

Improving Realism and Representativeness of Workloads to

Achieve More Reliable Performance Evaluations

Thesis for the degree of

“Doctor of Philosophy”

By

Netanel Zakay

Submitted to the senate of the Hebrew University of Jerusalem

September 2017

ii

iii

This work was carried out under the supervision of Prof. Dror G. Feitelson.

iv

v

Acknowledgments

With the submittal of this thesis, I complete ten successive years of studying Computer

Science at the Hebrew University of Jerusalem. From my Bachelor degree, through Master,

and now Ph.D. The Journey was not a simple one, but interesting and challenging. It is much

more than acquiring knowledge and experience - it changed the way I think.

I first want to express my appreciation to my parents. My parents are manual laborers. They

did not even finish elementary school. When they raised their own children, however, they had

an ambition that their children will not be the same as they were. They supplied me with

unlimited support and aid whenever I needed. They always encouraged me to prioritize my

education and study hard, and they definitely share every achievement that I will ever

accomplish.

Dror Feitelson is one of the main reasons that I decided to expand my Master thesis into a

Doctorate in the first place. He is much more than a supervisor. Dror is my mentor. Except

being a source of knowledge and advice when I needed, Dror is incredibly patient and

supportive. He made this journey much simpler and I will always thank him for that.

Finally, I want to thank my siblings Efrat, Liat and Sasi. Gil Zaharoni, my best friend, which

was an integral part of the journey. My friends and colleagues. And the Hebrew University for

hosting me for a decade.

vi

vii

Abstract

Improved Realism and Representativeness of Workloads to Improve

Reliability of Performance Evaluations

של עומסי עבודה בכדי להשיג הערכות ביצועים אמינות יותר יותשיפור המציאותיות והייצוג

Student: Netanel Zakay

Supervisor: Prof. Dror G. Feitelson

When a new system design is proposed, it is impractical to experiment with it in production use.

Instead, it is first evaluated in simulation, and only if it demonstrates significant improvements in

performance can it become a candidate for an actual deployment. Reliable simulations are therefore

critical for the choices made in reality.

The performance of a computer system is affected by the workload it handles. Reliable performance

evaluations therefore require the use of representative workloads. As a result, traces of real workloads

are often used to drive simulations of new system designs, because such traces obviously contain all the

structure found in real workloads.

Replaying a trace provides only a single data point of performance for one workload. However, in

many evaluations, several related workloads are needed. For example, in order to compute confidence

intervals, one needs multiple instances of the same basic workload. The common way to satisfy this

need is to create multiple synthetic workloads based on statistical workload models (which, in turn, are

based on the traced data). While models provide the required variability and flexibility for evaluations,

they also suffer from not necessarily including all the important features of the real workload.

To improve the representativeness of evaluation workloads we propose to combine the realism of real

traces with the flexibility of models. This is done by modeling only the part of the workload that needs

to be manipulated, and resampling from the real data to fill in the remaining details [2, 3].

Using such resampling, we can achieve the following: multiple similar workloads (used to compute

confidence intervals), workloads with higher or lower average loads (used to investigate how load

affects system performance), a much longer trace than the original (used to ensure convergence of

evaluation results), and workloads in which rare events such as surges in activity are amplified (used to

investigate the effect of such events).

Importantly, while the resampled workloads differ from the original in length, statistical variation, or

load, they nevertheless retain important elements of the internal structure such as sessions and the

relationship between the sessions and the daily work cycle. They are even found to have the same long-

range dependence structure.

The simulations commonly used to evaluate the proposals of new system designs are trace driven, and

use an open-system model to play back the trace and generate the workload for the evaluation. This

means that new requests are issued during simulation solely according to the timestamps from the trace,

irrespective of the logic behind the behavior of the users and of the system state. Furthermore,

performance in such simulations is measured by the average wait time and slowdown, under the fixed

load and throughput conditions dictated by the trace. They cannot evaluate the system's effect on

throughput and productivity.

viii

Resampling alone does not change this. Using resampled traces in open-system simulations retains the

exact timestamps at which jobs are submitted. But in a real system these times depend on how users

react to the performance of previous jobs, and it is more important to preserve the logical structure of

dependencies between jobs than the specific timestamps.

For this purpose, we first need to understand the users’ behavior. One important characteristic of user

behavior is its temporal pattern. Human users may work for some time, but then they stop and do

something else. The periods of continuous work are called sessions. Data about user behavior is

contained in accounting logs. Unfortunately, these logs only include data about individual jobs. We

analyze different approaches to identify and characterize the users' sessions from a recorded trace [1].

We used this understanding in all the rest of the papers in order to recreate the users’ behavior.

Another important characteristic of user behavior is the workflow. Using dependency information

extracted from traces [4], we show how a simulation can preserve these dependencies. This creates

semi-open trace based simulations that include dynamic user activity and internal feedback from the

system to the users. In these simulations, like in a real system, users adjust their job-submittal behavior

in response to system performance. As a result, the simulations produce different loads and throughputs

for different scheduling algorithms or parametrizations [5]. We also propose the User Priority

Scheduler (UPS) that produces higher throughput when evaluated with semi-open simulations, but

these improvements cannot be observed or analyzed using the conventional open-model simulations.

Open and closed systems are commonly used in analytical modeling for performance evaluations.

However, semi open systems as proposed in [5] are less common, despite being more representative

and appropriate for many systems. Moreover, in open systems the throughput is an input of the

simulation, and cannot be evaluated. Currently the common solution is to use closed-system models,

which are often unrepresentative. As an alternative, we define two models of semi open systems and

analyze their characteristics. We describe their parameters, how to calculate the performance metrics,

and present interactions between the different metrics (e.g. wait time and throughput) for both

approaches. This increases the understanding of semi-open systems and shows their usefulness also

from the analytical modeling aspect. This work, named Models for Evaluating Throughput, is an

unpublished work yet, and is a part of the thesis as well.

Bibliography

[1] N. Zakay and D. G. Feitelson, “On identifying user session boundaries in parallel workload

logs”. In Job Scheduling Strategies for Parallel Processing, W. Cirne et al. (eds.), pp. 216–234,

Springer-Verlag, 2012. Lect. Notes Comput. Sci. vol. 7698.

[2] N. Zakay and D. G. Feitelson, “Workload resampling for performance evaluation of parallel job

schedulers”. In 4th Intl. Conf. Performance Engineering, pp. 149–159, Apr 2013.

[3] N. Zakay and D. G. Feitelson, “Workload resampling for performance evaluation of parallel

job schedulers”. Concurrency & Computation — Pract. & Exp. 26(12), pp. 2079–2105, Aug

2014.

[4] N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics in trace-based

simulation of parallel job scheduling”. In 22nd Modeling, Anal. & Simulation of Comput. &

Telecomm. Syst., pp. 51–60, Sep 2014.

[5] N. Zakay and D. G. Feitelson, “Semi-open trace based simulation for reliable evaluation of job

throughput and user productivity”. In 7th IEEE Intl. Conf. Cloud Comput. Tech. & Sci., pp.

413– 421, Nov 2015.

ix

Letter of Contribution

This thesis is based on the following papers:

1. N. Zakay and D. G. Feitelson, “On identifying user session boundaries in parallel workload

logs ”. In Job Scheduling Strategies for Parallel Processing, W. Cirne et al. (eds.), pp. 216–234,

Springer-Verlag, 2012. Lect. Notes Comput. Sci. vol. 7698.

2. N. Zakay and D. G. Feitelson, “Workload resampling for performance evaluation of parallel job

schedulers ”. In 4th Intl. Conf. Performance Engineering, pp. 149–159, Apr 2013.

3. N. Zakay and D. G. Feitelson, “Workload resampling for performance evaluation of parallel

job schedulers ”. Concurrency & Computation — Pract. & Exp. 26(12), pp. 2079–2105, Aug

2014. This is an extended journal version of the original paper.

4. N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics in trace-based

simulation of parallel job scheduling ”. In 22nd Modeling, Anal. & Simulation of Comput. &

Telecomm. Syst., pp. 51–60, Sep 2014.

5. N. Zakay and D. G. Feitelson, “Semi-open trace based simulation for reliable evaluation of job

throughput and user productivity ”. In 7th IEEE Intl. Conf. Cloud Comput. Tech. & Sci., pp.

413– 421, Nov 2015.

6. N. Zakay and D. G. Feitelson, “Models for Evaluating Throughput”, unpublished.

There are five papers and an unpublished work. In all of them, there are only two authors: Netanel

Zakay and Dror G. Feitelson. In other words, there are no other co-authors or contributors.

x

Contents

1 Introduction 3

2 Identifying User Session Boundaries 15

3 Workload Resampling 37

4 Feedback 67

5 Semi-Open Simulation 79

6 Models for Evaluating Throughput 91

7 Summary 101

1

2 CONTENTS

Chapter 1

Introduction

1.1 Performance Evaluations

Implementing a new system design is a time consuming and highly expensive

project. Depending on the system, it usually requires several teams of engineers

for a long term project. As a result, it is highly important that a new system de-

sign will be implemented only if it demonstrates dramatic improvements over the

current design.

Moreover, due to the amount of time (and therefore also costs) that it takes

to change the design after a first release of the product, it is important to choose

the best design out of a few proposed designs in advance. This creates a need to

evaluate a proposed system design before the actual implementation. This pre-

product evaluations allows us to analyze the proposed system’s improvements over

the current designs, and to improve the system design by considering multiple

options, evaluating them, and choosing the best. This domain, named performance

evaluations, is essential and important part of system designs. It deals with the

challenges of faithful evaluations, which reflect all the complexities of the real

system.

The first approach suggests to use analytical modeling for computer systems

evaluations. These systems designers mathematically model the system, stochas-

tically characterize the workloads and performance goals, and then analytically

derive the performance of the system as a function of workload and input param-

eters. This is based on queuing-theoretic modeling and analysis, including Oper-

ational Laws, Markov Chains (discrete-time and continuous), M/M/1, M/M/k,

M/M/k/k, M/M/∞, MVA for closed system analysis, Burke’s Theorem and

Jackson Product Form [40, 45]. The approach of analytical modeling has two main

drawbacks. The first is the difficulty to model current, complicated systems in

3

4 CHAPTER 1. INTRODUCTION

this way. The second is that some of the common assumptions are incorrect, for

example Poisson distribution of the jobs’ arrivals.

As a result, people tend to use simulations. Simulations are widely used in vari-

ous areas and domains in order to evaluate the performance of new system designs.

They are common for decades in both the industry and the academy. Therefore, im-

proving the reliability of simulations has big impact and leads to better designs and

reduced expenses in many domains. Understanding this, people created new sim-

ulations which are adapted to their own domain. For example, Parsec is a parallel

simulation environment for complex systems [4], NanoNS [31], ns2-MIRACLE [5],

OverSim [7], and Planetsim [29] were proposed as network simulators, CloudSim

[10], CloudGrid [12], and Networkcloudsim [30] for clouds, Alea [36], GroudSim

[47], and Gridsim [9] for grid scheduling and resouce managment, MDCSim [41]

for data centers, Cheddar [57] for general scheduling framework, Multi2Sim [61]

for CPU-GPU comupting, SensorSim [48] for sensor networks, Simflex [64] for

server architecture, Simics [44] for embedded systems, and Feedback control real-

time scheduling for real-time system. In addition, SimGrid is a framework that is

capable to do simulations and emulation for many fields including: HPC, Cloud,

Grid, and Scheduling. Relaying on the strong validation of its network and CPU

models, may simulator are built on top of SimGrid, including some that are de-

signed to study parallel system scheduling.

Modern simulations are complex and composed of several components. We

will focus on a single aspect of this complexity — the workload that the system

receives. While other components of the simulations are researched, developed,

and improved, the workload often went under the radar. The performance of a

computer system is affected by the workload it handles. This means that a sys-

tem design may be highly efficient for certain cases (workloads) but inefficient for

typical usage of the system. Therefore, reliable performance evaluations require

the use of representative workloads. The goal is to analyze the performance in the

typical cases, using representative workloads scenarios, rather than the worst case

scenario. This aims to provide an estimation of the expected performance of the

system when it will be finally deployed.

1.2 Parallel Systems

Our goal is to improve the workload used in simulations to be more representative

and flexible. While our goal is to improve the methodology of general simulations

in any domain, in order to achieve concrete results based on real experiments, we

needed to focus on a certain domain. Therefore, we focus on simulations that

evaluate the performance of the scheduler of a parallel system.

1.2. PARALLEL SYSTEMS 5

Parallel computing is a type of computation in which many calculations or the

execution of processes are carried out simultaneously. Large problems can often be

divided into smaller ones, which can then be solved at the same time. Parallelism

has been employed for many years, mainly in high-performance computing, but

interest in it has grown lately due to the physical constraints preventing frequency

scaling. As power consumption (and consequently heat generation) by computers

has become a concern in recent years, parallel computing has become the dominant

paradigm in computer architecture, mainly in the form of multi-core processors.

There are thousands of parallel supercomputers across the world. They are

owned by governments (such as United States, China, Japan, and more), orga-

nizations and private companies (such as Intel, IBM, Google and Amazon). The

TOP500 list ranks and details the 500 most powerful non-distributed computer sys-

tems in the world. For example, the most powerful supercomputer in the world now

is Sunway Taihulight owned by China. It employs a total of 10,649,600 CPU cores

and supplies up to 93.01 PFLOPS. Next there is Tianhe-2 (China, 33.86 PFLOPS),

Cray Titan (USA, PFLOPS), and Sequoia (IBM, 17.17 PFLOPS). Usually, these

types of system are used primarily for nuclear weapons simulation, security simu-

lations, as well as scientific purposes such as astronomy, energy, lattice QCD, study

of the human genome, and climate change. These supercomputers cost dozens of

millions of dollars, and their maintenance costs millions of dollars per year (only

the energy consumption alone costs a few millions per year). Therefore it is clear

that improving their algorithms, utilization, and power consumption is highly de-

sired. However, this field doesn’t belong only to governments and corporations.

Currently more and more companies build their own parallel system, and use it for

internal uses. For example, running massive tests on programs or hardware.

In parallel computing, a computational task (job) is typically broken down into

several, often many, very similar sub-tasks that can be processed independently,

and whose results are combined afterward, upon completion. When a user of a par-

allel system wants to execute a job on the system, he send it to a certain computer

that serves as the gateway of the system. Each job contains information regarding

the required processors number, the estimated run time, user id, and in some cases

also memory demands. The Scheduler is the component that receives a job, and

decides whether the job will run immediately (and allocate the required processors

for the jobs’ processes) or it will wait until some conditions are met and the job can

run (e.g. another job terminated and there are enough avaible processors to run the

job). These systems usually does not use preemption. Therefore, in order to run

the job, there is a need to allocate a distinct processor for each process.

The most basic scheduler is First Come First Serve (FCFS). It serves the jobs

according to their arrival order. FCFS schedules the longest-waiting job if it can

run (e.g. there are enough available processors). FCFS is usually implemented by

6 CHAPTER 1. INTRODUCTION

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

low load period high load period
future arrivals

unknown

The workload

queued jobsSchedule generated by FCFS

Schedule generated by EASY queued jobs

T

jobs numbered in order of arrival

(backfilled jobs shaded)

1
2

3
4

5

6

10

12

15

8

7

12

14

13 14
1

2
3

4

5

6

7

1
2

3
4

5

6

7

12

14

16

17

18 19

8

8

18

19

15
16

17
1918

10
9

16

9 13
17

11

11

11

10

9
15

13

av
ai

la
bl

e
pr

oc
es

so
rs

av
ai

la
bl

e
pr

oc
es

so
rs

Figure 1.1: Illustration of a sequence of parallel jobs (the workload) and how it

would be scheduled by FCFS and EASY up to time T.

a queue of waiting jobs, enqueuing new jobs that arrive to the system and can’t

run immediately, and dequeuing jobs when they are scheduled. The problem with

FCFS is usually low utilization and long wait times. For example, if the first arrived

job requires many processors and can’t run currently, perhaps another job can be

scheduled meanwhile? This methodology is named backfilling — filling holes in

the first-come first-served order by scheduling jobs from the back of the waiting

jobs queue. This packs the jobs more tightly and optimizes response time and

slowdown. EASY is a common scheduler algorithm, which backfills a job only if

it does not delay the first waiting job’s estimated start time. Figure 1.1 demonstrates

the differences between FCFS and EASY.

We demonstrate our concepts and methodology in a simulation that evaluates

the performance of a new scheduler design for a parallel system. To produce rep-

resentative workloads, we used the Parallel Workload Archive, which contains

recorded traces from large-scale systems around the world. Some logs that we

used often are listed in Table 1.1. Each log contains tens of thousands jobs, with

all the relevant information, including: arrival time, start time, run time, number of

processors, requested run time, user ID, and more. Each log was recorded during

six months to a few years. The logs were analyzed in details and cleaned from

1.3. CONVENTIONAL SIMULATIONS’ WORKLOADS 7

Log name File Period PEs Users Jobs

LANL-CM5 LANL-CM5-1994-3.1-cln 10/94–09/96 1024 213 122,060

SDSC-Par SDSC-Par-1995-3.1-cln 12/94–12/95 400 98 53,970

CTC-SP2 CTC-SP2-1996-2.1-cln 06/96–05/97 338 679 77,222

KTH-SP2 KTH-SP2-1996-2 09/96–08/97 100 214 28,489

SDSC-SP2 SDSC-SP2-1998-3.1-cln 04/98–04/00 128 437 59,725

OSC-cluster OSC-Clust-2000-3.1-cln 01/00–11/01 178 253 36,097

SDSC-BLUE SDSC-BLUE-2000-3.1-cln 04/00–01/03 1152 468 243,314

HPC2N HPC2N-2002-1.1-cln 07/02–01/06 240 257 202,876

SDSC-DS SDSC-DS-2004-1 03/04–04/05 1664 460 96,089

ANL-Intrepid ANL-Intrepid-2009-1 01/09–09/09 163,840 236 68,936

PIK-IPLEX PIK-IPLEX-2009-1 04/09–07/12 2560 225 742,965

CEA-Curie CEA-Curie-2011-2.1-cln 02/12–10/12 93,312 582 312,826

Table 1.1: Logs from the Parallel Workloads Archive

(www.cs.huji.ac.il/labs/parallel/workload/) that were used in this study.

anomalies [25, 26]. This is one of the biggest, most-intensively used workloads

archive for parallel systems.

1.3 Conventional Simulations’ Workloads

The performance of a computer system is affected by the workload it handles. Reli-

able performance evaluations therefore require the use of representative workloads.

This means that the evaluation workload should not only have the same marginal

distributions as the workloads that the system will have to handle in production

use, but also the same correlations and internal structure. As a result, traces of real

workloads are often used to drive simulations of new system designs, because such

traces obviously contain all the structure found in real workloads.

However, replaying a trace only provides a single data point of performance for

one workload. But in many evaluations, several related workloads are needed. For

example, in order to compute confidence intervals, one needs multiple instances of

the same basic workload. Moreover, we often would like to evaluate the system

under different conditions. The common way to satisfy this need is to create mul-

tiple synthetic workloads based on statistical workload models (which, in turn, are

based on the traced data) [34, 6, 43, 58, 62]. While models provide the required

variability and flexibility for evaluations, they also suffer from not necessarily in-

cluding all the important features of the real workload [24, 2]. In fact, they include

8 CHAPTER 1. INTRODUCTION

only those of which the modeler was aware.

The simulations commonly used to evaluate schedulers are trace driven, and

use an open-system model to play back the trace and generate the workload for

the evaluation. This means that new requests get issued during simulation solely

according to the timestamps from the trace, irrespective of the logic behind the

behavior of the users and of the system state. Therefore, the workload may not

reflect the activity of real users in this system, but on the original system.

In open-system models, the throughput and utilization of the system being eval-

uated are dictated by the timestamps. The inability to measure the throughput and

utilization creates a need to use an alternative set of metrics which on one hand can

be affected by the scheduler, and on the other be conjectured to correlate with user

satisfaction. More specifically, the jobs average response time and slowdown are

frequently used in evaluations, But throughput is a more direct measurement of the

user productivity.

1.4 Our Research

Our research’s goal is to improve the evaluations of new system designs, by im-

proving the workload that the simulation handles. This is expected to lead to better

designs at reduced costs. We suggest a new novel ways to create workloads, based

on recorded traces, that provide variability, flexibility, and representativeness of

real users.

The current existing ways to obtain workloads for a simulation are to use either

a recorded trace or statistical workload models. This means that the system de-

signer needs to decide whether to have a single data point that represents realistic

work, or multiple data points such that their representativeness is in doubt. Cur-

rently there is no solution for workloads that are representative on one hand, and

allow variability and flexibility for evaluations on the other hand.

As a solution we propose in Chapter 3 a new approach for creating workloads

named Resampling. Resampling combines the realism of real traces with the flex-

ibility of models. This is be done by modeling only the part of the workload that

needs to be manipulated, and resampling from the real data to fill in the remaining

details. Technically this is done by partitioning workload traces into their basic

components, which proved to be users, and regrouping them in different ways to

achieve the desired effects.

Other problems of the current workloads arise by the use of an open system

model. The base assumption of such simulations is that if we use recorded traces,

the workload will be representative and therefore the performance metrics will

be reliable. However, they dont take into account that traces contain a signature

1.4. OUR RESEARCH 9

of the scheduler that was used on the traced system [54]. In other words, the

users actions are not a universally true workload, but rather reflect their reactions

to the scheduler’s decisions. This means that real users would react differently

to the decisions of the new scheduler. Therefore, when we want to evaluate a

new scheduling policy, and to use a representative workload, the simulation should

reflect user reactions to the evaluated scheduler rather than to the original scheduler.

It is more important to preserve the logic of the users behavior than to repeat the

exact timestamps.

For this purpose, we first needed to understand the users behavior. An impor-

tant characteristic of user behavior is its temporal pattern. Human users may work

for some time, but then they stop and do something else. The periods of continuous

work are called sessions. Data about user behavior is contained in accounting logs.

Unfortunately, these logs only include data about individual jobs. In Chapter 2, we

analyze different approaches to identify and characterize the users’ sessions from

a recorded trace.

Using this understanding, in Chapter 4 we propose a novel feedback-based

simulation. We integrate a feedback from the system to the users with trace-based

simulations, by extracting dependencies from the trace. Given the dependencies,

we adapt the arrival times in the simulations to reflect the users’ reactions to system

performance, while preserving all other properties of the recorded trace, including

the users sessions and think times. The feedback reproduces the fine-grained in-

teractions that naturally exist between the users and the system in reality. This

creates a new workload, that reflects the users’ activity on the simulated system. In

particular, the simulation retains the logical structure of the workload — the users

behavior, as reflected by the think times, sessions, and dependencies between jobs.

Pay attention that these are not preserved in the conventional simulations.

In Chapter 5, we present the combination of Resampling (Chapter 3) and Feed-

back (Chapter 4) into a single complete simulation: the Trace Based User Oriented

Simulation (TBOUS). TBOUS inherits the properties of both its parts: variabil-

ity and flexibility while preserving the recorded data of Resampling, as well as

simulating correctly the users responses to the simulated system design of Feed-

back. Feedback alone simulates a feedback between the user’s jobs. However, the

workload contains all the recorded jobs and runs for the same duration. As a re-

sult, when using Feedback alone the throughput is fixed, regardless of the system

design. The combination between Resampling and Feedback creates a semi-open

system, with dynamic throughput. This means that schedulers that are capable of

motivating their users to submit more jobs will actually cause the users to send their

jobs faster, and therefore lead to higher throughput. This implies that schedulers

will be evaluated with more realistic workloads, and that they can be designed to

improve user satisfaction directly, since their effect on productivity will be reliably

10 CHAPTER 1. INTRODUCTION

evaluated. We also propose a new scheduler, the User Priority Scheduler (UPS),

that improves the throughput when evaluated with TBOUS, but can not be analyzed

correctly using conventional simulations.

Open and closed systems are commonly used in analytical modeling for per-

formance evaluations. However, semi open systems as we proposed in simulations

(e.g. Chapter 5) are less common, despite they might be more representative and

appropriate for many systems. Moreover, in open systems the throughput is the in-

put of the simulation, and can not be evaluated. Currently the common solution is

to use closed-system models, which is often unrepresentative. As an alternative, in

Chapter 6, we define two models of semi open systems and analyze their character-

istics. We describe their parameters, how to calculate the performance metrics, and

present interaction between the different metrics (e.g. wait time and throughput)

for both approaches. This increases the understanding of semi-open systems and

shows their usefulness also from the analytical modeling aspect.

1.5 Related Work

This work touches upon three distinct concerns: the workloads used to evaluate

parallel job schedulers, the simulation methodology, and the policy considerations

of the schedulers.

In terms of workloads, the two most common approaches have been to replay

job traces directly, (e.g. [23, 42, 51]), or else to create statistical models based on

job traces ([34, 43]). Models facilitate the creation of multiple similar workloads,

potentially with controlled variations such as different loads, but they suffer from

not necessarily including all the important features of the real workload [24, 2].

Resampling improves the representativeness of evaluation workloads by modeling

only the parts that need to be manipulated, and using real data to fill in the remain-

ing details [68].

Resampling is a powerful technique for statistical reasoning in such situations,

when not enough empirical data is available [20, 21]. The idea is to use the avail-

able data sample as an approximation of the underlying population, and resample

from it. This enables multiple, quasi-independent samples to be created, which are

then used to compute confidence intervals or other metrics of interest that depend

on the unknown underlying distribution.

We note that while we believe such resampling to be relatively novel in the

context of computer workloads and performance evaluation, analogies from other

fields of computer science do exist. One analogy comes from computer graph-

ics, where texture mapping is often done by replicating a small patch of texture,

with certain variations to give an impression of perspective, conform to lighting

1.5. RELATED WORK 11

conditions, and avoid an obvious tiling effect [39]. More relevant to our work

on workloads, such replication, modification, and patching together has also been

done for temporal signals, such as movement specification [37] and sound [18].

Another analogy comes from the joint time-space analysis of video. Here the idea

is to partition a video into patches, and then replace certain patches with others,

e.g. to reconstruct missing frames or add or remove objects [65]. This technique

can also be used for anomaly detection: if a piece of a new video cannot be re-

constructed from snippets that exist in the system’s database, then it is anomalous

[8].

To the best of our knowledge resampling-based workload manipulations as we

propose here have been used only in few isolated cases, and that in a very limited

manner. The closest related work we know of is the Tmix tool, used for the genera-

tion of networking traffic. This tool extracts communication vectors describing dif-

ferent connections from a traffic log (sequences of hrequestBytes, responseBytes, thinkTimei)
and then replays them subject to feedback from the simulated system’s perfor-

mance [63]. A subsequent paper also mentions the possibility of resampling traces

to create diverse load conditions [32], but their approach is simpler than ours as

they do not use the concept of sessions nor retain phenomena like the daily cycle.

A similar construction was proposed by Krishnamurthy et al. in the context of

evaluating e-commerce systems [38]. In this case they reuse sequences of user op-

erations in order to ensure that illegal sequences are not generated by mistake by

the workload modeling procedure. In the domain of parallel job scheduling, Erne-

mann et al. resize and replicate jobs in order to make a trace suitable for simulations

with a larger machine [22]. Our goal, in contrast, is to use the resampled traces to

perform better and more comprehensive evaluations. Kamath et al. have suggested

to merge several traces and simulate a queueing mechanism in order to increase

load [35]. However, this is limited to load values that are the sums of loads from

existing traces. Ebling and Satyanarayanan created micro-models of application

file behaviors based on a trace, and then combined them stochastically to create

test workloads [19]. Again this is similar in concept; the difference from our work

is that we use snippets of the traced data directly as the elements of workload being

resampled, whereas they create models that risk losing important details. Finally,

Chen et al. use a sequence of short samples of MapReduce workloads to reduce

the volume of a large workload [15, 14]. This sort of sub-sampling makes no at-

tempt to mimic the processes that generate the workload, and may destroy internal

structures, especially if the sample lengths are too short.

There are fields in which timestamps are meaningless when replaying them and

therefore they tend to use Time Independent Traces (TIT) files. An initial trace is

collected with timestamps and later such timestamps are removed from the original

trace. The resulting TIT files are replayed on top of another system configuration

12 CHAPTER 1. INTRODUCTION

with different computing and network models. This technique is mostly used to

evaluate MPI applicaions on new hypothetical HPC machines, For example in [11].

However, this approach is much more aggressive comparing to ours. while it allows

to completely control the jobs/events that are injected in the simulation-system, it

does not attempt to preserve the users’ characteristics such as sessions, think-times

and daily and weekly cycles.

The simulations typically follow an open systems model, where jobs are sub-

mitted by some external population of users. Therefore job arrivals are independent

of system performance and state. But a closed (or partially closed) system model

with feedback may be more realistic [27, 54, 52, 50, 38], as poor performance

may delay the submittal of additional jobs until previous ones have terminated,

and perhaps even discourage users and cause them to submit fewer additional jobs.

According to Spink, “feedback involves a closed loop of causal influences” [59].

Such effects have been discussed in several different areas. In a database context,

Hsu et al. claim that replaying timestamps from a trace loses feedback [33]. Ganger

and Patt recognize the influence of the lack of feedback in simulations of storage

subsystems as part of a larger system, and suggested giving higher priority to crit-

ical requests even if this degrades the performance of the storage system by itself

[28]. In evaluations of networks, the feedback is important in shaping the traffic.

For example, TCP congestion control is highly dependent on current conditions, so

using traced timestamps for packets in simulations is wrong [66, 27]. Also, several

papers dealt with a human user’s feedback effects on the performance of applica-

tions [46, 60, 50, 67]. For example, Yang and Veciana modeled users that aborted

their downloads due to poor performance. Synchronous protocols were shown to

naturally throttle load due to feedback [53, 1]. Finally, in cloud platforms Chen et

al. [13, 3] suggest a new simulation methodology that enforces dependency preser-

vation in the users’ workflows, which is predefined and preserving it is essential in

order to produce the required results.

In order to include feedback in evaluations one needs a model of how users re-

act to load. While direct experimental evidence is rare [17], some works have con-

sidered user tolerance of delays and bandwidth limitations (e.g. [16, 46, 60, 67]).

Shmueli used synthetic workloads with a feedback model and a user-aware sched-

uler designed to exploit this feedback effect [54, 55]. Our work extends those

results in two significant ways. First, we show how to conduct more realistic sim-

ulations (TBUOS) using both feedback and resampling. This retains all the struc-

ture that exists in workload traces, and avoids any potential over-simplifications

that may exist in synthetic workloads. Second, we propose a user-aware scheduler

(UPS) that is not based directly on the feedback model being used. This generalizes

the results and eliminates the risk that they depend on prior knowledge. The UPS

scheduler, based on EASY, has a similar basic structure to Shmueli’s CREASY

1.5. RELATED WORK 13

scheduler [56], but introduces user-based prioritization.

14 CHAPTER 1. INTRODUCTION

On Identifying User Session Boundaries

in Parallel Workload Logs

Netanel Zakay Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract. The stream of jobs submitted to a parallel supercomputer is
actually the interleaving of many streams from different users, each of
which is composed of sessions. Identifying and characterizing the sessions
is important in the context of workload modeling, especially if a user-
based workload model is considered. Traditionally, sessions have been
delimited by long think times, that is, by intervals of more than, say, 20
minutes from the termination of one job to the submittal of the next job.
We show that such a definition is problematic in this context, because
jobs may be extremely long. As a result of including each job’s execution
in the session, we may get unrealistically long sessions, and indeed, users
most probably do not always stay connected and wait for the termination
of long jobs. We therefore suggest that sessions be identified based on
proven user activity, namely the submittal of new jobs, regardless of how
long they run.

1 Introduction

There has recently been increased interest in user-based workload models for
parallel supercomputers [16, 11–13]. Such models are generative in nature. This
means that instead of modeling the statistical properties of the workload, as was
done for example by Jann et al. and Lublin and Feitelson [3, 5], they model the
process by which the workload is generated. As jobs are submitted by users, this
implies the need to model user behavior.

The motivation for using generative user-based workload models is that such
models enable us to include feedback effects in performance evaluations. The
stream of jobs submitted to a parallel supercomputer is the result of an inter-
action between the system and its users. If the system is responsive, users will
submit more jobs. If it performs poorly, users may depart in frustration and
refrain from submitting more jobs. When we evaluate the performance of a new
scheduler design, we need to include such feedback and its effect on user behavior
[11, 13].

An important characteristic of user behavior is its temporal pattern. Human
users may work for some time, but then they stop and do something else. The
periods of continuous work are called sessions. There are usually many more
user sessions during the day than during the night or weekend, leading to the

creation of an overall daily and weekly cycle of activity. Understanding how such
patterns are generated is a basic component in defining a generative workload
model.

Data about user behavior is contained in accounting logs from existing paral-
lel machines, such as those that are available in the Parallel Workloads Archive
[9]. Unfortunately, these logs only include data about individual jobs: when the
job was submitted, when it started to run and when it terminated, how many
processors it used, etc. Importantly, we usually also know the identity of the
user who submitted the job (or at least anonymized identity, in the interest of
preserving privacy). But we do not know when the user started or ended each
session. If we want to characterize this behavior, we need to glean this data based
on the pattern of job submissions.

The common approach to extracting session data is based on the assumption
that users typically wait to see the results of their jobs, and then submit addi-
tional jobs. Thus the user session extends from the submittal of some job till the
termination of that or some later job. Zilber at al. have suggested that breaks
of 20 minutes or more between successive jobs indicate a session break [16], and
others have followed this definition [12].

The problem with this definition is that parallel jobs may be very long.
In some logs we even observe jobs that run for multiple days. Obviously it is
unreasonable to expect the user to remain active for such a long time waiting for
the job to terminate. And indeed we find that sessions defined according to the
above definition may be much longer than is reasonable. We therefore suggest
an alternative approach, whereby sessions are defined based on only explicit user
activity, namely the submittal of new jobs. The times at which the jobs terminate
are ignored.

A basic problem with this line of research is that ground truth is not available
for comparison. In other words, we do not really know when users started or
ended their sessions. We therefore need to make qualitative judgments. Our
main criterion is to look at the distribution of session lengths that is generated
by the analysis, and to reject methods that lead to distributions with obvious
deficiencies (such as sessions that extend over more than a week).

The next section describes the technical details of how sessions may be
defined according to different approaches. Section 3 discusses the selection of
threshold values used to identify session breaks. Section 4 shows how we can
use the distribution of generated sessions to select among two competing ap-
proaches for how to apply the threshold. Section 5 identifies some problems that
occur when using inter-arrival times rather than think times. Finally, Section 6
introduces the notion of using the generated session lengths as a criterion for
accepting or rejecting different approaches.

