handle machine size within a workload model. 

If only the machine size is given as the basis for a workload model, then it can be used to 

compute the other parameters according to the formulas given in Table 28. The formulas are based 

on best curve fitting to the available data, with an adjustment to ensure their scalability where 

several fits had a similar R2 value. For example, the relation between machine size and load cannot 

be linear, since this would predict that a machine with 10,000 nodes would have a negative load. 
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Equation  R
2

 

Cm = 361860 × MS
—1.3417

 0.68 

JD = 0.3694 × MS – 1.3102 0.86 

CL = -0.09  × Ln(MS) + 1.1356 0.57 

Table 28. Computing model parameters based on machine size 

11. Modeling User Arrivals and Class 

11.1. Analysis of User Arrivals 

To build the dataset for the model construction, three data files were built from the cleaned 

version of each of the seven logs as published in the Parallel Workloads Archive (Feitelson, 1999): 

A list of jobs, a list of sessions and a list of users. The file formats are detailed in Appendix D. 

The input to model construction is either the machine size, from which the median of CPU 

work and the load are computed, or all of these three parameters (for purpose of load manipulation, 

for example). The first step is to create the user population, and for this purpose see Figure 30, 

which shows the number of new users per week in each of the seven investigated logs. 

The granularity of the X axis is weekly, because plots based on a daily or hourly arrival of 

users are affected by the weekly and daily cycles respectively, which we would like to avoid at this 

stage. To prevent such interdependencies, we will model the number of new users which appear 

every week, and the cycles will be taken into account later when building the session model. 

Therefore, the "arrival" of a user in a given week doesn't mean that her first job would start as the 

week begins, and users already active when the log starts may not have a job in the first week at all. 

As Figure 30 shows, a large number of users are already active at the start of each log, and 

other new users appear with time. This means that we need to model the arrival process of new 

users separately from the snapshot of users already active when a workload begins. Note that the 

majority of active users don't always appear on week 1, but sometimes on weeks 2 or 3: This is 

either because the first week is not a full week (most logs don't start on Monday), or because the 

logging process started when the machine was still in "warm-up" mode and not open to all potential 

users. Our model will always begin from Monday at midnight and assume no "warm-up" period, i.e. 

the computer is already in normal operations with an active user population. This makes the most 

sense if the model is intended to use for activities such as comparing schedulers. 
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Figure 30. Number of new users per week in the modeled logs 

In most logs, the number of new users appearing in weeks 2-10 is greater than the average 

later on in the log. This suggests that these are active users who already existed when the log began, 

but only had their first session (that was captured by the published log) several weeks later. 
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There is one occasion in which a large population of new users appears in the middle of the 

log: Week 63 of the SDSC IBM SP2 log. The reason for this is unknown – perhaps another 

computer at that center was shut down, or a new organization gained access to the computer. In any 

case, such a sole case is clearly an outlier, and is therefore excluded from the model. 

11.2. Number of new users per week 

To model the number of new users per week in the steady state, Figure 31 shows the number 

of new users per week, for all logs combined. The logs were aligned to the first week (Starting 

Monday at midnight) in which a majority of their users were active, to exclude “warm-up” weeks in 

which the computer worked but users apparently didn’t. This meant discarding the first (partial) 

week of the Paragon, BLUE, KTH and CTC logs, and the first two weeks of the SDSP2 log. Under 

this alignment Figure 31 shows the first 44 weeks of all logs except LANL O2K. The O2K log was 

excluded because it only has 21 weeks, so including it would distort the picture for the other 23 

weeks. Figure 31 can therefore be considered as an average of new user arrivals, multiplied by six. 

The next step is to consider only the users which arrived in the steady state. Figure 32 does 

just that: It is a histogram of the number of new user per week, for one log (i.e. after dividing by 

six), based on the data from Figure 31 but starting from week 12. This is the empirical distribution 

of new users per week to be modeled, and it has two useful properties. 

First, it is random, and therefore can be modeled by drawing from a distribution. To 

determine this we used the runs test for randomness (Bradley, 1968), which is appropriate for this 

task for two reasons. First, it is a non-parametric test, so its validity does not depend on assuming 

any particular distribution of the data. Second, it tests for both locality (clustering of nearby values) 

and cycles (disparity of nearby values) in one test. The null hypothesis – that the values in Figure 31 

are random – cannot be rejected, and the probability to observe the given values by chance given 

that the null hypothesis is true is 0.77. 
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Figure 31. Number of new users per week, adjusted for warm-up, six logs combined 
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Figure 32. Number of new users per week, which were not active in the beginning of the log  

Second, it can be modeled independently of the model's parameters. The correlation between 

the number of new users not active when the log began and the log's machine size, for the six logs 

used to build Figure 32, is -0.05. The correlations with Cm, JD and CL are slightly higher (around 

0.35), but we can still afford to ignore them, since they will have a chance to affect the total number 

of users in the system by affecting the number of users who are already active when the log begins. 

Figure 32 is therefore our model's distribution of the number of new users per week. Applying 

distribution fitting results in a good fit to the Log-Logistic distribution, with µ=1.25 and σ=0.2214. 

11.3. Number of active users at startup 

We assume that those users in the first 11 weeks, which are above the average expected 

number of new users, are users which were already active when the log began (but not necessarily 

had their first session start on week 1). The number of these users varies by log, and correlation-

wise is mostly affected by load: High load workloads tend to have less users. This correlation is 

more evident when looking at the number of active users at startup, then when looking at all users 

during the log. Allowing the load to affect only the users active at startup does not cause this effect 

to diminish quickly, since these users remain a significant part of the workload for a long time. For 

example, in the 32-months-long BLUE log the users which appeared in the first four weeks account 

for 20% for all users through the log, and this ratio is 47% for the 24-months-long LANL CM5 log. 

The best fit between the number of active users at startup (AUS) and the load was found to be 

linear, as given in Equation 13. Since the correlation is not perfect, the residuals are quite high, and 

this also adds randomness to the modeled number of active users on startup. The residuals are 

uniformly distributed, based on the empirical values from the production logs. Note that AUD may 

be negative for high loads, an issue that we’ll discuss in section 14.1. 
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AUS  =  –543.37 × CL + 481.77 + R 

R  ~ U ( -85 , 85 ) 

Equation 13. Modeling the number of active users at startup  

11.4. User Classes 

The next step is to draw the user class, or cluster, for each user. We rely heavily on this 

decision: In the session model, each distribution will be provided separately for each user class. We 

also assume that all correlations and some of the temporal relations between session variables will 

be reflected in the model this way. For example, we will not directly model the correlation between 

a user’s number of sessions and average parallelism (heavy users tend to submit more highly 

parallel jobs). Instead this will emerge from the fact that the distributions of both number of sessions 

and parallelism for the two ‘heavy’ user types will have higher probabilities for larger values. 

This approach has two advantages over direct modeling of all dependencies. First, it reduces 

the number of dependencies and temporal relations that need to be modeled – beyond elegance, the 

number of constraints deems direct modeling of all pair-wise relations impractical anyway. Second, 

it attempts to model directly the root cause of the dependencies, instead of just imitating them 

statistically. In other words, having many interactive jobs and starting them on weekdays are related 

but probably do not cause each other – more likely both of them are caused by the fact that the user 

submitting them is a light-weight, long-term user of the machine. Modeling the cause directly 

increases the likelihood that dependencies not modeled directly will self-emerge, and also adds to 

the “insight value” of the model: explaining why in addition to how much. 

The overall distribution of user classes is given in Figure 25. However, we have to check if 

this distribution depends on the values we have already selected – The model’s parameters and the 

number of users – and also if there is some kind of temporal correlation between its values. It turns 

out that this distribution depends heavily on the model’s parameters – rounded correlations are 

presented in Table 29 for all seven logs – and also exhibits temporal locality. 

 % of long-term 
heavy users 
(%LTHU) 

% of long-term  
light users 
(%LTLU) 

% of short-term 
weekend users 
(%STWE) 

% of short-term 
workday users 
(%STWD) 

Median CPU Time  0.4 -0.7  0.9  0.0 

Jobs per Day -0.6  0.5 -0.2 -0.2 

CPU Load  0.7 -0.6  0.1  0.3 

Machine Size -0.6  0.7 -0.4 -0.4 

Table 29. Correlations between model parameters and % of each user class 
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Equation  R
2

 

%LTHU = 5.979147×10
-5
×Cm + 0.45250×CL – 0.084420 0.57 

%LTLU = -26.2512×10
-5
×Cm - 0.53006×CL + 0.944925 0.63 

%STWE = 21.47628×10
-5
×Cm - 0.08845×CL + 0.087351 0.84 

%STWD = -1.20394×10
-5
×Cm + 0.16601×CL + 0.052141 0.12 

Table 30. Model Distribution of user classes given by the Cm and CL parameters 

To account for these correlations – and define the main way in which the model’s parameter 

affect the model – user classes will be drawn from the distribution defined in Table 30. Values are 

based on linear regression using the Cm and CL variables, which gave the highest R2 values. Note 

that they imply that a higher load is achieved mainly by replacing long-term light users by long-

term heavy users, and a bigger jobs workload (in terms of CPU work) is achieved by replacing long-

term heavy users with occasional weekend users, and some long-term light users. 