2 Definition of Sessions and Batches

Intuitively, a session is a period of continuous work by a user. This does not
mean that the user was active 100% of the session’s time. A user may run a job

to completion, think about the result, and then run another job, all within the
same session.

The above description seems to imply sequential work, where jobs in a session
never overlap. Empirical evidence from parallel supercomputer job logs shows
that this is clearly not always the case, and jobs may overlap. Given such an
overlap, the later job cannot depend on the earlier one. Following Shmueli, we
call a set of such independent, overlapping jobs a batch [11]. Thus a session may
contain several batches in sequence, and each batch may contain a number of
jobs. The interval between batches is called the think-time, or TT.

Finding the batches and the sessions of the users is a basic requirement in
order to understand and analyze their behavior. However, activity logs do not
contain explicit information about neither the sessions nor the batches. There-
fore, we need to estimate them based on the data that the logs do contain. The
most relevant information is the job arrival times (also called submit times) and
the job end times. For job i, we will denote these as J [i].arr and J [i].end.

2.1 Definitions Based on Think Times

Assume we scan the jobs in a log one by one. As each job is considered, the
question is whether it belongs to the previous session or batch, or starts a new
session or batch. The simplest and most commonly used approach makes this
decision based on the think time, namely the interval from the termination of
one job to the submittal of the next1:

1. If the think time is negative, the job overlaps the current batch and therefore
belongs to this batch.

2. If the think time is positive but below the session threshold, the job starts a
new batch in the same session as the previous batch. (We discuss the value
of the session threshold in Section 3.)

3. Otherwise, the job starts a new batch in a new session.

Note, however, that we need to be precise regarding how we measure the think
time, and in particular, exactly what job end time do we use as a reference point.
There are two possibilities:

– The end time of the last job that was submitted. With this approach, the
think time of job i will be calculated as

TTLast = J [i].arr − J [i− 1].end

Hereafter we denote this approach by Last.
– The maximal end time among all previous jobs. In this case, the think time

is calculated as
TTMax = J [i].arr −max

j<i
J [j].end

This approach will be denoted by Max.

1 Recall that the conceptual model is that the user submits a job, waits for it to
terminate, and then thinks about the result before submitting the next job.

To appreciate the difference, consider a sequence of 3 jobs. Job 1 is very long.
Job 2 is short and ends much before job 1 ends. Job 3 arrives after job 2 ended,
but still overlaps job 1. In this situation all 3 jobs will be in the same batch
based on Max, but job 3 will start a new batch based on Last. This is illustrated
in Figure 1.

Last

Max

Arrival Time

Time

Time

Time

Fig. 1. Batches according to the three approaches: Last, Max, and Arrival.

2.2 Definition Based on Inter-Arrival Times

Another approach to define sessions is according to the arrival times of the jobs,
or rather, the inter-arrivals (to be denoted by Arrival). In this approach, the
current job would belong to the same session as previous jobs if it arrives up
to the session threshold time after the arrival of the previous job in the session.
In other words, if the inter-arrival time is longer than the session threshold,
we decide that this represents a session break. Once the jobs are partitioned
into sessions using this approach, we partition each such session into batches
according to the Max approach.

An example showing the effect of this procedure is shown in Figure 1. The
four jobs in the middle all overlap, and are considered to be the same batch by
both Last and Max. But there is a relatively large gap between the arrival of the
first pair and the arrival of the second pair. If this gap is bigger than the session

threshold, the two pairs will be in different sessions according to Arrival, and as
a result also in different batches.

The reason for using Max to partition a session into batches is as follows.
Consider how the end of a batch is defined. If batch A comes a certain TT after
batch B according to Max, then it will start only TT time after all the jobs in
B are finished. But according to Last, it will start TT time after the last job
in B has finished, while other jobs from B may still be running. Shmueli indeed
used the last job as the critical one [13]. However, this definition is problematic,
because it means that the future activity of the user depends only on the last
job in each batch, while the other jobs don’t effect the future activity at all. This
seems very unrealistic. A simple example of the problem is that it is very easy to
create a scheduler that reduces both the user’s wait-times and the overall system
utilization by running the last job of each user last, thereby causing the user to
wait a long time before submitting more jobs. Alternatively, one can construct a
scheduler that would increase both the wait-times and the utilization by handling
the last job of each user first. To avoid such problems, we prefer Max.

We note that Max creates a sequence of batches with no overlaps. In Last they
may overlap, but the dependencies between batches are still a linear sequence.
In Arrival a batch may depend on multiple earlier batches.

In the area of parallel supercomputer workloads, the common way to define
sessions uses the end time (meaning Last or Max). For example Zilber et al. and
Shmueli use Last [16, 12]. But in other areas, where job durations are extremely
short, it is more common to define sessions based on arrivals. An example is
interactive web use (surfing, searching, or e-commerce) [1, 2, 4, 7, 8, 10, 15]. Of
course, due to the very short time it typically takes to process a request on
the web, requests never overlap. Therefore Last, Max, and Arrival are actually
equivalent in this case.

In the next sections we will discuss the session threshold for each approach
and the influence of the choice of this unique value. Additionally, we will present
a comparison between the Max and Last approaches. Later, we will investigate
the session lengths produced by the different approaches, and conclude that
Arrival is the best approach to use.

3 Selecting a Session Threshold Value

The dominant methodology to extract session data from activity logs is to pos-
tulate a certain threshold value, and assume that breaks in activity which are
longer than this threshold represent a division between separate sessions. Such
a threshold exists in all three approaches: Last, Max, and Arrival. The main dif-
ference between these definitions is the time interval that we compare to the
threshold. In Arrival this interval starts at the arrival of the last job, in Last at
the end of the last job, and in Max at the maximal end time among previous
jobs. The threshold value that is chosen may have a strong effect on the resulting
session properties [1]. In this section we will consider how to select the threshold
value for each approach, and consider its influence on the sessions.

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

12000

inter arrival time (in minutes)

nu
m

be
r

of
 jo

bs

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

inter arrival time (in minutes)

nu
m

be
r

of
 jo

bs

Fig. 2. The distribution of inter-arrival time in the SDSC-BLUE and SDSC-DS logs.

As mentioned above, Last and Max are both popular approaches in this area.
Therefore, many previous works have considered the selection of the the thresh-
old value for them. The commonly used value is 20 minutes, because this seems
to capture the majority of think times. For example, Zilber et al. and Shmueli
[16, 12] used this threshold value.

As far as we know, there has been no previous work concerning the selection
of a threshold on inter-arrival times for parallel workloads. Several different
values have been used in the context of web workloads, including 30 minutes
[2, 7], an hour [14], and even two hours [8]. To find what value would make
a suitable threshold for our parallel workloads, we calculated the distribution
of inter-arrival times for different logs available from the Parallel Workloads
Archive [9]. Thus, for each user we found the difference between the arrival
times of each pair of successive jobs. We ignored values that were above a day
(1440 minutes), because such long intervals obviously defy the notion of a single
session. Examples of the resulting distributions are shown in Figure 2. CDFs2

2 The Cumulative Distribution Function (CDF) is the integral of the probability den-
sity function (pdf). For each value x, it gives the probability of observing values that
are smaller than or equal to x. In the case of empirical data, it is the fraction of
samples that are smaller than or equal to x.

0 500 1000 1500
0

0.5

1

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

0 500 1000 1500
0

0.5

1

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

Fig. 3. CDFs of inter-arrival times in the SDSC-SP2 and KTH-SP2 logs.

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

Fig. 4. Zoom in on the CDFs of inter-arrival times for the SDSC-BLUE and SDSC-DS
logs.

are shown in Figure 3 and Figure 4. In all these figures we added a vertical line
at 60 minutes (1 hour), which is the threshold we eventually chose.

Our goal was to find the point in the distribution where the derivative doesn’t
changed much any more. From Figure 2 it appears that any value between ap-
proximately 25 minutes and 200 minutes will be logical. However, for values
below 40 one can still observe an obvious drop in the distribution. This is even
clearer in the CDF (and especially in the figures with zoom in). In the range of
100 to 200 minutes the slope is already very low, and therefore we would prefer a
lower value for the threshold. We concluded that the value ought to be between
40 minutes to 100 minutes. We chose 60 minutes as it is in the middle of this

range and is a round value (one hour). We do not claim this is necessarily the
best value, but it seems that there is no other value that is obviously better.

Selecting a session threshold has a strong impact on the resulting analysis. If
we were to select a higher threshold, jobs with longer intervals will nevertheless
be grouped together. As a result the number of jobs in each session would grow
and the number of sessions would decrease. In the following sections we provide
an in-depth analysis of the implications of the selected session threshold values,
mainly in terms of the distribution of session lengths.

4 Comparing Last and Max Using the Think-Time

Distribution

As we mentioned above, the most common definition of sessions is based on
think times, using Last or Max. In this section we investigate which definition
leads to a more reasonable think time distribution. The problem is that we do not
know what the think time distribution should be. We circumvent this problem as
follows. First, we identify the batches according to both approaches separately,
and calculate the think times. Then we create a list that contains the common
batches (batches that are exactly the same according to both approaches). Based
on this list, we extract the think times following these common batches. This
provides us with two lists of think times: CommonTTMax and CommonTTLast.
Note that the common batch think times may be different because the think
times are defined differently in each approach. In Last, the think time is measured
from the end of the last job, whereas in Max it is the maximal end time of all
jobs. But we expect the distributions to be close, which indeed they are.

Given the agreement on the common batches, and the similarity of their
think time distributions, we take this to represent the “real” distribution of
think times. The remaining think times, that we didn’t put in the common
lists, represent the differences between think times of batches that were created
according to Last and Max. Therefore, we would prefer the approach for which
the distribution of unique think times is similar to the distribution of common
think times.

The resulting distributions are shown in Figure 5. The first obvious conclu-
sion from the graphs is that our expectation that the distributions for common
batches shared by Max and Last would be very close to one another was correct.
It is also quite clear that the distribution for unique batches as identified by
Last is much closer to the common distributions than the distribution for unique
batches as defined by Max. It is true that the distribution for Max is closer for
larger values, but in most of the range, Last is a lot closer. We concluded that
Last creates a more realistic distribution of think times. This supports the use
of Last by Zilber et al. [16], Shmueli [12], and others.

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

think time (in seconds)

 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

Last

Max

commonLast

commonMax

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

think time (in seconds)

 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

Last

Max

commonLast

commonMax

Fig. 5. Comparison between distributions of think times in the SDSC-BLUE and
SDSC-DS logs.

5 Artifacts in the Distribution of Session Lengths with

Arrival

According to the work of Mehrzadi, using the Arrival approach may lead to
artifacts in the distribution of session durations [6]. Specifically, he shows that
in web search data the distribution of session lengths exhibits a pronounced drop
exactly at the threshold value that was used to define the sessions. In order to
check this, we examined the distribution of session durations for each of the three
approaches. Due to the large number of very short sessions, we ignore sessions
of up to 2 minutes. The results are shown in Figure Figure 6 for Last, Figure 7
for Max, and 8 for Arrival.

Upon examination of the graphs, we found that Last and Max behave very
similarly, but Arrival is indeed different. According to the Max and Last ap-
proaches, the distribution of session lengths is essentially the same for different
threshold values. The difference in heights is due to the fact that larger thresh-
olds lead to a smaller number of sessions, but the behavior of each graph is the
same. In addition, for all values, there are no obvious discontinuities.

In contrast, with the Arrival approach it is easy to notice a sharp drop in
the distribution at the threshold value, exactly as had occurred in Mehrzadi’s

10
0

10
2

10
40

200

400

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

10
0

10
2

10
40

500

1000

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

Fig. 6. Distribution of session lengths as created by Last, for the KTH-SP2 and SDSC-
SP2 logs.

10
0

10
2

10
40

200

400

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

10
0

10
2

10
40

500

1000

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

Fig. 7. Distribution of session lengths as created by Max, for the KTH-SP2 and SDSC-
SP2 logs.

10
0

10
2

200

400

600

800

1000

session length
se

ss
io

ns
 n

um
be

r

10m
20m
60m

10
0

10
2

10
40

500

1000

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

Fig. 8. Distribution of session lengths as created by Arrival, for the KTH-SP2 and
SDSC-SP2 logs. Arrows denote threshold values.

data. In particular, each specific threshold value changes the distribution of
session lengths in a different way (see arrows). However, this effect is reduced
when we increase the value of the threshold. This is more evident in Figure 9.
In this figure we ignored all session lengths below 9 minutes, and present the
histogram without any connecting lines for clarity. With a 10 minute threshold
the discontinuity is very significant. For 20 minutes the discontinuity is smaller
(but still noticeable). With 60 minutes the drop becomes a step. It is worth
mentioning that in some logs (although not in most) there is a clearer drop for
60 minutes, yet rather less dramatic than for 20.

In conclusion, we find that the Arrival approach is sensitive to the threshold
value, although with large values (like the one we chose) the effect is rather
small.

6 The Problem of Very Long Sessions

The graphs in Figures 6 and 7 show that with Last and Max most sessions
are short, and few sessions are very long, possibly unrealistically so. However,
it is impossible to see the details. In order to emphasize the long sessions we
calculated the survival function3, and present the results in Figure 10. This
shows that when using the Last approach, approximately 13.5% of the session

3 The survival function is the complement to the CDF: for each value x, it gives the
probability of observing values that are larger than x.

10
0

10
1

10
2

10
30

100

200

300

session length

se
ss

io
ns

 n
um

be
r

10
0

10
1

10
2

10
30

50

100

150

200

session length

se
ss

io
ns

 n
um

be
r

10
0

10
1

10
2

10
30

50

100

session length

se
ss

io
ns

 n
um

be
r

Fig. 9. Detailed view of discontinuities in the histogram of session lengths, using the
Arrival approach, with thresholds of 10m (top), 20m (middle), and 60m (bottom), for
the KTH-SP2 log.

lengths are longer than 103 minutes (16 hours) in the SDSC-BLUE log, and
17.7% are longer than this value in the SDSC-DS log. With the Max approach,
the percentages are a little higher: 15% in SDSC-BLUE and 19.5% in SDSC-
SP2. In addition, one may notice that the maximum session length is above 105

minutes (approximately 70 days) in both logs.

Recall that a session is supposed to represent the time period when the user is
active at the computer (the interval from when the user begins to work and until

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

su
rv

iv
al

 p
ro

ba
bi

lit
y

sessions length

Last

Max

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

su
rv

iv
al

 p
ro

ba
bi

lit
y

sessions length

Last
Max

Fig. 10. The survival function of session lengths in the SDSC-BLUE and SDSC-SP2
logs, using log-log axes.

he is done working). Therefore, session lengths above 104 minutes are impossible.
In addition, even sessions of 16 hours are not reasonable. It should be very rare
that a user would work this long continuously, yet still the results show that
more than 13% of the sessions are that long. This is very unlikely.

The reason both approaches create sessions that are far too long so many
times is that both are based on a wrong assumption. This is the assumption
that all work is interactive. With interactive work, it is reasonable to assume
that the users wait for the termination of each job, think for a while, and then
send the next jobs. But on parallel supercomputers at least some of the work is
not interactive. In particular, this is the case for very long jobs that run for many
hours or even days. Including these very long jobs within the session, as is done
by both Last and Max, then leads to unrealistically long sessions. For example,
if a user sends out a job that takes 5 days, and after 3 days sends another job
to the system, both approaches will put these two jobs into the same session,
although the user most probably wasn’t active in the system this whole time.
The same problem may also occur on a smaller scale of a hew hours. If there
are jobs that run during a break in the user’s activity in the middle of the day
(for example, during meetings or lunch), these jobs may overlap new work done

after the user returns. Therefore, instead of a few short sessions of a couple of
hours scattered along the day, we would get one long session — from the first
job the user submits in the morning until after he goes home at night.

In order to avoid such problems, we suggest alternative versions of Last and
Max which we call Last+Cut and Max+Cut. In these versions we define a new
threshold value, called the Cut. Then, we use each job’s arrival time plus Cut as
its effective end time, instead of using the real end time, provided it is shorter.
This means that if a job ends within Cut time from its arrival, we measure the
think time from its end time without change. Otherwise, we use its arrival time
+ Cut as the start of the think time. Assuming a session threshold of T minutes
we then have:

– Last+Cut: A job will belong to the current batch if it arrives before the
arrival time of the last job + Cut + session-threshold (or the end time +
session-threshold):

J [i].arr ≤ min{ J [i− 1].end, J [i− 1].arr + Cut }+ T

– Max+Cut: A job will belong to the current batch if it arrives before the
maximum of the arrival times of all the jobs in the batch + Cut + session-
threshold (or with end times):

J [i].arr ≤ max
j<i

[min{ J [j].end, J [j].arr + Cut }] + T

The results of using these approaches are shown in Figure 11. We checked
three different values for Cut: 30 minutes, 1 hour, and 2 hours. (Last, Max,
and Arrival are also included for comparison.) As expected, in all 3 cases the
problem of overly long sessions is largely eliminated. Also, the difference between
Max+Cut and Last+Cut with the same threshold is very marginal. Therefore we
will distinguish between the Cut approaches only according to the threshold. In
the SDSC-BLUE log, the fraction of sessions longer than 103 is a little more
than 10−3 with a large Cut value of 2 hours, but with 1 hour or 30 minutes this
fraction is only a little higher than 10−4 (approximately 10−3.9). In the SDSC-
SP2 log, this fraction is approximately 10−3.4 with a 2 hours Cut, 10−3.7 with
1 hour, and 10−3.9 with 30 minutes. The value of the maximum session length
is also dramatically decreased in the Cut approaches: down to 2600 minutes (43
hours) in the SDSC-BLUE log and less than 2000 minutes (33 hours) in the
SDSC-SP2 log.

The conclusion is that the Cut approach creates more realistic session lengths.
The longest sessions still seem to be too long, lasting nearly 2 days, but still this
is much better than the sessions that last for more than 2 months we had before.
While unreasonable for humans, such long sessions may be due to a short script
or a number of people who might have replaced each other on the computer,
sending the jobs through the same user name. In addition, the percentage of
long sessions has dropped. Only a very small percentage of the sessions were
more than 1000 minutes (16 hours) long, in comparison to 13% or more with
the original Last and Max.

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

session length (in minutes)

su
rv

iv
al

 p
ro

ba
bi

lit
y

Arrival

Last

MAX

Last With 30M−cut

Max with 30M−cut

Last With 1H−cut

Max with 1H−cut

Last With 2H−cut

Max with 2H−cut

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

session length (in minutes)

su
rv

iv
al

 p
ro

ba
bi

lit
y

Arrival

Last

MAX

Last With 30M−cut

Max with 30M−cut

Last With 1H−cut

Max with 1H−cut

Last With 2H−cut

Max with 2H−cut

Fig. 11. The survival function of session lengths according to all the different ap-
proaches, for the SDSC-BLUE log and the SDSC-SP2 log.

However, although the length of the sessions in the Cut approaches are more
realistic, the effect of the Cut value on the distribution is enormous: There is a
very sharp drop in the graph at the point of the Cut value. In order to examine
this effect, we created histograms of the session lengths generated by Last+Cut

and Max+Cut. These are presented in Figure 12. It is easy to see that the Cut
values produce a very significant mode in the distributions. The reason for these
modes is as follows. For all the sessions with one job, if the job ends before the
Cut value, the length will be the end time minus the arrival time. This part of
the distribution will be continuous. But if the job ends after the Cut Value, the
length will be the equal to the Cut value. Therefore, many sessions will receive
the Cut value length.

The bottom line is that Last and Max remain problematic. In the original ver-
sion, they create sessions that are way too long. Introducing the Cut heuristic
leads to a strong artifact in the distributions of session lengths. Hence, the only
logical approach is to use the Arrival approach. It is equivalent to the Cut ap-

10
0

10
2

10
40

5000

10000

15000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

10
0

10
1

10
2

10
30

2000

4000

6000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

10
0

10
2

10
40

5000

10000

15000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

10
0

10
1

10
2

10
30

2000

4000

6000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

Fig. 12. Histograms of session lengths generated by Last+Cut (top) and Max+Cut

(bottom) using the SDSC-DS and KTH-SP2 logs (left and right).

proach, where Cut=0, and with a larger session-threshold (60m instead of 20m).
(Note that if the Cut value is 0, then Max+Cut is equivalent to Last+Cut.)

The Arrival approach produces realistic session lengths similar to the Cut
approaches, But in addition, the distribution is smooth with no modes that de-
pend on parameter values. Therefore, it seems that this approach creates the
most sensible distribution of session lengths. We conclude that the Arrival ap-
proach, especially with a relatively long session threshold of 1 hour, is the most
promising approach to delimit sessions.

7 Results with the Arrival Approach

Due to the fact that it is innovative and uncommon to use the Arrival approach
to define sessions in parallel workloads, we present a few details and distributions
of sessions and batches.

First, we present the number of jobs, batches, and sessions in Table 1. In all
of the logs the ratios are very similar. On average, the number of jobs is a little
less than twice the number of batches, and the number of batches is a little less

Log Jobs Batches Sessions

SDSC-SP2 54,051 32,614 18,730
SDSC-DS 85,003 41,679 24,294
KTH-SP2 28,489 16,488 10,303
SDSC-BLUE 223,407 136,460 58,311

Table 1. Number of jobs, batches, and sessions in the main logs.

10
0

10
1

10
2

10
30

0.5

1

number of batches in a session

 c
um

ul
at

iv
e

fr
ac

tio
n

 o
f s

es
si

on
s

KTH

BLUE

SDSC−SP2

SDSC−DS

Fig. 13. CDF of the number of batches in a session.

10
0

10
1

10
2

10
30

0.5

1

number of processes in a batch

 c
um

ul
at

iv
e

fr
ac

tio
n

 o
f b

at
ch

es

KTH

BLUE

SDSC−SP2

SDSC−DS

Fig. 14. CDF of the number of jobs in a batch.

10
0

10
1

10
2

10
30

0.5

1

number of processes in a session

 c
um

ul
at

iv
e

fr
ac

tio
n

 o
f s

es
si

on
s

KTH
BLUE
SDSC−SP2
SDSC−DS

Fig. 15. CDF of the number of jobs in a session.

than twice the number of sessions. Additional data on batches and sessions are
presented in Figure 13, Figure 14, and Figure 15. A very important observation
is that generally more than 50% of the sessions and 75% of the batches contain
only one job. This means that when users work with supercomputers, most of
the time they send out a single job and then stop their interaction with the
computer for a while. However, it is important to note that some sessions have
very many jobs, so the distribution is skewed, and most jobs do not constitute
single-job sessions.

8 Conclusions

A summary of the methods that can be used to identify sessions when analyzing
parallel workloads is given in Table 2.

Approach Issues

Last

Max

}

excessively long sessions

Last+Cut

Max+Cut

}

strong peak at cut value

Arrival peak at threshold value
many zero-length sessions

Table 2. Summary of approaches and their effect on the session length distribution.

The most common approach is to use the Last and Max approaches. These
approaches are based on setting a threshold on think times: if the think time is
long, this is assumed to be a break between sessions. However, these approaches
occasionally cause extremely long sessions, due to the fact that some of the jobs
running on such systems are extremely long.

A possible improvement is to use Last+Cut or Max+Cut. This eliminates
the very long sessions, at the price of producing a strong peak in the distribu-
tion of session length at the value of the cut threshold being used. This is also
undesirable.

The alternative is to use the Arrival approach, as in commonly done in other
domains, such as the analysis of web workloads. In this approach, inter-arrival
times are used. If the inter-arrival is longer than some threshold, a session break
is assumed. The main problem with this approach is that long sessions may not
be identified correctly, and again a peak in the distribution is created at the
value of the threshold being used. However, the size of this peak decreases with
increasing threshold values. We suggest to use a threshold of 1 hour. With such
a threshold the peak in the distribution of session lengths is very small.

The obvious deficiency with the above is that it is based on common sense,
not on data. A desirable avenue for future work is therefore to conduct a user
study in which the actual activity patterns of users are followed, and this is
correlated with their job submittal patterns.

Acknowledgments

Many thanks to all those who have made their workload data available through
the Parallel Workloads Archive.

References

1. M. Arlitt, “Characterizing web user sessions”. Performance Evaluation Rev. 28(2),
pp. 50–56, Sep 2000.

2. D. Downey, S. Dumais, and E. Horvitz, “Models of searching and browsing: Lan-

guages, studies, and applications”. In 20th Intl. Joint Conf. Artificial Intelligence,
pp. 1465–1472, Jan 2007.

3. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Modeling

of workload in MPPs”. In Job Scheduling Strategies for Parallel Processing, pp.
95–116, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

4. B. J. Jansen, A. Spink, C. Blakely, and S. Koshman, “Defining a session on web

search engines”. J. Am. Soc. Inf. Sci. & Tech. 58(6), pp. 862–871, Apr 2007.

5. U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: Mod-

eling the characteristics of rigid jobs”. J. Parallel & Distributed Comput. 63(11),
pp. 1105–1122, Nov 2003.

6. D. Mehrzadi and D. G. Feitelson, “On extracting session data from activity logs”.
In 5th Intl. Syst. & Storage Conf., Jun 2012.

7. D. A. Menascé, V. A. F. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and
W. Meira Jr., “A hierarchical and multiscale approach to analyze E-business work-

loads”. Performance Evaluation 54(1), pp. 33–57, Sep 2003.

8. A. L. Montgomery and C. Faloutsos, “Identifying web browsing trends and pat-

terns”. Computer 34(7), pp. 94–95, Jul 2001.

9. “Parallel workloads archive”. URL http://www.cs.huji.ac.il/labs/parallel/workload/.

10. B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed: A cau-

tionary tale”. In 3rd Networked Systems Design & Implementation, pp. 239–252,
May 2006.

11. E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the per-

formance of parallel system schedulers”. In 14th Modeling, Anal. & Simulation of

Comput. & Telecomm. Syst., pp. 167–176, Sep 2006.

12. E. Shmueli and D. G. Feitelson, “Uncovering the effect of system performance on

user behavior from traces of parallel systems”. In 15th Modeling, Anal. & Simula-

tion of Comput. & Telecomm. Syst., pp. 274–280, Oct 2007.

13. E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-systems

schedulers: Are we doing the right thing?” IEEE Trans. Parallel & Distributed

Syst. 20(7), pp. 983–996, Jul 2009.

14. E. Shriver and M. Hansen, Search Session Extraction: A User Model of Searching.
Tech. rep., Bell Labs, Jan 2002.

15. C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis of a very large

web search engine query log”. SIGIR Forum 33(1), pp. 6–12, Fall 1999.

16. J. Zilber, O. Amit, and D. Talby, “What is worth learning from parallel workloads?

a user and session based analysis”. In 19th Intl. Conf. Supercomputing, pp. 377–
386, Jun 2005.

`

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 00:1–27
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Workload Resampling for Performance Evaluation
of Parallel Job Schedulers

Netanel Zakay Dror G. Feitelson∗

The Rachel and Selim Benin School of Computer Science and Engineering
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

SUMMARY

Evaluating the performance of a computer system is based on using representative workloads. Common
practice is to either use real workload traces to drive simulations, or else to use statistical workload models
that are based on such traces. Such models allow various workload attributes to be manipulated, thus
providing desirable flexibility, but may lose details of the workload’s internal structure. To overcome this, we
suggest to combine the benefits of real traces and flexible modeling. Focusing on the problem of evaluating
the performance of parallel job schedulers, we partition the trace of submitted jobs into independent
subtraces representing different users, and then re-combine them in various ways, while maintaining features
like long-range dependence and the daily and weekly cycles of activity. This facilitates the creation of longer
workload traces that enable longer simulations, the creation of multiple statistically similar workloads that
can be used to gauge confidence intervals, the creation of workloads with different load levels, and increasing
the frequency of specific events like large surges of activity. Copyright c© 2013 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Workload trace; Resampling; Simulation

1. INTRODUCTION

The performance of a computer system is affected by the workload it handles. Reliable performance

evaluations therefore require the use of representative workloads. This means that the evaluation

workload should not only have the same marginal distributions as the workloads that the system

will have to handle in production use, but also the same correlations and internal structure. As a

result, traces of real workloads are often used to drive simulations of new system designs, because

such traces obviously contain all the structure found in real workloads.

Replaying a trace provides only a single data point of performance for one workload. But in many

evaluations, several related workloads are needed. For example, in order to compute confidence

intervals, one needs multiple instances of the same basic workload. The common way to satisfy this

need is to create multiple synthetic workloads based on statistical workload models (which, in turn,

are based on the traced data) [23, 2, 31, 39, 43]. While models provide the required variability and

flexibility for evaluations, they also suffer from not necessarily including all the important features

of the real workload [18, 1] — in fact, they include only those of which the modeler was aware.

To improve the representativeness of evaluation workloads we propose to combine the realism

of real traces with the flexibility of models. This will be done by modeling only the part of the

workload that needs to be manipulated, and resampling from the real data to fill in the remaining

∗Correspondence to: feit@cs.huji.ac.il

Copyright c© 2013 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 N. ZAKAY AND D. G. FEITELSON

Table I. Logs from the Parallel Workloads Archive (www.cs.huji.ac.il/labs/parallel/workload/) that were
used in this study.

Log name File Period PEs Users Jobs

LANL-CM5 LANL-CM5-1994-3.1-cln 10/94–09/96 1024 213 122,060
SDSC-Par SDSC-Par-1995-3.1-cln 12/94–12/95 400 98 53,970
CTC-SP2 CTC-SP2-1996-2.1-cln 06/96–05/97 338 679 77,222
KTH-SP2 KTH-SP2-1996-2 09/96–08/97 100 214 28,489
SDSC-SP2 SDSC-SP2-1998-3.1-cln 04/98–04/00 128 437 59,725
OSC-cluster OSC-Clust-2000-3.1-cln 01/00–11/01 178 253 36,097
SDSC-BLUE SDSC-BLUE-2000-3.1-cln 04/00–01/03 1152 468 243,314
HPC2N HPC2N-2002-1.1-cln 07/02–01/06 240 257 202,876
SDSC-DS SDSC-DS-2004-1 03/04–04/05 1664 460 96,089
ANL-Intrepid ANL-Intrepid-2009-1 01/09–09/09 163,840 236 68,936
PIK-IPLEX PIK-IPLEX-2009-1 04/09–07/12 2560 225 742,965
CEA-Curie CEA-Curie-2011-2.1-cln 02/12–10/12 93,312 582 312,826

details. Technically this is done by partitioning workload traces into their basic components and

re-grouping them in different ways to achieve the desired effects.

The domain of our work is parallel job scheduling. Parallel systems are increasingly relevant

today, with the advent of multi-core processors (parallelism on the desktop), clusters and blade

servers (parallelism at the enterprise level), and grids and clouds (parallelism across multiple

locations). The jobs that run on parallel systems are composed of multiple processes that need

to run on distinct processors (in large clusters and supercomputers the number of processes and

processors can be in the thousands). When a job is submitted the user specifies how many processors

are needed, and often also for how much time. The scheduler then determines the order in which

jobs will be executed, and which processors will be allocated to each one. Accounting logs from

large-scale systems are available in the Parallel Workloads Archive [20], and provide data about the

workloads they served. In particular, logs typically contain information about the submit time of

each job, it’s runtime and number of processes, the user who submitted it, and more. These logs can

therefore be used to simulate the behavior of new scheduler designs and compare them with each

other. The logs we use in this work are listed in Table I. Most of the results that we present in this

paper use the more recent and relevant logs. However, two logs (SDSC-Par and PIK-IPLEX) do not

have an estimated running time, and are therefore excluded from simulations where it is needed.

OSC-cluster is also often skipped due to its very low load.

In the context of parallel job scheduling, we suggest that the resampling be done at the level of

users. We first partition the workload into individual subtraces for the different users, including all

the jobs submitted by each user throughout the tracing period. We then sample from this pool of

users to create a new workload trace. Using such resampling, we can achieve the following:

• Create a much longer trace than the original, and use it to ensure convergence of evaluation

results.

• Create multiple similar workloads, and use them to compute confidence intervals.

• Create workloads with higher or lower average loads, by using more or less concurrently

active users, and use them to investigate how load affects system performance.

• Create workloads in which rare events such as surges in activity are amplified, and use them

to investigate the effect of such events.

Importantly, while the resampled workloads differ from the original in length, statistical variation,

or load, they nevertheless retain important elements of the internal structure such as sessions and the

relationship between the sessions and the daily work cycle. They are even found to have the same

long-range dependence structure.

Workload manipulations are an important tool in the performance analyst’s toolbox, that has

not received its due attention in terms of methodological research. As a result, inappropriate

manipulations are sometimes used, which in turn has led to some controversy regarding whether

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 3

any manipulations of real workloads are legitimate. By increasing our understanding of resampling-

based manipulations we hope to bolster the use of this important tool, allowing new types of

manipulations to be applied to workload traces, and enabling researchers to achieve better control

over their properties, as needed for different evaluation scenarios.

In the rest of this paper we describe this promising approach to using workload traces and

demonstrate its effectiveness. The next section further explains the motivation for using resampling.

In Section 3 we consider different resampling granularities, and justify the decision to do so at the

level of all the activity of each user. Section 4 explains how the resampling is done in considerable

detail, including the proposed distinction between long-term and temporary users, and Section 5

validates the process by showing that the generated workloads have the same statistical properties

as the original. Section 6 then demonstrates the use of resampling to achieve the objectives listed

above, and also suggests some additional potential uses, and we conclude in Section 7.

This paper extends a previous conference version [47]. The main additions are the verification

that resampling retains the self-similarity of the workloads, the use of resampling to over-sample

rare events such as flash crowds and evaluate their impact, and the addition of more examples to the

experimental results including the use of two new recent workload logs.

2. WHY USE RESAMPLING

The Parallel Workloads Archive includes more than 20 workload traces from different systems, but

this may not always suffice. Some of the traces may not be appropriate for certain system types (for

example, throughput-oriented systems often allow only serial jobs). Some traces are dated and may

not represent present practices. Evaluations may require certain attributes that are not available in

the archive, e.g. a series of workloads whose loads differ by 5%. Even if one has access to a real

system one cannot force the workload on it to conform to a desired configuration.

Resampling is a powerful technique for statistical reasoning in such situations, when not enough

empirical data is available [11, 12]. The idea is to use the available data sample as an approximation

of the underlying population, and resample from it. This enables multiple, quasi-independent

samples to be created, which are then used to compute confidence intervals or other metrics of

interest that depend on the unknown underlying distribution.

Our ideas for workload manipulation are analogous to this. We have a workload trace at our

disposal. The problem is that this provides a single data point, whereas our evaluation requires

the use of several (maybe many) workloads with certain variations. The proposed solution is to

partition the given workload into its constituents, and re-group them in different ways to create new

workloads. The simplest approach is to partition the workload into its most basic components (e.g.

jobs), and resample at random. This is similar to just using the empirical distribution as a model.

Our proposal is to extend this in two ways:

1. We consider different definitions of what constitutes the basic elements of the workload. For

example, they could be individual jobs, batches of related jobs, complete user sessions, or

even the sequence of all the sessions by each user.

2. Resampling may not be random, but guided by some specific manipulation that we want to

apply to the workload, and also subject to constraints such as maintaining system stability.

The notion that this is a useful device is our working hypothesis; examples and evidence supporting

this notion are given below.

We note that while we believe such resampling to be relatively novel in the context of computer

workloads and performance evaluation, analogies from other fields of computer science do exist.

One analogy comes from computer graphics, where texture mapping is often done by replicating

a small patch of texture, with certain variations to give an impression of perspective, conform to

lighting conditions, and avoid an obvious tiling effect [27]. More relevant to our work on workloads,

such replication, modification, and patching together has also been done for temporal signals, such

as movement specification [25] and sound [9]. Another analogy comes from the joint time-space

analysis of video. Here the idea is to partition a video into patches, and then replace certain patches

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 N. ZAKAY AND D. G. FEITELSON

with others, e.g. to reconstruct missing frames or add or remove objects [45]. This technique can

also be used for anomaly detection: if a piece of a new video cannot be reconstructed from snippets

that exist in the system’s database, then it is anomalous [4].

To the best of our knowledge resampling-based workload manipulations as we propose here

have been used only in few isolated cases, and that in a very limited manner. The closest related

work we know of is the Tmix tool, used for the generation of networking traffic. This tool

extracts communication vectors describing different connections from a traffic log (sequences

of 〈requestBytes, responseBytes, thinkTime〉) and then replays them subject to feedback from

the simulated system’s performance [44]. A subsequent paper also mentions the possibility of

resampling traces to create diverse load conditions [22], but their approach is simpler than ours

as they do not use the concept of sessions nor retain phenomena like the daily cycle. A similar

construction was proposed by Krishnamurthy et al. in the context of evaluating e-commerce systems

[26]. In this case they reuse sequences of user operations in order to ensure that illegal sequences

are not generated by mistake by the workload modeling procedure. In the domain of parallel job

scheduling, Ernemann et al. resize and replicate jobs in order to make a trace suitable for simulations

with a larger machine [13]. Our goal, in contrast, is to use the resampled traces to perform better

and more comprehensive evaluations. Kamath et al. have suggested to merge several traces and

simulate a queueing mechanism in order to increase load [24]. However, this is limited to load

values that are the sums of loads from existing traces. Ebling and Satyanarayanan created micro-

models of application file behaviors based on a trace, and then combined them stochastically to

create test workloads [10]. Again this is similar in concept; the difference from our work is that

we use snippets of the traced data directly as the elements of workload being resampled, whereas

they create models that risk losing important details. Finally, Chen et al. use a sequence of short

samples of MapReduce workloads to reduce the volume of a large workload [7, 6]. This sort of sub-

sampling makes no attempt to mimic the processes that generate the workload, and may destroy

internal structures, especially if the sample lengths are too short.

3. GRANULARITY OF RESAMPLING

Resampling can be done at different levels. In many cases, the coarsest level is the activity of a

user, which may be partitioned into sessions. The constituents of a session depend on what sort of

work we are looking at. It can be the submittal of parallel jobs, downloads from web servers that

are composed of packets being sent over the Internet, or individual accesses to file data.

Resampling at the job level is similar to resampling in statistics, e.g. as applied in the bootstrap

method [11], which is similar to using the empirical distribution as a model. Note, however, that

by resampling complete jobs we retain the correlations between job attributes (e.g. job size and

runtime), which would be lost if we resampled from each marginal distribution independently.

Resampling is all about creating new mixed versions of the workload. But at the same time, we

wish to retain at least some of the local structure. Specifically, we typically want to retain the locality

properties exhibited by normal work practices. Also, it may be important to retain the structure of

batches of related jobs or sessions. For example, this is necessary for the evaluation of adaptive

systems that learn about their workload and adapt to changing workload conditions [40, 17]; without

locality and structure, such systems don’t have what to exploit.

To motivate the use of resampling at the user level, we studied the similarity between each

user’s jobs. First we divided the work of each user into sessions [46]. Then we analyzed the

similarity of jobs in one session with each other and with the jobs in subsequent sessions,

using three attributes: the number of processors used, the jobs’ runtimes, and their estimated

runtimes. The metric for similarity was the ratio of the smaller value to the larger one: r =
min{j1.att, j2.att}/max{j1.att, j2.att}. This is by definition in the range [0, 1], with 0 indicating a

large difference and 1 indicating identity. When comparing two sessions, the similarity is calculated

between all pairs of jobs, where one job comes from one session and the other job from the other

session. Then we characterize the similarity between the sessions using the average similarity

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 5

0 1 2 3

0.7

0.8

0.9

1

distance between
 sessions

av
er

ag
e

si
m

ila
rit

y

processors number

0 1 2 3
0.4

0.6

0.8

1

distance between
 sessions

eq
ua

lit
y

pe
rc

en
ta

ge

 s
im

ila
rit

y

max running time

0 1 2 3
0

0.5

1

distance between
 sessions

m
ed

ia
n

si
m

ila
rit

y

running time

KTH

SDSC-SP2

SDSC-DS

BLUE

0 1 2 3
0.7

0.8

0.9

1

distance between
 sessions

av
er

ag
e

si
m

ila
rit

y

processors number

0 1 2 3
0.4

0.6

0.8

1

distance between
 sessions

eq
ua

lit
y

pe
rc

en
ta

ge

 s
im

ila
rit

y

max running time

0 1 2 3
0

0.5

1

distance between
 sessions

m
ed

ia
n

si
m

ila
rit

y

running time

Intrepid

HPC2N

CEA

Figure 1. Similarity between jobs as a function of the distance between them in sessions.

Table II. The fraction of users for whom the similarity between jobs was larger at one distance than at
another distance, using the CPU-number property.

distance 0 vs 1 distance 1 vs 2

Log name 0 larger equal 1 larger 1 larger equal 2 larger

LNAL-CM5 0.727 0.0160 0.257 0.663 0.0053 0.332

CTC-SP2 0.722 0.0152 0.262 0.670 0.0325 0.300

KTH-SP2 0.782 0.0075 0.211 0.692 0.0150 0.293

SDSC-SP2 0.771 0.0120 0.217 0.747 0.0080 0.245

SDSC-BLUE 0.856 0.0000 0.144 0.762 0.0046 0.233

HPC2N 0.856 0.0046 0.140 0.684 0.0000 0.316

SDSC-DS 0.767 0.0031 0.230 0.702 0.0092 0.288

ANL-Intrepid 0.788 0.0052 0.207 0.746 0.0000 0.254

CEA-Curie 0.866 0.0022 0.131 0.746 0.0043 0.250

between job pairs, the median similarity similarity between job pairs, or the fraction of job pairs

that had identical values.

Fig. 1 shows a sample of the results, using logs available from the Parallel Workloads Archive

[34]. The horizontal axis is the distance in sessions between the compared jobs, and the vertical axis

shows the average or median of the level of similarity. In all the graphs, jobs in the same session are

the most similar to each other. The top row shows cases where the degree of similarity is reduced

with distance in a monotonic manner. This is interpreted as reflecting locality, where users perform

similar work for some time and then move to do something else. The second row shows cases where

the change in similarity is not monotonic. This reflects some other work patterns, where similar jobs

are executed again after some time. But in both cases we see a pattern, indicating that the sessions

are not independent and that performing the resampling at the session level would lose potentially

important information.

Another way to characterize the locality is to find the fraction of users for whom the similarity at

a short distance is higher than the similarity at a longer distance. Such data is shown in Tables II to

IV, for distances of 0 vs. 1 sessions and 1 vs. 2 sessions. This again demonstrate that the similarity

drops when the distance grows, as in most cases about 70–85% of the users exhibit higher similarity

at the shorter distance. In effect, this testifies to the existence of locality in these workloads, which

we want to retain.

To validate this result, we used bootstrapping to compare the results shown above with results

that would be obtained if we sample jobs independently. To do so we retain the structure of sessions

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 N. ZAKAY AND D. G. FEITELSON

Table III. The fraction of users for whom the similarity between jobs was larger at one distance than at
another distance, using the maximum running time property.

distance 0 vs 1 distance 1 vs 2

Log name 0 larger equal 1 larger 1 larger equal 2 larger

LANL-CM5 0.765 0.1016 0.134 0.668 0.1016 0.230

CTC-SP2 0.757 0.1041 0.139 0.705 0.1085 0.187

KTH-SP2 0.895 0.0075 0.098 0.789 0.0150 0.195

SDSC-SP2 0.791 0.0924 0.116 0.795 0.0924 0.112

SDSC-BLUE 0.947 0.0069 0.046 0.794 0.0069 0.199

HPC2N 0.907 0.0279 0.065 0.781 0.0233 0.195

SDSC-DS 0.837 0.0613 0.101 0.739 0.0583 0.202

ANL-Intrepid 0.834 0.0777 0.088 0.715 0.0777 0.207

CEA-Curie 0.843 0.0625 0.095 0.718 0.0625 0.220

Table IV. The fraction of users for whom the similarity between jobs was larger at one distance than at
another distance, using the running time property.

distance 0 vs 1 distance 1 vs 2

Log name 0 larger equal 1 larger 1 larger equal 2 larger

LANL-CM5 0.733 0.0000 0.267 0.711 0.0053 0.283

CTC-SP2 0.829 0.0043 0.167 0.722 0.0065 0.271

KTH-SP2 0.827 0.0075 0.165 0.684 0.0000 0.316

SDSC-SP2 0.759 0.0000 0.241 0.759 0.0040 0.237

SDSC-BLUE 0.888 0.0114 0.101 0.757 0.0092 0.233

HPC2N 0.879 0.0326 0.088 0.721 0.0279 0.251

SDSC-DS 0.840 0.0215 0.138 0.706 0.0245 0.270

ANL-Intrepid 0.850 0.0000 0.150 0.710 0.0000 0.290

CEA-Curie 0.817 0.0151 0.168 0.685 0.0151 0.300

0.75 0.8 0.85 0.9 0.95
0

200

400

600

Similarity value of cpu number

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0.8 0.85 0.9 0.95 1
0

200

400

600

Similarity value of maximum running time

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0.5 0.55 0.6 0.65 0.7 0.75
0

200

400

600

Similarity value of running time

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

Figure 2. Comparison of the similarity between jobs in the same session as computed from the CEA-Curie
log (vertical line), and the distribution of similarity levels that are seen when the jobs are randomized.

for each user, but mix the jobs randomly among the sessions. This is repeated 1000 times, and each

time the degrees of similarity between jobs in the same session are computed as above. Fig. 2 shows

a sample of the results for one log. Obviously, the similarity among jobs that appear together in the

original log is much higher than the similarity observed when jobs are randomized, as would happen

if we resample individual jobs.

An implicit assumption in our resampling procedure is that users are independent. This is not

strictly valid because users affect each other: if one user overloads the system, others may feel this

and reduce their own activity. However, a large part of such interactions is due to all users operating

on the same daily cycle, and we take care to retain this correlation between the resampled users.

Moreover, resampling at the user level rather than at the session level allows for more sophisticated

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 7

�����
�����
�����
�����

���
���
���
��� ��

��
��
��

original trace

generated trace

user pools

4 wk 4 wk

long term temporary

?

?

2

1

2

2 2

3

3

3

3

4

4

4

4

5

5

5 5

6

6

6

6

3

7

7

8

9 10

11

12

13

8

9

9

9

10

10

10

11

11

11

7

8

8

8

Figure 3. Conceptual framework of dividing users into long-term and temporary, and reusing them in a
generated trace.

user behavior models. Specifically, we can introduce feedback effects whereby a user may decide to

terminate a session because system performance is poor, and submit his subsequent jobs in a later

session. Our work on incorporating such feedback effects will be reported separately; for now the

main point is that if we resample at the session granularity such effects will be effectively excluded.

Based on the above considerations, we decided to perform our resampling at the user level, in

order to retain the locality in the modified workloads that we produce and allow for the future

inclusion of feedback effects.

4. MECHANICS OF RESAMPLING

Creating a new workload by resampling users means that we dissect the given trace into sub-traces

representing different users, and then recombine these sub-traces in different ways. Note that we do

not manipulate each user’s sub-trace. Thus the sequence of jobs representing each user will be the

same as in the original trace, and the intervals between them will also be the same. This guarantees

the same locality properties as in the original trace, as noted above. We also take care to synchronize

the resampled users using a common timeframe, so that jobs always start on the same day of the

week and the same time of the day as in the original trace. This ensures that the daily cycle of

activity is retained in the produced workload, which may be important [48, 18].

An important issue in dissecting a trace into separate users is how to handle end effects. After

all, there is no reason to assume that the beginning or end of the tracing period is synchronized in

any way with the beginning or end of the activity of any particular user. We approach this problem

by making a distinction between temporary users and long-term users (see Fig. 3). This distinction

relates to basic aspects of human user work patterns, and is expected to be relevant to other system

types too.

Temporary users are all the users that interact with the system for a limited time, for example

while conducting a project. These users arrive to the system at a certain point, interact with it

for a short while, and are expected to leave shortly after that and never return. Long-term users,

in contradistinction, are the users that routinely use the system all the time. These users may be

expected to have been active before logging started, and to send more jobs also after the end of the

recording period.

In analyzing the log, we distinguish between temporary users and long-term users according to

the interval between their first job and their last job in the log. If the interval is long enough (above

12 weeks in our implementation), the user is classified as long-term. Otherwise the classification is

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 N. ZAKAY AND D. G. FEITELSON

Table V. Results of classifying users in the different logs.

long-term temporary

Log users jobs users jobs

LANL-CM5 159 119,998 37 1,727

SDSC-Par 57 45,087 32 7,354

CTC-SP2 314 63,287 236 10,625

KTH-SP2 102 25,202 66 2,349

SDSC-SP2 173 44,251 206 8,790

SDSC-BLUE 426 221,745 31 1,435

HPC2N 178 194,429 66 7,949

SDSC-DS 230 74,764 192 9,012

ANL-Intrepid 124 58,875 81 7,725

PIK-IPLEX 175 724,045 46 4,764

CEA-Curie 269 244,733 223 38,814

temporary. The threshold of 12 weeks is chosen based on observation of the distribution of periods

of activity by different users. We found that for many users their period of activity was up to about

12 weeks; these are the temporary users. For the rest there was a uniform distribution from 12 weeks

to the full length of the log. This is interpreted as representing long-term users whose activity was

arbitrarily intersected with the logging period. The numbers of temporary and long-term users found

in different logs, and the jobs that they submitted, are shown in Table V. There tend to be somewhat

more long-term users than temporary ones. As may be expected, the long-term users submit the vast

majority of the jobs. Temporary users have in average less jobs and sessions due to their shorter

activity. However, parameters that don’t depend on the activity length, such as session lengths, are

similar for long-term and temporary users.

Data about the different users is kept in separate user pools, one for temporary users and the other

for long-term users (Fig. 3). However, temporary users whose full period of activity falls within a

short time (4 weeks) from the beginning or the end of the logging period are discarded. The reason

for doing so is that there is a high probability that the activity of these users was truncated, but we

cannot know for sure. The threshold of 4 weeks is chosen because when plotting the cumulative

number of users observed as a function of the number of weeks into the log, in the first few weeks

the graph climbs at a higher rate. This is interpreted as being influenced by first observations of

users that have already been active before. Then, when the increase settles on a lower and relatively

constant average rate, this is interpreted as predominantly representing the arrivals of new users.

Given the pools of temporary and long-term users, the resampling and generation of a new trace

is done as follows:

• Initialization: We initialize the trace with some temporary users and some long-term users.

The numbers of users to use are parameters of the trace generation, and can be used to change

the load or the ratio of temporary to long-term users (the defaults are the numbers of long-

term users in the original log, and the average number of temporary users present in a single

week of the original log). The probability to select each temporary user is proportional to the

number of weeks during which the user was active in the log. Users are not started with their

first job from the trace, because we are trying to emulate a workload that was recorded over an

arbitrary timespan, and there is no reason to assume that the beginning of the logging period

should coincide with the beginning of a user’s activity. Therefore each user is started in some

arbitrary week of his traced activity. However, care is taken that jobs start on the same day of

the week and time of the day in the simulation as in the original trace.

• Temporary users: In each new week of the simulation, a certain number of new temporary

users are added. The exact number is randomized around the target number, which is

a parameter of the trace generation (the default is the average rate at which temporary

users arrived in the original trace). The randomization uses a binomial distribution, with

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 9

a probability p equal to the fraction of temporary users expected to start every week. The

selected users are started from their first traced jobs. A user can be selected from the pool

multiple times, but care is taken not to select the same user twice in the same week.

• Long-term users: The population of long-term users is constant and consists of those chosen

in the initialization. When the traced activity of a long-term user is finished, it is simply

regenerated after a certain interval. While such repetitions are not very realistic, they allow us

to extend the work of the long-term users as needed. We also note that repetitions only occur

after rather long intervals, because logs are typically at least a year long. The interval between

the regenerations corresponds to the sum of the intervals between the user’s period of activity

and the full logging period. Naturally the regenerations are also synchronized correctly with

the time and day.

Note that this process can go on indefinitely, and indeed one of the applications of workload

resampling that we describe in Section 6 is to extend traces and allow for longer simulations.

The exact number of users in the initialization, the week of activity from which they start,

the number of temporary users added each week, and the identity of the selected users are all

randomized. Therefore our simulation creates a different workload in each run. But all these

workloads are based on the same sub-sequences of jobs, and are therefore all statistically similar to

each other and to the original trace.

5. RESAMPLING VALIDATION

In order to perform resampling and implement the applications described in the next section it is

enough to just create a new workload trace that is composed of the jobs of the different users as

described above. However, we actually perform a full simulation of also scheduling these jobs. This

enables us to directly use the generated workloads to evaluate various parallel job schedulers. In

subsequent work we also consider adding feedback, whereby the system performance influences

user behavior and may affect when subsequent jobs are submitted [38]. In any case, the simulation

also creates a log file which contains the new workload. Comparing this generated workload with

the original one allows us to validate the resampling process.

5.1. Marginal Distributions

The validation is based on comparing the generated workloads to the original one. We start with a

comparison of various marginal distributions that describe the workload’s structure, with a focus on

the user level because this is what we modify. An example is shown in Fig. 4 based on the ANL-

Intrepid log; similar results are obtained for other logs too. The different panels show the following

distributions:

• Number of jobs submitted by different users.

• Number of sessions performed by users.

• Average session length for different users.

• Total amount of CPU time (work) used by users in all their jobs.

• The users’ first arrival times.

• The users’ final departure times.

• The users’ periods of activity.

• The distribution of job arrivals across days of the week, for all users together.

In all but the last of these, the users are first sorted according to the metric, and then the distribution

is plotted. The horizontal axis specifies the users’ serial numbers after this sorting. Note that

the number of users participating in each workload may be slightly different, due to the random

selection of how many new users arrive each week. As we can see, all the distributions are very

similar to the original one. This is attributed to the fact that despite the random mixing due to the

resampling, the sequence of jobs for each user is retained.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 N. ZAKAY AND D. G. FEITELSON

0 100 200 300
0

2000

4000

6000

8000

User

Jo
bs

 N
um

be
r

original log
our results

0 100 200 300
0

500

1000

1500

2000

User

S
es

si
on

s
N

um
be

r

original log
our results

0 100 200 300
0

2

4

6

8x 10
4

User

E
xp

ec
ta

tio
n

of
 S

es
si

on
s

 L

en
gt

h
(in

 s
ec

on
ds

)

original log
our results

0 100 200 300
0

0.5

1

1.5

2x 10
11

User

W
or

k
A

m
ou

nt

original log
our results

0 100 200 300
0

1

2

3x 10
7

User

A
rr

iv
al

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 100 200 300
0

1

2

3x 10
7

User

E
nd

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 100 200 300
0

1

2

3x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

original log
our results

0 100 200
0

500

1000

Hour In Week

Jo
bs

 N
um

be
r

original log
our results

Figure 4. Comparison between various distributions of the original ANL-Intrepid log and 8 generated logs
based on it. The last plot includes marks every 6 hours and a longer one at midnight.

Table VI. Locality calculated with the stack depth algorithm of the original workload and eight generated
workloads (shown as average ± standard deviation).

Runtime Max runtime CPU number

Log name Orig. Resamp. Orig. Resamp. Orig. Resamp.

LANL-CM5 36.01 36.97±0.37 2.53 2.51±0.03 1.15 1.08±0.01

CTC-SP2 28.01 27.72±0.93 4.51 4.33±0.13 3.44 3.35±0.11

KTH-SP2 35.25 35.03±0.37 6.46 6.42±0.10 3.83 3.87±0.10

SDSC-SP2 25.13 24.48±0.82 4.09 3.96±0.11 2.89 2.79±0.08

SDSC-BLUE 25.11 25.97±0.28 3.12 3.46±0.02 1.58 1.57±0.01

HPC2N 18.67 19.44±0.19 2.36 2.37±0.02 0.98 0.95±0.01

SDSC-DS 25.01 25.68±0.59 4.09 3.95±0.15 2.07 2.02±0.06

ANL-Intrepid 13.21 14.02±0.24 2.58 2.56±0.07 1.28 1.27±0.02

CEA-Curie 28.0 28.06±0.59 2.42 2.39±0.08 4.93 5.02±0.26

5.2. Locality

Of course, marginal distributions don’t tell the whole story. It is also important to retain the

correlations in the workload. To verify that correlations are retained, we look into the locality of

the workloads and their self-similarity.

A simple way to measure locality is using the stack-depth algorithm. To do this, we traverse the

whole workload trace and extract a certain attribute of the jobs, e.g. their runtime. We keep these

runtimes in a stack. For each new job from the trace, we check whether its runtime is already in the

stack or not. If it is we note the depth in the stack where it was found, and move it up to the top

of the stack. If it was not, we just put it on the top. Thus if the workload has locality and the same

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 11

0 100 200 300
0

0.5

1

Day

 M
ax

 b
in

 b
y

C
P

U
 n

um
be

r

Intrepid

original
generated

0 100 200 300
0

0.5

1

Day

M

ax
 b

in
 b

y
m

ax
 r

un
in

g
tim

e

Intrepid

original
generated

0 100 200 300
0

0.5

1

Day

M
ax

 b
in

 b
y

ru
ni

ng
 ti

m
e

Intrepid

original
generated

0 500 1000
0

0.5

1

Day

 M
ax

 b
in

 b
y

C
P

U
 n

um
be

r

SDSC-SP2

original
generated

0 500 1000
0

0.5

1

Day

M

ax
 b

in
 b

y
m

ax
 r

un
in

g
tim

e

SDSC-SP2

original
generated

0 500 1000
0

0.5

1

Day

M
ax

 b
in

 b
y

ru
ni

ng
 ti

m
e

SDSC-SP2

original
generated

0 500 1000 1500
0

0.5

1

Day

 M
ax

 b
in

 b
y

C
P

U
 n

um
be

r

HPC2N

original
generated

0 500 1000 1500
0

0.5

1

Day

M

ax
 b

in
 b

y
m

ax
 r

un
in

g
tim

e

HPC2N

original
generated

0 500 1000 1500
0

0.5

1

Day

M

ax
 b

in
 b

y
ru

ni
ng

 ti
m

e

HPC2N

original
generated

0 100 200 300
0

0.5

1

Day

 M
ax

 b
in

 b
y

C
P

U
 n

um
be

r

CEA

original
generated

0 100 200 300
0

0.5

1

Day

M

ax
 b

in
 b

y
m

ax
 r

un
in

g
tim

e

CEA

original
generated

0 100 200 300
0

0.5

1

Day

M
ax

 b
in

 b
y

ru
ni

ng
 ti

m
e

CEA

original
generated

Figure 5. Using the bins-based algorithm to check locality. The graphs show the fraction of jobs in each day

that are concentrated into one bin; if there was no locality, all values should be 1
16 = 0.062.

values tend to appear next to each other, we will often find them near the top of the stack and the

average depth will be small. If there is no locality, the average depth will be about half the stack

depth.

The results of performing this analysis using three workload properties are shown in Table VI.

Note that for the runtime and maximal runtime properties we do not require that exactly the same

value be found in the stack, as it is unreasonable to expect that long jobs will have the same runtime

up to the second. We therefore allow differences of up to 5%. Still, for runtimes there are many more

different values, and the average stack depth found is between 13 and 36. For the other attributes it

is much lower. But the important thing is that the stack depths found for the resampled logs are very

similar to those of the original logs.

The stack depth algorithm checks the similarity of successive jobs. But it can’t measure the

similarity of jobs submitted during a certain period of time, e.g. a day. To characterize this we

use a metric designed specifically to capture local concentrations when sampling from a distribution

[17]. The idea is as follows. First we characterize the underlying distribution by defining 16 equal-

weight bins. In other words, we identify the 1
16 = 6.25 percentile, the 2

16 = 12.5 percentile, and so

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 N. ZAKAY AND D. G. FEITELSON

on. Then we divide the log into individual days. For each day, we find what fraction of the jobs

fall in each of the bins we created before. If the distribution of jobs in this day is the same as the

overall distribution, then the number of jobs in each bin will be the same. But if on this day there

is a concentration of jobs with certain characteristics (as we expect when there is locality) then one

of the bins will have many more jobs than the others. The distribution of the maximal bin across all

the days in the log then characterizes the locality.

The results of performing this calculation are shown in Fig. 5 for four logs. We compare the

distribution found in the original logs with those found in eight resampled logs. Note that the range

of possible values is from 1
16 to 1. As we can see, the resampled distributions are generally similar to

the original ones, albeit in some cases the resampled distributions are a bit below the original. This

means that there is a bit less locality, implying that some of the original locality is due to correlation

between different users. Interestingly, the distributions for different logs, or different job attributes

in the same log, can be different.

5.3. Self Similarity

Another potentially important property of the workload is its self similarity, which reflects on its

burstiness and long-range dependence. To validate the resampling methodology we need to compare

the self similarity of the produced workloads to that of the original log. We will start with a brief

description of self similarity and its meaning in this area. Then we will explain briefly how it

is measured by the Hurst parameter, and describe how we calculate the Hurst parameter of the

workloads. Finally, we will present data for the self-similarity of the produced workloads.

Self similarity refers to situations in which a phenomenon has the same general characteristics

at different scales [32, 37]. If we zoom in, we see the same structure as we did before: parts of

the whole are actually scaled-down copies of the whole. In nature and in workloads (as opposed to

mathematics) we cannot expect perfect copies of the whole, but we can expect the same statistical

properties.

For example, the job arrivals to a parallel supercomputer are seen to be bursty, and the same bursty

behavior persists if we aggregate the arrivals over several orders of magnitude, by using longer

and longer time units [16]. Self similarity like this has been shown in many computer workloads,

including LAN traffic, web usage, and file systems [28, 36, 21, 8]. It is important because it means

that the arrivals do not conform to a Poisson process, and that load fluctuations do not average

out over longer time periods. The reason is that the arrival rates at different times are correlated

with each other, and this correlation spans multiple time scales, leading to long-range dependence.

The resulting load fluctuations have implications for capacity requirements and quality of service.

Thus it is crucial to retain the self-similarity of workloads in order to achieve reliable performance

evaluations.

The metric used to measure self-similarity is called the Hurst parameter (H). If this parameter is

in the range of 0.5 < H < 1, the process is self similar. Otherwise, it is not self similar. Assume we

start with a time series x1, x2...xn (for example, xi may be the number of jobs that arrived in the ith
time unit). First, we subtract the mean X from each sample, giving zi = xi −X . Then, we calculate

the deviation after j time units for all j: yj =
∑j

i=1 zi. Then, we calculate the range that was

covered, which is the difference between the maximum and the minimum deviations during these n
time units: R(n) = max1≤j≤n yj −min1≤j≤n yj . Finally, we calculate the standard deviation S(n)

of the observations x1, x2...xn, and normalize the range. The model is that the rescaled range
R(n)
S(n)

should grow like c · nH . To check this we take the log leading to log
(

R(n)
S(n)

)

= log(c) +H · log(n).

Thus if the process is indeed self similar, plotting the log of the rescaled range as a function of log n
will lead to a straight line, and the slope of the line gives H .

In order to apply the above procedure, we need to generate data for different values of n. To

choose the values of n and the data elements for each n, we use common methods, as reviewed in

[16]. Specifically, we use logarithmically spaced ns separated by a factor of 1.2, starting from where

there are enough samples so that most intervals are not empty. For each n we use multiple subsets

of the data; for large n these subsets may overlap.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 13

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Original Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Generated Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Generated Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Original Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Generated Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Generated Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Original Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Generated Workload

10
2

10
4

10
610

1

10
2

10
3

10
4

n

R
(n

)
/
S

(n
)

Generated Workload

Figure 6. Comparison of Pox-plots for the original log and two resampled ones. From top: the LANL-CM5
log, the HPC2N log, and the ANL-Intrepid log.

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

n

R
(n

)
/

S
(n

)

BLUE

resampled workloads
original workload

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

n

R
(n

)
/

S
(n

)

Intrepid

resampled workloads
original workload

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

n

R
(n

)
/

S
(n

)

SDSC-DS

resampled workloads
original workload

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

n

R
(n

)
/

S
(n

)

Par

resampled workloads
original workload

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

n

R
(n

)
/

S
(n

)

PIK

resampled workloads
original workload

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

n

R
(n

)
/

S
(n

)

CEA

resampled workloads
original workload

Figure 7. Comparison of the pox-plot regression lines of the original workload and the generated workloads.

Dashed lines showing the slopes corresponding to H =
1
2 and H = 1 are given for reference.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 N. ZAKAY AND D. G. FEITELSON

Table VII. Hurst parameter H of the original workloads and the average and standard deviation of its value
in eight generated workloads.

Log name Original H Resampled H

LANL-CM5 0.690 0.679 ± 0.043

SDSC-Par 0.745 0.745 ± 0.059

CTC-SP2 0.617 0.620 ± 0.059

KTH-SP2 0.666 0.648 ± 0.040

SDSC-SP2 0.638 0.715 ± 0.028

SDSC-BLUE 0.778 0.704 ± 0.041

HPC2N 0.769 0.722 ± 0.033

SDSC-DS 0.747 0.651 ± 0.048

ANL-Intrepid 0.754 0.789 ± 0.054

PIK-IPLEX 0.697 0.722 ± 0.043

CEA-Curie 0.710 0.630 ± 0.090

Given a large number of subsets of different sizes, we calculate the
R(n)
S(n) metric for each one and

create a pox-plot, which is a scatter plot of these values on log-log axes. We use linear regression

to find the trend line, and calculate its slope. We did this for all the logs except the low-load OSC-

cluster, and for eight randomly resampled workloads that were produced as described in the previous

section from each one. Fig. 6 shows examples of the pox plots and regression lines for three logs

(LANL-CM5, HPC2N, and ANL-Intrepid). It is easy to see that in all cases the points create an

oblique cloud close to a straight line, and that the plots for the resampled workloads are similar to

those of the original workload.

Fig. 7 shows a direct comparison of the regression lines obtained from generated workloads and

those that are obtained from the original ones. The slopes which give the H values are compared in

Table VII. From these results, it is clear that the slope of each resampled workload is far bigger than

0.5 and far smaller than 1 (actually, there is no slope lower than 0.6 or higher than 0.9). Therefore,

we concluded that these resampled workloads behave similarly to the recorded workloads. From the

table we can see that the average H of the resampled workload is smaller than the original 6 times,

and bigger 4 times, and that in most cases the difference is smaller than the standard deviation. This

means that we don’t have a large systematic deviation (which may indicate a problem), but only

random fluctuations that affect each workload a bit differently.

Overall, these results provide significant support to the reliability of the generated workloads.

In addition they indicate that the long-range dependence can be captured by the activity of the

individual users, and does not depend on correlations between users. Therefore resampling at the

user level retains the self similarity. This is in contrast to shuffling the workload, meaning dividing

it into short segments and rearranging them, which is known to destroy self similarity [14]. The

reason it works for user resampling is probably because of users who are active for long periods.

6. APPLICATIONS OF RESAMPLING

The use of resampling is expected to lead to more reliable performance evaluations, due to being

based more closely on real workload traces, and incorporating all the complexities of real workloads

— including those that are unknown to the analyst. In the following we discuss some examples.

6.1. Verification of Performance Results

As noted above, one of the problems with using a workload trace directly is that it provides a

single data point. This has the obvious deficiency that it is impossible to calculate any kind of

confidence intervals except perhaps by the method of batch means [35]. But with resampling we

can create many resampled randomized versions of the workload, and evaluate the performance of

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 15

7 7.5 8 8.5 9
x 10

4

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

CTC

2.6 2.8 3 3.2
x 10

4

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

KTH

2.18 2.2 2.22 2.24 2.26
x 10

5

0

50

100

150

jobs number

ex
pe

rim
en

ts
 n

um
be

r

BLUE

1.95 2 2.05 2.1 2.15
x 10

5

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

6 6.5 7 7.5
x 10

4

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

Intrepid

2.6 2.8 3 3.2 3.4
x 10

5

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

CEA

0.65 0.7 0.75 0.8
0

20

40

60

80

100

utilization

ex
pe

rim
en

ts
 n

um
be

r

CTC

0.65 0.7 0.75 0.8
0

20

40

60

80

100

utilization

ex
pe

rim
en

ts
 n

um
be

r

KTH

0.7 0.72 0.74 0.76 0.78
0

50

100

150

200

utilization
ex

pe
rim

en
ts

 n
um

be
r

BLUE

0.58 0.6 0.62 0.64
0

50

100

150

utilization

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

0.35 0.4 0.45 0.5
0

20

40

60

80

100

utilization

ex
pe

rim
en

ts
 n

um
be

r

Intrepid

0.55 0.6 0.65
0

20

40

60

80

100

utilization

ex
pe

rim
en

ts
 n

um
be

r
CEA

Figure 8. Histograms of the throughput and utilization in a thousand simulations with resampled workloads
compared to using the original workload (vertical red line).

the system with all of them, thus obtaining multiple data points that all adhere to the same underlying

statistics. The distribution of these data points can then be used to compute confidence intervals for

performance metrics. This is essentially an application of the well-known technique of bootstrapping

used in statistical analysis [12].