The temporal structure of user classes does not have a daily or weekly cycle, but some 

locality is evident. Table 31 presents the empirical probability of a user being of each class, based 

on the class of the previous user (i.e. the empirical Markov chain). The consistent feature is that 

whatever the previous user’s class was, the current user has a higher chance of being of the same 

class than the general distribution would suggest. That higher chance is similar across all four user 

classes, and using a least squares approach to minimize the difference from the empirical 

distributions, we found it to be 10%. Thus, the class of each user is decided as follows: 

• In 10% of the cases, it is the class of the previous user 

• In the other 90%, it is drawn according to the distribution dictated by Table 30. 

 

Empirical distribution class of current user: Class of previous user: 

%LTLU %LTHU %STWE %STWD 
Long term, light user 60.16 18.00   7.76 14.08 
Long term, heavy user 45.10 33.88 10.20 10.82 
Short term, weekend user 52.34 13.19 19.15 15.32 
Short term, workday user 52.54 14.97 10.45 22.04 

All classes: 55.19 20.35   9.76 14.70 

Table 31. Empirical distribution of user class, based on the class of the previous user 
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12. Modeling Session Arrivals and Class 

12.1. Analysis of Session Arrivals 

Correctly identifying the factors that control the distribution of session arrivals and session 

classes lies at the core of our workload model. Since the job layer of our model reduces to mainly 

drawing job attributes from narrow distributions defined by the current session’s class, the sessions 

model becomes “responsible” for generating most of the interesting features of the model: long-

range dependence, heavy tailed inter-arrival times, cycles, and correlations between job attributes to 

themselves (runtime and parallelism) and to temporal features (such as the time of day). The 

following analysis provides a basis as well as new insights for all of them. 

We begin by analyzing the number of sessions per week, since this number is independent of 

the daily and weekly cycles. This number is decided per user and per week, and potentially depends 

on every value selected before it. Since we have accounted for the model parameters and inter-user 

dependencies by embedding them in the distribution of the user class, the number of sessions per 

week can only depend on the user class and the user’s number of sessions in the previous weeks. 

The data reveals that the number of sessions per week depends heavily on the user class and 

on the user’s week of activity. The week of activity is defined using “human weeks” – starting on 

Monday at midnight – so if a user ran her first job on Friday noon and the second one on the next 

Tuesday morning, the second job occurred in this user’s second week of activity. Figure 33 plots the 

empirical distributions of the number of sessions per user class and per week of activity, showing 

this dependency. Not surprisingly, users are more active when they begin using the computer. This 

is the most significant temporal influence on the number of sessions: There is a correlation between 

the number of sessions in a week to the number of sessions in the previous weeks, but this 

correlation is caused by the effect of the week of activity: High numbers are expected to be 

clustered at the beginning of each user’s activity and gradually decrease. 

Figure 33 visually presents the dependency of the number of sessions on the user’s class and 

week of activity. It is based on information from all users of all logs, but accounts for the variation 

in log durations and the fact that users arrive in the middle of the log. For example, if a user arrives 

at week 50 of the Paragon log, then we only have five weeks of information about that user, since 

that log only has 54 weeks. To account for this, the average for each week of activity in Figure 33 is 

computed by normalizing it for the number of users for which information is available for that week. 
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Long term, light users 

 

Long term, heavy users 

 
Short term, weekend users 

 

Short term, weekday users 

 
Figure 33. Average number of sessions per week, as a function of user class and week of activity 

We don’t know the distribution of a user’s number of active weeks – only the censored 

distribution up to each log’s duration – but several consistent features can be noted. The activity 

pattern of the two long-term user classes is similar, and all user classes start with a high level of 

activity which quickly drops to a constant or slowly decreasing rate. The non-monotonic “humps” 

for the two short-term user classes originate from users in the BLUE log, and do not seem to 

representative. The ‘short-term’ user classes earn their name from a very high empirical probability 

(> 0.5) of disappearing after just one or two weeks of activity, but there’s still a small chance of 

seeing the same user active even after two years, often after many weeks of inactivity. This 

translates to a heavy-tailed distribution of inter-arrival times for each user, and also creates long-

range dependence since the jobs of sessions of the same user, even months apart, will be correlated. 

The data in Figure 33 led us to two modeling decisions. First, once a user enters the system it 

would never leave it – modeling the (high) probability of being inactive after 20 weeks of activity is 

simpler and more accurate. Second, since the probability of inactivity in any given week is high 

(except the first week of a user’s activity, when it is by definition zero), we will model separately 

the probability of inactivity (having zero sessions in a given week) and the distribution of the 

number of sessions given activity (having at least one session). The next two sections model these 

two distributions. 
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Another key detail is that Figure 33 doesn’t include data from all users, but only users for 

which we (approximately) know their first week of activity: users that arrived from the 12th week of 

activity in each log onwards. These are also the only users used to build the inactivity and session 

count models in the next two sections. Section 12.4 deals with the problem of modeling the week of 

activity of users who are already active at startup, which we must address since our user model 

includes them. The final section of this chapter models the distribution of session classes. 

12.2. Inactivity 

Figure 34 plots the distribution of inactivity – starting zero sessions in a given week – as a 

function of the user’s class and week of activity. This analysis takes into account the fact that 

information about users’ inactivity is censored: we don’t know if a user is inactive after the end of 

its log. For each week, only users for which information is available are included in the analysis, 

and only weeks for which there are at least 50 such users were used to build the equations. 

The probability of inactivity given the week of activity best fits a logarithmic curve for all 

user classes, and the best fit parameters are given in Table 32. The logarithmic fit needs to be 

adjusted for the first weeks of activity, where the empirical probability is consistently lower than it 

predicts, and for the very late weeks of activity, where the probability has to be kept below 1.0. 

Long term, light users 

 

Long term, heavy users 

 
Short term, weekend users 

 

Short term, weekday users 

 
█ Empirical █ Model 

Figure 34. Probability for zero session per week, given user’s week of activity and class 
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Equation 24. Probability of a user’s inactivity given the user’s week of activity and class  

Equation  R
2

 

P(S=0|Woa,UC=LTLU) = 0.0683×Ln(WoA) + 0.5594 0.82 

P(S=0|Woa,UC=LTHU) = 0.0895×Ln(WoA) + 0.4149 0.84 

P(S=0|Woa,UC=STWE) = 0.0451×Ln(WoA) + 0.8201 0.60 

P(S=0|Woa,UC=STWD) = 0.0254×Ln(WoA) + 0.8164 0.31 

Table 32. Unadjusted probability of inactivity given the user’s week of activity and class 

12.3. Number of sessions per week 

The next challenge is to model the distribution of a user’s number of sessions per week, 

given the user’s class and week of activity, and given that the user has at least one session that 

week. This is a complete distribution for each combination of user class and week of activity (rather 

than a single number), as shown in Figure 35 for the case of Week of activity = 1. Fortunately, 

results from performing distribution fitting on all of these combinations using the relevant empirical 

data shows that the number of sessions per week can be modeled using the same distribution, and 

the user class and week of activity control that distribution’s parameters in a predictable way. 

Distribution fitting was done using EasyFit (MathWave, 2006), which supports 42 discrete 

and continuous distributions, mostly using maximum likelihood estimators, and computes the 

Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared goodness of fit tests to compare them. 

The program’s inputs were a datasets of for different user class and week of activity combinations, 

using only users who arrived after the 12th week of their log, so that their first week of activity is 

known. The program was set to assume a lower bound of one when estimating parameters, therefore 

results are adjusted to fit the distribution of the number of sessions given that it is at least one. There 

are 360 combinations of user class and week of activity where there is information for at least 50 

users in that week of activity, and after manually analyzing a third of them in EasyFit, it became 

clear that one distribution should be used to model all cases. 
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Equation 35. Probability density function of the Generalized Pareto distribution  
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Long term, light users 

 

Long term, heavy users 

 
Short term, weekend users 

 

Short term, weekday users 

 
█ Empirical █ Model 

Figure 35. Empirical distribution of the number of sessions for the first week of activity 

The Generalized Pareto distribution (Kotz and Nadarajah, 2001) is almost consistently the best 

distribution to describe the number of sessions per week users have. It is marginally outperformed by 

the Wakeby distribution, but Generalized Pareto was preferred because it has 3 parameters instead 

of 5 and they are easier to understand, so the marginal gap did not warrant the extra complexity. 

The distribution’s three parameters are shape k, scale σ > 0 and location µ. If k = 0 and µ = 0, 

the generalized Pareto distribution is equivalent to the exponential distribution, and if k > 0 and  

µ = σ, it is equivalent to the Pareto distribution. The shape parameter dictates how “heavy” the 

distribution’s tail is: when k > 0, the tail decreases as a polynomial; when k = 0, it decreases 

exponentially; and when k < 0, the tail is finite. 

To model the number of sessions, manual analysis suggested setting the location parameter µ 

to 0.6 for all cases – this was the approximate MLE for most cases. An automated script was used to 

produce MLE parameter estimates for k and σ for every combination of user class and week of 

activity. Then, a linear fit was found to be a good predictor of how these parameters depend on this 

combination. Table 33 summarizes the results. 
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Number of Sessions per Week 
given user class: 

Is distributed by Generalized Pareto 
with parameters µ=0.6 and: 

Long term, light user K     =  0.11 

Sigma = -0.0097×WoA  + 4.74  

Long term, heavy user K     =  0.00076×WoA + 0.013 

Sigma = -0.0166×WoA  + 3.31 

Short term, weekend user K     = -0.0251×WoA  – 0.147 

Sigma =  0.0168×WoA  + 3.806 

Short term, workday user K     = -0.0178×WoA  + 0.337 

Sigma = -0.1030×WoA  + 2.897 

Table 33. Model of the number of sessions as a function of user class and week of activity 

The results provide some intuition about how the activity pattern of different users evolves 

over times. The number of sessions of the two long-term user classes has a polynomial tail, which is 

constant over time for light users, and start smalls but gradually grows for heavy users. The scale for 

both long-term user classes decreases over time, and is generally higher for light users. Short term 

weekday users start with the heaviest tail of all user classes, which very slowly decreases. On the 

other hand, their scale parameter is the smallest of all user classes, and it also decreases rapidly – 

about ten times faster than the rate of decreases in other user classes. The short-term weekend users’ 

distribution is the only one with a finite tail – which shrinks further over time. 

Table 34 presents parameter estimates specifically for the first week of activity. These 

numbers somewhat differ from the numbers computed from Table 33 – goodness of fit tests suggest 

that the first week of a user’s activity is unique, and may warrant separate modeling. Table 34 is 

such a separate model, and the model in Figure 35 is based on it rather than on Table 33. While this 

clearly provides a more accurate fit, empirical studies are required to decide if this extra complexity 

is required in practice, for example to correctly compare schedulers. 

Number of Sessions per Week 
given WoA=1 and user class: Is distributed by Generalized Pareto with µ=0.6 and: 

 k σ 

Long term, light user 0.1795 2.5012 

Long term, heavy user 0.0557 2.8330 

Short term, weekend user 0.3008 1.1597 

Short term, workday user 0.4661 1.2969 

Table 34. Model of the number of sessions given user class in the 1st week of activity 
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12.4. Week of activity for active users at startup 

The two most important properties of a user in our model are class and week of activity. 

However, for the large group of users who were already active at startup, we do not know their 

actual week of activity. We removed these users from the dataset to model the number of sessions 

per week, but when generating a synthetic workload, a current week of activity must still be 

assigned to each user generated according to equation 13 from section 11.3. 

Assigning each such user with a week of activity of 1 is a mistake, since it would cause them 

to create a much higher load than empirically evident. In the same way, assigning the week of 

activity by drawing from a uniform distribution between 1 and 140 weeks (or some other arbitrary 

upper bound) is erroneous as well, since most users produce very little activity after 50 weeks for 

the long-term user class or 20 weeks for the short-term user classes. To account for the fact that 

users are typically more active during their first weeks of activity – and accordingly skew the 

distribution of the week of activity for active users at startup – we need an accurate measure of the 

distribution of a user’s week of arrival, given its user class and the fact that s/he has at least one 

session in the next 12 weeks (that’s how users active at startup are defined). Fortunately, this 

distribution can be easily described using distributions that we have already modeled. 

Let WoA be the random variable that states a given user’s week of activity, Tw the Boolean 

random variable stating if the user has at least one session in the twelve weeks starting at week w, 

Sw the random variable that counts the number of sessions the user has in week w, UC the random 

variable stating the user’s class, and Wmax the dataset’s maximal number of weeks. Then: 
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Equation 46. Probability that a user active at startup is at a given week of activity 

The last expression only involves the probability of inactivity given a user’s class and week 

of activity, which is exactly what we modeled by equation 14 in section 12.2. It is therefore possible 

to compute these probabilities directly. However, the computed results pose a problem: Based on 

our inactivity model from section 12.2, a user’s week of activity has a small but positive chance to 

be well over 200 (circa four years). This is problematic because such results are only based on 

interpolation – we don’t have any concrete data on users that “old”; they are “out of bounds” for the 

models of inactivity and number of sessions, and may produce unpredictable results; and they are 

non-realistic, since all our logs were started not long after the computer was in operation. This issue 

is addressed by adding the a-priori realistic assumption that all users existing at startup have been 

active for at most one year (52 weeks). Under this assumption, the distribution of the week of 

activity for users existing at startup becomes: 
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Equation 57. Probability that a user is at a given week of activity, 
given that it is active for no more than a year 

As equation 17 shows, a simple normalization by a known probability is required to compute 

an existing user’s week of activity, given that the user is at active for at most one year. Figure 36 

shows the resulting distributions, per user class. The values are computed based on the inactivity 

defined by equation 14, meaning that it correctly accounts for the censored distribution of users’ 

inactivity, and that it only relies on data from weeks where data from over 50 users was available. 
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Figure 36. Model Distribution of the week of activity of users active at startup 

12.5. Session classes 

Given a user of a certain class and week of activity, and given that this user has n sessions 

this week, the next step is to determine the class of each session. The distribution of session classes 

may depend on the user’s class, the user’s week of activity, and the class of previous sessions of the 

same user. The results indicate that all three dependencies exist, in a non-negligible way. 

Table 35 summarizes the distribution of session classes given the user class and previous 

session class. The dependency on the previous session class is the only strong temporal dependency 

which was identified, making a Markov chain model a natural choice. All sessions from all users 

(not just those who arrived from the 13th week) were used to produce these tables. The number of 

sessions for each user class and session class is also given, as an indicator of the results’ robustness. 

The main consistent observation that can be made from Table 35 is that a session’s class is 

more likely to be of the same class as the previous session of the same user than the general 

distribution would suggest. This is true for all session classes, but is especially strong for the batch 

session classes: a Batch Highly Parallel or Batch High Duration session has a 44% chance of 

coming after a session of the same class. Only 4% and 3% of all sessions are of these two classes 

respectively, meaning that sessions of these classes tend to appear in groups. 
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 This session’s class # of Sessions 

 IW BHP IWD BHD IWD  

IW 27% 2% 29% 2% 39%     30,220  

BHP 10% 44% 18% 3% 25%      5,682  

IWN 21% 3% 45% 4% 27%     41,269  

BHD 11% 4% 30% 44% 11%      4,192  

Pr
ev
io
us
 s
. c
la
ss
 

IWD 20% 2% 19% 1% 58%     61,811  

Table 35a. Empirical Markov chain of session classes, independent of user class 

 This session’s class # of Sessions 

 IW BHP IWD BHD IWD  

IW 27% 2% 24% 1% 46%     19,339  

BHP 12% 31% 19% 2% 35%      2,831  

IWN 21% 3% 39% 2% 35%     21,427  

BHD 17% 5% 33% 23% 21%      1,060  Pr
ev
io
us
 s
. 

IWD 19% 2% 17% 1% 62%     47,684  

Table 35b. Empirical Markov chain of session classes, given user class = LTLU 

 This session’s class # of Sessions 

 IW BHP IWD BHD IWD  

IW 26% 3% 39% 4% 29%      8,088  

BHP 7% 58% 16% 4% 15%      2,707  

IWN 20% 3% 53% 7% 17%     15,010  

BHD 8% 3% 28% 53% 7%      2,967  Pr
ev
io
us
 s
. 

IWN 23% 4% 25% 2% 46%     10,700  

Table 35c. Empirical Markov chain of session classes, given user class = LTHU 

 This session’s class # of Sessions 

 IW BHP IWD BHD IWD  

IW 46% 1% 21% 1% 30%         827  

BHP 23% 20% 37% 7% 13%           30  

IWN 25% 2% 42% 3% 28%         645  

BHD 28% 3% 33% 18% 20%           40  Pr
ev
io
us
 s
. 

IWD 27% 1% 20% 1% 51%         939  

Table 35d. Empirical Markov chain of session classes, given user class = STWE 

 This session’s class # of Sessions 

 IW BHP IWD BHD IWD  

IW 29% 1% 46% 1% 24%      1,966  

BHP 16% 22% 27% 7% 28%         114  

IWN 21% 1% 53% 1% 23%      4,187  

BHD 17% 5% 35% 22% 21%         125  Pr
ev
io
us
 s
. 

IWD 18% 1% 40% 1% 39%      2,488  

Table 35e. Empirical Markov chain of session classes, given user class = STWD 
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Apart from this locality, the previous session class seems to have a different effect on 

different user classes: P(SC | UC,PSC) ≠ P(SC | UC) ≠ P(SC | PSC). Numerous approaches to 

simplify Table 35 into a model with fewer parameters result in significant deviations from the 

empirical distributions, and since the proper selection of session classes is so central to our model, 

this is a risky distribution to over-simplify. It is interesting by itself that some of the intuitive 

approaches to simplify the Markov chain don’t always work: 

• Drawing from the distribution given the previous session class alone, with a constant 

modifier per user class; or drawing from the distribution given the user class alone, with 

a constant modifier per previous session class 

• Using a single constant or a per-user-class constant that determines the likelihood of 

using the previous session class again, otherwise drawing it from a global distribution 

• Using a hidden Markov model assuming that the user is either in ‘Interactive’ or ‘Batch’ 

mode, with constant in-mode session class distributions and per-user-class probabilities 

of switching between the two modes 

To conclude, it seems that the Markov chain is a unique property of each user class, and 

should be directly modeled as such. For example, a long-term heavy user is almost three times more 

likely to have two consecutive highly parallel batch sessions than a short-term weekend user, who in 

turn is 2.5 times more likely to have a batch session after an interactive night session than a short-

term weekday user is. 

The distribution of session classes depends on one more variable – the user’s week of 

activity. Figure 37 presents the distribution of session classes, independent of the user class and 

previous session class, at three different stages of a user’s lifecycle. Consistently, as the user’s week 

of activity rises, the proportion of both batch sessions increases, at the expense of the interactive 

daytime sessions. A user who has been active on the machine for over 60 weeks is four times more 

likely to start a batch (BHP/BHD) session than a user who has been active for less than nine weeks. 