Given the resampling mechanism described above, implementing this idea is trivial: simply create

a large number of workloads, say 1000, based on the original log, run the scheduler simulation on all

of them, and tabulate the results. But to check this we need to also examine the basic characteristics

of the produced workloads, and convince ourselves that they remain representative. To do so we

indeed generated 1000 resampled variants of each log, calculated various metrics on each of these

1000 variants, and created a histogram of these metric values. We also included the original values

for comparison.

We performed the checks on the nine logs from the archive that have user estimates (needed

for the simulation), and results for six of them are shown in Fig. 8. The top two rows show

that the throughput (represented by the total number of jobs during the simulation period) was

typically distributed around the original value. The result for the BLUE log was the largest deviation

observed; with this log 92% of the variants had a lower throughput than the original log, but the

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 N. ZAKAY AND D. G. FEITELSON

1.3 1.4 1.5 1.6
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

CTC

1.4 1.6 1.8 2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

SDSC-DS

1.4 1.6 1.8 2 2.2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

BLUE

1.4 1.6 1.8 2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

1 1.05 1.1 1.15 1.2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

Intrepid

1.3 1.4 1.5 1.6
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

CEA

0 1 2 3
x 10

4

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

CTC

0 2 4 6
x 10

4

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

SDSC-DS

0 0.5 1 1.5 2
x 10

5

0

100

200

300

wait time
ex

pe
rim

en
ts

 n
um

be
r

BLUE

0 1 2 3 4
x 10

5

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

0 0.5 1 1.5 2
x 10

4

0

200

400

600

wait time

ex
pe

rim
en

ts
 n

um
be

r

Intrepid

0 5 10 15
x 10

4

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

CEA

Figure 9. Histograms of the average slowdown and waiting time in a thousand simulations of EASY on
resampled workloads, compared to a simulation using the original logs (vertical red line).

difference between the median throughput and the original was only 0.45%. For utilization (bottom

two rows) the results were more diverse, and varied between distributions around the original value

— as for CTC — and distributions that are generally below the original value — as for CEA, which

was the most extreme. This may indicate some systematic bias which we do not understand yet. But

note that even for CEA the difference was less than 8%.

Accepting the generated workload distributions as reasonable, we turn to check the results

of evaluations of the EASY scheduler, which is probably the most commonly used backfilling

scheduler [29, 15]. The results for waiting time and slowdown are shown in Fig. 9 (results for

response time exhibit similar behavior to wait time). The slowdown results are the most varied. In

six of the nine logs we checked, the distribution was more or less around the value obtained using

the original log. This is exemplified by the BLUE and CTC logs in the figure. But in other cases

the original result was at the very end of the distribution, either higher or lower than nearly all the

others (as in DS or HPC2N, respectively, which were the two most extreme cases). The results for

wait time were more one-sided, being distributed either around the original values (as for DS and

CTC) or largely above them (as for BLUE and HPC2N). The explanation appears to be that in some

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 17

0 200 400 600
0

2000

4000

6000

User

P
ro

ce
ss

es
’s

 n
um

be
r

0 200 400 600
0

500

1000

1500

User

S
es

si
on

s’
s

nu
m

be
r

0 200 400 600
0

2

4

6x 10
4

User
 E

xp
ec

tio
n

se
ss

io
n’

s
le

ng
th

0 200 400 600
0

0.5

1

1.5

2x 10
9

User

W
or

k
am

ou
nt

0 200 400 600
0

0.5

1

1.5

2x 10
8

User

A
rr

iv
al

 ti
m

e
0 200 400 600

0

0.5

1

1.5

2x 10
8

User

E
nd

 ti
m

e

0 200 400 600
0

1

2

3

4x 10
7

User

A
ct

iv
ity

 le
ng

th

0 100 200
0

500

1000

1500

Hour in week

P
ro

ce
ss

es
’s

 n
um

be
r

Figure 10. Comparison between the original SDSC-DS log to the first, third, and fifth parts of an extended
resampled log that is 5 times longer.

logs there are more sparse periods, in which very few jobs arrive and therefore all wait times are

short or nil. Our resampling tends to distribute users and jobs somewhat more evenly.

For both metrics, these results underscore the importance of using the resampling methodology

to identify cases where the result using the original log may not be truly representative. Importantly,

the spread of the results indicates that the resampling indeed produces workloads that are different

from each other, even though they are derived from the same source and exhibit the same statistics.

On the other hand, we never saw results that were completely separated from the original result,

meaning that in all cases at least some of our 1000 repetitions produced results like the original log.

Also, in most cases the most extreme differences were not more than 10–20%.

Note that this application of bootstrapping serves only to provide confidence intervals for

evaluations based on a single log. We consider the possibility of extending this by mixing data

from multiple logs in Section 6.5.1. Such mixing will provide confidence intervals for more general

evaluations that are based on all the available data.

6.2. Extending a Trace

Another simple use of workload resampling is in order to extend a trace. While some of our

workload traces are pretty long, with hundreds of thousands of jobs submitted over 2 years or more,

others are shorter. In addition, a significant part of the trace may be needed as a “warmup period” to

ensure that the simulated system achieves its steady state [35]. Given only the raw traces, the length

of the simulation may therefore be quite limited.

But with resampling we can extend the simulation to arbitrary lengths. As indicated above, this is

achieved by regenerating long-term users, and randomly sampling new temporary users every week.

In principle this can be continued indefinitely.

To check the resulting extended workloads, we studied three repetitions of extending given traces

to five times their original length. For example, given a trace that represented one year’s worth

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 N. ZAKAY AND D. G. FEITELSON

of activity, we used it to create three traces that are each five years long. We then compared the

original trace with the first year, the third year, and the fifth year of each repetition. The results for

the SDSC-DS log are shown in Fig. 10, using the same distributions as in Fig. 4.

As one can see, the distributions for all three repetitions and the three periods of the extended

trace all agree with each other and with the original trace data to a high degree. Note that we treat

each of the three periods as a separate log, and do not carry over users that were identified in one

period to another period. This causes the distributions of arrival times and end times to be separated

into three, corresponding to the different periods. Remarkably, in each of these we see the same end

effects as in the original shorter trace.

6.3. Changing the Load

An important aspect of systems performance evaluation is often to check the system’s performance

under different load conditions, and in particular, how performance degrades with increased load.

Given a single trace, crude manipulations are typically used in order to change the load. These are

• Multiplying all arrival times by a constant, thus causing jobs to arrive at a faster rate and

increasing the load, or causing them to arrive at a slower rate and decreasing the load.

However, this also changes the daily cycle, for example causing jobs that were supposed

to terminate during the night to extend into the next day. An alternative approach that has a

similar effect is to multiply all runtimes by a constant. This has the deficiency of creating an

artificial correlation between load and response time.

• Multiplying all job sizes (here meaning the number of processors they use) by a constant,

and rounding to the nearest integer. This has two deficiencies. First, many jobs and machine

sizes are powers of two. After multiplying by some constant in order to change the load, they

will not be powers of two, which may have a strong effect on how they pack, and thus on the

observed fragmentation. This effect can be much stronger than the performance effects we

are trying to measure [30]. Second, small jobs cannot be changed with suitable fidelity as the

sizes must always be integers. An alternative approach that has essentially the same effect is

to modify the machine size. This at least avoids the problem presented by the small jobs.

With resampling, however, manipulating the load is relatively easy: One can simply increase or

reduce the average number of active users. This changes the load while retaining all other attributes

of the workload and avoiding the introduction of any artifacts. In particular, some logs have a very

low utilization, in the range of 10–30%, which makes them uninteresting in terms of evaluating

schedulers for parallel machines (because there are seldom enough concurrent jobs for the scheduler

to have to make any decisions). Using resampling we can increase the load significantly and make

these logs usable.

To implement this, three minor changes need to be made in the mechanism described above. The

first is to change the number of long-term users in the initialization. Additional long-term users will

be started as needed based on a random selection, taking care to use all existing long-term users

before replicating one that was selected already, and also taking care that replicas of the same user

will have a large difference in their start times. Likewise, we need to change the number of temporary

users in the initialization. Finally, we need to change the rate at which additional temporary users

arrive each week.

When users (and load) are added, the simulated system may saturate. We identify such conditions

and ignore the saturated simulation results with a warning. Identifying saturation is based on

noticing that the number of outstanding jobs (jobs that have arrived but not terminated yet) tends to

grow. This is done as follows.

1. Tabulate the number of outstanding jobs at the beginning of each week of the simulation.

2. If the number of outstanding jobs grows due to a load fluctuation, but then decreases again,

this does not indicate saturation. Therefore we replace each weekly count by the minimum

count from that week to the end of the simulation, leading to a non-decreasing sequence of

counts.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 19

0 0.5 1
0

1000

2000

3000

User

Jo
bs

 N
um

be
r

original log
our results

0 0.5 1
0

200

400

600

User

S
es

si
on

s
N

um
be

r

original log
our results

0 0.5 1
0

5000

10000

15000

User

A
ve

ra
ge

 S
es

si
on

 L
en

gt
h

(in

 s
ec

on
ds

)

original log
our results

0 0.5 1
0

1

2

3x 10
8

User

W
or

k
A

m
ou

nt

original log
our results

0 0.5 1
0

2

4

6x 10
7

User

A
rr

iv
al

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 0.5 1
0

2

4

6x 10
7

User

E
nd

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 0.5 1
0

2

4

6x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

original log
our results

0 50 100 150 200
0

1000

2000

3000

4000

5000

Hour In Week

Jo
bs

 N
um

be
r

original log
our results

Figure 11. Comparison between the original OSC-cluster log to resampled workloads where the load is
increased by a factor of 6.

3. Delete the last 20% of the values, to avoid false positives based on fluctuations that occur

towards the end of the simulation.

4. Use linear regression to fit a straight line to the remaining counts. If the slope is lower than 1

(meaning that on average the number of outstanding jobs grows by no more than one job per

week) the simulation is declared stable. If it is higher, the simulated system is saturated.

Verifying that resampling with a modified number of users leads to reasonable workloads shows

that indeed all the distributions are similar to those of the original traces (but taking into account that

the number of users is different). Fig. 11 shows the results for one extreme case, based on the OSC

cluster log. The average utilization of this log is only 12.8%, making it unusable for evaluations of

parallel job schedulers. We therefore increased the number of users by a factor of 6, targeting an

average utilization of approximately 76.8%. In the graphs, the user numbers on the horizontal axis

are normalized to the range [0, 1] to enable comparison with the original log that has much fewer

users. It is easy to see that the high-load simulations produce distributions that are very similar to

the original log. The main difference is in the arrival time and end time distributions, which are

smoother, because in our simulations users arrive at a constant average rate. Also, in the last graph

portraying the weekly cycle of activity, one can see the big difference in the number of jobs that are

being used.

The goal of all these workload manipulations is to enable the evaluation of parallel job schedulers,

and in particular, their performance under different load conditions. To check this we again used

simulations of the EASY backfilling scheduler [29]. For each log, we multiplied the number of

users by various factors in the range 0.8 to 1.5, and performed 10 independent simulations (with

different randomized resampling) for each load value. For the OSC cluster log, the range was from

1 to 9, because the original utilization of this log is very low as noted above. A sample of the results

for slowdown and response time are shown in Fig. 12. The results for waiting time were very similar

to those of response time.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 N. ZAKAY AND D. G. FEITELSON

0 0.25 0.5 0.75 1
1

2

3

4

utilization

sl
ow

do
w

n

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2x 10
5

utilization

re
sp

on
se

 ti
m

e

0.5 0.75 1 1.25 1.5
2

4

6

8

10

load values

su
ce

ss
s

nu
m

be
r

0 0.25 0.5 0.75 1
0

2

4

6

8

utilization

sl
ow

do
w

n

0 0.25 0.5 0.75 1
0

2

4

6x 10
5

utilization

re
sp

on
se

 ti
m

e
0.5 0.75 1 1.25 1.5
0

5

10

load values

su
ce

ss
s

nu
m

be
r

0 0.25 0.5 0.75 1
0

5

10

15

utilization

sl
ow

do
w

n

0 0.25 0.5 0.75 1
0

2

4

6x 10
5

utilization

re
sp

on
se

 ti
m

e

0 5 10
0

5

10

load values
su

ce
ss

s
nu

m
be

r
Figure 12. The performance of EASY under different load conditions for different logs: SDSC-DS, BLUE,
and OSC-cluster respectively from top to bottom. Recall that the original OSC cluster log has very low load,

so the load had to multiplied by higher factors to reach the range of interest.

The last panel for each log shows the fraction of simulations at each load level that were

successful, meaning that our automated procedure did not conclude that the system is becoming

saturated. Note that the loading factor, namely the factor by which we multiply the number of users,

does not translate directly and deterministically into a commensurate change in the utilization. Due

to the random selection of users there may be fluctuations in the load. Therefore we find that when

the loading factor grows beyond 1, which represents the original load, the number of successful

simulations begins to drop. Consequently there are fewer results for the higher loads, but all the

valid results indicate a utilization of no more than 100%.

As the results in Fig. 12 show, the performance profiles are as one might expect from queueing

analysis. At low loads performance is good, and increasing the load has little effect. But as the

system approaches saturation, the performance deteriorates precipitously. Interestingly, different

systems (as represented by the logs of their workloads) have different saturation points. SDSC-DS

seems to saturate at less than 90% utilization, whereas BLUE and OSC come close to 100%. This

reflects the ability of the scheduler to pack jobs together and reduce fragmentation, and depends

both on the scheduler and on the workload statistics.

6.4. Over-Sampling Rare Behaviors

Workload logs sometimes contain unique users that behave anomalously in a specific period

compared to the rest of the users. For example, a user may submit an inordinate number of jobs

during a single week thus creating a flash crowd. Our goal here is to assess the effect of such

behaviors on the performance of the rest of the jobs. We do this by creating special pseudo-users

that encompass the special behavior, and then amplifying their weight in the generated workload by

selecting these users more than others. For example, this allows us to create workloads with different

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 21

O
1994

ND J
1995

FMAM J JASOND J
1996

FMAM J JASO

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

12000

14000

user 50
user 31
user 38
user 94

user 60
user 8
user 150
user 56

user 61
user 96
user 176
others

A
1998

M J JASOND J
1999

FMAM J JASOND J
2000

FMAM

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000

8000

user 374
user 24
user 48
user 21

user 197
user 429
user 274
user 139

user 98
user 13
user 148
others

D
1994

J
1995

F M A M J J A S O N D J
1996

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000

user 66
user 92
user 61
user 62

user 94
user 50
others

Figure 13. Flurries (flash crowds) in the original version of three logs: LANL-CM5, SDSC-SP2, and SDSC-
Par95.

levels of flash crowds, and thus find the effect of the flash crowds on the performance of the rest of

the jobs. Such simulations are an alternative to modeling the load spikes as suggested in [3].

The procedure to over-sample special behaviors of interest proceeds as follows:

1. We first create another pool of users, called the rare behaviors pool.

2. The rare behaviors of interest are defined by three parameters: the user’s serial number, the

period’s beginning time, and the period’s ending time. For each job in the workload, if the job

is part of a rare behavior, instead of assigning it to the appropriate user in the temporary users

pool or long-term users pool, we insert it to this user’s place in the rare behaviors pool.

3. We define a parameter called RB NPW to represent the expected number of times that rare

behaviors should occur each week. This is a value between 0 and the arrival rate of new

temporary users. In each week we divide the new temporary users into two: RB NPW of

them on average will be rare-behavior users, and the rest will be regular temporary users.

Note that the total number of temporary users stays as before.

4. When evaluating the performance results of the simulation (throughput, wait time, response

time, and slowdown) we skip the jobs that belong to rare behavior users, in order to focus on

their influence on the rest of the jobs.

While rare behaviors are treated as a sub-class of temporary users, their definition is independent

of how temporary users are normally defined. Thus the duration of a rare behavior can be longer

than the limit on the activity of a temporary user; in other words, it can actually be a long-term user.

Also, a single user’s activity can be partitioned into several independent rare behaviors, or all the

activity can be considered a single rare behavior.

The concept of over-sampling rare behaviors is completely general. But in the context of parallel

workloads, a specific type of rare behavior that has aroused some interest is the so-called flurries

of activity [41]. These are bursts of activity in which a single user submits a huge number of jobs

during a relatively short period. Examples of the three workloads with the largest flurries, the LANL-

CM5, SDSC-SP2, and SDSC-Par95, are shown in Fig. 13. The flurry jobs typically require very low

resources (for example a single processor for less than a minute) and therefore their influence is

unclear.

Flurries are similar to the flash crowds that have been observed in other types of workloads,

e.g. the web, except that flash crowds are the result of the convergence of many users rather than

the abnormal behavior of a single user. The work on workload flurries showed that they may taint

performance evaluation results, and therefore the suggestion was to remove them [19]. Indeed, in

other sections of this paper we consistently use the “cleaned” versions of the workloads, where

flurries have been removed. But here we use the flurries from the original logs to demonstrate how

we can amplify them and thus investigate the effect of having more or less flurries. The chosen set

of rare behaviors in the LANL-CM5 log is users 50 and 38 which each have a single flurry, and

user 31 who has two. In SDSC-SP2 there is one large flurry by user 374. Finally, in SDSC-Par95

we consider all the activity of users 66 and 92, approximately from October and until the end of the

log.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22 N. ZAKAY AND D. G. FEITELSON

A
1998

M J JASOND J
1999

FMAM J JASOND J
2000

FMAM

jo
bs

 p
er

 w
ee

k

0

200

400

600

800

1000

1200

1400

user 45
user 378
user 98
user 73

user 399
user 179
user 181
user 268

user 78
user 9
user 260
others

A
1998

M J JASOND J
1999

FMAM J JASOND J
2000

FMAM

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

12000

user 358
user 364
user 376
user 204

user 211
user 381
user 390
user 395

user 401
user 404
user 412
others

A
1998

M J JASOND J
1999

FMAM J JASOND J
2000

FMAM

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

12000

user 131
user 168
user 185
user 273

user 334
user 337
user 407
user 348

user 358
user 393
user 398
others

A
1998

M J JASOND J
1999

FMAM J JASOND J
2000

FMAM

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

user 119
user 127
user 173
user 308

user 310
user 348
user 276
user 283

user 379
user 407
user 420
others

Figure 14. Adding flurries to the base workload of the SDSC-SP2 log. Note the much smaller scale in the

first panel, where there are no flurries. In the others the values of RB NPW are 1
8 , 1

6 , and 1
4 . In each case the

11 most active users are marked.

0 100 200 300
0

1

2

3

4x 10
4

User

Jo
bs

 N
um

be
r

0 100 200 300
0

1000

2000

3000

4000

User

S
es

si
on

s
N

um
be

r

0 100 200 300
0

1

2

3x 10
4

User

E
xp

ec
ta

tio
n

of
 S

es
si

on
s

 L

en
gt

h
(in

 s
ec

on
ds

)

0 100 200 300
0

2

4

6

8x 10
9

User

W
or

k
A

m
ou

nt

0 100 200 300
0

2

4

6

8x 10
7

User

A
rr

iv
al

 T
im

e
(in

 s
ec

on
ds

)

0 100 200 300
0

2

4

6

8x 10
7

User

E
nd

 T
im

e
(in

 s
ec

on
ds

)

0 100 200 300
0

2

4

6

8x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

0 100 200
0

5000

10000

15000

Hour In Week

Jo
bs

 N
um

be
r NPW = 0

NPW = 1/8

NPW = 1/6

NPW = 1/4

Figure 15. Comparison between the workloads created by running the simulation with different values of
RB NPW on the LANL-CM5 log.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 23

1.17 1.18 1.19 1.2 1.21
x 10

5

0

10

20

30

jobs number

ex
pe

rim
en

ts
 n

um
be

r

0.68 0.7 0.72
0

10

20

30

utilization

ex
pe

rim
en

ts
 n

um
be

r
2 2.5 3 3.5

0

20

40

60

slowdown

ex
pe

rim
en

ts
 n

um
be

r

1 2 3
x 10

5

0

20

40

60

wait time
ex

pe
rim

en
ts

 n
um

be
r

NPW = 0

NPW = 1 / 8

NPW = 1 / 4

NPW = 1 / 2

Figure 16. Distributions of number of non-flurry jobs, utilization, slowdown, and wait-time for 100
repetitions of simulating the performance of EASY on the LANL-CM5 workload with different frequencies

of flurries.

First we will demonstrate that this application works and we can indeed control the prevalence

of flurries. For each log we choose RB NPW to be 0, 1
8 ,

1
6 ,

1
4 . This means that we expect to have

no flurries, or a flurry starting on average once in each 8 weeks, once in 6 weeks, and once in 4

weeks. The results for the SDSC-SP2 log are presented in Fig. 14. When there are no flurries at all

(first graph), the scale of the number of jobs is dramatically lower. In addition, when the RB NPW

gets bigger, the scale also gets bigger, because it increases the probability that two flurries will be

chosen in the same week or in close weeks. Finally, it is easy to see that there are more flurries when

RB NPW gets bigger.

The next step of the validation is to see how these changes affect the workloads’ characteristics.

To do this we repeated the experiment seven times for each value of RB NPW and compared the

created workloads. The results are presented in Fig. 15 for the CM5 log. The main differences can

be seen in the graphs of the number of jobs and the average session lengths by each user. When

there are no flurries, the maximal values are much lower. When flurries are included we see discrete

components in the distributions that reflect repetitions of the same large flurries.

To show the effect of flurries on the normal, non-flurry jobs, we conducted 100 repetitions of each

workload and simulated their scheduling. We used four different values of RB NPW: 0, 1
8 , 1

4 , and 1
2 .

Then we created a histogram of the performance for each value. The results for the LANL-CM5 log

are presented in Fig. 16. The results for the other two logs are less distinct, but qualitatively similar.

The graphs in the top row show that the number of jobs and the utilization are lightly reduced

when the value of RB NPW gets bigger. The reason is that we get approximately the same amount

of users for each value of RB NPW, but when its value gets bigger, the percentage of flurries is

increased. Due to the fact that the flurry jobs are not included in these statistics, less jobs are left.

The other two metrics, wait time and slowdown, aren’t biased and really indicate the performance

reliably. For all three logs, more flurries lead to worse performance. For example, it is easy to see

that with a lower RB NPW value, there are much more experiments with low slowdown and wait

time. For all the logs higher RB NPW values cause a heavier tailed distribution of both metrics, and

therefore worse performances. Therefore we conclude that flurries disrupt the performance of all

the jobs, even if each flurry job uses only little resources.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24 N. ZAKAY AND D. G. FEITELSON

6.5. Additional Applications

In addition to the above, we note the following ideas for using workload resampling. These have not

been tested yet and are presently left for future work.

6.5.1. Mixing Traces. In many cases we have more than one trace at our disposal, typically coming

from different locations or different times. To obtain generally applicable results, data from all

these traces should be used. This can be done either by performing evaluations based on each trace

individually, or by mixing the traces, that is by resampling from a number of traces rather than from

only one trace. This mechanism has been used in the past in order to reduce the dependence of

analysis results on a single trace [48], or to increase the load [24]. It was also suggested for Tmix

[44].

Resampling from several traces is based on the assumption that this is the better way to achieve

general results that are independent of the peculiarities of any individual trace. An interesting

research question is whether this is indeed the case. And could it be that mixing and evaluations

are actually transitive, and equivalent results are obtainable by averaging of results from multiple

traces that are resampled independently? We intend to study this question by using both approaches

and comparing the results.

6.5.2. Improving Stationarity. A special case is using resampling to create a stationary workload

trace. Many of the original traces seem to be non-stationary, with different parts having different

statistical properties. As a consequence performance results are then some sort of weighted average

of the results under somewhat different conditions, but we don’t know the details of these conditions

or the weights. Resampling can be used to mix the different conditions and create a more uniform

trace.

Alternatively, when examined more closely the workloads are sometimes found to be piecewise

stationary, meaning that they are relatively stationary for some time and then change. It is therefore

better to perform several stationary evaluations and combine the results, rather than using a single

non-stationary model that might lose important locality properties. Resampling can then be used to

create stationary segments that are long enough to be simulated reliably.

We note in passing that some workloads are inherently non-stationary because the system

configuration was changed during the time that the workload trace was recorded [20]. In such

situations the trace should actually not be used as-is, because the results would be an unknown

mix of results for the two different constituent workloads. But the problem would be solved by

using resampling, as then all the data will be used to create a single consistent workload.

6.5.3. Improved Shaking to Reduce Sensitivity. Simulations of system performance are sometimes

very sensitive to the exact value of some input parameter. For example, we have found a specific

case where changing the runtime of one job from 18 hours and 30 seconds to exactly 18 hours

caused the average bounded slowdown of all the jobs in the trace to change by about 8% [41]. We

developed “shaking” as a general methodology to overcome such mishaps [42].

The idea of shaking is to cause small random perturbations to the workload and re-run the

evaluation. This is repeated many times, leading to a distribution of results. This distribution is

then used as the outcome of the evaluation, rather than the single point derived from the original

trace. The claim is that the distribution (or its mean) more faithfully characterizes the results that

would be obtained by this workload and similar ones. Our results indicate that shaking does indeed

reduce instability considerably in several different cases.

The original formulation of shaking operated at the job level. Each job was moved slightly

independently of the others. This could potentially cause problems if say one job was delayed and a

subsequent job was moved forward and ended up before the first job. We therefore intend to now try

to perform shaking at a higher level, e.g. by slightly shifting whole sessions, or even the sub-traces

belonging to different users. The effect will be evaluated by comparing the original results with our

current shaking results and the new shaking results. Shaking will also be compared with resampling

to allow for statistical analysis as described above.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 25

6.5.4. Selective Manipulation of the Workload. Another reason to manipulate workloads is to

change their properties, so as to check the effect of these properties on system performance. In

the current work we treat all users as equivalent, but this is not really so. Some users may run long

jobs. Others may prefer numerous small jobs. Some users run jobs that require a lot of memory

while others run more compute-intensive jobs.

The implication is that we can influence the characteristics of the workload by classifying users

according to their behavior (or the behavior of their applications), and then resample with a selective

bias in favor of a certain class of users. This is an extension of the idea of emphasizing rare behaviors

as described above. It will enable the creation of workloads that stress different parts of the system.

6.5.5. Reducing or Enhancing Locality. Finally, a special case of manipulating the workload is

changing its locality properties, as was done e.g. in [33, 5] (where they identify locality with

burstiness). Locality can be very meaningful for adaptive systems that learn about their workload

and adjust accordingly [17].

The mechanism for changing the locality is to introduce locality into the sampling process.

Locality is typically present in user sessions (as we showed in Section 3). Therefore, to reduce

locality the resampling must be done at the job level, not the session or user level. Regrettably,

simple randomization does not work, as it violates the workload’s stability properties. We will

therefore need to develop a mechanism for resampling jobs subject to stability constraints. The

question is how to do so and still get good randomization.

Enhancing locality can be done by introducing repetitions, i.e. specifically selecting the same jobs

over and over again [17]. However, this also needs to be done subject to stability constraints, and

subject to the overall statistical properties of the workload.

7. CONCLUSIONS

Workload resampling is proposed as a mechanism which allows the performance analyst to marry

the realism of workload traces with the flexibility of workload models. Moreover, it combines the

following attributes:

• Retaining the complex internal structure of the original trace, including features that we do

not know about, and

• Allowing for manipulations that affect specific properties that we know about and want to

change as part of the evaluation.

The idea is to partition a given workload trace into independent sub-traces, e.g. representing the

activity of individual users. These subtraces can then be re-combined in different ways in order

to create new workload traces with desired attributes: they can be longer than the original, have

a higher or lower load than the original, or just be different from the original so as to provide an

additional data point.

A major concern in this work was how to do the resampling correctly, meaning that the created

workloads will be as similar as possible to the original workload. One aspect of this was the decision

to perform the resampling at the level of users, and not, say, at the level of individual sessions. This

maintains the correlations between successive sessions of the same user. Another aspect was the

decision to retain the time of day and day of week when each user starts (and hence also when

each job starts). This leads to workloads that retain the correlations among users who all operate

according to a common daily and weekly cycle.

One concern that was not handled here is the issue of workload stability constraints. Real

workloads exhibit a self-throttling effect whereby less additional work is submitted when the system

is highly loaded. Given that we use each user’s sequence of jobs as-is, our generated workload traces

will not display such effects. To be more realistic we therefore need to model the feedback from

system performance to user behavior. Such models turn out to be rather complicated, and this work

will be reported separately when it is completed.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26 N. ZAKAY AND D. G. FEITELSON

The above description focused on parallel system workloads, which are useful for evaluating

the performance of parallel job schedulers. However, we believe that workload resampling has

far wider applicability. Specifically, workload resampling is clearly applicable to any context in

which the composition of the workload can be described as a hierarchical structure. Examples

include networking, web servers, file systems, and architectural workloads. For example, it would

be interesting to try to replace the large benchmark suites used in computer architecture evaluations

with workload mixes based on resampling from the different applications in the suite. If successful,

this may lead to an innovative fast approach for evaluating new designs. But using workload

resampling in other domains first requires additional research, e.g. to determine the most appropriate

granularity of resampling.

Acknowledgments

This research was supported by the Ministry of Science and Technology, Israel

REFERENCES

1. J. Aikat, S. Hasan, K. Jeffay, and F. D. Smith, “Towards traffic benchmarks for empirical networking research: The
role of connection structure in traffic workload modeling”. In 20th Modeling, Anal. & Simulation of Comput. &
Telecomm. Syst., pp. 78–86, Aug 2012, DOI:10.1109/MASCOTS.2012.19.

2. P. Barford and M. Crovella, “Generating representative web workloads for network and server performance
evaluation”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 151–160, Jun 1998, DOI:
10.1145/277851.277897.

3. P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson, “Characterizing, modeling, and
generating workload spikes for stateful services”. In 1st Symp. Cloud Comput., pp. 241–252, Jun 2010, DOI:
10.1145/1807128.1807166.

4. O. Boiman and M. Irani, “Detecting irregularities in images and in video”. In 10th IEEE Intl. Conf. Comput. Vision,
vol. 1, pp. 462–469, Oct 2005, DOI:10.1109/ICCV.2005.70.

5. G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “Dealing with burstiness in multi-tier applications:
Models and their parameterization”. IEEE Trans. Softw. Eng. 38(5), pp. 1040–1053, Sep/Oct 2012, DOI:
10.1109/TSE.2011.87.

6. Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data systems: A cross-industry study
of MapReduce workloads”. Proc. VLDB Endowment 5(12), pp. 1802–1813, Aug 2012.

7. Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating MapReduce performance using workload
suites”. In 19th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 390–399, Jul 2011, DOI:
10.1109/MASCOTS.2011.12.

8. M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evidence and possible
causes”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 160–169, May 1996, DOI:
10.1145/233008.233038.

9. S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman, “Synthesizing sound textures
through wavelet tree learning”. IEEE Comput. Graphics & Applications 22(4), pp. 38–48, Jul 2002, DOI:
10.1109/MCG.2002.1016697.

10. M. R. Ebling and M. Satyanarayanan, “SynRGen: An extensible file reference generator”. In SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 108–117, May 1994, DOI:10.1145/183018.183030.

11. B. Efron, “Bootstrap methods: Another look at the jackknife”. Ann. Statist. 7(1), pp. 1–26, Jan 1979, DOI:
10.1214/aos/1176344552.

12. B. Efron and G. Gong, “A leisurely look at the bootstrap, the jackknife, and cross-validation”. The American
Statistician 37(1), pp. 36–48, Feb 1983, DOI:10.2307/2685844.

13. C. Ernemann, B. Song, and R. Yahyapour, “Scaling of workload traces”. In Job Scheduling Strategies for Parallel
Processing, pp. 166–182, Springer-Verlag, 2003, DOI:10.1007/10968987 9. Lect. Notes Comput. Sci. vol.
2862.

14. A. Erramilli, O. Narayan, and W. Willinger, “Experimental queueing analysis with long-range dependent packet
traffic”. IEEE/ACM Trans. Networking 4(2), pp. 209–223, Apr 1996, DOI:10.1109/90.491008.

15. Y. Etsion and D. Tsafrir, A Short Survey of Commercial Cluster Batch Schedulers. Tech. Rep. 2005-13, Hebrew
University, May 2005.

16. D. G. Feitelson, “Workload modeling for performance evaluation”. In Performance Evaluation of Complex Systems:
Techniques and Tools, M. C. Calzarossa and S. Tucci (eds.), pp. 114–141, Springer-Verlag, Sep 2002, DOI:
10.1007/3-540-45798-4 6. Lect. Notes Comput. Sci. vol. 2459.

17. D. G. Feitelson, “Locality of sampling and diversity in parallel system workloads”. In 21st Intl. Conf.
Supercomputing, pp. 53–63, Jun 2007, DOI:10.1145/1274971.1274982.

18. D. G. Feitelson and E. Shmueli, “A case for conservative workload modeling: Parallel job scheduling with daily
cycles of activity”. In 17th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., Sep 2009, DOI:
10.1109/MASCOT.2009.5366139.

19. D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation”. In IEEE Intl. Symp. Performance
Analysis Syst. & Software, pp. 221–230, Mar 2006, DOI:10.1109/ISPASS.2006.1620806.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 27

20. D. G. Feitelson, D. Tsafrir, and D. Krakov, Experience with the Parallel Workloads Archive. Tech. Rep. 2012-6,
Hebrew University, Apr 2012.

21. S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, T. J. Gibson, and E. L. Miller, “Self-similarity in file
systems”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 141–150, Jun 1998, DOI:
10.1145/277851.277894.

22. F. Hernández-Campos, K. Jeffay, and F. D. Smith, “Modeling and generating TCP application workloads”. In 4th
Broadband Comm., Netw. & Syst., pp. 280–289, Sep 2007, DOI:10.1109/BROADNETS.2007.4550436.

23. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Modeling of workload in MPPs”. In
Job Scheduling Strategies for Parallel Processing, pp. 95–116, Springer-Verlag, 1997, DOI:10.1007/3-540-
63574-2 18. Lect. Notes Comput. Sci. vol. 1291.

24. P. Kamath, K.-c. Lan, J. Heidemann, J. Bannister, and J. Touch, “Generation of high bandwidth network traffic
traces”. In 10th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 401–412, Oct 2002, DOI:
10.1109/MASCOT.2002.1167101.

25. L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs”. ACM Trans. Graph. 21(3), pp. 473–482, Jul 2002, DOI:
10.1145/566570.566605.

26. D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic workload generation technique for
stress testing session-based systems”. IEEE Trans. Softw. Eng. 32(11), pp. 868–882, Nov 2006, DOI:
10.1109/TSE.2006.106.

27. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures: Image and video synthesis using graph
cuts”. ACM Trans. Graph. 22(3), pp. 277–286, Jul 2003, DOI:10.1145/882262.882264.

28. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of Ethernet traffic”.
IEEE/ACM Trans. Networking 2(1), pp. 1–15, Feb 1994, DOI:10.1109/90.282603.

29. D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for Parallel Processing, pp. 295–
303, Springer-Verlag, 1995, DOI:10.1007/3-540-60153-8 35. Lect. Notes Comput. Sci. vol. 949.

30. V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces and synthetic workload models for
parallel job scheduling”. In Job Scheduling Strategies for Parallel Processing, pp. 25–46, Springer-Verlag, 1998,
DOI:10.1007/BFb0053979. Lect. Notes Comput. Sci. vol. 1459.

31. U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: Modeling the characteristics of
rigid jobs”. J. Parallel & Distributed Comput. 63(11), pp. 1105–1122, Nov 2003, DOI:10.1016/S0743-
7315(03)00108-4.

32. B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman and Co., 1982.
33. N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic burstiness to a traditional

client-server benchmark”. In 6th Intl. Conf. Autonomic Comput., pp. 149–158, Jun 2009, DOI:
10.1145/1555228.1555267.

34. “Parallel workloads archive”. URL http://www.cs.huji.ac.il/labs/parallel/workload/.
35. K. Pawlikowski, “Steady-state simulation of queueing processes: A survey of problems and solutions”. ACM

Comput. Surv. 22(2), pp. 123–170, Jun 1990, DOI:10.1145/78919.78921.
36. V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson modeling”. IEEE/ACM Trans. Networking 3(3),

pp. 226–244, Jun 1995, DOI:10.1109/90.392383.
37. M. Schroeder, Fractals, chaos, Power Laws. W. H. Freeman and Co., 1991.
38. E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the performance of parallel system

schedulers”. In 14th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 167–176, Sep 2006, DOI:
10.1109/MASCOTS.2006.50.

39. J. Sommers and P. Barford, “Self-configuring network traffic generation”. In 4th Internet Measurement Conf., pp.
68–81, Oct 2004, DOI:10.1145/1028788.1028798.

40. D. Talby and D. G. Feitelson, “Improving and stabilizing parallel computer performance using adaptive backfill-
ing”. In 19th Intl. Parallel & Distributed Processing Symp., Apr 2005, DOI:10.1109/IPDPS.2005.252.

41. D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling simulation: The role of workload flurries”. In
20th Intl. Parallel & Distributed Processing Symp., Apr 2006, DOI:10.1109/IPDPS.2006.1639311.

42. D. Tsafrir, K. Ouaknine, and D. G. Feitelson, “Reducing performance evaluation sensitivity and variability by input
shaking”. In 15th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 231–237, Oct 2007, DOI:
10.1109/MASCOTS.2007.58.

43. K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive network traffic generation”. IEEE/ACM Trans.
Networking 17(3), pp. 712–725, Jun 2009, DOI:10.1109/TNET.2009.2020830.

44. M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D. Smith, “Tmix: A tool for generating
realistic TCP application workloads in ns-2”. Comput. Commun. Rev. 36(3), pp. 67–76, Jul 2006, DOI:
10.1145/1140086.1140094.

45. Y. Wexler, E. Schechtman, and M. Irani, “Space-time video completion”. In Conf. Comput. Vision & Pattern Recog.,
vol. 1, pp. 120–127, Jun 2004, DOI:10.1109/CVPR.2004.1315022.

46. N. Zakay and D. G. Feitelson, “On identifying user session boundaries in parallel workload logs”. In Job Scheduling
Strategies for Parallel Processing, W. Cirne et al. (eds.), pp. 216–234, Springer-Verlag, 2012, DOI:10.1007/978-
3-642-35867-8 12. Lect. Notes Comput. Sci. vol. 7698.

47. N. Zakay and D. G. Feitelson, “Workload resampling for performance evaluation of parallel job schedulers”. In 4th
Intl. Conf. Performance Engineering, pp. 149–159, Apr 2013, DOI:10.1145/2479871.2479893.

48. J. Zilber, O. Amit, and D. Talby, “What is worth learning from parallel workloads? a user and session based
analysis”. In 19th Intl. Conf. Supercomputing, pp. 377–386, Jun 2005, DOI:10.1145/1088149.1088200.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

`

Preserving User Behavior Characteristics in

Trace-Based Simulation of Parallel Job Scheduling

Netanel Zakay Dror G. Feitelson

School of Computer Science and Engineering

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

netanel.zakay@mail.huji.ac.il, feit@cs.huji.ac.il

Abstract—Evaluating the performance of a computer system
requires the use of representative workloads. Therefore it is cus-
tomary to use recorded job traces in simulations to evaluate the
performance of proposed parallel job schedulers. We argue that
this practice retains unimportant attributes of the workload, at
the expense of other more important attributes. Specifically, using
traces in open-system simulations retains the exact timestamps
at which jobs are submitted. But in a real system these times
depend on how users react to the performance of previous jobs,
and it is more important to preserve the logical structure of
dependencies between jobs than the specific timestamps. Using
dependency information extracted from traces, we show how a
simulation can preserve these dependencies. To do so we also
extract user behavior, in terms of sessions and think times
between the termination of one batch of jobs and the submission
of a subsequent batch.

I. INTRODUCTION

When a new scheduler design is suggested, it is impractical
to experiment with it in production use. Instead it is first
evaluated in simulation, and only if it demonstrates significant
improvements in performance can it become a candidate for an
actual deployment. Reliable simulations are therefore critical
for the choices made in reality.

The simulations commonly used to evaluate schedulers are
trace driven, and use an open-system model to play back
the trace and generate the workload for the evaluation. This
means that new requests get issued during simulation solely
according to the timestamps from the trace, irrespective of
the logic behind the behavior of the users and of the system
state. Therefore, the workload may not be representative of the
behavior of real users. Moreover, the throughput of the system
being evaluated is also dictated by the timestamps, instead of
being affected by the actual performance of the scheduler.

The base assumption of such simulations is that if we
use recorded traces, the workload will be representative and
therefore the performance metrics will be reliable. However,
they don’t take into account that traces contain a signature
of the scheduler that was used on the traced system [18].
In other words, the users’ actions are not a universally true
workload, but rather reflect their reactions to the scheduler’s
decisions. This means that real users would react differently to
the decisions of the new scheduler. Therefore, when we want
to evaluate a new scheduling policy, and to use a representative
workload, the simulation should reflect user reactions to the
evaluated scheduler rather than to the original scheduler. It is
more important to preserve the logic of the users’ behavior
than to repeat the exact timestamps.

For example, assume that a user sends a job A and then
another job B which depends on the results of A. During a
simulation the first job may be handled at a different time,
which may lead to incorrect logic of the workload:

1) Case 1: A is scheduled later than originally. However,
in the simulation B will arrive according its original
timestamp. The result is a possibly smaller difference
between A and B. Moreover, job B may even be
scheduled before job A.

2) Case 2: A is scheduled earlier during the simulation.
We would expect the user to send B earlier too. But
instead job B will again arrive to the system solely
according to its timestamp.

This means that when we simulate a different scheduler,
the workload no longer represents the behavior of real users.
This may lead to unrepresentative simulations and unreliable
evaluations. For example, a consequence of blindly using the
timestamps is that when the system is saturated, it keeps on
receiving jobs according to the timestamps, causing unrealistic
load conditions. In reality, we would expect the users to sense
the load and the slow responses, and to send fewer new jobs.
The opposite case is also a serious problem — when the system
has available resources the simulation can’t exploit them by
submitting more jobs.

This leads us to the second main drawback of conventional
simulations. As long as the system is not saturated, the
throughput during the simulation is dictated by the timestamps,
instead of being affected by the actual performance of the
scheduler. However, the throughput is probably the best in-
dicator for user productivity, and testifies to the scheduler’s
capacity for keeping its users satisfied and motivating them
to submit more jobs. The common solution is to use metrics
like the response time or slowdown, that, on one hand, can
be affected by the scheduler, and, on the other hand, are
conjectured to correlate with user satisfaction. However, it is
not clear that they correlate with the throughput.

Instead, we propose a novel feedback-based simulation.
This is a trace driven simulation, but using a semi-closed
system model to play back the trace and generate the workload
for the evaluation. The feedback reproduces the fine-grained
interactions that naturally exist between the users and the
system in reality. In particular, the simulation retains the logical
structure of the workload — the users’ behavior, as reflected
by the think times, sessions, and dependencies between jobs.
Moreover, schedulers that are capable of motivating their users
to submit more jobs will actually cause the users to send

their jobs faster, and therefore lead to higher throughput. This
implies that schedulers will be evaluated with more realistic
workloads and that they can be designed to improve user
satisfaction directly, since their effect on productivity will be
reliably evaluated.

To achieve this we suggest to divide each user’s work
into sequence of dependent batches. Then we model all the
possible dependencies between batches. During the simulation
we preserve these dependencies. This is done by simulating the
submittal of a batch only when all its dependencies are satis-
fied. This creates the feedback affect described above, while
preserving the characteristics of the workload, for example the
order of the jobs per user and the job properties.

In order to use this feedback mechanism we need to model
how a user would react to different performance levels, and in
particular, when users will submit their jobs. For example, if a
job is delayed in the system, the user model decides whether
the user has the original think-time before the next job, or
maybe he takes a break of a few hours for lunch or even a
few days due to a weekend. Given the limited information
contained in traces, there is no way to verify that a user
model is correct. As a first step we therefore present alternative
models of user behavior, which reflect expected behaviors and
preserves different properties of the traces. We then compare
the generated workloads with the original, and check the users’
characteristics.

II. RELATED WORK

Traditionally, parallel system schedulers have been evalu-
ated using simulations driven by traces or synthetic workloads
based on statistical workload models (e.g. [9], [13], [4], [7],
[10], [25]). In either case, the simulations typically follow
an open systems model: the system receives jobs from some
external population of users and processes these jobs. The job
arrivals are independent of the system performance and state.

There have also been a small number of previous works,
in different domains, who noted that a closed system model
with feedback may be more realistic [5], [18], [17], [15],
[11]. According to Spink, “feedback involves a closed loop of
causal influences” [21]. In the context of systems performance
evaluation, the idea is that poor performance may discourage
users and cause them to submit fewer additional jobs; at
the very least, they will delay the submittal of additional
jobs until previous ones have terminated. Conversely, good
performance may cause them to submit additional jobs at a
more rapid pace. In either case the changes in user behavior
affect subsequent system performance. In particular, reduced
submittals when performance is poor contribute to system
stability [18]. Sentiments such as these have been echoed in
studies of networking and storage systems [6], [8].

In order to include feedback in evaluations one needs a
model of how users react to load. While direct experimental
evidence is rare [2], some works have considered user tolerance
of delays and bandwidth limitations [16], [1], [14], [22],
[23], [19]. And using such a model, Shmueli suggested a
scheduler design that is specifically targeted to interact with
user behavior [20]. The work closest to ours is that of Shmueli
and Feitelson [18], [19], and we consider their user model in
Section VII-B. The unique contributions of our work include

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
��������������������� Jobs

Batches

Sessions

Time

>1hr

Fig. 1. Illustration of batches and sessions.

a detailed analysis of job dependency structures, and new
suggestions of how user behavior models may be extracted
from workload traces. These lead to an improved match with
traced workloads.

III. BACKGROUND

There are different types of parallel systems. Without loss
in generality, we focus on the distributed-memory model, in
which every processor in the system is associated with a private
memory, and the processors are connected to each other using a
fast network. A parallel job in such a system is a unit of work
that is composed of multiple processes that need to execute
in parallel and communicate over the network. There is no
time-sharing or preemption support, so processors are allocated
to jobs using a one-to-one mapping: one processor for every
process of the job for the duration of the job’s execution. This
scheme is often referred to as space slicing.

The role of the scheduler in such a system is to accept
the jobs from the users, to allocate processors, and to exe-
cute the jobs on the selected processors. For simplicity, we
ignore issues like network contention and heterogeneous node
configurations.

The system’s users submit their jobs by providing job
descriptions to the scheduler. For our type of system, this
typically includes two important attributes: the number of
processors the job requires in order to execute, which is
often referred to as the job’s size, and an estimated up-
per bound on the runtime of the job, to enable the sched-
uler to plan ahead. In the evaluations we use jobs data
from traces available in the Parallel Workloads Archive
(www.cs.huji.ac.il/labs/parallel/workload).

IV. SESSIONS AND BATCHES

In order to create a feedback effect, we need to understand
the structure of each user’s work, and in particular the user’s
sessions. Intuitively, a session is a period of continuous work
by a user. This does not mean that the user was active 100% of
the session’s time. A user may run a job to completion, think
about the result, and then run another job, all within the same
session.

The above description seems to imply sequential work,
where jobs in a session never overlap. Empirical evidence from
traces shows that this is clearly not always the case. Following
Shmueli and our previous work [20], [24], we call a set of
such overlapping jobs a batch, and treat them as a unit. Thus
a session may contain several batches in sequence, and each
batch may contain a number of jobs. The interval between
batches is called the think-time (TT).

Finding the batches and sessions of the users is a basic
requirement in order to understand and analyze their dynamics.
However, activity logs do not contain explicit information
about sessions. Thus our first goal is to estimate the batches
and sessions based on data such as job submit and end times.
We do not use a job’s start running time because it reflects
scheduling activity and not user activity. We define sessions
and batches as follows (see [24] for justifications):

Definition 1. A session is a maximal sequence of jobs of
the same user such that the inter-arrival time between two
successive jobs is up to one hour

Definition 2. For two jobs j1 and j2, such that j1.arrival ≤
j2.arrival, we say that j1 and j2 overlap if j1.end >
j2.arrival.

Definition 3. Consider a graph with jobs as nodes and edges
connecting overlapping jobs provided they are in the same
session. A batch is a connected component of jobs in this
graph.

The algorithm to derive sessions and batches according
to these definitions is quite intuitive and simple. To produce
sessions we scan all the jobs of a user according to their arrival
time. If the inter-arrival time of the current job is longer than
an hour, this represents a session break, and therefore this job
starts a new session. Once the jobs are partitioned into sessions,
we partition each such session into batches. We scan all the
jobs in a session according to their arrival time and keep track
of the latest end time seen so far. If the current job arrived
after this time, the job starts a new batch.

An illustration of sessions and batches is presented in
Figure 1. There are several interesting observations relating
to overlapping sessions and batches:

Definition 4. For two batches b1 and b2, we say that b1 and
b2 overlap if there are two overlapping jobs j1 and j2, such
that j1 is in b1 and j2 is in b2.

Observation 5. Two batches in the same session can’t overlap.
Hence all the jobs in one of them terminate before the first
arrival of the second.

The proof is simple. If two batches overlap, they have at
least one pair of overlapping jobs, and therefore they will be
in the same connected component of overlapping jobs in the
session. By the batch definition, these batches should then
actually be one batch.

Observation 6. Two batches in different sessions may overlap.

In Figure 1 we can see an example of this. The second
session contains a batch with two long jobs. After sending
these jobs, the user leaves the system and comes back after
several hours. As a result, the next job he submit starts a
different session and therefore a different batch, despite the
fact that the previous jobs from the previous session are still
running on the system.

Observation 7. All the batches of a given user are in fact well
ordered in a single sequence by their arrival times.

By the definition of sessions, a session is a sequence of
successive jobs, and the inter-arrival time between different

Follows

Batches
Time

* Sessions

Fig. 2. Illustration of the follows relation.

sessions is at least one hour. Therefore, the sessions can be
sorted according to the arrival time of their jobs, and this
is a well defined order. Batches in turn are constructed by
scanning the jobs in a session according to their arrival time,
and associating each job to the current batch or starting a
new batch. This implies that batches contain a sequence of
successive jobs. Therefore, sorting the batches in a session
according to the arrival time of the jobs is a well defined
order. Combining these two results, we can conclude that all
the batches of a user can be sorted according to the arrival
times.

Based on this we can index each user’s batches according to
their place in this order. This means that for each two batches
of a user bi and bj , i < j iff the jobs in bi were submitted
before those in bj . Using this order we can define a follows
relation between batches:

Definition 8. For each two batches bi and bj of the same user,
we say that bj follows bi if j = i + 1.

An illustration of the follows relation appears in Figure 2,
where the batches are the nodes, and a directed edge from bj
to bi means that bj follows bi. Pay attention that the order is
defined according to the arrival times, and therefore the edge
are from the arrival of a batch to the last arrival of the previous
batch.

V. SHORTCOMINGS OF CONVENTIONAL SIMULATIONS

To understand the shortcomings of conventional simula-
tions, we use the example presented in Figure 3. The top plot
represents the trace. The Cyan user sent a job that couldn’t
run immediately, so it was delayed until enough processors
became available. Meanwhile, the Red user sent a job. This
job needed less processors and was scheduled immediately.
Therefore it finished quickly. The user was still there and sent
an additional job that depended on the results of the previous
one. We can see the scheduler’s signature on the workload: the
fact that the scheduler uses backfilling caused the Red user to
send the next jobs quickly.

In the middle graph we show a conventional simulation of a
system with a different scheduler — FCFS without backfilling.
All the jobs arrive according to their timestamps. But due to
the scheduler policy, Red’s jobs wait in the queue until Cyan’s
job starts to run. Then, they all start to run together, because
they already arrived and there are enough processors available.

In contrast, we suggest that it is important to retain the
dependency between Red’s jobs. Each of Red’s jobs depends
on the previous job. Therefore the second job shouldn’t arrive
to the system until after the first one ends. The exact arrival
time of the jobs is a difficult question we discuss in the next
section. The simplest approach is to preserve the same think-
times between the jobs. This leads to a simulation as presented
in the third graph.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������
������������
������������

������������
������������
������������

��������
��������
��������
��������

������������
������������
������������

������������
������������
������������

��������
��������
��������
��������������������
������������
������������

������������
������������
������������������������
������������
������������

������������
������������
������������

��������
��������
��������
��������
������������
������������
������������
������������������������
������������
������������

������������
������������
������������

��
��
��
��

��

conventional simulation without backfilling

our simulation without backfilling

time

original with backfilling

time

timepr
os

es
so

rs
 n

um
be

r
pr

os
es

so
rs

 n
um

be
r

pr
os

es
so

rs
 n

um
be

r

job runs

Red user

job arrives

Other users

Cyan user

Fig. 3. Top: example schedule on a system that uses backfilling. This
workload is then used to simulate a FCFS scheduler in a conventional
simulation (middle) and a feedback based simulation (bottom).

This example demonstrates many problems of conventional
simulations. Such simulations use the recorded trace without
any change in order to preserve the properties of the workload.
But in fact they preserve only a subset of properties, and
sacrifice others. In particular, sticking to the original arrival
times destroys the dependency structure and the think-times.
We argue that it is more important to preserve the logical
structure of the workload, as embodied by dependencies and
think times, and adjust the arrival times accordingly. This is
done by a feedback model that leads to changes to the arrival
times of new jobs according to the terminations of previous
jobs.

Second, using the workload trace as is may produce unre-
alistic performance measurements. In the conventional simula-
tion, most of Red’s jobs suffer from poor performances. This
is because they arrived according to the original timestamps,
without taking into account the state of the system. The jobs
keep arriving despite the fact that the previous jobs haven’t
been finished yet. This causes the FCFS scheduler to have
extremely poor performance. However, in reality users won’t
use a system with a problematic scheduler as they use a
system with better scheduler. Rather, the users will slow down
according to the performances and the system state. This is
exactly what happens in the feedback simulation: the first of
Red’s jobs will indeed have poor performance, but the next job
will arrive after this job finished, and therefore won’t suffer
from poor performance too. FCFS is still worse than EASY,
but the difference is more realistic.

Third, we can see here that conventional simulations can’t
effect the throughput — despite using a worse scheduler in
the simulation, all the users start at the same time and finish
at the same time, which depends mostly on the timestamps.

Depends

Sessions

Batches
Time

*

Fig. 4. Illustration of the depends on relation.

However, in our simulation, Red sensed the slow response (for
his first job), and as a result, sent the rest of the jobs later. This
caused him to finished later and his throughput to be lower.

It is worth to also consider the opposite situation — a trace
created by a FCFS-based scheduler being used to simulate a
scheduler that uses backfilling. If we assume the same user
behavior, we would expect the recorded workload to be similar
to the third graph. If we run a backfilling simulation using
this workload, the first job would be scheduled immediately
upon its arrival, and hence will finish much sooner. But if this
is a conventional simulation, the rest of the jobs will arrive
at the same times, and be scheduled at the same times as
they were originally. This is again wrong, because the big
gap between the first and the second jobs was due to the
dependency between them and the delay in scheduling the first
job. If it is not delayed, the following jobs should arrive earlier.

Moreover, we would expect that in a system with a
better scheduler, the users will send more jobs. However, in
conventional simulations, the users send jobs solely according
to the timestamps. Therefore, using a workload from a poor
scheduler in a conventional simulation of a better scheduler
may lead to periods that the system is idle because there are
not enough jobs to take advantage of the better scheduler. This
may lead to unrealistically low wait times, response times, and
slowdowns.

All these problems arise due to preferring timestamps over
preserving the logical structure of the workload as reflected
in job dependencies. The solution to these deficiencies is
simulations that include internal feedback per user.

VI. MECHANISM OF FEEDBACK

Intuitively, when a user begins his interaction with the
system, he sends several jobs (call them batch A). After a
while he may send another batch of jobs (call them B). The
jobs in B might depend on the results of A (we say B depends
on A) and might not (they are independent). Our goal is to
preserve this structure if it exists. In this section we describe
how we do this, and in the next one we address the issue of
setting arrival times.

Above we mentioned the definition of direct-dependency.
One main property of general-dependency is the following:

Observation 9. Dependency is a transitive relation. Meaning,
if we have three batches b1, b2 and b3 such that b3 depends
on b2 and b2 depends on b1, than b3 depends (indirectly) on
b1.

This exists because if b3 needs to wait for the results of b2,
and b2 for b1, then of course b3 effectively waits for the results
of b1. In the future, what we say “dependency” we mean direct-
dependency, and explicitly say “indirect dependency” when it
is caused due to the transitive relation.

Definition 10. The Dependency Graph is a directed graph,
where the nodes are the batches, and there is an edge from b2
to b1 if b2 depends on b1.

Observation 11. The Dependency Graph doesn’t contain
cycles.

Now we will see how to handle dependencies in a simu-
lation. For each batch we create a list of batches on which
it depends. To preserve all the dependencies, we use the
most conservative definition of dependencies. This means that
the dependencies list of a batch will contain all the possible
batches that this batch may depend on. The formal rule for
dependency is the following:

Definition 12. For each two batches bi and bj of the same
user, we say that bi depends on bj if one of the following
exists:

1) bi and bj belong to the same session, and bi follows
bj .

2) bi and bj belong to different sessions (sbi and sbj
respectively), bi is the first batch in sbi , bj is the last
batch in sbj , and all the jobs in sbj finished before
the arrival of the first job in sbi .

Both rules for dependency are logical according to the
definition of batches and sessions. An illustration of the
Dependency Graph appears in Figure 4. Here we add an
intuitive explanation:

1) The first rule means that in a session, except the
first batch, each batch depends on the previous one.
This reflects the assumption that the user sends the
batch, waits for it to finish, and then sends the next
batch. Due to the fact that dependency is transitive
(Observation 9), it means that each batch depends
indirectly on all the previous batches in the same
session.

2) The second rule means that the first batch in each
session depends on all the last batches in sessions
that had finished before the arrival time of this batch.
In order to explain when does batch B depends on
A, when they’re in different sessions, we expand the
definition of dependence to sessions. Intuitively, sj
may depend on si (j > i) only if all the jobs in
si have finished before the beginning of sj . Such a
dependency between sessions will be preserved if the
first batch in sj depends on the last batch of si.

Note that we have defined two distinct relations on batches:
“follows” and “depends on”. In many cases these relations
overlap, for example with the sequence of batches in a session.
But there are differences. To see this, compare Figure 4 and
8. Each has an edge marked with a * that doesn’t appear in
the other.

The goal of the feedback mechanism is not only to preserve
both the depends on and the follows relations, in order to
preserve both the dependencies and the unique jobs order
created by each user [25]. The idea is to simulate the submittal
of batches in the order defined by the follows relationship,
subject to satisfying all the dependencies.

Definition 13. The “next batch” is the batch that is next in
line according to the follows order, meaning that all previous
batches have been submitted already.

At the beginning of the simulation, the user’s first batch
is initialized to be the next batch. Thereafter, when a batch
is submitted the following batch becomes the next batch.
However, the next batch should be delayed until all the batches
it depends on finish. To maintain this information, we have
a dependencies-list for each batch.

Definition 14. A batch is called “available” if it is the next
batch and its dependencies list is empty.

Therefore, only the next batch may be available. When a
batch is finished (after the termination of its last job), we delete
it from the dependency lists of all the batches that depend
on it. This may cause the next batch to become available, in
which case it will be transmitted to the user behavior model
to determine when it will be submitted. This is described in
the next section.

The next batch mechanism preserves the follows relation
by sending the next batch to the system (and deciding on
its arrival time) only after the last arrival of the current
batch. Therefore each user may have up to one batch in the
simulation’s queue of jobs that need to arrive in the future
(meaning, its arrival time is decided, but the simulation didn’t
reach it yet). However, after the arrival of a batch, the next
batch may be transmitted (if it is independent). That means
that several batches of the same user may run in the simulation
simultaneously.

As an example, consider the scenario presented in Figure
4, where we use the names fi, si, ti, to refer to the i-batch
in the first, second and third session respectively. If we use
only dependencies, after the end of f3, two batches become
independent: s1 and t1. Therefore, it is not clear that s1 will
be sent first. Moreover, to keep the original order, s2 should be
sent before t1. But after f3 the next batch is s1, so the order
is resolved as it was originally.

In summary, our mechanism has three main advantages:

1) The simulation never destroys a dependency between
batches that existed in reality. That’s because we use
a very conservative definition of dependencies.

2) The simulation preserves the user’s subtrace, due to
the follows relation.

3) We grant importance to each job (except a few last
jobs). If the job is a part of a batch that has at least
one other batch depending on it, the performance of
the job influences the arrival of at least one other
batch (and most times of many batches). As a result,
all the jobs, batches, and sessions are critical for the
performance of a user.

VII. THE USER BEHAVIOR MODEL

Up until now we described the mechanism for conducting a
simulation with feedback. This is based on identifying batches
and pacing them according to the behavior of each user. This
is done by releasing a batch only when it becomes available,
using the follows and depend on relations.

But there is another major open question before achieving
a complete simulation: When a batch is released, what arrival
times should be assigned to its jobs? This question in fact
asks how the user responds to different delays. Does he take a
break? Does he quit for the day? Of course, it is impossible to
know the “correct” answer. We can only speculate how each
user would react by using the data from the trace. We therefore
suggest several different models for the user behavior. Each
model preserves different characteristics of the real data. In
the next subsections we will explain each model and show its
results. Before that, we will give a little introduction here about
the motivation of using think-times (TT) and inter-arrival times
(IAT). We will also describe the presentation of our results.

In this section we will speak about times of a batch. The
arrival of a batch is the arrival of the first job in this batch, and
the termination of a batch is the termination of all the jobs in
this batch. When we say that a batch is delayed by D or will
arrive at T, we means that the first job will arrive at the current
time + D or at T (respectively). The rest of the jobs in this
batch have arrival times that preserve the original inter-arrival
times between jobs belonging to the same batch.

When we speak about the arrival time of a batch, we refer
to a batch that was affected by feedback. This means that the
first batch of each user arrives at exactly the same time as
in the original trace. This in addition to the fact that we use
the same users, means that our simulation doesn’t affect the
throughput considerably. However, it can affect the throughput
per user.

There are two main types of data that we use in all the user
behavior models in order to set the arrival time of a batch.

• Think-time (TT) of a batch. This is the time during
which the user thinks before sending off this batch.
Therefore, this time is equal to the time from the
termination of the batches that this batch depends
on until the arrival of the first job in this batch. The
reason for this definition of TT is that a user starts the
TT only after the end of all the jobs that this batch is
depended on.
TT is used mainly when the next batch is this batch
(the previous batch has arrived already), but the batch
waited for the termination of the batches it depends
on. In this case, the reason for the transmission of
the batch at this time is the termination of all the
dependencies of this batch. Therefore, the logical
delay is to send off this batch after the original TT.

• Inter-arrival time (IAT). This is the time from the
arrival of a batch to the last arrival of the previous
batch. This is mainly used when the batch first became
independent, and only after that the previous batch
from the previous session has arrived to the system.
Therefore the reason for the transmission of the batch
at this time is the follows relation. In this case, the
user doesn’t need to think before sending the batch
because it did not become available immediate after
the fulfilling of the dependency. However, the batch
should have a certain delay. Therefore, the intuitive
step is using the original IAT as the delay.

An important observation is that if we simulate exactly the
same scheduler, and we use the delays of the original TT and

IAT, then all the jobs will arrive exactly at the same times.
But with a different scheduler things may change. In the next
subsections we present alternative user models, and compare
simulations using these models with conventional simulations.
This is done by recording the workloads as they unfold during
each simulation and comparing them with each other. We also
use graphs that present the distribution of some properties (e.g.
average session length, number of sessions, etc.) across users,
and the weekly and daily cycles by plotting the number of
jobs that arrive in each hour during a week. To compare the
throughput of different simulations, we present the distribution
of the activity length per user. Due to the fact that each user
sends the same jobs in all the simulations that use the same
workload log, a longer activity length means that the user
sends these jobs over a longer period, thus achieving a lower
throughput, and vice versa. Unless stated otherwise, we use
the EASY scheduler, which is probably the most commonly
used backfilling scheduler [12], [3].

A. Adjusted User Model

This basic model, which we have mentioned already,
preserves the original TT and IAT of the batches. For example,
if a batch finished later than originally by two hours and
its termination caused another batch to be released, then the
released batch will arrive two hours later too.

The biggest advantage of this model is that we use only the
data from the trace. However, this leads to unrealistic behavior
of the users — they will take the same break if the jobs finished
during their normal working hours, at night, or on the weekend.
As the simulated scheduler can make scheduling decisions that
are completely different from the original one, this leads to a
total destruction of the daily and weekly cycles, as shown in
Figure 5. Moreover, due to the fact that the jobs distribute
approximately equally during all the day and the hours, the
performance is much improved as can be seen in Table I.

B. Distribution Based User Model

This model is essentially the model of Shmueli and Feitel-
son in [20]. The idea is to categorize the users into four groups
with different work patterns that are combinations of daytime
vs. nightly work and weekdays vs. weekends work. Users are
active only in their designated periods, and have dynamic
session lengths that depends on the system’s performance.
However, due to several differences (for example, the definition
of sessions and the fact that we retain the sequence of jobs for
each user) several adaptations are required.

In the initialization, the model randomly gives each user
several attributes. The first is whether the user is a daytime user
(active between 7:30+RAND to 17:30+RAND) or nighttime
user (17:30+RAND to 7:30+RAND) with probabilities of
0.7 and 0.3 respectively, where RAND is a random number
between -1 hour to +1 hour that is chosen independently for
each user. The second is whether the user is active during
weekdays (Monday to Friday) or weekends (Saturday and
Sunday) with probabilities of 0.8 and 0.2 respectively.

When a batch becomes available, we check if the current
time is during the activity time of the user (working days
and working hours). If it is not, the batch is delayed to
the next active-time of this user. Otherwise, we apply the

0 48 120 168
0

2000

4000

Hour in Week

N
um

be
r

of
 J

ob
s

CEA

0 48 120 168
0

200

400

600

Hour in Week

N
um

be
r

of
 J

ob
s

SDSC-SP2

0 48 120 168
0

1000

2000

3000

Hour in Week

N
um

be
r

of
 J

ob
s

BLUE

0 48 120 168
0

200

400

600

Hour in Week

N
um

be
r

of
 J

ob
s

Intrepid

0 48 120 168
0

200

400

Hour in Week

N
um

be
r

of
 J

ob
s

KTH

0 48 120 168
0

1000

2000

Hour in Week

N
um

be
r

of
 J

ob
s

HPC2N

Fig. 5. Distribution of arrival times per week using the adjusted user model (dashed line) compared to the original trace (solid line).

0 48 120 168
0

2000

4000

6000

Hour in Week

N
um

be
r

of
 J

ob
s

CEA

0 48 120 168
0

500

1000

1500

2000

Hour in Week

N
um

be
r

of
 J

ob
s

SDSC-SP2

0 48 120 168
0

2000

4000

6000

Hour in Week

N
um

be
r

of
 J

ob
s

BLUE

0 48 120 168
0

500

1000

Hour in Week

N
um

be
r

of
 J

ob
s

Intrepid

0 48 120 168
0

200

400

600

Hour in Week

N
um

be
r

of
 J

ob
s

KTH

0 48 120 168
0

2000

4000

Hour in Week

N
um

be
r

of
 J

ob
s

HPC2N

Fig. 6. Distribution of arrival times per week using the distribution based user model (dashed line) compared to the original trace (solid line).

Trace SDSC-DS CEA SDSC-SP2 BLUE Intrepid KTH HPC2N CM5

Conventional 8353 6989 37363 8487 1242 8755 12591 20966

Adjusted 5005 5073 24731 7199 2307 8364 8167 3702

Dist. based 12976 6141 40579 47219 1369 11717 13347 3503

Fluid 5972 4395 18748 6826 1958 6389 10092 2614

TABLE I. THE AVERAGE WAIT TIME (IN SECONDS) OF THE DIFFERENT USER MODELS COMPARED TO CONVENTIONAL SIMULATIONS OF SEVERAL

TRACES.

model of the probability to continue with the current session:
Pcont =

0.8
0.05∗RespTime+1

, which was defined in [19] based on

data extracted from logs. If we continue the session, we choose
a random TT or IAT between batches in the same session of
this user, and the batch arrives at this time. Otherwise, this
batch is delayed by a break. The break’s length is a random
TT or IAT between batches in different sessions that is smaller

than eight hours. If after the break the batch starts after the
working days/hours of this user, the batch will be delayed to
the next activity of this user.