This is not surprising: The more experienced a user is with the system, the more s/he tends to use it 

heavily. New uses, on the other hand, apparently take the time to learn the system and do test runs, 

which results in a higher number of sessions in the first weeks of activity, which are mostly 

interactive. The interactive weekend sessions are the only ones who are unaffected by the week of 

activity. Table 36 presents the regression results which best model this dependency. 
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Week of Activity = 1 Week of Activity = 10 Week of Activity = 60 

Figure 37. Distribution of session classes given the session’s user’s week of activity 

Equation  R
2

 

%IWD = -0.0022×WoA + 0.5107 0.90 

%IWN =  0.0011×WoA + 0.2437 0.64 

%IW  =  0.2161 N/A 

%BHP =  0.0006×WoA + 0.0182 0.74 

%BHD =  0.0005×WoA + 0.0113 0.76 

Int. Weekday Daytime

Int. Weekday Night

Int. Weekend

Batch Highly Parallel

Batch High Duration
 

Table 36. Model distribution of session classes, given the session’s user’s week of activity 

 

Repeating this process for specific user classes and previous session classes suggests that the 

effect of the week of activity is roughly independent of these two variables. Therefore, to define our 

complete model for selecting session classes, the distributions in tables 35 and 36 need to be 

combined. This is done by starting from the distribution as dictated by the week of activity, and 

using Table 36 to define not the direct distribution, but rather the adjustment from the global 

distribution that the user class and previous session class dictate: 

P(SC | WoA,UC,PSC) = P(SC | WoA) + [P(SC | UC,PSC) – P(SC)] 

Equation 18. Distribution of session classes, given all dependencies 

Where P(SC | WoA) is given by Table 35, P(SC) is given by Figure 23 in section 9.3.2, and 

P(SC | UC,PSC) is given by Table 35. For example, for a long-term light user in the 10th week of 

activity who just finished an interactive weekend session, the probability that the next session will 

be an interactive daytime session is -0.0022×10+0.5107+[0.46-0.43] = 51.87%. 

Note that since each of the three distributions always sums to 1.0, equation 18 always defines a 

valid distribution as well. 
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13. Modeling Parallel Jobs 

13.1. Model Pseudo-code 

Given the user and session models, we now turn to modeling the generation of a stream of 

parallel jobs. This integrates together the model’s three layers, in a way that is required to be “as 

simple as possible, but no simpler” – that is, a simple method that still captures all the statistical 

attributes which are considered important. Chapters 4 to 8 of this thesis define what is “important”, 

in particular in the context of correctly evaluating parallel schedulers. Chapters 9 to 12 investigate 

the key empirical dependencies, ensuring that each correlation and auto-correlation is accounted for. 

Listing 5 provides the complete model’s pseudo-code. Whenever drawing from a distribution 

is required, a reference to the section that defines it is given in brackets. The first layer is the user 

model, generating the number of users and the class and week of activity for each one, based on the 

model’s parameters. This layer is responsible for addressing these limitations of current workload 

models, as summarized in chapter 6: direct user modeling, load manipulation, parameterization, and 

an aspect of long-range dependence (since a user’s class remains constant over time). 

The second layer of the model is the session model, generating the number of sessions per 

user and per week, and the class of each session. This layer is responsible for generating three 

statistical phenomena. The first is self-similarity – users have an explicit “on-off” behavior, with a 

heavy tailed “off” duration distribution caused by our week-long inactivity model. The second is the 

correlation between individual job attributes: The correlation between jobs’ runtime and parallelism, 

for example, is not modeled directly but rather by having both attributes depend on the session 

class. The dependency between these attributes and the time of day, day of week and inter-arrival 

time between jobs is created in the same manner. And third, the session model is responsible for the 

daily and weekly cycles. 

Cycles are created as follows. We need to model the distribution of sessions over days of the 

week and hours of the day, the number of jobs and repetitions inside each session, and the inter-

arrival times of jobs within a session. All these distributions – in the empirical data as well as the 

model – implicitly assume that it is given that all separate sessions are indeed sessions, i.e. they are 

at least 20 minutes apart. To model these distributions and constraints correctly, this scheme is used: 

Draw the day of week, hour of day, number of jobs and their intra-session arrival times 

independently for each session – and only check for collisions after all sessions are drawn. If any 

collisions exist, erase everything and redraw all sessions again. 
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GenerateWorkload (Model parameters, duration in weeks): 

Draw number of active users at startup [11.3] 

For each such user 

 Draw its user class [11.4] 

 Draw its week of activity [12.4] 

For each week 

 Draw number of new users this week [11.2] 

 For each new user 

  Draw its user class [11.4] 

  Week of activity = 1 

 For each active user 

  If user is active this week [12.2] 

   Draw its number of sessions this week, given activity [12.3] 

   GenerateWeeklySessions(user, week, number of sessions) 

 

GenerateWeeklySessions (user, week, number of sessions) 

While true 

 For i = 1 to number of sessions 

  Draw the i'th session’s class [12.5] 

 For attempts = 1 to 100 do 

  NewSessions = new empty list of sessions 

  For i = 1 to number of sessions 

   NewSessions.Add ( GenerateSession(i'th session’s class) ) 

  If not CollisionsInSessionsList(NewSessions) then 

   Return NewSessions 

 

GenerateSession(session class) [13.2] 

Create a new session 

Draw the session’s start day of the week 

Draw the session’s start time of the day (hour, minute, second) 

Draw the number of unique job sequences in the session 

For each unique job sequence 

 Draw its runtime, parallelism and number of repetitions 

 For each repetition 

  Draw the inter-arrival time from the previous job, and add job to session 

Return the session 

 

CollisionsInSessionsList (sessions) 

For every pair s1, s2 in sessions 

 If s1.StartTime <= s2.StartTime 

 and s1.EndTime > s2.StartTime – 20minutes 

 then Return true; 

Return false; 

Listing 5. Pseudo-code of the User-Based Parallel Workload Model 
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To intuitively understand why this is a valid approach, consider the following analogy. 

Assume that you are required to model a Bernoulli experiment with p=0.5, given a three-sided cube 

that can be used to draw 0, 1 or 2 with p=0.33 for each result. Then, using the cube and re-throwing 

until the result is not 2 yields the desired model. Similarly, re-drawing session start and end times 

until we get a valid set of 5 IWD sessions and two IWN sessions in one week (for example) is valid, 

since the modeled number of sessions as drawn from the empirical dataset also implicitly assumes 

that this is the number “given that these are legally defined sessions”. 

The only problem with this approach is that there is a small probability to draw a set of 

session classes which can’t normally fit within a one week in reality (for example, five high-

duration batch sessions). To handle this edge case, the GenerateSession function from Listing 5 will 

only make 100 attempts at drawing a valid session set after drawing the session classes, and redraw 

the session classes if all of them fail. Again, we do not consider this a distortion of the overall 

distribution, since such cases do not (and can not) exist in the empirical distribution. 

The CollisionsInSessionsList function tests whether a list of a user’s weekly sessions includes 

a collision. Note that as defined it covers all cases: Two sessions that partially overlap, a session that 

consumes another session, or two sessions that start at the very same time. This function should also 

check that this week’s sessions do not collide with sessions that began last week and ran into this 

week – this is not included in the pseudo-code to improve readability. 

13.2. Modeling Jobs within a Session 

The third layer of the model is the jobs model, defined by the CreateSession function from 

Listing 5. It is responsible for creating locality of sampling, and potentially flurries. Due to our 

construction, this is the simplest layer, for two reasons: 

• It directly depends only on the session class – not on the user, previous sessions or jobs. 

• Each of its attributes directly depends only on the session class – not on one another. 

This simplicity at the jobs layer justifies the exhaustive modeling of dependencies at the user 

and session layers. It means that modeling the distributions of each of the intra-session attributes is a 

simple matter of fitting the empirical distribution of each attribute, per session class. There is no 

need to consider the temporal structure of each attribute, or dependencies to the others. 

As demonstrated in sections 5.1 and 8.5.1, sessions typically exhibit high locality of 

sampling, which can be effectively modeled by generating jobs’ attributes from a global distribution, 
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and then repeating them by a number of times distributed by a Zipf-like distribution (Feitelson, 2006). 

This approach has been previously applied to model locality of sampling: The model of (Feitelson and 

Jette, 1997) repeats jobs but assumes a zero think time between repetitions, and (Song, Ernemann, 

and Yahyapour, 2004) use a Markov chain model which accounts for both repetitions and correlations 

between subsequent unique job sequences, but does not result in a Zipf-like distribution of repetitions. By 

modeling the correlation between runtime and parallelism using the session class, which narrows the 

distributions of these two variables in the same direction for each session class, it becomes simpler to 

directly model the number of unique job sequences and repetitions by fitting the empirical distributions. 

The CreateSession function can easily be used to produce flurries. If it is desirable to include 

flurries in the model, then this function should begin by deciding whether this session is a flurry – 

and if so, all values should be taken from separate distributions and parameters. The exact modeling 

of flurries is outside the scope of this work, and is a challenging task with the current datasets 

because there are very few known flurries, which are very different. 
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D I SCUSS ION  AND  CONCLUS IONS  

14. Discussion 

14.1. Using the Model 

The obvious next research task regarding the user-based parallel workload model is 

validation: Both statistical validations to compare features that were not modeled directly, such as 

the overall distribution of inter-arrival times and the correlation between runtime and parallelism, as 

well as practical validations, such as comparing how the adaptive and prediction-based schedulers 

perform on model-generated workloads versus the production logs. This work is outside the scope 

of this document and will be published separately. This section discusses guidelines that govern 

such work, as well as any other application of this model. 

The first guideline is to generate multiple instances of the model and rely on their average 

performance, rather than relying on a single generated workload. Using the early workload models 

which rely on generating values from distributions, scheduling simulation results would be very 

similar on a workload of 10,000 jobs, 50,000 jobs or 150,000 jobs. Due to the lack of long-range 

dependence, the variance of aggregated values – for example weekly or monthly – of all the 

distributions used diminished very quickly. On the other hand, the user-based workload model is 

similar to production logs in the sense that certain weeks and even full months may be high-load, 

low-load or possess some other similarity. Due to the many long-range dependencies, subsequent 

generations of two workloads from the model may be very different from one another. This reflects 

what should be expected from real workloads, but in contrast to the limited number of production 

logs, it is easy to generate fifty two-year workloads from our model, using the same underlying 

parameters. Simulation studies should report the average results, which should converge if the 

simulated algorithm performs consistently on a variety of realistic scenarios. 

The second guideline is to initialize the model with parameters within its range. The model is 

based on the largest dataset used to build a workload model to date, and includes machines from 

100 to 2,048 processors, load levels from 40% to 80%, and 80 to 300 jobs per day. Values in this 

range represent the majority of parallel computers deployed today, and slowly become more popular 

as machines of this capacity gradually move from the World’s Top-500 list to be the mainstream 

shared departmental computational workhorse, in both academia and industry. 
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However, there is no evidence that the model is representative for values outside these 

ranges. This warning relates in particular to load, since many researchers tend to simulate 

algorithms on a variety of loads reaching 95% and above – using questionable methods to create 

that load, leading to questionable results. Equation 13 from section 11.3, used to generate the 

number of active users at startup as a function of the load, may result in a negative number of users 

for very high loads – this can be manipulated by decreasing the range of the uniform distribution in 

that equation, but is not an inherent problem with the model, since it’s not designed for such loads. 

This is not a limitation of this model, but rather of the available datasets: We have no good 

data on how parallel workloads really behave on very high loads, and it seems such loads are never 

reached in reality. Other models cannot generate a high-load parallel workload as well: The user-

based model can be manipulated by multiplying the inter-arrivals, runtimes or parallelism by the 

same factors, but this still would not result in a representative workload. As an analogy, this is 

similar to simulating high load on a highway by multiplying the load each minute of the day by a 

constant, while in reality high loads are caused by heavy morning traffic during workdays. 

Decisions based on faulty models are likely to be faulty as well. 

The third guideline in using the user-based model is to use it to create workloads that are at 

most two years long. This wasn’t an issue in previous models, which do not feature long-range 

dependence. However, since our model has identified the week of activity as a key indicator of a 

user’s activity pattern, it is important to remember that out of the seven logs used to build the 

model, only three are at least two years long. Evidence that production parallel workloads can 

significantly change over time (Talby, Feitelson and Raveh, 1999) suggests that the core parameters 

of a system’s workload may change over several years of activity. Therefore, the best practice for 

generating a very large number of jobs from the user-based model is to generate several separate 

one-year-long workloads, instead of one multi-year workload. Again note that this shouldn’t be 

viewed as a deficiency of the model: Neglecting this issue altogether, other models to date cannot 

provide a more accurate workload looking three or five years ahead. 

14.2. Extending the Model 

Due to its layered structure and the fact that it deals with many factors not considered before, 

the user-based workload model provides a solid basis for several future research directions. The first 

is the modeling of additional parallel job attributes, such as the user runtime estimates, which as 
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shown in (Tsafrir et al., 2005) also exhibits high locality and fits well the intra-session model of 

repetitions. Other possibilities are the memory and I/O requirements of parallel jobs, or application 

activity patterns. Since the intra-session model is based on the assumption that repetitions are 

caused by a human user running the same application over and over again, it is likely that all 

features of this application will be repetitive. 

A second extension is modeling user feedback. This approach models the fact that while this 

work and others assume that the workload is an external input given to a computer system, in reality 

human users adjust their behavior according to the system’s responsiveness. When the system is 

clogged, users will submit fewer new jobs, and vice versa. Modeling the user feedback is a complex 

problem, but it must certainly be based on the decisions made by users, therefore a direct model of 

the system’s active users and their major indicators of activity (i.e. user class and week of activity) 

provide a sound basis. 

A third research direction based on this work is replacing the low layer to model something 

other than jobs – network or storage capacity, for example. The user and session layers of the model 

provide a generic model of how human users use a shared, powerful computational device. They 

can be used to describe just as accurately the network requirements on that shared device during a 

session, or the storage requirements for storage related to work on that device. The jobs layer of our 

model is simple since most of the complexity is handled in the user and session layers, and this 

simplicity can be readily “reused” to model other things. 

14.3. Improving Cluster and Grid Resource Management 

This work also opens future research opportunities in the area of on-line cluster and grid 

resource management. This happens because the new user- and session-based model provides more 

accurate answers than possible to date for two common questions. 

The first is “What workload is expected an hour from now?” – which by analyzing the 

currently active sessions, and perhaps sessions that are likely to start soon, our model can answer 

with a narrower distribution than was previously available. This is done by assigning a class for 

each session and user, effectively summarizing the a-priori information about them in a usable form. 

It is potentially useful for many on-line algorithms: Deciding how many processors to allocate to a 

moldable job; if, when and how much extra load to accept from another member in a computational 

grid; whether and when to migrate jobs; what capacity to reserve for interactive work; and others. 
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The second question is “What workload is expected a week from now?” – answered by 

analyzing the active users, based on assigning a class to each of them and recording their week of 

activity. This is potentially useful for a questions such a capacity planning of CPU, storage and I/O, 

and longer-term reservations in a grid environment. 

15. Conclusions 

Re-quoting the introduction, the goal of this research is to provide new information, 

discovered by means of sound statistical techniques, which can benefit both worlds – synthetic 

workload modeling, and on-line resource management algorithms. 

With respect to workload modeling, this work focuses on analyzing the core reasons behind 

important statistical features and modeling them directly, rather than fitting distributions and then 

tweaking them to model specific observations. This enables our model to address a much larger set 

of constraints and dependencies than previous works, and also provide insights on why they exist. 

The identification of the main factors that govern the activity of users of parallel machines is new, 

and has many potential implications. The description of session classes enables more accurate short-

term prediction than available before, of use to on-line cluster and grid resource management. The 

analysis is based on the largest and most scrutinized dataset used to build a workload model to date. 

With respect to parallel scheduling, the bottom-line impact of improving a scheduler by  

15-30% – as the adaptive and prediction-based schedulers can do – cannot be underestimated. The 

scheduler is a software-only, relative independent module of the operating system, and so is 

relatively easy to change. Realizing the improvements does not require any user training or 

involvement, and is available to all jobs regardless of programming language, compiler and libraries 

used. Alternatives to achieving the same performance gains require very substantial investments of 

time and money, so it remains to hope that these ideas will be implemented and widely available. 

In the past decade, research in these areas matured from understanding the fundamental 

factors that drive parallel schedulers – backfilling dynamics, temporal structure and the impact of 

workloads and metrics – to optimizations based on acumen of statistical attributes of parallel 

computer workloads. Discovering that such attributes can be exploited in practice leads to a need for 

new workload models, which in turn identifies new statistical features, and raise ideas for a new 

generation of schedulers. This work is a stepping stone in this process. 
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A P P END I C E S  

A. Pseudo-Code of the EASY and SJBF Schedulers 

A scheduling algorithm on a variable partitioning parallel computer is an event-driven 

algorithm, activated when a job arrives or terminates. At each of these events, the scheduler may 

decide to start one or more jobs from the waiting jobs queue: 

struct Job { Time arrivalTime, int processors, int estimate, UserID user } 

list<Job> OnJobArrival ( Job job ) 

list<Job> OnJobTermination ( Job job ) 

Listing 6. A Scheduler’s Interface 

The classic EASY scheduler is given in Listing 7. The SJBF algorithm is received by 

replacing the three underlined words by the word ‘prediction’. 

On Job Arrival (Job job): 

Add job to waiting jobs list 

Start Jobs According to FCFS with Backfilling 

On Job Termination (Job job): 

Remove job from running jobs list 

AvailableProcessors += job.processors 

Start Jobs According to FCFS with Backfilling 

Start jobs According to FCFS with Backfilling: 

// Start jobs in FCFS order first: 

For each job in waiting jobs list, by ascending order of arrival (FCFS): 

  if job.Processors <= AvailableProcessors then StartJob (job) 

// Compute shadow time and extra nodes: 

Reserved = First job in waiting jobs list, by ascending order of arrival (FCFS) 

Shadow time = 0 

FreedProcessors = AvailableProcessors 

For each job in the running jobs list, by ascending time to termination: 

  Shadow time = Max(0, job.estimate – (CurrentTime – job.startTime)) 

  FreedProcessors += job.processors 

  if (FreedProcessors >= Reserved.processors) break; 

Extra nodes = FreedProcessors – Reserved.processors 

// Backfill: 

For each job in waiting jobs queue, by ascending order of arrival 

 if job.processors <= AvailableProcessors and  

            (job.estimate <= shadow time or job.processors <= extra nodes) 

                         then StartJob (job) 

Start Job (Job job): 

Add job to the running jobs list 

Remove job from the waiting jobs list 

AvailableProcessors –= job.processors 

Listing 7. Pseudo-code of the EASY and SJBF Scheduling Algorithms 
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B. Co-Plot 

Classical multivariate analysis methods, such as cluster analysis and principal component 

analysis, analyze variables and observations separately. Co-Plot is a new technique which analyzes 

them simultaneously. This means that we'll be able to see, in the same analysis, clusters of 

observations, clusters of variables, the relations between clusters (correlation between variables, for 

example), and a characterization of observations (as being above average in certain variables and 

below in others). Co-plot is especially suitable for tasks in which there are few observations and 

relatively many variables – as opposed to regression based techniques, in which the number of 

observations must be an order of magnitude larger than the number of variables. The technique has 

been used before mostly in the area of economics (Lipshitz and Raveh, 1994; Raveh, 2000). 