This model is based on empirical distributions, which has
advantages and disadvantages. The main disadvantage is that
we lose the connection with the real workload by having many

0 200 400 600
0

0.5

1

1.5

2x 10
8

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)
CEA

0 200 400 600
0

2

4

6

8x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

SDSC-SP2

0 200 400 600
0

5

10x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

BLUE

0 100 200 300
0

2

4

6x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

Intrepid

0 100 200 300
0

2

4

6x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

KTH

0 100 200 300
0

5

10

15x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

HPC2N

Fig. 7. Distribution of the activity length per user using the distribution based
user model (dashed line) compared to the original trace (solid line).

assumptions. For example, assumptions include that the users
don’t take any long break (they work in each working-day),
that night-time user don’t send any job during the day, and that
all users operate according to the same statistical model. For
most of the workloads, this leads to high throughput per user
(Figure 7) and long wait times (Table I). An apparent problem
with the model is that all users arrive each day during two
2-hour slots, a large one in the morning and a smaller one in
the evening. This creates sharp peaks of activity that do not
exist in the original data, as seen in Figure 6.

An interesting artifact of this model is that the distributions
of activity length in Figure 7 show that some few users are
active for excessively long periods in the simulations. These
were found to be hyperactive users (probably scripts) that
submit many thousands of jobs in succession. The model
blindly assigns them a user type, e.g. mandating that they
only be active on weekdays at night. As a result they are
forced to stop submitting jobs when their active time ends,
so it takes them much longer to finish all their jobs. This is
another example where departing from the original data leads
to unwanted effects.

This model suggests that the probability to continue a
session depends on the performance of the last job. This idea
is central to our assumption, that feedback has an important
effect, and therefore we will use it also in the next model.

C. Fluid User Model

The idea of this model is to maintain the session times
of the users. To do that, we keep the sessions’ start and end
points from the original workloads, and let the batches flow
between the sessions according to the feedback effects. We
will describe the algorithm assuming that the release reason
is dependency. First we check if the current time is during
a session of the user. If it is, the delay is chosen at random
from the TT-distribution between batches in the same session
of this user. Otherwise, the current batch can’t continue the
current session. Therefore we delay the batch to the beginning
of the next session of this user. If the release reason is the
follows relation, we do exactly the same, but we choose the
delay from this user’s IAT-distribution between batches in the
same session.

One issue that this model needs to handle is what to do
if the user’s sessions are finished before all the user’s batches
have been simulated. Our solution to this situation is to recycle
the sessions starting from the next week after the last session,
maintaining the same days of the week and hours of the day.

The fluid model preserves the daily and weekly cycles,
as can be seen in Figure 8. Also the throughput per user is
close to the original workload in most of the traces (Figure
9). However, a few users have very long activity periods. The
reason is that sessions may be skipped, but sessions are not
added until the last session is finished. Therefore an user is
likely to send less jobs during the same activity period. This
also causes the wait time to be shorter (Table I).

VIII. COMPARING FEEDBACK AND CONVENTIONAL

SIMULATIONS

In the last section we described the feedback models in
detail. Previously, we mentioned several motivations for using
feedback. Here we compare the feedback based simulations
to the conventional ones, and demonstrate briefly that our
simulation really has the advantages mentioned there.

In order to compare the simulations, we used the conven-
tional simulation and our simulation with the fluid user model
to simulate the EASY scheduler, which is based on backfilling
and may be expected to be better than the original scheduler,
and FIFO which is much worse than the original scheduler.
The results for the queue length distribution are presented
in Figure 10. In our simulation, the queue when simulating
FIFO tends to be a bit longer on average than when simulating
EASY, but the difference is very small. The reason is that users
adapt themselves to the lack of available resources, and skip
sessions when their jobs haven’t been handled yet. However,
in the conventional simulations with FIFO, the simulation
continues to receive jobs according to the original tempo, and
the users don’t adapt their behavior to the simulated system.
As a result, for a very large fraction of the simulation, there
are unreasonably huge queue lengths. In our simulations such
long queues occurred only for Intrepid, and also that only for
2% of the time. Another interesting effect which is common to
all the logs is that our simulation with EASY also has shorter
queue lengths on average relative to conventional simulations.
The reason is that in our simulations the users finish their jobs
earlier on average than they did originally, and therefore they
may submit the next jobs earlier.

0 48 120 168
0

2000

4000

Hour in Week

N
um

be
r

of
 J

ob
s

CEA

0 48 120 168
0

200

400

600

Hour in Week

N
um

be
r

of
 J

ob
s

SDSC-SP2

0 48 120 168
0

1000

2000

3000

Hour in Week

N
um

be
r

of
 J

ob
s

BLUE

0 48 120 168
0

200

400

600

Hour in Week

N
um

be
r

of
 J

ob
s

Intrepid

0 48 120 168
0

200

400

Hour in Week

N
um

be
r

of
 J

ob
s

KTH

0 48 120 168
0

1000

2000

3000

Hour in Week

N
um

be
r

of
 J

ob
s

HPC2N

Fig. 8. Distribution of arrival times per week using the fluid user model (dashed line) compared to the original trace (solid line).

0 200 400 600
0

1

2

3

4x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

CEA

0 200 400 600
0

2

4

6

8x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

SDSC-SP2

0 200 400 600
0

5

10

15x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

BLUE

0 100 200 300
0

1

2

3x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

Intrepid

0 100 200 300
0

1

2

3

4x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

KTH

0 100 200 300
0

1

2

3x 10
8

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

HPC2N

Fig. 9. Distribution of the activity length per user using the fluid user model
(dashed line) compared to the original trace (solid line).

IX. CONCLUSIONS

To evaluate the performance of parallel system schedulers
analysts typically use open-system trace-driven simulations.
The reason for using traces is to be as close to real work-
loads as possible. However, this doesn’t take into account

0 200 400 600
0

0.5

1

Queue length

C
om

ul
at

iv
e

tim
e

CEA

0 50 100
0

0.5

1

Queue length

C
om

ul
at

iv
e

tim
e

SDSC-SP2

0 100 200
0

0.5

1

Queue length

C
om

ul
at

iv
e

tim
e

BLUE

0 100 200
0.8

0.9

1

Queue length

C
om

ul
at

iv
e

tim
e

Intrepid

0 50 100
0

0.5

1

Queue length

C
om

ul
at

iv
e

tim
e

KTH

0 50 100

0.7

0.8

0.9

1

Queue length

C
om

ul
at

iv
e

tim
e

HPC2N

Fig. 10. Distributions of queue lengths during simulations: conventional
simulation (solid line) is compared with feedback-based simulation with
fluid user model (dashed line), using the EASY (Cyan) and FIFO (Black)
schedulers.

the influence of the scheduler on the workload, effectively
implying the assumption that users behave in exactly the same
manner regardless of the scheduling policy. This contradicts
the more reasonable assumption that users behave differently
under different circumstances.

We argue that striving to preserve the details of traced
workloads, and in particular the precise timestamps at which
events occur, is misguided. In particular, it has the unintended
consequence of breaking the logical structure of the workload.

Instead, we suggest that the logical structure of dependencies
should be preserved, and the timestamps adjusted as needed.
Using this approach also has two additional benefits. First, the
feedback effect prevents excessive buildup of load when the
system scheduler cannot keep up with the users. Second, it be-
comes possible to measure throughput, which is an important
metric of performance.

The way to include feedback in trace-driven simulations
is to first extract dependency information from the trace. The
simulation then unfolds by simulating the submittal of only
independent batches of jobs. When each batch finishes, and
depending on its performances, the user model decides when
to submit the next batch of this user. In fact we identify
two types of dependency: one where batches depend on the
termination of jobs in previous batches (the depends on
relation), and another that maintains each user’s sequence of
jobs (the follows relation).

However, the question of how users react to different
performance levels is extremely complicated. The goal is to
understand user behavior and try to simulate it. We considered
two simple models, and then suggested the fluid model which
uses the sessions data from the trace instead of trying to
simulate user session dynamics. Additional research on the
behaviors of users and how it can be decoded from the
workload data is necessary to improve the feedback model.
Our goal in this paper is to supply the basic mechanism of
feedback and to promote a new understanding of what it means
to “be close to the original workload”.

The proposed simulation simulates the feedback effect per
user and uses the same jobs as in a recorded trace. Therefore,
it may lead to different throughput of each user, but the global
throughput will be approximately the same. An interesting
future work is to develop a feedback based simulation where
the feedback also affects the user population. For example, a
user may leave the system due to poor performance or send
more jobs if the performance is good. In such a simulation,
the overall throughput may be expected to reflect the quality
of the system.

Acknowledgments

This research was supported by the Ministry of Science
and Technology, Israel. Heartfelt thanks to all those who
contributed data to the Parallel Workloads Archive.

REFERENCES

[1] P. Cremonesi and G. Serazzi, “End-to-end performance of web ser-
vices”. In Performance Evaluation of Complex Systems: Techniques

and Tools, M. C. Calzarossa and S. Tucci (eds.), pp. 158–178, Springer-
Verlag LNCS vol. 2459, 2002, DOI:10.1007/3-540-45798-4 8.

[2] P. A. Dinda, G. Memik, R. P. Dick, B. Lin, A. Mallik, A. Gupta,
and S. Rossoff, “The user in experimental computer systems re-
search”. In Workshop Experimental Comput. Sci., Jun 2007, DOI:
10.1145/1281700.1281710.

[3] Y. Etsion and D. Tsafrir, A Short Survey of Commercial Cluster Batch

Schedulers. Tech. Rep. 2005-13, Hebrew University, May 2005.
[4] D. G. Feitelson, “Experimental analysis of the root causes of per-

formance evaluation results: A backfilling case study”. IEEE Trans.

Parallel & Distributed Syst. 16(2), pp. 175–182, Feb 2005, DOI:
10.1109/TPDS.2005.18.

[5] S. Floyd and V. Paxson, “Difficulties in simulating the Internet”.
IEEE/ACM Trans. Networking 9(4), pp. 392–403, Aug 2001, DOI:
10.1109/90.944338.

[6] G. R. Ganger and Y. N. Patt, “Using system-level models to evaluate
I/O subsystem designs”. IEEE Trans. Comput. 47(6), pp. 667–678, Jun
1998, DOI:10.1109/12.689646.

[7] F. Guim, I. Rodero, and J. Corbalan, “The resource usage aware
backfilling”. In Job Scheduling Strategies for Parallel Processing,
E. Frachtenberg and U. Schwiegelshohn (eds.), pp. 59–79, Springer-
Verlag LNCS vol. 5798, 2009, DOI:10.1007/978-3-642-04633-9 4.

[8] W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic improvement
of locality in storage systems”. ACM Trans. Comput. Syst. 23(4), pp.
424–473, Nov 2005, DOI:10.1145/1113574.1113577.

[9] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan,
“Modeling of workload in MPPs”. In Job Scheduling Strategies for

Parallel Processing, pp. 95–116, Springer-Verlag LNCS vol. 1291,
1997, DOI:10.1007/3-540-63574-2 18.

[10] D. Klusáček and H. Rudová, “Performance and fairness for users in
parallel job scheduling”. In Job Scheduling Strategies for Parallel

Processing, W. Cirne et al. (eds.), pp. 235–252, Springer-Verlag LNCS
vol. 7698, 2012, DOI:10.1007/978-3-642-35867-8 13.

[11] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic work-
load generation technique for stress testing session-based systems”.
IEEE Trans. Softw. Eng. 32(11), pp. 868–882, Nov 2006, DOI:
10.1109/TSE.2006.106.

[12] D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling

Strategies for Parallel Processing, pp. 295–303, Springer-Verlag LNCS
vol. 949, 1995, DOI:10.1007/3-540-60153-8 35.

[13] U. Lublin and D. G. Feitelson, “The workload on parallel supercomput-
ers: Modeling the characteristics of rigid jobs”. J. Parallel & Distributed

Comput. 63(11), pp. 1105–1122, Nov 2003, DOI:10.1016/S0743-
7315(03)00108-4.

[14] R. Morris and Y. C. Tay, A Model for Analyzing the Roles of Network

and User Behavior in Congestion Control. Tech. Rep. MIT-LCS-TR898,
MIT Lab. Computer Science, May 2003.

[15] R. S. Prasad and C. Dovrolis, “Measuring the congesion responsiveness
of Internet traffic”. In 8th Passive & Active Measurement Conf., pp.
176–185, Apr 2007, DOI:10.1007/978-3-540-71617-4 18.

[16] M. Satyanarayanan, “The evolution of Coda”. ACM Trans. Comput.
Syst. 20(2), pp. 85–124, May 2002, DOI:10.1145/507052.507053.

[17] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale”. In 3rd Networked Systems Design & Implementation,
pp. 239–252, May 2006.

[18] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate
the performance of parallel system schedulers”. In 14th Modeling, Anal.

& Simulation of Comput. & Telecomm. Syst., pp. 167–176, Sep 2006,
DOI:10.1109/MASCOTS.2006.50.

[19] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system
performance on user behavior from traces of parallel systems”. In 15th
Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 274–
280, Oct 2007, DOI:10.1109/MASCOTS.2007.67.

[20] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-
systems schedulers: Are we doing the right thing?” IEEE Trans.
Parallel & Distributed Syst. 20(7), pp. 983–996, Jul 2009, DOI:
10.1109/TPDS.2008.152.

[21] A. Spink and T. Saracevic, “Human-computer interaction in infor-
mation retrieval: Nature and manifestations of feedback”. Interacting
with Computers 10(3), pp. 249–267, Jun 1998, DOI:10.1016/S0953-
5438(98)00009-5.

[22] D. N. Tran, W. T. Ooi, and Y. C. Tay, “SAX: A tool for studying
congestion-induced surfer behavior”. In 7th Passive & Active Measure-
ment Conf., Mar 2006.

[23] S. Yang and G. de Veciana, “Bandwidth sharing: The role of user
impatience”. In IEEE Globecom, vol. 4, pp. 2258–2262, Nov 2001,
DOI:10.1109/GLOCOM.2001.966181.

[24] N. Zakay and D. G. Feitelson, “On identifying user session boundaries
in parallel workload logs”. In Job Scheduling Strategies for Parallel

Processing, W. Cirne et al. (eds.), pp. 216–234, Springer-Verlag LNCS
vol. 7698, 2012, DOI:10.1007/978-3-642-35867-8 12.

[25] N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers”. Concurrency & Computation —
Pract. & Exp. 2014, DOI:10.1002/cpe.3240. To appear.

Semi-Open Trace Based Simulation for Reliable

Evaluation of Job Throughput and User Productivity

Netanel Zakay Dror G. Feitelson

School of Computer Science and Engineering

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

netanel.zakay@mail.huji.ac.il, feit@cs.huji.ac.il

Abstract—New scheduling algorithms are first evaluated using
simulation. In these simulations, the workload has a huge
influence on the measured performance of the simulated system.
Therefore, it is customary to use workload traces recorded
previously from real systems. Such open-system simulations
preserve all the jobs’ properties. However, preserving the jobs’
arrival times actually destroys the logic of the user’s workflow,
especially dependencies and think times between successive jobs.
Furthermore, performance in such simulations is measured by
the average wait time and slowdown, under the fixed load and
throughput conditions dictated by the trace. Therefore, it is
impossible to evaluate the system’s effect on throughput and
productivity.

As an alternative we propose semi-open trace based simula-
tions that include dynamic user activity and internal feedback
from the system to the users. In these simulations, like in a real
system, users adjust their job-submittal behavior in response
to system performance. As a result, the simulations produce
different loads and throughputs for different scheduling algo-
rithms or parametrizations. We implemented such a simulation
for evaluating the schedulers of parallel job systems. We also
developed a novel user-aware scheduler designed specifically
to increase users’ productivity. While conventional simulations
cannot measure this scheduler’s influence reliably, and would
suggest it is useless, our simulation evaluates it realistically and
shows its beneficial effect on the users’ productivity and the
system’s throughput.

I. INTRODUCTION

Scheduling and resource management supporting the execu-

tion of jobs on large scale systems — such as supercomputers,

clusters, and clouds — is a challenging endeavor. In such sys-

tems one cannot just put a new design into production without

first extensively evaluating it. This leads to the challenge of

faithful evaluations, which reflect all the complexities of the

real system. Our focus is on one aspect of this complexity,

which is analysing and simulating correctly the users’ behavior

and and their interaction with the simulated system.

Simulations are widely used in order to evaluate the perfor-

mance of new system designs. These simulations are usually

driven by traces recorded from a real system. Using a real

trace is an attempt to create the most realistic simulations

possible, which will lead to reliable evaluation results. In

particular, using trace data directly retains all the structure

that exists in the workload, including locality and correlations

between different workload attributes, which might be lost if a

statistical model was used instead. For example, traces of real

parallel jobs available from the Parallel Workloads Archive

[10] include data on job arrival times, parallelism, and runtime.

Note, however, that using the trace data as is implies an

open-system model in the simulation. In other words, the

arrival process is preordained, and is not affected by the state

and performance of the simulated system. As a result the

system throughput is dictated by the trace being used, so

the simulation cannot be used to measure user productivity

(where productivity is assumed to be related to the rate

of running additional jobs). Consequently it also cannot be

used to evaluate designs intended to promote productivity

or satisfy certain service-level agreements, for example user-

aware schedulers [21]. Moreover, the preordained arrivals

exclude a faithful replication of user feedback effects, which

are especially important in cloud system workloads. Finally,

each trace can only provide a single load data point to the

evaluation.

To overcome these limitations Shmueli suggested a new

simulation methodology for evaluating parallel jobs schedulers

[19], [21]. This methodology includes a feedback loop, in

which the arrival of additional jobs depends on the termination

of certain previous jobs submitted by the same user. He also

suggested an algorithm to model the think times between jobs

(the intervals from the termination of one job to the submittal

of the next one) and the possibility of aborting sessions if

performance is bad. This methodology solves the problem of

predefined load, and facilitates evaluations where the achieved

throughput (and hence productivity) in the simulation can

change. But it had the drawback of using synthetic users, and

sampling the attributes of the jobs from distributions. This is

not consistent with our goal to have a workload which is as

close to reality as possible.

In previous work we have shown how to extend this

and integrate it with trace-based simulations, by extracting

dependencies from the trace [27]. Given the dependencies, we

can now change the arrival times in the simulations to reflect

the users’ reactions to system performance, while preserving

all other properties of the recorded trace. We can also combine

this with resampling, which allows us to generate multiple

similar workloads from the same trace, and also to manipulate

the load by modifying the number of users [26]. Combining

resampling and feedback together leads to Trace-Based Users-

Oriented Simulations (TBUOS), which achieves the dual goal

of preserving as much detail as possible from the trace and

exhibiting realistic user behavior adjusted to the conditions

during the simulation.

To demonstrate the importance and effect of TBUOS we

suggest the User Priority Scheduler (UPS), which attempts to

prioritize jobs belonging to users who are expected to be active

on the system. This departs from the more common approach

of prioritizing jobs according to their individual circumstances,

e.g. how long they have been waiting in the queue. Evaluation

with TBUOS shows that this scheduler can indeed improve

system throughput and thereby also user productivity.

The contributions of this paper beyond previous work are:

• A new methodology for performance evaluation. TBUOS

is a novel simulation which is the first to achieve a com-

prehensive realistic workload with controlled load (via

resampling) and throughput adjustment (via dependencies

and feedback). Previous work had suggested each of these

components in isolation.

• Advanced understanding of the interplay between load,

performance, and throughput, e.g. how throughput de-

pends on the user population and not only on feedback.

• A new user-aware scheduler called UPS. This is con-

ceptually similar to the CREASY scheduler proposed by

Shmueli, but introduces the innovation of prioritization by

users instead of treating jobs individually. This increases

the level of coordination and reduces the risk of spreading

resources too thinly across competing users.

Being the first framework to combine resampling with a

simulation of the workflow behavior of users, our suggested

approach cannot be expected to be the last word. Our focus

is on showing an example of a semi-open simulation, and

demonstrating the capabilities of such a simulation. This is

especially important for cloud systems, which serve both batch

workflows and interactive server workflows.

In the next two sections we review related work and our

previous work on resampling and feedback. Section IV then

explains how to combine feedback and resampling and shows

simulation results. This is followed by Section V, which

introduces UPS in detail and evaluates its performance, and

by the conclusions.

II. RELATED WORK

This paper touches upon three distinct concerns: the work-

loads used to evaluate parallel job schedulers, the simulation

methodology, and the policy considerations of the schedulers.

In terms of workloads, the two most common approaches

have been to replay job traces directly, or else to create

statistical models based on job traces. Models facilitate the

creation of multiple similar workloads, potentially with con-

trolled variations such as different loads, but they suffer from

not necessarily including all the important features of the real

workload [9], [2]. Resampling (explained later) improves the

representativeness of evaluation workloads by modeling only

the parts that need to be manipulated, and using real data to

fill in the remaining details [26].

The simulations typically follow an open systems model,

where jobs are submitted by some external population of users.

Therefore job arrivals are independent of system performance

and state. But a closed system model with feedback may be

more realistic [11], [19], [17], [16], [14], as poor performance

may delay the submittal of additional jobs until previous ones

have terminated, and perhaps even discourage users and cause

them to submit fewer additional jobs. Such effects have been

discussed in several different areas. In a database context,

Hsu et al. claim that replaying timestamps from a trace loses

feedback [13]. Ganger and Patt recognize the influence of the

lack of feedback in simulations of storage subsystems as part

of a larger system, and suggested giving higher priority to

critical requests even if this degrades the performance of the

storage system by itself [12]. In evaluations of networks, the

feedback is important in shaping the traffic. For example, TCP

congestion control is highly dependent on current conditions,

so using traced timestamps for packets in simulations is wrong

[23], [11]. Also, several papers dealt with a human user’s

feedback effects on the performance of applications [15],

[22], [16], [24]. For example, Yang and Veciana modeled

users that aborted their downloads due to poor performance.

Synchronous protocols were shown to naturally throttle load

due to feedback [18], [1].

In order to include feedback in evaluations one needs a

model of how users react to load. While direct experimen-

tal evidence is rare [8], some works have considered user

tolerance of delays and bandwidth limitations (e.g. [5], [15],

[22], [24]). Shmueli used synthetic workloads with a feedback

model and a user-aware scheduler designed to exploit this

feedback effect [19], [20]. Our work extends those results in

two significant ways. First, we show how to conduct more

realistic simulations (TBUOS) using both feedback and re-

sampling. This retains all the structure that exists in workload

traces, and avoids any potential over-simplifications that may

exist in synthetic workloads. Second, we propose a user-aware

scheduler (UPS) that is not based directly on the feedback

model being used. This generalizes the results and eliminates

the risk that they depend on prior knowledge.

A parallel job contains multiple processes, which need to

run in parallel on distinct (possibly virtual) processors. The

scheduler allocates processors to such jobs and then they

run with no preemptions. A common scheduling approach is

EASY, which serves jobs in arrival order and uses backfilling

(taking jobs from the back of the queue to fill in holes in

the schedule) to pack jobs more tightly and optimize response

time and slowdown. The UPS scheduler, based on EASY, has a

similar basic structure to Shmueli’s CREASY scheduler [21],

but introduces user-based prioritization.

Scheduling on cloud platforms is a relatively young field

of research. Most papers focus on economic aspects and the

matching of requirements to resources and only a few tried to

simulate and improve their performance. For both purposes,

it is important to take into consideration the feedback and

interaction with the users’ workflows. The jobs order in a

cloud workflow is predefined and preserving it is essential

in order to produce the required results. Therefore Di et al.

have conducted extensive trace-based analyses of workloads,

1 2 3 54 1 2 1 1 2

111 2 321

1 2 3 4 5 6 7

8765432

1

1 1

2 3 4 5

1

1

1 2

2 1 2 3

8765432

4 5 6 7

321

1 2 3 4 5

54

765

321

4321

76

2

1 2

1 2

1 2

1 2

1

11

4 5

8

321

1

21

1 2

21

1

Original trace

Temporary users pool

Long term users pool

Example generated trace

B

E

C

A D

G

F

H

I J

K

E

B

A

G

C

H I J K

D F

B

E

G

K A D

K I

C

F

H

Fig. 1. Illustration of the resampling process.

and created the GloudSim trace-driven simulation environment

[7], [6]. While common simulations such as CloudSim and

GloudSim ignore dependices, some suggest a new simulation

methodology that enforces depedency preservation [4], [3].

This methodology contains a similar mechanism to ours to

enforce the preservation of dependencies, but it assumes the

dependencies are known; we need to deduce dependencies

from a recorded trace.

III. BACKGROUND

TBUOS is based on a combination of resampling and

feedback. For completeness, we review these two mechanisms.

A. Workload Resampling

Replaying a trace provides only a single data point of

performance for one workload, while in evaluations several

related workloads may be needed, e.g. to compute confidence

intervals. Resampling is a way to achieve this [26]. It is done

by partitioning workload traces into their basic independent

components, and re-grouping them in different ways to create

new workloads. Thus resampling combines the realism of real

traces with the flexibility of models.

In the context of parallel job scheduling resampling is done

at the level of users. We first partition the workload into

individual subtraces per user. We then sample from this pool

of users to create a new workload trace.

Analysis of real traces suggests the identification of two

types of users. Temporary users are those that interact with

the system for a limited time, for example while conducting a

project. After a short duration they leave the system never to

return. Long-term users, in contrast, appear to be active during

much of the trace, and may be expected to have been active

before logging started, and to send more jobs also after the

end of the recording period.

During simulation we handle the dynamics of these user

types differently. The simulation is built in units of one week,

so as to preserve not only daily but also weekly cycles of

activity. In the beginning of each week, a random number of

temporary users is chosen such that the accumulated number

will be distributed around the original average number of

temporary users. The arrival times of the jobs of these users

are shifted so that their first recorded job will arrive in this

week. A user may be chosen multiple times or zero times.

Long term users are assumed to be active continuously. To

create a variation between simulations, we start each such user

from an arbitrary week in the trace and shift all subsequent

jobs accordingly. If the simulation is supposed to continue

after their last job has terminated, we just duplicate their whole

sequence of jobs again. Note that the population of long term

users is constant throughout the simulation.

An illustration of the resampling process appears in Figure

1. In this example, user K was chosen twice, and the long

term user E was chosen to start from his 4th job, and after

his 7th one we start again from the first one.

Due to the regeneration of the long term users’ jobs and

the addition of new temporary users each week, resampling

simulations can continue indefinitely. We usually stop the sim-

ulation at a time that corresponds to the length of the original

trace. Hence the number of jobs is approximately the same as

in the original trace. Resampling produces workloads that are

similar to the original workload [26]. However, it is also easy

to induce modifications, such as extending a trace or changing

its average load. Importantly, while the resampled workloads

differ from the original in length, statistical variation, or load,

they nevertheless retain important elements of the internal

structure such as sessions and the relationship between the

sessions and the daily work cycle.

B. Simulations with Internal Feedback

Commonly used simulations are trace driven, and use an

open-system model to play back the trace and generate the

workload. This means that new requests get issued during

simulation exactly according to the timestamps from the trace,

irrespective of the logic behind the behavior of the users and

of the system state. As a result the throughput of the system

being evaluated is also dictated by the timestamps, instead of

being affected by the actual performance of the scheduler.

The problem with this approach is that each trace contains a

signature of the scheduler that was used on the traced system

[19]. In other words, the users actions reflect their reactions

to the scheduler’s decisions. And real users would react

differently to the decisions of another scheduler. Therefore,

when we want to evaluate a new scheduling policy using

a representative workload, the simulation should reflect user

reactions to the evaluated scheduler rather than to the original

scheduler. It is more important to preserve the logic of the

users’ behavior than to repeat the exact timestamps.

The way to integrate such considerations into trace-driven

simulations is by manipulating the timing of job arrivals. In

other words, the sequence of jobs submitted by each user

stays the same, but the submittal times are changed [27].

Specifically, each job’s submit time is adjusted to reflect

feedback from the system performance to the user’s behavior.

The first step in creating such a feedback based simulation

is to regenerate the dependency relations between the users’

batches of jobs. Session are defined based on inter-arrival

times between jobs [25]. Batches are jobs within the same

session that run in parallel without waiting for each other,

as when a user submits a new job before the previous one

had terminated. But a batch can depend on the arrival or

termination of previous ones, and these constraints can be

tracked and enforced. A batch then arrives to the simulated

system only when it has no pending constraints.

However, a batch cannot arrive immediately when all its

constraints are removed. Rather, its arrival should reflect

reasonable user behavior. One possible model of user behavior

is the “fluid” user model. The idea of this model is to retain the

original session times of the users, but allow batches of jobs to

flow from one session to another according to the feedback. To

do that, we keep each session’s start and end timestamps from

the original workloads. Batches are given think times from the

distribution of intra-session think times, but if this leads to an

arrival beyond the end of the session, the batch will arrive at

the beginning of the next session. If a session is skipped, it is

reinserted the following week. This model creates workloads

that have very similar distributions to the original [27].

IV. TRACE-BASED USERS-ORIENTED SIMULATION

Our goal is to develop a simulation methodology which

supports features such as increasing the load and obtaining

multiple data points for each setting, uses realistic workloads,

and simulates the effect of a system’s design reliably, including

its influence on the users’ behavior (which may result in a

different throughput). In the previous section we described

the two main components, namely resampling and feedback.

In this section we will show how to combine them into a

trace-based user-oriented simulation (TBUOS). We start with

a description of the technicalities of TBUOS. Then, we explain

how this leads to more realistic simulations. Finally, we ana-

lyze the dynamics of TBUOS, and show how TBUOS supports

simulations where system performance affects throughput.

A. Integrating Resampling and Feedback

The description of TBUOS is quite short (Figure 2). First,

we preserve all the elements of resampling as they were. This

includes:

1) Building the long term users and the temporary users pools.

2) Sampling a few temporary users each week (according to

the original rate).

3) Regenerating the long term users when their traced activity

is finished.

By not changing anything we retain all the benefits of resam-

pling, such as the ability to extend a trace or increase the load

(as was shown in [26]).

The main difference from conventional simulations using

resampling is that when a user arrives to the system (whether a

temporary user or the regeneration of a long term user), all his

trace
job

LT

pool
user

user
temp

pool

active
users

sim.

sched
users
extract init

sampling
cont.

dep.

extract

submit
feedback

preprocessing simulation

LT

last job trigers regeneration

pending
batches

Fig. 2. TBUOS flow.

jobs
queue

waiting
simulated

scheduler

machine
parallel

the simulated system

think time
long term users

user arrivals
new temporary

temporary users
think time

temporary users
finished

Fig. 3. TBUOS model of long term and temporary users.

jobs are not immediately inserted into the simulation’s queue

of pending jobs. Rather, we use the feedback mechanism in an

integrated manner within the resampling so that job arrivals

will reflect the user behavior model. But the Feedback itself

remains without any change. This includes:

1) Building the batches structures from the users’ sub-traces.

2) Deducing the relations between the batches of each user.

3) Removing constraints as batches arrive and terminate.

4) Releasing to the simulation only the independent batches.

5) Using the user model to choose each batch’s arrival time.

The combination of resampling and feedback simply means

that jobs that are created by the resampling are then passed

through the feedback mechanism. This divides them into

batches, tracks each batch’s constraints, and sends to the queue

of pending jobs only the independent batches at each time step.

Temporary users in TBUOS arrive at the same average rate

as in the trace, and each one has the same jobs as in the trace.

When the last job of the user terminates, the user leaves the

system. Therefore, each temporary user contribute the same

load in TBUOS as in conventional simulations. However, due

to the feedback effects, the jobs of each individual user may

be spread out differently in simulated time.

The number of long term users in TBUOS is constant and

equal to their number in the trace. However, unlike temporary

users, they are all generated during the initialization, and they

never leave the system. Instead, they are regenerated after the

termination of their last job. Due to the feedback effect, the

end time of the last job is not predefined but rather depends

on the terminations of previous jobs. This means that the

number of jobs submitted by simulated long term users will be

different from the number in the original trace, depending on

the performance of the system in the simulation. For example,

if the the new design leads to better service, the user will send

his next batches earlier. Therefore, the users’ traced activity

will be finished earlier, and the user will be regenerated and

send more jobs, contributing to increased throughput.

Figure 3 illustrates the behavior of the two types of users,

and shows why TBUOS is a semi-open system. The temporary

users are the open part. They arrive independently of system

state, send their jobs (using internal feedback between the

jobs), and eventually leave the system. The long term users

are the closed part. They remain in the system for the duration

of the simulation. It is worth mentioning that only up to about

20% of the jobs in our workloads belong to temporary users,

and in average much less than that [26]. Therefore, a very big

part of the workload comes from the closed part.

B. Improved Realism of Simulations

As stated our goal is to develop a simulation methodology

which supports features such as increasing the load and

obtaining multiple data points for each setting, but at the same

time maintains realistic workloads with all the features that

exist in real traces. TBUOS achieves this by inheriting the

characteristics of resampling and feedback. For example, each

user submits the same jobs in the same sequence with the

same dependencies between them, as in the original workload

[26], [27].

However, resampling by its very nature does mix up the

users from the original trace. Thus user activity that was

originally performed when the system was highly loaded may

be matched up with activity of another user that was originally

performed when the system was lightly loaded [19]. This is an

unnatural combination. When the system is highly loaded jobs

take longer to execute and therefore come at longer intervals.

When the system is lightly loaded jobs run immediately,

leading to a higher rate of submitting new jobs. These different

behaviors are not expected to coexist at the same time.

TBUOS solves this problem by using feedback in addition

to resampling. The feedback preserves all the properties of

the workload (including internal dependencies and think-times

between the jobs) except the arrival times of the jobs, which

are adapted to the system’s performance. In particular, it

adjusts the job arrival rate to match the momentary conditions

in the simulated system. As a result, the simulated workload

in TBUOS is a more representative workload than the original

traced workload in the context of the simulated system.

To demonstrate this effect we compare an evaluation of the

EASY scheduler using conventional simulations with resam-

pling and using TBUOS, based on traces from the Parallel

Workloads Archive1 (Figure 4). The first observation is that

1The traces used in this paper are from the following systems: the San
Diego Supercomputer Center Blue Horizon (BLUE), the Seth cluster from
the High-Performance Computing Center North in Sweden (HPC2N), the Los
Alamos National Lab Connection Machine CM-5 (CM5), the Cornell Theory
Center IBM SP2 (CTC), the Argonne National Laboratory BlueGene/P system
Intrepid (Intrepid), the Swedish Royal Institute of Technology IBM SP2
(KTH), the San Diego Supercomputer Center DataStar (SDSC-DS), and the
San Diego Supercomputer Center IBM SP2 (SDSC-SP2). Full details about
these logs are available at http://www.cs.huji.ac.il/labs/parallel/workload/.

wait time (in sec)
×10

4

0 2 4 6

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

10

20

30
BLUE

covn sim
TBUOS

Includes
higher
values

wait time (in sec)
×10

4

0 5 10

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

5

10

15

20

25
HPC2N

covn sim
TBUOS

Includes
higher
values

Fig. 4. Histograms of the average wait time (in seconds) in a hundred
simulations of the EASY scheduler. Using TBUOS leads to lower wait times
and a less skewed distribution.

User
0 0.5 1

A
v
e
ra

g
e
 S

e
s
s
io

n
 L

e
n
g
th

 (

in
 s

e
c
o
n
d
s
)

0

2000

4000

6000
HPC2N

User
0 0.5 1

A
v
e
ra

g
e
 S

e
s
s
io

n
 L

e
n
g
th

 (

in
 s

e
c
o
n
d
s
)

0

2000

4000
BLUE

User
0 0.5 1

A
c
ti
v
it
y
's

 W
e
e
k
s
 N

u
m

b
e
r

0

20

40

60

80
HPC2N

User
0 0.5 1

A
c
ti
v
it
y
's

 W
e
e
k
s
 N

u
m

b
e
r

0

20

40

60

80
BLUE

Fig. 5. Comparing user behavior in resampling (red solid lines) and
TBUOS (blue dashed lines) workloads. The X axis represents users sorted
by the metric being shown; user IDs are normalized to [0..1] to enable easy
comparison between logs with different numbers of users.

the average and maximum wait times for each log are usually

much lower in TBUOS. Indeed, in some simulations the

average wait time was more than 100,000 seconds, which is

27.8 hours, meaning that the average wait time came out to be

more than a day. Under TBUOS there was no simulation with

an average wait time of more than 8 hours, and the common

values are smaller than 20,000 seconds (5.6 hours), which is

much more realistic.

We conjecture that the reason for this effect is that the

resampling loses the synchronization between the users as

exists in reality. An interesting question is how TBUOS avoids

the unrealistic long wait times. To analyze this, we compared

the relevant user behavior properties, including the number of

weeks in which the users were active and the average session

lengths (Figure 5). In TBUOS users are active during more

weeks and their session lengths tend to be shorter. This may

be interpreted as evidence that in TBUOS users react to the

system state, and if the system is overloaded, they send less

jobs during the session and delay the next session to another

time.

Another interesting difference between the distributions in

Figure 4 is their shapes. In most cases the conventional

TABLE I
AVERAGE WAIT TIME MAX/MIN RATIO WITH AND WITHOUT FEEDBACK.

Sim type BLUE CM5 CTC HPC2N Intrepid KTH SDSC-DS SDSC-SP2
conv + res 17.31 7.08 5.48 12.52 2.68 6.59 9.29 13.47
TBUOS 2.25 1.42 1.58 2.99 2.37 2.04 2.27 2.05

simulations with resampling create skewed distributions with a

tail to high values, whereas TBUOS creates a much narrower

and less skewed distribution. This is quantified using the

ratio of maximal to minimal average wait time results in

Table I. This reflects the same effect as above: resampling

can create unrealistic load conditions, but TBUOS avoids

them. To appreciate the significance of this finding, recall

that these figures show the distribution of results from 100

independent simulations. If you run only one simulation, you

can get any of these results. In particular, without TBUOS your

simulation may happen to be from the tail of the distribution,

and therefore non-representative in general. with TBUOS the

danger is much reduced, because all simulations are reasonably

similar.

C. Enabling an Effect on Throughput

Throughput is probably the best indicator for user produc-

tivity, and testifies to the scheduler’s capacity for keeping its

users satisfied and motivating them to submit more jobs. In

conventional simulations, the throughput of the system being

evaluated is dictated by the job arrival timestamps, instead

of being affected by the actual performance of the scheduler.

Even when feedback is used, this alone does not change the

throughput.

It is worth mentioning that feedback-based simulations do

change the throughput per user. In other words, the throughput

of each user does depend on the simulated system’s per-

formance, which is an important step forward. But this is

an uncommon performance metric, and more research about

its impact is needed. The more common metric of global

throughput is not changed by feedback alone, because the

number of users and the number of jobs that each one of

them submits are dictated by the trace.

TBUOS, which combines resampling and feedback, is

unique in facilitating dynamically changing throughputs. The

large number of long term users operate as a closed-system

model, and lead to throughput that depends on the system’s

performance. If the scheduler allows a user to send jobs earlier,

this user will actually send more jobs during the simulation.

Therefore, in TBUOS the scheduler is able to influence the

users’ productivity, and the simulation will actually produce

different throughputs for different system designs.

To demonstrate the ability of the scheduler to change

the throughput in TBUOS we consider the simulation of

a poor first-come, first-serve scheduler (FCFS) and a more

effective EASY scheduler. For each simulation type (conven-

tional+resampling or TBUOS) and scheduler (FCFS or EASY)

we run a hundred simulations and tabulate the throughputs

achieved. Figure 6 shows the results. Using conventional

simulation with resampling, the end time and the intervals

between the jobs are preserved. As a result, the distributions

of throughput under FCFS and EASY are similar to each other

and to the original value.

On the other hand, it is easy to see that in TBUOS the

EASY scheduler led to increased throughput relative to the

FCFS scheduler for all the traces. The difference testifies to

the more realistic simulation of the users in TBUOS, including

a logical response to a poor system performance. This results

in reduced throughput with the FCFS scheduler, somtimes less

than in the original trace.

An important observation regarding Figure 6’s results is that

the throughput with TBUOS can be quite different from the

throughput of the original trace. This indicates that each trace

includes a signature of the original scheduler from the traced

system, and may not be suitable for the direct evaluation of

other schedulers. But TBUOS compensates for this mismatch,

and can even compensate for gaps in the evaluation, as actually

happened to us in the following example. The CTC trace was

initially simulated using a system size of 430 nodes. But later

it was discovered that the correct size was 336 nodes [10],

implying that the simulation had an artificially low load. With

such low load good performance is easy to achieve, and when

using TBUOS the throughput was increased considerably to

“fill the system”. Once we identified the source of the problem

and used the correct size, the change in load was reduced

significantly (Figure 7).

Note that TBUOS is not specifically designed to handle

workloads with unrealistic low load and create a realistic

simulation. For example, if the recorded trace has only one

session per week, TBUOS will also have one session per

week (and therefore extremely low load). However, when we

use a recorded workload with realistic users’ properties, if the

simulated system has good performance, the users may send

more jobs and use the system’s resources better. This enables

the evaluation to overcome the potential deficiencies of the

recorded trace in the context of this specific simulation.

V. SIMULATING A USER-AWARE SCHEDULER

The performance metrics used in conventional trace-based

simulations are the average response time and slowdown. This

led researchers to focus on the packing of jobs in the schedule

as a means to improve the average values in simulation. The

suggested justification is that decreasing the average wait time

will improve user satisfaction and productivity. However, this

reasoning is debatable, and it may even be that increased

wait times correspond to higher user productivity. This can

be demonstrated by a simple hypothetical example. Assume

that the system is highly loaded and all the processors are

being used. In this situation, using a FCFS scheduler ensures

fairness, but also guarantees that all users have to wait long

times for their jobs to run. This risks users becoming frustrated

and aborting their sessions, thereby reducing their productivity.

An alternative LIFO scheduler can perhaps reduce this effect

by prioritizing the most recently active users at the expense

of the users who had submitted jobs longer ago.

jobs number
×10

5

1.08 1.1 1.12 1.14

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

5

10

15

20

25
CM5

FCFS
EASY

jobs number
×10

4

7 8 9 10

e
x
p

e
ri
m

e
n

ts
 n

u
m

b
e

r

0

10

20

30
SDSC-DS

FCFS
EASY

jobs number
×10

4

6.3 6.6 6.9 7.2

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

5

10

15

20

25
Intrepid

FCFS
EASY

jobs number
×10

5

1.9 2 2.1 2.2

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

10

20

30
HPC2N

FCFS
EASY

jobs number
×10

5

0.9 1 1.1 1.2

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

10

20

30
CM5

FCFS
EASY

jobs number
×10

4

7 8 9 10

e
x
p

e
ri
m

e
n

ts
 n

u
m

b
e

r

0

5

10

15

20

25
SDSC-DS

FCFS
EASY

jobs number
×10

4

6 7 8 9

e
x
p

e
ri
m

e
n

ts
 n

u
m

b
e

r

0

5

10

15
Intrepid

FCFS
EASY

jobs number
×10

5

2 2.2 2.4 2.6

e
x
p
e
ri
m

e
n
ts

 n
u
m

b
e
r

0

5

10

15
HPC2N

FCFS
EASY

Fig. 6. Histograms of the throughput in one hundred simulations of EASY and FCFS schedulers. Top: conventional simulation (with resampling but
no feedback). Bottom: TBUOS. The vertical dashed black line represents the throughput in the original workload. Clearly in conventional simulations the
throughput does not depend on the system, in contrast to TBUOS in which EASY leads to higher throughputs.

day
0 200 400

lo
a

d

×10
7

0

2

4

6
CTC

day
0 200 400

lo
a

d

×10
7

0

2

4

6
Wrong CTC

Fig. 7. Comparing the load per day (number of processor-seconds) in two
versions of the CTC trace which differ only in the specified system size.
TBUOS (blue dashed lines) compensates for the artificially lower load when
too many nodes were specified.

More generally, user-aware schedulers try to anticipate user

behavior. The scheduler’s goal is then to improve productivity

by facilitating more effective use of the system, allowing users

to submit more jobs. This is done by trying to assess whether

users are still active, and prioritizing those who have the

highest probability of submitting more jobs. This may increase

the average wait time, because jobs belonging to users who

are thought to be inactive are delayed, but will hopefully also

increase the system throughput and the productivity of active

users. Evaluating such schedulers requires methodologies like

TBUOS, because under conventional simulations the through-

put is fixed in advance.

A. The User Priority Scheduler

In this section we describe a simple new scheduler named

the User Priority Scheduler (UPS). This is a user aware

scheduler intended to motivate users to submit more jobs.

It’s general structure is similar to the CREASY scheduler

suggested by Shmueli [21]. Jobs submitted to UPS are kept

in a priority queue. When a scheduling decision has to be

made (e.g. when some job terminates and processors become

available) the highest priority job is selected for execution.

The priorities are based on a weighted sum of two terms, one

of which reflects the probability that a user will submit more

jobs, and the other reflecting the waiting time of the job.

In more detail, the operation of UPS is based on EASY.

Selecting jobs for execution is done as follows. First the queue

is scanned in job priority order, and all jobs that can run

(because enough processors are available) are dispatched. Then

a reservation is made for the first queued job in order to ensure

that it will not be starved. Finally the remainder of the queue is

scanned in user priority order and jobs are backfilled provided

they do not violate the reservation for the first job.

The differences from EASY are as follows. In EASY jobs

are prioritized by their arrival time, and both the original

scheduling and the backfilling are done in this order. In UPS

the original scheduling is done according to job priorities,

which reflect a weighted sum of wait time and user priority.

The backfilling is done in a slightly different order: first

according to user priority, and then according to waiting time

for all the jobs of each user.

Given a job J submitted by a user u its job priority is

calculated by the following expression:

Jpri(J) = αuser · Upri(u) +
αarr · J.wait

4 · (SECONDS IN HOUR)

Jpri and Upri are the job and user priorities, respectively.

Upri represents the scheduler’s “user awareness” as explained

below. αuser and αarr are the weights of the two terms, where

αuser + αarr = 1. They determine the balance between the

user awareness and the waiting time. If αarr = 1 then we only

consider the wait time and ignore the user, so this is similar to

EASY (but with backfilling order based on the user priority).

If αuser = 1 all the weight is placed on user awareness, at the

risk of starving jobs submitted by low-priority users.

The user priority Upri(u) reflects the scheduler’s goal to

give higher priority to users who are assumed to be active and

therefore have the potential to submit additional jobs. As an

initial suggestion, we consider two metrics for user activity:

Fig. 8. Distribution of throughput results in simulations without feedback
of EASY and UPS (recency based on left and load based on right) with
αuser = 0 or 1. The scheduler doesn’t have a significant effect on the
throughput.

1) Load based: priority is determined by the estimated work

(requested runtime×processors) in waiting jobs, where

more work implies lower priority. The idea is that if users

have dependencies between their jobs, we will be able to

run quickly the jobs of the user that needs less resources,

and then he will be able to send the following jobs sooner,

maybe even in the same session.

2) Recency based: priority is determined by the last job arrival

from this user, where more recent activity leads to higher

priority. The hypothesis of this approach is that maybe the

user is still within an active session, and if he will see the

results rapidly, he may decide to continue the session.

Either of these metrics can be used to define an order on

users, and then we assign user i in this order the priority

Upri(ui) = 1/i. Consequently the effective range of Upri(u)
is [0, 1]. Users with no waiting jobs are assigned Upri(u) = 0.

J.wait is the waiting time of job J in seconds, so a job’s

priority grows linearly with the time it waits in the queue.

The dividing factor of four hours normalizes this with respect

to the user priorities, such that a value of 1 is reached after

4 hours. Thus if αuser = αarr = 0.5 a newly arrived job

belonging to the highest priority user will have Jpri = 0.5,

and any job by any other user that is waiting for 4 hours or

more will have a higher priority than it. But if αuser = 0.2
and αarr = 0.8 then any other job that is waiting more than

1 hour will already have a higher priority.

The UPS avoids starvation when αarr > 0 because Upri ≤
1, so eventually every job can become the highest priority

job. It then gets a reservation due to the EASY algorithm, and

subsequently gets an allocation of processors.

B. Simulation Results

First we analyze the performance of UPS using a simula-

tion without feedback. We compare the UPS scheduler with

αuser = 0 and αuser = 1 for both approaches for prioritizing

Fig. 9. Distribution of throughput results in TBOUS Simulations comparing
EASY with UPS with different values of αuser (left: recency based; right:
load based). Different logs lead to different effects of the user awareness, from
significant differences at top, through noticeable differences in the middle, to
minor differences at bottom.

the users (Figure 8). The throughput does not change notice-

ably between the different schedulers. In particular, αuser = 1
does not lead to higher throughput, which means that user

awareness does not seem to provide any benefits.

However, we claim that the user aware scheduler is actually

better. To demonstrate this, we show in Figure 9 the results

obtained using TBUOS for different values of αuser , and both

approaches for prioritizing the users. We can see that with

feedback UPS facilitates higher throughputs in average than

EASY, and the gap grows with higher emphasis on user pri-

oritization (larger αuser). Moreover, load-based prioritization

appears to be more effective than recency based prioritization.

However, the improvement of using user aware schedulers

actually depends on the workload. In some logs, such as

BLUE, there is a very significant effect. In others, such as

HPC2N, there is only a minor effect. The logs shown in the

figure were selected to demonstrate the range of effects we

saw with the 8 logs used.

VI. CONCLUSIONS AND FUTURE WORK

Conventional open-model trace-based simulations, which

are commonly used to evaluate the performance of a new

system designs, do no adjust the simulated workload to the

system state. As a result they are unable to measure the true

throughput with the new system design.

We suggest an alternative methodology named TBUOS.

TBUOS also uses a recorded trace, and retains all the attributes

of the recorded workload except one: instead of keeping job

arrival times it keeps job dependencies and think-times, and

adjusts the arrival times to reflect dependencies and perfor-

mance. The simulation doesn’t simulate only the scheduler, but

also the users’ behavior, namely how users would respond to

the new system. As a consequence, simulations may produce

different throughputs depending on the simulated system.

Moreover, scheduling algorithms which are based on affect-

ing the input workload can’t be evaluated with conventional

simulations. The UPS is such a scheduler, and requires an

evaluation with TBUOS to demonstrate its ability to increase

the throughput.

Creating a user-oriented simulation is a new world, and

there is no single correct approach for doing so. While

TBUOS provides a proof-of-concept for user-based semi-open

simulation, other approaches are possible. Specifically, several

assumptions may be changed depending on the modeler’s point

of view. For example, maybe the temporary users should also

have a dynamic number of jobs? Maybe some of the long

term users may leave if the performance is too poor? Maybe

even the jobs properties (such as the requested number of

processors) should be adapted to the system?

In future work we intend to continue the development of

TBUOS and UPS. More work is needed to better characterize

user behavior and create better user feedback models. We also

intend to consider more advanced models of the user popula-

tion dynamics, including session aborts and system abandon-

ment. Furthermore, we need to evaluate UPS more deeply, and

compare it to other approaches, such as Shmueli’s CREASY

scheduler. Finally, A long-term goal is to implement this work

also in additional domains, demonstrating this methodology to

be effective in general in performance evaluation, and not only

in the context of parallel jobs scheduling.

Acknowledgment This research was supported by the

Ministry of Science and Technology, Israel.

REFERENCES

[1] V. S. Adve and M. K. Vernon, “Performance analysis of mesh
interconnection networks with deterministic routing”. IEEE Trans.

Parallel & Distributed Syst. 5(3), pp. 225–246, Mar 1994, doi:
10.1109/71.277793.

[2] J. Aikat, S. Hasan, K. Jeffay, and F. D. Smith, “Towards traffic
benchmarks for empirical networking research: The role of connection
structure in traffic workload modeling”. In 20th Modeling, Anal. &
Simulation of Comput. & Telecomm. Syst., pp. 78–86, Aug 2012, doi:
10.1109/MASCOTS.2012.19.

[3] M. A. Amer, A. Chervenak, and W. Chen, “Improving scientific work-
flow performance using policy based data placement”. In 22nd Policies

for Distrib. Syst. & Netw., pp. 86–93, Jul 2012.
[4] W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating

scientific workflows in distributed environments”. In 8th IEEE Intl. Conf.
E-Science, pp. 1–8, Oct 2012.

[5] P. Cremonesi and G. Serazzi, “End-to-end performance of web ser-
vices”. In Performance Evaluation of Complex Systems: Techniques and
Tools, M. C. Calzarossa and S. Tucci (eds.), pp. 158–178, Springer-
Verlag, 2002, doi:10.1007/3-540-45798-4 8. Lect. Notes Comput.
Sci. vol. 2459.

[6] S. Di and F. Cappello, “GloudSim: Google trace based cloud simu-
lator with virtual machines”. Software — Pract. & Exp. 2015, doi:
10.1002/spe.2303.

[7] S. Di, D. Kondo, and F. Cappello, “Characterizing and modeling cloud
applications/jobs on a Google data center”. J. Supercomput. 2014, doi:
10.1007/s11227-014-1131-z.

[8] P. A. Dinda, G. Memik, R. P. Dick, B. Lin, A. Mallik, A. Gupta,
and S. Rossoff, “The user in experimental computer systems research”.
In Workshop Experimental Comput. Sci., art. no. 10, Jun 2007, doi:
10.1145/1281700.1281710.

[9] D. G. Feitelson and E. Shmueli, “A case for conservative workload
modeling: Parallel job scheduling with daily cycles of activity”. In 17th
Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., Sep 2009,
doi:10.1109/MASCOT.2009.5366139.

[10] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the
Parallel Workloads Archive”. J. Parallel & Distributed Comput. 74(10),
pp. 2967–2982, Oct 2014, doi:10.1016/j.jpdc.2014.06.013.

[11] S. Floyd and V. Paxson, “Difficulties in simulating the Internet”.
IEEE/ACM Trans. Networking 9(4), pp. 392–403, Aug 2001, doi:
10.1109/90.944338.

[12] G. R. Ganger and Y. N. Patt, “Using system-level models to evaluate
I/O subsystem designs”. IEEE Trans. Comput. 47(6), pp. 667–678, Jun
1998, doi:10.1109/12.689646.

[13] W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic improvement
of locality in storage systems”. ACM Trans. Comput. Syst. 23(4), pp.
424–473, Nov 2005, doi:10.1145/1113574.1113577.

[14] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic work-
load generation technique for stress testing session-based systems”.
IEEE Trans. Softw. Eng. 32(11), pp. 868–882, Nov 2006, doi:
10.1109/TSE.2006.106.

[15] R. Morris and Y. C. Tay, A Model for Analyzing the Roles of Network

and User Behavior in Congestion Control. Tech. Rep. MIT-LCS-TR898,
MIT Lab. Computer Science, May 2003.

[16] R. S. Prasad and C. Dovrolis, “Measuring the congesion responsiveness
of Internet traffic”. In 8th Passive & Active Measurement Conf., pp.
176–185, Apr 2007, doi:10.1007/978-3-540-71617-4 18.

[17] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale”. In 3rd Networked Systems Design & Implementation,
pp. 239–252, May 2006.

[18] S. L. Scott and G. S. Sohi, “The use of feedback in multiprocessors
and its application to tree saturation control”. IEEE Trans. Parallel &

Distributed Syst. 1(4), pp. 385–398, Oct 1990, doi:10.1109/71.80178.
[19] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate

the performance of parallel system schedulers”. In 14th Modeling, Anal.

& Simulation of Comput. & Telecomm. Syst., pp. 167–176, Sep 2006,
doi:10.1109/MASCOTS.2006.50.

[20] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system
performance on user behavior from traces of parallel systems”. In 15th
Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 274–
280, Oct 2007, doi:10.1109/MASCOTS.2007.67.

[21] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-
systems schedulers: Are we doing the right thing?” IEEE Trans.

Parallel & Distributed Syst. 20(7), pp. 983–996, Jul 2009, doi:
10.1109/TPDS.2008.152.

[22] D. N. Tran, W. T. Ooi, and Y. C. Tay, “SAX: A tool for studying
congestion-induced surfer behavior”. In 7th Passive & Active Measure-

ment Conf., Mar 2006.
[23] W. Willinger, V. Paxson, and M. S. Taqqu, “Self-similarity and heavy

tails: Structural modeling of network traffic”. In A Practical Guide to

Heavy Tails, R. J. Adler, R. E. Feldman, and M. S. Taqqu (eds.), pp.
27–53, Birkhäuser, 1998.

[24] S. Yang and G. de Veciana, “Bandwidth sharing: The role of user
impatience”. In IEEE Globecom, vol. 4, pp. 2258–2262, Nov 2001,
doi:10.1109/GLOCOM.2001.966181.

[25] N. Zakay and D. G. Feitelson, “On identifying user session boundaries
in parallel workload logs”. In Job Scheduling Strategies for Parallel

Processing, W. Cirne et al. (eds.), pp. 216–234, Springer-Verlag, 2012,
doi:10.1007/978-3-642-35867-8 12. Lect. Notes Comput. Sci. vol.
7698.

[26] N. Zakay and D. G. Feitelson, “Workload resampling for perfor-
mance evaluation of parallel job schedulers”. Concurrency & Com-

putation — Pract. & Exp. 26(12), pp. 2079–2105, Aug 2014, doi:
10.1002/cpe.3240.

[27] N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics
in trace-based simulation of parallel job scheduling”. In 22nd Modeling,
Anal. & Simulation of Comput. & Telecomm. Syst., pp. 51–60, Sep 2014,
doi:10.1109/MASCOTS.2014.15.

`

Models for Evaluating Throughput
Netanel Zakay Dror G. Feitelson

Department of Computer Science
The Hebrew University, 91904 Jerusalem, Israel

Abstract—Analysts are interested in two categories of perfor-
mance metrics: those concerned with time (response or wait
time), and those concerned with rates (throughput or utilization,
which reflect productivity and how well resources are used). In
principle, these two categories are independent of each other, and
both should be evaluated. But a common mistake is to “measure”
the throughput in open-system evaluations, where the throughput
is actually dictated directly by the workload. In order to evaluate
throughput, the system model must include a feedback loop which
modulates the workload being processed. The common solution is
to create a pure closed system with a fixed number of users, who
submit jobs in a loop. However, such behavior is often unrealistic.
We review and analyze two alternative models that provide the
required feedback by combining open and closed components:
the mixed model which includes two such job classes, and the
re-open model in which open user arrivals are combined with
performance-dependent closed repetition of jobs by these users.
These models allow evaluations of the trade-off between response
time and throughput, including the throughput as it is observed
by each user.

Index Terms—throughput; utilization; mixed open-closed
model; re-open model.

I. INTRODUCTION

Evaluating the performance of a system is a major part of
system design. Reliable evaluations of a proposed system are
expected to lead to better designs and reduced expenses, by
considering multiple options, evaluating them, and choosing
the best. Therefore, when a new system design is proposed or
when we want to improve a current system, it is common to
evaluate it before implementing it.

There are two main categories of system performance met-
rics. The first category includes the response time and the wait
time. These capture the delays that a job suffers in the system.
The assumption is that users are more satisfied with shorter
delays. The second category includes the utilization and the
throughput. These capture how much of the system’s resources
are used and the rate at which the system serves requests.
The assumption is that higher utilization and serving more
requests are better. In many systems a tradeoff is involved:
higher throughputs lead to higher response times.

Importantly, the two categories are not just different mani-
festations of the same effects. They can change independently
of each other, so both should be evaluated. But commonly
used performance evaluation approaches such as trace-based
simulation and open-system queuing analysis evaluate only the
wait time and the response time. Measuring the throughput
or utilization using these methodologies can only serve as a
sanity check, because the throughput and utilization (which
are linearly related in expectation in this case) are completely

determined by the workload. In other words, these common
evaluation methodologies effectively treat throughput and uti-
lization as an input and not as part of the evaluation.

The classic approach to evaluate throughput is by using a
closed model. But a pure closed model with a fixed number
of users is unrealistic for many types of system. In many
cases a more realistic workload scenario combines the closed
behavior with an open behavior. For example, users may arrive
randomly as in an open system, but then they may execute a
workflow of multiple jobs that depend on each other as in
a closed model. Trace-based simulations that preserve all the
jobs’ properties, including their arrival times, actually destroys
the logic of the user’s workflow, specifically the dependencies
and think times between successive jobs. An better alternative
is therefore to preserve the dependencies, and adjust the arrival
times [14]. But still, if all the jobs in the workflow are
eventually performed, the total amount of work and hence
the system throughput are the same as in the original trace.
The only thing that may change is the per-user throughput,
because the workflows of individual users may be spread out
differently. This motivates adding per-user throughput to the
set of metrics that should be evaluated.

But in real life there do exist situations where the total
throughput is indeed affected. To capture this one needs a
system model that includes an explicit effect on the number
of jobs processed by the system. This can take one of two
forms. The first model is systems that use admission controls
to throttle their users or just drop superfluous jobs (e.g. [2],
[12], [1]). A good metric of performance in this case is the
number of jobs that are rejected. The second model is users
who change their behavior in response to system performance.
For example, it is easy to envision users who become frustrated
with poor performance and reduce their activity. This is the
type of models we address here.

Importantly, such models allow analysts to assess the impact
of system designs on throughput even when the system does
not address this explicitly (e.g. it does not employ admis-
sion controls). In particular, they facilitate an analysis of
the tradeoff between throughput and response time, and the
identification of situations where higher response times are ac-
tually beneficial because they correlate with higher throughput
and utilization. Moreover, such models may capture negative
feedback effects as when users back off from an overloaded
system and thereby prevent its saturation. Using an oblivious
model — as is commonly done in trace-based simulations and
queueing analyses — would miss such effects and lead to
overly pessimistic results [9].

jobs
queue

waiting
simulated

scheduler

machine
parallel

the simulated system

think time
long term users

user arrivals
new temporary

temporary users
think time

temporary users
finished

Fig. 1: Flow of TBOUS.

II. TBUOS AND SEMI-OPEN SIMULATION

In a previous work we proposed the Trace-Based User-
Oriented Simulation (TBUOS), which is a semi-open simula-
tion that includes dynamic user activity and internal feedback
from the system to the users [15]. In this simulation, we divide
the users into two groups (Figure 1). One is temporary users
that arrive to the system at a fixed rate, and are active for only
a limited time. The other is long term users who are always
active. This is modeled in simulations by sending their first
traced job again after the termination of their last traced job.

We found that the overall throughput of a TBOUS simula-
tion can differ from that of a conventional simulation based
on the same trace, as a result of subtle interactions between
the users. The temporary users each have a fixed number of
jobs, so in the long run their contribution is fixed. But the long
term users are coupled to them because they contend for the
same processing resources. So if the load caused by temporary
users affects the rate at which long-term users circulate, the
overall throughput is affected. The goal of the present paper is
to further investigate this effect, and compare it with another
model where all users are temporary but their number of jobs
is performance-dependent.

More formally, the two models we will be investigating are
as follows:

• The mixed model. This model includes an open work-
load class and a closed workload class. It is an abstraction
of the workload used in the TBUOS simulations.

1) Open users submit a single job to the system and
leave. This is like in a conventional open system.
Arrivals of these users are not affected by the system
state, so the load they impose on the system is also
not affected by the system state. In other words,
they have a constant contribution to the system
throughput.

2) Closed users who submit a job, wait for it to
terminate, think, submit another job, and so on
indefinitely. This is just like a conventional closed
system, and arrivals are naturally affected by the
system state.

We assume that the properties of the jobs, such as the
distribution of run-times, are the same for both classes.
The interesting issue is the interaction between the two

classes. As in TBOUS, the open class affects the per-
formance of the closed class, and this effect can lead to
changes in the system throughput.
This model represents a system that has both permanent
users and temporary users. For example, a cloud service
that has users that paid to host a persistent service and
other users that try the system for a limited time only
and then leave. This is highly relevant today due to the
growing popularity of cloud systems.

• The re-open model. This is an open model with repeated
submittal of jobs: users arrive at a given arrival rate as
in a conventional open model, but once they arrive they
may submit several jobs one after the other with think
times in between. As we show below, if the total number
of jobs (or the probability to submit additional jobs) is
fixed, the system cannot affect the throughput. But if the
probability to submit additional jobs depends on system
performance (and specifically on the response time) then
throughput is indeed affected.
This model may be suitable for a web server or similar
systems. When users surf to a site they usually send some
number of requests. However, if the performance is poor,
a user may get discouraged and leave the site. On the
other hand, if the server is highly responsive, the users
may extend their activity and send more requests.

These models are shown graphically in Figure 2. Note that
in the mixed model the two user classes are distinct, and
the only interaction between them is that both use the same
resources on the server. In the re-open model, on the other
hand, there is only one user class, and each user either submits
additional jobs (closed behavior) or departs (open behavior)
with some probability.

An important issue in both models with whether the work-
load is assumed to be interactive or batch. In batch workloads
closed jobs are submitted one after the other with no inter-
vening think time. As a result the utilization is always 100%
and the throughput equals the system’s capacity (namely the
maximal number of jobs that the system can serve in a unit
of time). In this case the only metric that can change is the
throughput observed by each user, because delays cause the
users to execute the same jobs over longer periods of time.

In interactive workloads the think time throttles the rate of
submitting jobs, and therefore changes to the scheduler can
lead to changes in throughput. This can happen, for example,
by delaying interfering jobs to non-prime time [3]. In our
models we focus on interactive workloads.

III. THE MIXED MODEL

The mixed model in and of itself is not new, and has been
used to model the combination of interactive and batch work
for example (see [5, sect 7.4.3] and [6, sect 13.7]). The idea
there is that the batch jobs constitute a closed system, with
a new one starting immediately upon the termination of a
previous one. Previous works described the model briefly and
how to calculate the performance metrics. To this we add the
motivation of affecting throughput, and present graphs that

server
queue

terminals

arrivals departures
open user open user

closed

users

server
queue

terminals

resubmit
with
probability
p

user
arrivals
user

departures
probability 1−p

Fig. 2: The mixed model (left) and the re-open model (right).

show the relation between the inputs and the performance met-
rics. Also, we analyze this model using operational analysis,
to show both intuitively and mathematically these relations
between the performance metrics.

The Mixed Model is an abstraction of the model we used in
simulations in the context of suggesting the use of workload
resampling from recorded logs and TBOUS [13], [15]. As
explained above, the two workload classes were long-term
users who are active throughout and behave like a closed
model, and temporary users who are active only for a limited
duration, thus behaving like an open model (or rather, like a
re-open model) in that their arrivals — and consequently also
all the load they impose — is uncorrelated with system state.

A. Model and Dynamics

Assume a single server system, where arriving jobs queue,
receive service, and depart. The parameters of the model are
as follows:

open part λ arrival rate

closed part N number of users
Z think time

system params S service demand
µ service rate (1

E[S])

This model assumes that all the jobs are similar, meaning that
they have the same service demand S. Also, the scheduler does
not differentiate between jobs submitted by the open users and
the closed users.

Given the mixed workload, the system dynamics will evolve
as follows. The open component of the workload is oblivious
to the system state. It therefore imposes a fixed load of λE[S]
per job. This has to be less than the system capacity, implying
the common requirement λ < µ.

Once the capacity taken up by the open component is ac-
knowledged, the remaining capacity is (µ−λ)E[S]. The closed
part adjusts to fit in this left over capacity. The mechanism
that affects this adjustment is the response time. The lower
the system-wide response time, the sooner the closed users
submit additional jobs, thereby increasing the load. But if the
load is too high the response time will grow, thereby delaying
the closed users, and subsequently delaying the submittal of
additional jobs and reducing the load. This is a stabilizing
negative feedback effect on the throughput X .

Users Number (N)

2 4 6 8 10

A
v
g
 R

re
s
p
o
n
s
e
 T

im
e
 (

R
)

0

2

4

Users Number (N)

2 4 6 8 10

T
h
ro

u
g
h
p
u
t
(X

)

0

0.2

0.4

0.6

0.8

Throughput (X)

0.2 0.4 0.6 0.8

A
v
g
 R

re
s
p
o
n
s
e
 T

im
e
 (

R
)

0

2

4

Fig. 3: The average response time and throughput of the closed
submodel (MVA results) with µ = 1.0 and Z = 5.0. The first
two graphs show how the number of usersN affects the average
response time and the throughput. The third graph combines
these results to show the average response time as a function of
the throughput (or equivalently, the utilization).

B. Common Evaluation

As noted above the mixed model is well-known. For com-
pleteness, we provide a short review of the common approach
to calculating the response times Rc and Ro (of closed and
open jobs, respectively; they are not identical because open
jobs arrive randomly, whereas closed job arrivals are correlated
with system state, but the difference becomes negligible for
large N).

1) The open part is oblivious to the system. Its utilization
is λS and the throughput is λ.

2) The effect of the open part on the closed part is modeled
by extending the service time to Sc = S

1−Sλ . The closed
part is then solved using the iterative MVA algorithm.

3) The average queue length of closed customers is added
to the resident users of the open model to calculate Ro.

While this method calculates the performance metrics for
the system, it doesn’t provide the relations between the dif-
ferent metrics nor an intuitive explanation of the system’s
behavior. To provide this, we present some results in Figure
3. When the number of closed users increases both the
response time and the throughput increase, but with different
profiles: asymptotically the response time grows linearly, and
throughput saturates at system capacity. The relation between
them is highly non-linear, and similar to how response time
depends on utilization in open systems. To understand this
better, we use operational laws.

C. Operational Analysis

First, we observe that the system can operate in either of
two phases.