Co-plot's output is a visual display of its findings: It is based on two graphs that are 

superimposed on each other. We denote the number of observations by n, and the number of 

variables (the dimensionality) by p. The first graph maps the n observations into a two-dimensional 

space. This mapping, if it succeeds, conserves relative distance: observations that are close to each 

other in p dimensions are also close in two dimensions, and vice versa. The second graph consists of 

p arrows, representing the variables, and shows the direction of the gradient for each one. 

Given an input matrix Yn×p of p variable values for each of n observations (see for example 

Table 2), the analysis consists of four stages. The first is to normalize the variables, which is needed 

in order to be able to relate them to each other, although each has different units and scale. This is 

done in the usual way. If 
jY  is the j’th variable’s mean, and Dj is its standard deviation, then Yij is 

normalized into Zij by: 

jjijij /)(: DYYZ −=  (1) 

In the second stage, we compute a measure of dissimilarity Sik ≥ 0 between each pair of 

observations (rows of Zn×p). A symmetric n×n matrix is produced from all the pairs of observations. 

In our analysis we use city-block distance – the sum of absolute deviations – as the measure of 

dissimilarity: 

∑
=

−=
p

1j

kjijik ZZS  (2) 

In stage three, the n observations are mapped by means of a multidimensional scaling (MDS) 

method from the original p-dimensional space into a two dimensional Euclidean space, such that 



117 

'close' observations (with a small dissimilarity between them) are close to each other on the map, 

while 'distant' ones are also distant on the map. Note, however, that we are mainly interested in 

relative distances. This can be expressed as a relationship between the map distances dik (which are 

just the Euclidean distance in 2D) and the corresponding dissimilarity metrics Sik, where we require: 

Sik < Slm  if and only if  dik < dlm 

The MDS we use is Guttman's Smallest Space Analysis, or SSA (Guttman, 1968). SSA is an 

iterative mapping technique, in which the need for additional iterations is guided by the coefficient 

of alienation Θ. The smaller it is, the better that the mapping reflects the original dissimilarities, and 

values below 0.15 are considered good. To evaluate Θ we first evaluate another metric µ which 

directly measures the correlation between the dissimilarity measures and the map distances: 

∑

∑
−−

−−

=

mlki

lmiklmik
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ddSS
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,,,

,,,

))((
µ  (3) 

Thus µ can attain the maximal value of 1. This is then used to define Θ as follows: 

21 µ−=Θ  (4) 

This functional form does not decrease much for mediocre values of µ, but drops sharply 

when µ approaches 1, so it is only low for very good correlations. Full details of the SSA algorithm 

are given in (Guttman, 1968). It is a widely used method in social sciences, and several examples 

and intuitive descriptions can be found in (Maital, 1978). 

If the third stage results in a high coefficient of alienation, then the data does not fit well into 

two dimensions, and a different technique is required. On the other hand, if the coefficient of 

alienation is low, we know that the 2D map indeed captures the salient features of the data. 

In the fourth stage of the Co-plot method, p arrows are drawn on the two dimensional 

Euclidean space obtained in the previous stage. Each variable j is represented by an arrow emerging 

from the center of gravity of the n points. The direction of each arrow is chosen so that the 

correlation between the actual values of the variable j and their projections on the arrow is 

maximized. Therefore, observations with a high value in this variable should be in the part of the 

space the arrow points to, while observations with a low value in this variable will be on the other 

side of the map. The length of the arrow is proportional to this correlation. 
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As a result of this construction, arrows associated with highly correlated variables will point 

in about the same direction, while arrows associated with uncorrelated variables will tend to be 

orthogonal. Thus the cosines of angles between these arrows are approximately proportional to the 

correlations between their associated variables. 

The quality of the graph generated by the Co-plot technique is assessed by two types of 

measures, one for stage 3 and another for stage 4. In stage 3, a single measure – the coefficient of 

alienation – is used to determine the quality of the two-dimensional map. In stage 4, p separate 

measures – one for each variable – are given. These are the magnitudes of the p maximal 

correlations, which measure the goodness of fit of the p regressions. These correlations help in 

deciding whether to eliminate or add variables: Variables that do not fit into the graphical display, 

namely, have low correlations, should be removed, because they do not relate well to the principal 

features of the data as identified by the 2D mapping. The removal of a variable requires a re-

computation of the Co-Plot, since it affects the earlier stages (SSA) as well. Note that since each 

variable’s arrow is computed separately, there is no need to fit all the 2P subsets of variables as in 

other methods that use a general coefficient of goodness-of-fit. The higher the variable's correlation, 

the better the variable's arrow represents the common direction and order of the projections of the n 

points along the axis it is on. 

A free software package for Co-Plot analysis is available online (Talby, 1999). 
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C. Temporal Structure: Full Data Tables 

 

Log Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

 15m 150m 15m 150m 15m 150m 15m 150m 15m 150m 
NASA 0.05 0.17 0.45 0.34 0.21 0.11 0.01 -0.02 0.54 0.53 

PAR95 0.14 0.07 0.37 0.23 0.15 0.05 0.19 0.18 0.59 0.50 

PAR96 0.11 0.08 0.38 0.12 0.07 -0.03 0.14 0.15 0.38 0.33 

BLUE 0.28 0.14 0.22 0.38 0.04 0.09 0.17 0.01 0.42 0.54 

SDSP2 0.10 0.17 0.11 0.24 0.09 0.04 0.17 -0.01 0.48 0.60 

CTC 0.17 0.20 0.16 0.18 0.03 0.07 0.21 -0.05 0.39 0.39 

KTH 0.24 0.15 0.16 0.29 0.04 0.02 0.10 0.08 0.24 0.38 

LACM5 0.25 0.32 0.78 0.56 -0.01 0.09 0.16 -0.05 0.92 0.74 

LAO2K 0.34 0.49 0.68 0.35 0.04 0.16 0.05 0.03 0.52 0.52 

LLNL 0.04 0.04 0.18 0.31 0.05 0.01 0.11 -0.05 0.50 0.52 

OSC 0.15 0.10 0.44 0.51 0.08 0.07 0.19 0.02 0.62 0.62 

Avg Logs: 0.17 0.18 0.36 0.32 0.07 0.06 0.14 0.03 0.51 0.52 

DOW -0.01 -0.01 -0.01 0.06 0.01 -0.07 -0.35 -0.33 0.01 -0.01 

JANNctc 0.10 0.09 0.11 0.18 0.00 -0.01 -0.01 -0.33 0.21 0.16 

FEIT96 0.29 0.21 0.25 0.04 0.28 0.22 -0.36 -0.30 0.01 -0.01 

FEIT97 0.32 0.2 0.44 0.23 0.31 0.1 -0.24 -0.33 0.04 0.04 

LUB 0.04 0.11 0.00 0.01 0.04 0.11 -0.01 -0.09 -0.01 0.01 

CIRctc 0.02 0.12 0.07 0.29 0.00 0.03 0.74 -0.04 0.91 0.65 

CIRkth 0.02 0.14 0.04 0.32 0.00 0.05 0.47 -0.13 0.81 0.60 

CIRsd 0.02 0.06 0.06 0.20 0.01 0.02 0.62 0.20 0.88 0.62 

Table 37. Locality of Sampling in Logs and Models 

Log Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

 12h 24h 12h 24h 12h 24h 12h 24h 12h 24h 
NASA 0.05 0.24 -0.06 0.39 0.01 0.30 -0.01 0.02 -0.29 0.40 

PAR95 -0.08 0.18 0.14 0.23 -0.22 0.15 -0.03 0.04 0.45 0.35 

PAR96 0.19 0.21 0.05 0.09 -0.09 0.05 0.10 0.07 0.21 0.18 

BLUE -0.09 0.17 0.01 0.23 -0.10 0.17 0.03 0.05 -0.01 0.43 

SDSP2 0.01 0.29 0.02 0.11 -0.09 0.05 -0.07 -0.02 0.37 0.46 

CTC -0.18 0.34 0.02 0.20 -0.14 0.16 0.14 0.08 -0.04 0.18 

KTH -0.08 0.02 -0.02 0.07 -0.19 -0.06 -0.09 -0.15 -0.02 0.12 

LACM5 -0.11 0.31 0.12 0.44 -0.01 0.28 -0.08 0.15 0.26 0.45 

LAO2K -0.38 0.62 0.01 0.00 -0.10 0.27 0.06 0.08 0.09 0.34 

LLNL 0.25 0.32 -0.09 0.26 0.19 0.21 -0.07 -0.03 -0.25 0.37 

OSC 0.09 0.12 0.35 0.25 0.04 0.10 0.09 -0.04 0.49 0.38 

Avg Logs: -0.03 0.26 0.05 0.21 -0.06 0.15 0.01 0.02 0.11 0.33 

DOW -0.01 -0.18 0.04 0.16 0.12 -0.07 0.01 -0.01 0.01 0.28 

JANNctc 0.00 0.03 0.03 0.02 0.00 0.00 -0.04 -0.14 0.11 0.12 

FEIT96 0.07 0.11 -0.03 0.09 0.01 -0.06 -0.11 0.11 -0.08 -0.08 

FEIT97 0.05 0.35 0.02 -0.06 0.05 -0.08 0.02 0.05 0.05 -0.01 

LUB 0.14 0.27 -0.02 0 0.14 0.15 -0.01 -0.01 -0.02 0.00 

CIRctc -0.24 -0.01 -0.53 0.61 -0.11 0.11 -0.05 0.77 -0.83 0.95 

CIRkth -0.31 0.00 -0.58 0.43 -0.13 0.09 -0.22 0.23 -0.84 0.63 

CIRsd -0.14 -0.01 -0.44 0.45 -0.05 0.04 -0.48 0.63 -0.96 0.99 

Table 38. Daily Cycle in Logs and Models 
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Log Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

 7d 7d 7d 7d 7d 
NASA 0.29 0.27 0.28 -0.08 0.49 

PAR95 0.30 0.07 0.12 -0.02 0.08 

PAR96 0.22 0.05 0.04 -0.09 0.02 

BLUE 0.20 0.16 0.19 0.04 0.53 

SDSP2 0.38 0.21 0.11 0.02 0.21 

CTC 0.21 0.14 0.15 0.05 0.11 

KTH 0.46 0.46 0.12 0.02 0.43 

LACM5 0.28 0.14 0.15 0.00 0.22 

LAO2K 0.42 0.22 0.15 0.00 0.30 

LLNL 0.18 0.31 0.18 0.04 0.46 

OSC 0.40 0.21 0.34 0.07 0.20 

Avg Logs: 0.30 0.20 0.17 0.00 0.28 

DOW 0.13 -0.76 0.00 N/A 0.45 

JANNctc -0.05 -0.01 -0.03 -0.03 -0.07 

FEIT96 0.00 -0.25 -0.02 N/A 0.23 

FEIT97 0.05 0.05 -0.02 N/A N/A 

LUB 0.28 0.02 0.28 -0.01 0.02 

CIRctc -0.01 -0.02 0.01 0.54 1 

CIRkth -0.02 -0.02 0.00 0.11 1 

CIRsd 0.00 0.01 0.02 N/A 1 

Table 39. Weekly Cycle in Logs and Models 

 
Log Runtime # of Processors Total CPU Work Inter-Arrival Time # of Jobs 

 avg H avg H avg H avg H avg H 
NASA 0.65 0.72 0.60 0.45 0.74 

PAR95 0.73 0.68 0.71 0.73 0.83 

PAR96 0.71 0.71 0.62 0.64 0.78 

BLUE 0.71 0.69 0.67 0.77 0.73 

SDSP2 0.73 0.83 0.77 0.80 0.86 

CTC 0.72 0.63 0.60 0.58 0.71 

KTH 0.68 0.79 0.61 0.66 0.69 

LACM5 0.82 0.81 0.80 0.83 0.99 

LAO2K 0.70 0.90 0.73 0.59 0.72 

LLNL 0.69 0.73 0.67 0.53 0.64 

OSC 0.78 0.79 0.75 0.84 0.82 

Avg Logs: 0.72 0.75 0.69 0.67 0.77 

Avg >year: 0.75 0.75 0.72 0.77 0.84 

DOW 0.46 0.48 0.47 0.46 0.46 

JANNctc 0.51 0.59 0.50 0.56 0.45 

FEIT96 0.57 0.62 0.54 0.44 0.49 

FEIT97 0.68 0.70 0.64 0.45 0.53 

LUB 0.63 0.47 0.63 0.48 0.59 

CIRctc 0.50 0.47 0.49 0.08 0.50 

CIRkth 0.52 0.50 0.48 0.14 0.50 

CIRsd 0.45 0.50 0.50 0.33 0.50 

Table 40. Self-Similarity in Logs and Models 
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D. Dataset File Formats 

The model is based on seven production logs, freely available from the Parallel Workloads 

Archive (Feitelson, 1999). For each of the seven logs, the cleaned version of the log was used to 

create three other files: A jobs list, a sessions list and a users list. All three file formats are based on 

the Standard Workload Format (Chapin et al., 1999): They are text files, with one list per 

job/session/user, with a space-separeated list of numbers containing data for each. The file starts 

with a set of header comments (we use the same ones from the Standard Workload Format), a 

semicolon marks a comment line, and -1 stands for a missing value. 

Table 41 lists the description of the 24 columns of numbers which appear in every line of 

each file. The Jobs Workload Format is an extension of the Standard Workload Format (which only 

contains a list of jobs). The added columns are the session ID of the session the job belongs to, the 

day in week and hour in day in which the job started (this is in local time, in contrast to the job’s 

submission time which is in UTC), and class (cluster) of the session and user by which the job was 

submitted, and a log identifier (to enable mixing jobs from different logs in the same file, for joint 

analysis). 

The sessions and users list are computed from the jobs list, and have been created as separate 

files only to simplify the analysis. Computed session fields include the percent of the session run 

during daytime (7:30-17:30 in local time, inclusive), the percent of the session run during workdays 

(Monday to Friday in local time, inclusive), number of unique runtimes (up to a 5% difference) and 

used processors for all the session’s jobs (as a measure of locality), and the session and user class. 

Computed user fields include the number of sessions, percent of each session class among the user’s 

sessions, the inter-session time median and interval, and the user class. Other fields are self-

explanatory, and consistent with their definition in the Standard Workload Format. 

The dataset is freely available for further research, on request. 
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Col # Job Workload Format Session Format User Format 

1 Job ID Session ID User ID 

 Submit time (absolute) Arrival time (absolute) Arrival time (absolute) 

 Wait Time Duration Total time in system 

 Run Time Original User ID Numer of Sessions 

5 Used Processors Number of Jobs Number of Jobs 

 Used CPU time Runtime median Runtime Median 

 Used memory Runtime interval Runtime Interval 

 Reqequest Processors Processors Median Procs Median 

 Reqested CPU time Processors Interval Procs Interval 

10 Requested Memory Jobs Inter-Arrival Time 
Median 

Jobs IA Time Median 

 Completion status Jobs Inter-Arrival Time 
Interval 

Jobs IA Time Interval 

 User ID Think time median Think time median 

 Group ID Think time interval Think time interval 

 Executable ID Did session start in 
Daytime? 

Sessions IA Median 

15 Queue ID Percent of daytime during 
session 

Sessions IA Interval 

 Partition ID Did session start in a 
workday? 

Percent of daytime during 
user’s activity 

 Preceding Job Percent of workdays during 
session 

Percent of workdays during 
user’s activity 

 Think Time from  
Preceding Job 

Number of Unique 
Runtimes 

Percent of IWD sessions 

 Session ID Number of Unique Used 
Processors 

Percent of IWN sessions 

20 Day of Week at arrival Day of Week at arrival Percent of IW sessions 

 Hour of Day at arrival Hour of Day at arrival Percent of BHP sessions 

 Session Class Session Class Percent of BHD sessions 

 User Class User Class User Class 

24 Log ID Log ID Log ID 

Table 41. Column descriptions of Job, Session and User Files in the user-based model dataset 
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 ת ק צ י ר
 
 

הבנת העומס הצפוי על מערכת הוא תנאי הכרחי לקבלת ההחלטות הנכונות בזמן העיצוב 

הפועל בשני , ניתוח עומסים על מחשבים מקבליים הוא תחום מחקרי גדול, לכן. והקונפיגורציה שלה

שהם מודלים סטטיסטיים המבוססים , יםהראשון הוא הבנייה של מודלים של עומס. כיוונים עיקריים

על , מודלים אלו יכולים לשמש ליצירת עומסים מלאכותיים. על הבחנות מלוגים של מחשבים אמיתיים

או ) רמת עומס וכדומה, גודל המחשב(מנת להשוות אלגוריתמים לניהול משאבים תחת תנאים שונים 

  .כדי להפיק תובנות כלליות על השימוש במחשבים אלו

י בניית אלגוריתמים "או ע, ון המחקר השני מנצל מאפיינים סטטיסטיים של עומסים באופן ישירכיו

י בניית אלגוריתמים אדפטיביים או מבוססי חיזוי "יוריסטיים המנצלים את המאפיינים שהתגלו או ע

ססים לומדים או מבוססי חיזוי תמיד מבו, אלגוריתמים אדפטיביים. שלומדים את העומס תוך כדי ריצה

לפי אלו רמזים כדאי ? אלו פרמטרים צריכים להיות אדפטיביים: על מידע קודם משמעותי לגבי העומס

החידוש , פעמים רבות? אלו משתנים הם אלו שעל פיהם כדאי ללמוד את ההיסטוריה? לשנות אותם

  .צלח שלווביצוע מידול מו, העיקרי של אלגוריתמים כאלה היא גילוי מאפיין סטטיסטי חדש של העומס

 –החלופות הבסיסיות לניהול משאבים הן ידועות ומובנות היטב , בתחומים רבים במערכות מחשבים

ורוב שיפורי הביצועים בשנים האחרונות הם תוצאה של כוונון האלגוריתמים כדי לנצל מאפיינים 

,  התזמוןניתן למצוא דוגמאות בתחומי. סטטיסטיים שהתגלו שוב ושוב בלוגים של מחשבים אמיתיים

רפליקציה של מידע , אמת רכות-מערכות זמן, חלוקת עומסים,  מבוזרgridניהול , חלוקת משימות

  .כל התחומים האלה יכולים פוטנציאלית להרוויח מתוצאות מחקר זה. ועוד

, שהתגלה תוך שימוש בטכניקות סטטיסטיות מתאימות, המטרה של מחקר זה היא לספק מידע חדש

למרות שמחקר זה התחיל . מידול עומסים ופיתוח אלגוריתמים מקוונים:  העולמותויכול להועיל לשני

השלב , עם זיהוי מספר מאפיינים סטטיסטיים בלוגים של מחשבים אמיתיים שחסרים במודים הקיימים

אלא פיתוח אלגוריתמים מקוונים שינצלו , הראשון לא היה יצירה של מודל חדש הכולל מאפיינים אלו



 

וכך מהווים , אלגוריתמים אלו מוכיחים את חשיבותם המעשית של המאפיינים החסרים. ומאפיינים אל

 .מוטיבציה לשלב המידול

מתזמנים מקביליים רגישים , ראשית. משתי סיבות, הבעיה האלגוריתמית שנבחרה היא תזמון מקבילי

המתזמן , שנית. ושל) temporal(ובמיוחד לשינויים במבנה העיתי , מאד לשינויים בעומס הניתן להם

זהו רכיב . בעל השפעה דרמטית על הביצועים הכוללים שלו, הוא רכיב מפתח בכל מחשב מקבילי

כך ששיפור שלו מהווה הזדמנות מעשית וזולה , ומודול עצמאי יחסית במערכת ההפעלה, תוכנה בלבד

  .לשדרוג ביצועי המחשב כולו

מוצגות תוצאות על פיהן . וריתמים אדפטיבייםאוסף האלגוריתמים הראשון שפותח במחקר זה הוא אלג

המתזמנים הנמצאים בשימוש נרחב כיום סובלים מפערים גדולים ולא מוסברים בביצועים שלהם בן 

מה שרומז , אלגוריתמי תזמון שונים הם שונים גם במיקום הפערים בביצועיהם, בנוסף. חודשי השנה

מוצגים שני . לה להביא לשיפור ביצועים כוללשבחירת האלגוריתם הנכון בכל פרק זמן בנפרד יכו

הראשון בוחר את המתזמן הפעיל לפי השוואת ביצועים : אלגוריתמים אדפטיביים שמשיגים מטרה זו

שכפי שהמחקר מראה , והשני בוחר לפי רמת המקביליות הממוצעת של עבודות פעילות, בעבר הקרוב

מוצגות תוצאות סימולציה של . זמנים השוניםהיא בעלת מתאם חיובי עם ביצועיהם היחסיים של המת

שמדגימות מאפיינים ייחודיים של המבנה העיתי של , האלגוריתמים האדפטיביים על לוגים אמיתיים

, בנוסף ניתנות קונפיגורציות פרמטרים מיטביות לכל אלגוריתם. העומד על מחשבים מקביליים

 .ת עבור הלוגים שנבדקו ביציבו35%- בביצועים ו10%שמשיגות שיפור ממוצע של 

תגליות מהתקופה האחרונה לגבי . האוסף השני של אלגוריתמי תזמון מבוסס על חיזוי זמן ריצה

backfilling – שהראו ,  מראות שפרסומים קודמים– אופטימיזציה נפוצה בתחום התזמון המקבילי

כדי ) fairness(בהוגנות בעצם שילמו , שדווקא זמני ריצה לא מדויקים מביאים לביצועים טובים יותר

צועים יכול להשיג בי) SJBF) Shortest-Job-Backfill-Firstתזמון , בנוסף. לקבל ביצועים אלו

האינדיקטור הטוב ביותר לחיזוי זמן . עדיפים כשהוא מופעל יחד עם אלגוריתם טוב לחיזוי זמן ריצה

לפיה , ניקת חיזוי פשוטההודגם אמפירית שטכ: ריצה של עבודה חדשה הוא המשתמש המריץ אותה

החציון של שלושת העבודה האחרונות של משתמש משמשות לחיזוי זמן הריצה של העבודה הבאה 

  .מביאה לביצועים טובים משמעותית לעומת מתזמנים קיימים, שלו



 

זהו אלגוריתמים החיזוי הראשון . מחקר זה בנה על תוצאות אלו וחקר חיזוי זמן ריצה מבוסס מושבים

גילינו כי בנוסף לשימוש בעבודות . בכל ההיסטוריה של משתמש כדי לספק זמן ריצה חזויהמשתמש 

יש חשיבות גם לשימוש בעבודות הדומות ביותר לעבודה , מהעבר הקרוב ביותר כדי לבצע חיזוי

אנחנו מציגים גם אלגוריתמי חיזוי למקרה בו נתונה היסטוריה חלקית . החדשה לפי מאפיינים נוספים

וגם למקרה בו לא נתונה הערכת המשתמש לזמן הריצה , שום מידע קודם לגבי עבודות קודמותאו אין 

 .של העבודה החדשה

שלנו , מתזמנים אדפטיביים ומבוססי חיזוי מצטרפים לתוצאות מחקריות נוספות מהשנים האחרונות

יימים של כדי לבנות את הרשימה הבאה של מאפיינים סטטיסטיים החסרים ממודלים ק, ושל אחרים

  :שיש צורך מעשי למדל אותם, עומסים על מחשבים מקביליים

 )Locality of Sampling(לוקליות  .1

 )Self Seimilarity and Long-Range Dependence(דמיון עצמי ותלות ארוכת טווח  .2

 שבועית ומחזוריות יומית .3

 ורך במודל פרמטריצ .4

 מתודולוגיה לשינוי רמת עומס .5

 )Flurries(מידול של אירועים חריגים  .6

  .מידול ישיר של משתמשים .7

, מודל משתמשים: אנחנו טוענים שהפתרון לבעיות אלו יכול להיות מושג על ידי בניית מודל שכבתי

לגישה כזו יש יתרון נוסף . ואחריו מודל עבודות לכל סוג מושב, אחריו מודל מושבים לכל סוג משתמש

 . לגבי התנהגות משתמשים אנושיים במחשבים מקבילייםוהיא קבלת תובנות חדשות

אלו מאפיינים : על ידי מנת תשובה לשתי שאלות בסיסיות, אנחנו מספקים בסיס סטטיסטי למודל כזה

, ובהינתן התשובה לכך? של משתמשים ומושבים הם מרכזיים מספיק כך שיש חשיבות למדל אותם

-ובה לשאלה הראשונה ניתנת תוך שימוש בהתש? אלו סוגים של משתמשים ומושבים קיימים

Principal Component Analysis ,והשנייה ניתנת תוך שימוש ב-K-Means Clustering . אנחנו



 

 מהשונות בין משתמשים ובין מושבים וגם מזהים חמישה 80%-מזהים משתנים המסבירים יותר מ

יתוח מבוסס על לוגים משבעה הנ. סוגים יציבים של מושבים וארבעה סוגים יציבים של משתמשים

ומנתח את המידע מכל המחשבים יחד כדי ,  חודשים87-כולל יותר מ, מחשבים מקביליים שונים

  .להבטיח שהתוצאות נקיות מהשפעות של אתר או ארכיטקטורה מסוימים

מודגם . בניית המודל מתחילה בזיהוי אוסף פרמטרים שניתן להשתמש בהם כדי להבדיל בין מערכות

או את חציון כמות העיבוד ,  ניתן לספק למודל כקלט או את מספר המעבדים במחשב היעדכיצד

  .שדורשת עבודה יחד עם רמת העומס הרצויה או מספר העבודות הממוצע ביום

תבניות ההופעה של משתמשים אנחנו מסיקים ולאחר ניתוח , השלב הבא הוא בניית מודל המשתמשים

שאינה תלויה בפרמטרים או , ספר המשתמשים החדשים בשבועשנכון למדל בנפרד את התפלגות מ

מוצגת גם . התלויה ברמת העומס, ואת מספר המשתמשים הפעילים בתחילת המודל, בהיסטוריה

  .והתלות שלה בפרמטרים ובהיסטוריה, התפלגות החלוקה של משתמשים לארבעת הסוגים

וגילוי שהמשתנים העיקריים , םבניית מודל המושבים מתחילה בניתוח תבנית ההגעה של מושבי

כיוון שמשתמשים רבים לא פעילים . המשפיעים עליה היא הסוג ושבוע הפעילות של כל משתמש

. פעילות ושל מספר המושבים בשבוע בהינתן פעילות- מוצג מודל נפרד של אי, במהלך שבועות שלמים

היו פעילים בתחילת על בסיס מודלים אלו מוסק המודל להערכת שבוע הפעילות של משתמשים ש

ותיקון , המבוסס על מודל מרקובי שונה לכל סוג משתמש, לאחר מכן נבנה מודל סוג המושבים. המודל

על בסיס . נוסף כדי לשקף את השינוי בהתפלגויות סוג המושבים לאורך זמן הפעילות של משתמש

ד עם קווים מנחים יח, בעל שלוש השכבות, אוסף מודלים אלו נבנית ומוסברת תבנית המודל המלא

 .לשימוש בו ויישומים אפשריים הן בתחום המידול והן בתחום האלגוריתמי
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