• Full utilization phase — in this phase the closed compo-
nent uses all the remaining capacity.

• Partial utilization phase — in this case the closed compo-
nent does not use up all the remaining capacity, because
the combination of the number of users and the think
time does not allow the submittal of sufficient jobs.

Let’s start by analyzing the full utilization phase. The fact
that the system is fully utilized means that the throughput
equals to the system capacity and therefore

X = µ

The throughput is the sum of the open throughput λ and the
closed throughput N

Rc+Z
(from the interactive response time

law). Using the first equation we conclude that

µ = λ+
N

Rc + Z

From this we can extract Rc

Rc =
N

µ− λ
− Z

Thereby characterizing the system performance using opera-
tional laws that do not require assumptions about distributions.
This shows the intuitive result that (asymptotically) adding
closed users leads to a linear increase in response time because
they just pile up in the queue.

The partial utilization phase implies that

µ > X = λ+
N

Rc + Z

and therefore
Rc >

N

µ− λ
− Z

In other words, the response time Rc is large enough to throttle
the closed users and prevent them from creating additional
load. We then have two unknowns: Rc and X , with the
relationship

Rc =
N

X − λ
− Z

While this doesn’t allow us to solve for Rc and X , it provides
the inverse relationship between them for given N and Z. But
if N grows X grows too, giving the result in Figure 3.

IV. THE RE-OPEN MODEL

The basic elements of the re-open model were introduced
by Schroeder et al. under the name “partly-open” [8] and used
by others [7], [4]. Specifically, this combined open and closed
elements by mandating that users submit additional jobs with a
probability p. However, this alone does not affect throughput.
To affect throughput we add the new condition that p be
dependent on the system state.

The parameters of the model are as follows:

user params λ arrival rate
p probability to submit another job
Z think time between submitted jobs

system params S service demand
µ service rate (1

E[S])

Think Rate

0.5 1 1.5 2

T
h
ro

u
g
h
p
u
t

0

0.5

1

p = 0.36

p = 0.47

Think Rate

0.5 1 1.5 2

A
v
g
 R

e
s
p
o
n
s
e
 T

im
e

0

20

40

60

80
p = 0.36

p = 0.47

Think Rate

0.5 1 1.5 2

jo
b
s
 P

e
r

U
s
e
r

0

0.5

1

1.5

2

2.5

p = 0.36

p = 0.47

Think Rate

0.5 1 1.5 2

A
v
g
 T

h
ro

u
g
h
p
u
t
p
e
r

U
s
e
r

0

5

10
p = 0.36

p = 0.47

Fig. 4: Simulating the re-open model for 10,000 users to check
the impact of the “think rate” 1

Z on performance. Simulations
use µ = 1.0 and λ = 0.5, with p = 0.36 (solid) and p =
0.47 (dashed). These p values produce high enough load to be
interesting, while the system is still stable.

In the following subsections we analyze this model under
different assumptions. To examine this model’s characteristics,
we created a simulation that simulates the re-open model with
a basic FCFS scheduling policy.

A. Constant p Value

When p is constant, this model is a generalization of both
the open and closed conventional models. A conventional open
model is obtained when p = 0, and a conventional closed
model is obtained when p = 1 and λ = 0.

If 0 < p < 1 then each user submits a number of jobs and
then leaves. As defined above with constant p the throughput
X is fixed by the model, and it is essentially like an open
system: each user submits 1+p+p2+p3+ . . . = 1

1−p jobs in
expectation, so the throughput is X = λ

1−p . In such a model
the stability constraint is

λ ≤ (1− p)µ

This immediately leads to a bound on p, namely p ≤ 1− λ
µ .

To evaluate this behavior, we modeled fixed p in simula-
tions. All the distributions including the think times, interar-
rival times, and service times are exponential. Figure 4 shows
that the think time doesn’t have an impact on any of the
results, at least when the system is not too close to saturation.
Figure 5 shows the impact of p. While throughput, utilization,
and jobs per user grow moderately with p, the queue length
and wait time grow much more precipitously, but only upon
approaching saturation. And note that as the overall throughput
increases, the throughput as observed by each user drops.

Finally, Figure 6 shows the relation between the response
time, the throughput, and the throughput per user. Note that the
throughput per user decreases dramatically for higher response
times, because the users are active for much longer, but send
the same number of jobs.

P

0 0.2 0.4

T
h
ro

u
g
h
p
u
t

0

0.5

1

P

0 0.2 0.4

U
ti
li
z
a
ti
o
n

0

0.5

1

P

0 0.2 0.4

A
v
g
 R

e
s
p
o
n
s
e
 T

im
e

0

20

40

60

80

P
0 0.2 0.4

A
v
g
 Q

u
e
u
e
 L

e
n
g
th

0

20

40

60

80

P

0 0.2 0.4

jo
b
s
 P

e
r

U
s
e
r

0

0.5

1

1.5

2

2.5

P

0 0.2 0.4

A
v
g
 T

h
ro

u
g
h
p
u
t
p
e
r

U
s
e
r

0

5

10

Fig. 5: Simulating the re-open model for 10,000 users using
µ = 1.0, λ = 0.5, and Z = 1 in order to check the impact of p
on performance.

Throughput

0.6 0.7 0.8 0.9

R
e
s
p
o
n
s
e
 T

im
e

20

40

60

Avg Throughput Per User

2 4 6 8

R
e
s
p
o
n
s
e
 T

im
e

20

40

60

Fig. 6: tradeoff between R and X in simulations of the re-open
model.

B. p as a Function of the Response Time

A more realistic model is to assume that the probability
to send an additional job is not fixed, but rather depends
on the performance of the system. High speed response may
cause a user to extend his session with the system, while slow
responses may cause him to leave the system. Therefore, a few
works suggested to take the response time into account when
calculating the probability of a user to send an additional job
[10], [11].

This is an interesting model, because it means that the
throughput is dynamic and depends on the performance of the
system. Short response times will lead to higher throughput.
But higher throughput will lead to more contention and thus
to higher response times, and hence to reduced throughput.
Therefore, the throughput and the response times balance each
other, and again we have a stabilizing negative feedback effect.

To formalize the model we need to decide how p depends on
the response time of previous jobs. A reasonable assumption

λ

0 0.5 1

T
h
ro

u
g
h
p
u
t

0

0.5

1

Exponential
Shmueli

λ

0 0.5 1

U
ti
liz

a
ti
o
n

0

0.5

1

Exponential
Shmueli

λ

0 0.5 1

A
v
g
 R

e
s
p
o
n
s
e
 T

im
e

0

200

400

600
Exponential
Shmueli

λ

0 0.5 1

A
v
g
 Q

u
e
u
e
 L

e
n
g
th

0

200

400

600
Exponential
Shmueli

λ

0 0.5 1
jo

b
s
 P

e
r

U
s
e
r

1

1.5

2

2.5
Exponential
Shmueli

λ

0 0.5 1

A
v
g
 T

h
ro

u
g
h
p
u
t
p
e
r

U
s
e
r

0

1

2

3
Exponential
Shmueli

Fig. 7: Simulating the re-open model for 10,000 users with
µ = 1.0 and Z = 1 where p is exponentially decreasing with
r (solid) and where p is set according to Shmueli’s formula
(dashed).

is that p is a monotonically decreasing function of r, where r
is the response time of the last job of this user. We modeled
two different functions for p:

• Exponentially decreasing function. This means that the
probability to submit another job drops off exponentially
with the response time of the previous job. In other
words, p = e−r. Therefore p starts from one for zero
response time and decreases exponentially to 0 with
longer response times.

• Shmueli’s model. Shmueli and Feitelson analyzed the
probability of a user to continue a session for several
logs in the Parallel Workloads Archive [10], [11]. They
discovered that the relationship is a hyperbola

p =
0.8

0.05 · r + 1

where r is in minutes. The average running time of jobs
was from a couple of minutes to perhaps 10 minutes
depending on the log. In our model, we use S = 1 as the
unit of time. Therefore we used the same formula, but
used 10r instead of r.

We simulated these two approaches. Figure 7 shows the
resulting metrics for different λ. Note that the throughput and
utilization are larger than λ due to the job repetitions. As λ
increases, the throughput and utilization converge to 1. Thus
when more users arrive, there are less resources available for

Shmueli’s Model, λ = 0.3 Exponential Model, λ = 0.3

run time

0 5 10

c
o
m

u
la

ti
v
e
 d

is
t

0

0.5

1

Break

Continue

run time

0 5 10

c
o
m

u
la

ti
v
e
 d

is
t

0

0.5

1

Break

Continue

Shmueli’s Model, λ = 0.8 Exponential Model, λ = 0.8

run time

0 5 10

c
o
m

u
la

ti
v
e
 d

is
t

0

0.5

1

Break

Continue

run time

0 5 10

c
o
m

u
la

ti
v
e
 d

is
t

0

0.5

1

Break

Continue

Fig. 8: Runtime distributions of jobs after which the decision
was to submit another job (continue), and jobs where the
decision was to quit (break). Results for simulation of 10,000
users with µ = 1.0 and Z = 1.

running repeated jobs. Therefore response times grow and p
drops. Consequently users submit fewer jobs, and the system
does not saturate. Also, the throughput per user drops, but
much more moderately than in the constant p model. And
again, queue length and wait time shoot up only when the
system is close to saturation.

Both approaches have different characteristics than the
constant p model due to the fact that a higher number of
users (higher λ) leads each user to send fewer jobs. Comparing
between the two approaches, Shmueli’s approach starts with a
higher number of jobs per user, and drops nearly linearly to 1,
while in the exponential approach the slope become smaller
for higher λ. As a result, the throughput when using Shmueli’s
approach converges to 1 for lower λ and the average wait time
is longer.

An interesting new metric we introduce is the throughput
per user. This is the quotient of the number of jobs that a user
submits divided by the total residence time in the system. In
Shmueli’s approach it starts higher, which means that users
take advantage of the empty system to send more jobs, but
they keep sending a high number of jobs when the system
is loaded, and this leads to delays and subsequently to low
throughput per user when λ is high.

C. Runtime Distribution Bias

An interesting artifact of the re-open model is the possible
creation of bias in the distribution of job runtimes for each
user. When p depends on the response time of the previous
job, this reflects the confluence of two factors: the length of
the job itself, and how long it had to wait in the queue. So if
the job was short there is an increased probability to continue
with additional jobs, and if the job was long this probability

is reduced — regardless of the performance of the system. As
a result the sequence of jobs executed by a certain user may
tend to include several short jobs and only one long job, the
last one. This may affect the throughput per user metric.

Evidence for this effect is shown in Figure 8. The distri-
bution of runtimes of jobs that were the last one for a user
(meaning that the probabilistic decision was not to submit
additional jobs) tends to have longer times than the distribution
of runtimes of jobs that were not the last. The effect is stronger
with the Shmueli model, and weaker when λ is high, because
then each user submits fewer jobs. More work is needed to
decide if this is a problem or perhaps it actually reflects an
effect that exists in reality.

V. CONCLUSIONS AND FUTURE WORK

In conventional trace-based simulations and open-system
analyses the throughput is given, and only the response time
can be evaluated. In addition there is no feedback and the
system may saturate as users continue to submit jobs.

We considered two models that include realistic negative
feedback effects and allow the tradeoff between response time
and throughput to be explored. The mixed model includes
closed users whose throughput is affected by contention from
open users. In the re-open model users submit additional jobs
depending on their response time. In either case, the total
throughput converges to the system capacity as more users are
added. Therefore a more interesting metric is the throughput
per user.

Use of such models is mandatory if one wishes to assess
the effect of a scheduling scheme on throughput. This is an
important performance metric for schedulers that attempt to
prioritize different users or affect their productivity and be-
havior [11], [15]. Preferring one model over the other depends
on the type of evaluated system and the users’ behavior in the
environment.

Our next goal is to continue developing these models and
make them more realistic, similarly to the TBOUS simulation
[15]. One useful expansion is to combine them by adding
repeated jobs based on performance to the mixed model. In
effect, this creates a mixture of closed and re-open instead of
closed and open.

Another interesting issue is the think time (Z). In both
the mixed model and the re-open model results above, the
think time was sampled from an exponential distribution with
parameters given as an input of the model. However, in reality,
the think time might depend on various factors. For example,
if the response time was short, the user might still be engaged
with his session and send the next job with a short delay. For
longer response times, the user might break his session and
send the next job later in a new session (e.g. after taking a
coffee break) or even the next day (if the job finished late at
night). This suggests that more elaborate user behavior models
are needed [14].

Acknowledgments
This work was supported by the Ministry of Science and

Technology, Israel.

REFERENCES

[1] T. Brecht, D. Pariag, and L. Gammo, “accept()able strategies for improv-
ing web server performance”. In USENIX Ann. Tech. Conf., pp. 227–240,
Jun 2004.

[2] L. Cherkasova and P. Phaal, “Session-based admission control:
A mechanism for peak load management of commercial web
sites”. IEEE Trans. Comput. 51(6), pp. 669–685, Jun 2002, DOI:
10.1109/TC.2002.1009151.

[3] D. G. Feitelson and E. Shmueli, “A case for conservative workload
modeling: Parallel job scheduling with daily cycles of activity”. In 17th
Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., Sep 2009,
DOI: 10.1109/MASCOT.2009.5366139.

[4] R. Hashemian, D. Krishnamurthy, and M. Arlitt, “Web workload gener-
ation challenges – an empirical investigation”. Softw. — Pract. & Exp.
42(5), pp. 629–647, May 2012, DOI: 10.1002/spe.1093.

[5] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quanti-
tative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Inc., 1984.

[6] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance by
Design: Computer Capacity Planning by Example. Prentice Hall, 2004.

[7] D. Pariag, T. Brecht, A. Harji, P. Buhr, and A. Shukla, “Comparing the
performance of web server architectures”. In EuroSys, pp. 231–243, Mar
2007, DOI: 10.1145/1272998.1273021.

[8] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale”. In 3rd Networked Systems Design & Implementation,
pp. 239–252, May 2006.

[9] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate
the performance of parallel system schedulers”. In 14th Modeling, Anal.
& Simulation of Comput. & Telecomm. Syst., pp. 167–176, Sep 2006,
DOI: 10.1109/MASCOTS.2006.50.

[10] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system
performance on user behavior from traces of parallel systems”. In 15th
Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 274–
280, Oct 2007, DOI: 10.1109/MASCOTS.2007.67.

[11] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-
systems schedulers: Are we doing the right thing?” IEEE Trans.
Parallel & Distributed Syst. 20(7), pp. 983–996, Jul 2009, DOI:
10.1109/TPDS.2008.152.

[12] M. welsh and D. Culler, “Adaptive overload control for busy Internet
servers”. In 4th Conf. Internet Technology & Syst., USENIX, Mar 2003.

[13] N. Zakay and D. G. Feitelson, “Workload resampling for perfor-
mance evaluation of parallel job schedulers”. Concurrency & Com-
putation — Pract. & Exp. 26(12), pp. 2079–2105, Aug 2014, DOI:
10.1002/cpe.3240.

[14] N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics
in trace-based simulation of parallel job scheduling”. In 22nd Modeling,
Anal. & Simulation of Comput. & Telecomm. Syst., pp. 51–60, Sep 2014,
DOI: 10.1109/MASCOTS.2014.15.

[15] N. Zakay and D. G. Feitelson, “Semi-open trace based simulation for
reliable evaluation of job throughput and user productivity”. In 7th IEEE
Intl. Conf. Cloud Comput. Tech. & Sci., pp. 413–421, Nov 2015, DOI:
10.1109/CloudCom.2015.35.

`

Chapter 7

Summary

In Chapter 2, we conducted a research on the correct way to identify user

session boundaries in parallel workload logs. Identifying and characterizing

the sessions is important in the context of workload modeling, especially if

a user-based workload model is considered. Traditionally, sessions have

been delimited by long think times, that is, by intervals of more than, say,

20 minutes from the termination of one job to the submittal of the next

job. We show that such a definition is problematic in this context, because

jobs may be extremely long. As a result of including each jobs execution

in the session, we get unrealistically long sessions, and indeed, users most

probably do not always stay connected and wait for the termination of long

jobs. This result is presented in Chapter 2, Figures 9,10.

In this work, we compare multiple options to identify the sessions. For

example, we tried to solve the problem of long sessions in the common def-

inition that uses the jobs termination time to define the session, by limiting

the inter-arrival time between jobs in the same session. However, the limit

value appears to have a huge impact on the sessions, as demonstrated in

Chapter 2, Figures 11-12.

Our research concludes that the correct way to identify session is based

on proven user activity, namely the submittal of new jobs, regardless of how

long they run. The common approaches in this area lead to unrealistic long

sessions and the attempts to solve this problem lead to a strong relation

between the sessions and the threshold value. Therefore, by elimination,

we left with the arrival-time approach, which is common in other domains,

such as concluding user’s sessions in HTTP logs. In contrast to the rest of

the approaches, the arrival-time approach leads to more realistic sessions

length and distributions, which are presented in Figure 8 and Figure 11.

101

102 CHAPTER 7. SUMMARY

This work changes the way sessions are usually identified. Therefore, we

provide more details regarding the sessions properties [Table 1, Figures 13-

15]. The rest of our work in simulations (Chapters 3-5) uses this approach

to identify sessions and to deduce users behavior from a trace.

The concept of resampling, presented in Chapter 3, suggests a new,

novel way that combines the realism of real traces with the flexibility of

models in order to create new workloads. This is done by dividing the trace

into a sub-trace per user, and recombining them in various ways. Resam-

pling has the following attributes:

• Retaining the complex internal structure of the original trace, includ-

ing features that we do not know about.

• Allowing manipulations that affect specific properties that we know

about and want to change as part of the evaluation.

Resampling creates multiple workloads based on a single recorded work-

load. We first show that resampling preserves the attributes of the original

trace. In Chapter 3, Figures 4-5 show that the produced workloads have the

same distributions as the original trace, such as daily and weekly cycles,

users activity length, number of jobs and sessions per user, and many more.

Figures 6-7 show that they also have the same self similarity values.

While resampling preserves the attributes of the original trace, it pro-

duces variations of the workload and allows manipulation of specific prop-

erties. Resampling provides the following applications:

• Verification of performance results. One of the problems with using a

workload trace directly in simulations is that it provides a single data

point. This has the obvious deficiency that it is impossible to calcu-

late any kind of confidence intervals except perhaps by the method of

batch means [49]. But with resampling we can create many resampled

randomized versions of the workload, and evaluate the performance

of the system with all of them, thus obtaining multiple data points

that all adhere to the same underlying statistics. The distribution of

these data points can then be used to compute confidence intervals for

performance metrics. This is essentially an application of the well-

known technique of bootstrapping used in statistical analysis [21]. In

Chapter 6, Figures 8-9 show histograms of the performance metrics

using resampling, which demonstrate this application.

• Extending a trace. While some of our workload traces are pretty long,

with hundreds of thousands of jobs submitted over 2 years or more,

103

others are shorter. In addition, a significant part of the trace may be

needed as a “warmup period” to ensure that the simulated system

achieves its steady state [49]. Given only the raw traces, the length

of the simulation may therefore be quite limited. But with resampling

we can extend the simulation to arbitrary lengths. As an example, we

extended a log to be five times longer, and showed in Chapter 6, Fig-

ure 10 that except the length, the rest still had similar properties as the

original workload.

• Changing the load. An important aspect of systems performance eval-

uation is often to check the system’s performance under different load

conditions, and in particular, how performance degrades with increased

load. Given a single trace, crude manipulations are typically used in

order to change the load. For example, multiplying all arrival times or

all required numbers of processors by a constant. However, these ap-

proaches have well known deficiencies, that lead to unrepresentative

behavior. With resampling we can easily change the load, by increas-

ing or decreasing the sampling-rate. We used resampling to multiply

by 6 the load of a cluster with very low utilization, while we preserved

the rest of the properties except the load (Chapter 6, Figure 11). We

also used resampling to analyze the impact of the load on the system’s

performance (Chapter 5, Figure 12).

• Over-sampling rare behaviors. Workload logs sometimes contain unique

users that behave anomalously in a specific period compared to the

rest of the users. For example, a user may submit an inordinate num-

ber of jobs during a single week thus creating a flash crowd. With

resampling we can check its influence, by over-sampling these behav-

iors. For example, we over-sampled flash crowds in order to check

their impact on the system’s performance (Chapter 6, Figures 12-16).

Pay attention that in the results of these applications we show two impor-

tant things. The first is that the applications work as expected and achieve

their goal (e.g. extending the load actually creates a new workload with

higher load). The second is that the new workloads preserve the properties

of the original trace and they have similar distributions. This means that

resampling achieves its goals of retaining the complex internal structure of

the original trace while allowing workload manipulations.

Resampling creates multiple instances of essentially the same workload.

The next question that we dealt with, in Chapter 4, is the following: given

a workload that represents a work on a certain system, how can it be used

104 CHAPTER 7. SUMMARY

properly to evaluate the performance of a new system design? This work-

load may be recorded from a real system or produced by resampling.

The conventional approach is to use the workload directly on the sim-

ulated system. In Chapter 4, we showed that this in practice retains unim-

portant attributes of the workload, at the expense of other more important

attributes. Specifically, using traces in open-system simulations retains the

exact timestamps at which jobs are submitted. But in a real system these

times depend on how users react to the performance of previous jobs, and it

is more important to preserve the logical structure of dependencies between

jobs than the specific timestamps.

Instead we propose a novel approach — A simulation that deduces the

user’s logical structure of dependencies and relations between the jobs, and

preserves them during the simulation. The simulation also simulates the

users responses to the system’s decisions, by sending jobs later or earlier.

For example, if the system is overloaded, the users will send their next jobs

later. Another example, if the system prioritizes a user, he will receive

faster responses, and therefore will send his next jobs earlier. This creates

for each system a unique workload that represents how the users that were

taken from the original workload would have worked on the simulated sys-

tem. Note that the simulation only changes the arrival time of the jobs,

while it preserves all the rest of the properties (such as number of jobs per

user, and each job’s length and processors number). Chapter 4, Figure 3,

demonstrates the differences between the conventional simulation and our

feedback based simulation. Here we describe the three main components in

the simulation.

1. Pre-simulation step: deducing batches and constraints. Given a work-

load, we first split it to a subtrace per user. Then we split each sub-

trace into batches — sets of overlapping jobs. The jobs in a batch

don’t depend on each other. Chapter 4, Figure 1, provides an example

of batches. Finally, we deduce all the constraints of sending a batch

to the system. For example, if a batch depends on the results of a pre-

vious batch, we create a constraint for the later batch. We practically

build a DAG per user, where the nodes are the batches, and edges rep-

resent constraints. This is demonstrated in Chapter 4, Figures 2,4, that

present our constraints.

2. Tracking batches constraints. In the conventional simulations, all the

batches are sent at predefined (original) timestamps. In our simula-

tion however, only the batches without constraints are sent to the sys-

105

tem with their original timestamps. During the simulation, we track

batches’ arrivals and terminations, which may lead to constraints re-

moval, and we update the constraints accordingly. If a batch becomes

without any constraints, it is released to the system. For example, if

a batch B has a constraint on a batch A because B depends on A’s

results, when A is terminated during the simulation, we remove this

constraint. If B had only one constraint (on A), then now B is released

to the system.

3. Choosing job’s arrival time. Given a batch that we want to release to

the system, the question is what will be its arrival times. We exam-

ined multiple approaches. We show that the simple intuitive propos-

als, such as preserving the original inter-arrival times and think-times,

destroy the daily and weekly cycles, and create unrealistic workloads

(see Chapter 4, Figure 5,6). As as an alternative, we propose a new

approach called Fluid. Fluid proposes to preserve the original ses-

sions structure of the users, by sending batches only during the origi-

nal users’ sessions. Fluid creates much more realistic workloads, that

have similar attributes as the original workload (see Chapter 4, Figure

8,9). For example, with Fluid, the simulated workload preserves the

daily and weekly cycles.

Up until now we discussed the motivation for feedback, how it is done,

as well as showing that the workload is representative and preserves the

original workload’s attributes. Our final goal is to show the importance

of feedback and why it is needed. For this purpose, we evaluate the per-

formance of two well known schedulers using our feedback-based simula-

tion and the conventional simulation. The first scheduler is a basic First

Come First Serve (FCFS) scheduler, and the second uses more sophisti-

cated scheduler named EASY. The results are presented on Chapter 4, Fig-

ure 10. When we use the feedback-based simulation, EASY creates shorter

queues (shorter wait times), and therefore it is better. However, both FCFS

and EASY have reasonable queue lengths. On the other hand, when we

evaluate the schedulers using a conventional simulation, we notice that the

results of FCFS are unreasonably poor.dfgf There are hundreds of jobs in

average in the waiting queue, which practically does not happen in real-

ity. This demonstrates that without adapting the jobs submittal rate to the

system state, the simulated workload might be not only unrepresentative,

but highly unrealistic. This, of course, leads to unreliable evaluations in

conventional simulations.

106 CHAPTER 7. SUMMARY

Until now we described two different works with goal of improving the

workloads that are used in simulations.

• Resampling. This is a tool that creates multiple instances of the same

workload and allows workload manipulations. Note that resampling

proposes a new methodology for generating workloads and it is not a

simulation.

• Feedback. This work proposes a new type of simulation, with a loop-

back (feedback) from the system to the users. This affects the arrival

times of the jobs that are sent to the system and creates a workload

that is adapted to the simulated system.

The next natural step, described in Chapter 5, is to combine between

the two works into a single complete simulation. We call this simulation

the Trace Based User Oriented Simulation (TBOUS). Chapter 5, Figure 2

shows the flow of TBOUS, and describes how the combination between

resampling and feedback is done. TBOUS preserves the properties of both

resampling and feedback:

• It inherits from resampling the option to create multiple workloads

based on a single recorded trace and allow workloads manipulations

such as changing the load, while preserving the original workload at-

tributes.

• It inherits from feedback the simulation of the users responses to the

system decisions, preserves the logical structure of the users (such as

dependencies and think-times), and adapts the transmission rate to the

system’s performance.

This combination between resampling and feedback does not only pro-

vide a combination between the properties of both approach, but has addi-

tional advantages. One interesting property is that feedback re-synchronizes

between the users after resampling destroyed this natural synchronization.

Resampling by its very nature mixes up the users from the original trace.

Thus user activity that was originally performed when the system was highly

loaded may be matched up with activity of another user that was originally

performed when the system was lightly loaded [54]. This is an unnatural

combination. TBUOS solves this problem by using feedback in addition to

resampling. The feedback adjusts the job arrival rate to match the momen-

tary conditions in the simulated system, and therefore this problem does not

107

happen. Chapter 5, Figure 4 shows that when we use the resampled work-

loads in conventional simulations we receive high wait times in average.

However, TBOUS solves this problem, and the wait times are much lower.

Another important property of TBOUS is that it is a semi open system

model. It splits the provided workload into two classes: long term users

that use the system as a closed-system model and temporary users that use

the system as an open-system model (see illustration in Chapter 5, Figure

3). Note that TBOUS is a combination of an open-system simulation (feed-

back) with a tool for generating workloads (resampling), and nevertheless

TBOUS is a semi-open system.

The fact that TBOUS is a semi-open system is probably its most in-

teresting and important attribute. In conventional simulations, the arrival

process is preordained, and is not affected by the state and performance of

the simulated system. As a result the system throughput is dictated by the

trace being used, so the simulation cannot be used to measure throughput

or utilization. Therefore, performance in such simulations is measured by

the average wait time and slowdown. In TBOUS, on the other hand, the

throughput and utilization reflect the performance of the evaluated system.

Therefore TBOUS produces different loads and throughputs for different

scheduling algorithms or parametrizations. This allows evaluations of the

users’ productivity and the resources utilization in addition to the delays in

the system.

Our next goal is to show that TBOUS indeed creates dynamic through-

put in contrast to the fixed throughput in conventional simulations. For this

purpose, we evaluate and compare the throughput of FCFS scheduler and

EASY, using the conventional simulation and TBOUS. For each simulation

type (resampling+conventional or TBUOS) and scheduler (FCFS or EASY)

we run a hundred simulations and tabulate the throughputs achieved. The

results are presented on Chapter 5, Fig 6. Using conventional simulation

with resampling, the distributions of throughput under FCFS and EASY

are similar to each other and to the original value. On the other hand, in

TBUOS the EASY scheduler led to increased throughput relative to the

FCFS scheduler for all the traces. The difference testifies to the more re-

alistic simulation of the users in TBUOS, including a logical response to

a poor system performance. This results in reduced throughput with the

FCFS scheduler, sometimes less than in the original trace.

In this experiment, we used the ability of TBOUS to evaluate the through-

put of a system in order to evaluate more reliably common, well-known

108 CHAPTER 7. SUMMARY

scheduling policies. However, and even more importantly, TBOUS allows

us to evaluate systems that could not be well analyzed with the current tools.

User-aware schedulers try to anticipate user behavior. The scheduler’s goal

is then to improve productivity by facilitating more effective use of the sys-

tem, allowing users to submit more jobs. This is done by trying to assess

whether users are still active, and prioritizing those who have the highest

probability of submitting more jobs. This may increase the average wait

time, because jobs belonging to users who are thought to be inactive are

delayed, but will hopefully also increase the system throughput and the pro-

ductivity of active users. Evaluating such schedulers requires methodolo-

gies like TBUOS, because under conventional simulations the throughput

is fixed in advance.

Our final goal is to demonstrate that TBOUS allows reliable evalua-

tions of user aware schedulers in contrast to the conventional simulation

that would suggest that they are useless. For this purpose, we introduce

the User Priority Scheduler (UPS). This is a user-aware scheduler intended

to motivate users to submit more jobs. Jobs submitted to UPS are kept in

a priority queue. When a scheduling decision has to be made (e.g. when

some job terminates and processors become available) the highest priority

job is selected for execution. The priorities are based on a weighted sum of

two terms, one of which reflects the probability that a user will submit more

jobs, and the other reflecting the waiting time of the job. We analyzed two

approaches for the first parameter. The first approach is load-based prioriti-

zation. It prioritizes users based on their current demands from the system.

The concept is to serve first users with less demands (which can be done

relatively quickly), so they will be able to submit the jobs that depend on

them. The alternative approach is recency-based prioritization. It prioritizes

users based on the arrival time of their last job. The concept is to serve the

users that are still on the computer (before they will break their sessions).

Next, we compare between the throughput of UPS and EASY in simula-

tions. Chapter 5, Figure 8 shows the histogram of the throughput when the

conventional simulation is used. The throughput does not change notice-

ably between the different schedulers. This means that user awareness does

not seem to provide any benefits. Chapter 5, Figure 9 shows the histogram

of the throughput when we use TBOUS. It is easy to see that UPS facilitates

higher throughputs in average than EASY, and the gap grows with higher

emphasis on user prioritization. Moreover,load-based prioritization appears

to be more effective than recency based prioritization.

109

Chapter 5, that presents TBOUS, actually combines all our previous

work, and introduce them in a single complete simulation. Therefore, this

actually describes our research’s contribution to the area of simulations.

The simulation inherits the properties of feedback and resampling, because

it uses both of them. However, it also has new unique characteristics.

TBOUS has the following properties:

• Receives a recorded workload and simulates the system with a new

workload that is based on the provided workload and preserves its

properties.

• Produces multiple data points based on a single recorded trace.

• Allows workload manipulations, such as changing the load, extending

a trace, and over-sampling rare-events.

• Preserves the user behavior characteristics (such as dependencies and

think-times) and adapts the jobs arrival rate to the system state.

• Re-synchronizes between users after the resampling mixed-up the users.

• Produces dynamic throughput and utilization that reflect the perfor-

mance of the evaluated system.

• Supports realistic evaluations of new system designs that can not be

evaluated reliably in conventional simulations, such as user-aware sched-

ulers.

This properties of TBOUS demonstrates its contribution to the area of

performance evaluations. Our methodology is a unique breakthrough. Un-

til our work, people had to choose between using trace-based simulations,

which provide relatively reliable evaluations, but only a single data-point

per log, or statistical models, that provide flexibility but less-reliable evalu-

ations. Until now, people developed and used trace-driven simulations for

years without realizing that the workloads actually retain attributes, such as

the arrival rate, that reflect the users’ responses to the decisions made by the

original system, and this should not be retained, but adapted to the proposed

system design. Before our work, people could not evaluate the throughput

with representative workloads, but only in a pure closed system. Until our

work, there were no reliable ways to evaluate system designs that encour-

age people to submit more jobs, for example user aware schedulers such

as UPS. TBOUS provides a simulation that solves all these problems. This

110 CHAPTER 7. SUMMARY

demonstrates our contribution to the area of performance evaluation using

simulations.

TBOUS opens the door for a less common system design: semi-open

models. This raises questions regarding the relationship between the dif-

ferent performance metrics, and leads us to our final work — Evaluating

the Throughput (Chapter 6). In this work, we research semi-open mod-

els in analytical modeling for computer systems evaluations. We propose

two possible models that use semi-open systems: the mixed model and the

re-open model. We illustrate the models’ flow in Chapter 6. These mod-

els allow evaluations of the throughput, while, in many cases, they create

much more representative workloads than the common way to evaluate the

throughput of a system — a pure closed system. In this work we describe

both models in details, including their concept and parameters. Then we

analyze them, including the impact of the parameters on the performance

metrics and the relationship between the different performance metrics with

each other.

The first model is the mixed model. This model includes an open work-

load class and a closed workload class. It is an abstraction of the workload

used in the TBUOS simulations.

1. Open users submit a single job to the system and leave. This is like in

a conventional open system. Arrivals of these users are not affected

by the system state, so the load they impose on the system is also

not affected by the system state. In other words, they have a constant

contribution to the system throughput.

2. Closed users who submit a job, wait for it to terminate, think, submit

another job, and so on indefinitely. This is just like a conventional

closed system, and arrivals are naturally affected by the system state.

We assume that the properties of the jobs, such as the distribution of run-

times, are the same for both classes. The interesting issue is the interaction

between the two classes. As in TBOUS, the open class affects the perfor-

mance of the closed class, and this effect can lead to changes in the system

throughput.

This model represents a system that has both permanent users and tem-

porary users. For example, a cloud service that has users that paid to host a

persistent service and other users that try the system for a limited time only

and then leave. This is highly relevant today due to the growing popularity

of cloud systems.

111

We describe the common approach to analyze the performance of such

system using the mean value analysis (MVA) algorithm. While MVA pro-

vides complete evaluation of the common performance metrics, it is a re-

cursive technique that does not provide any intuition. For example, it is

important to understand the impact of changing a certain parameter. To

provide this, we did the following:

1. We execute many simulations of the MVA algorithm, and present the

relationship between the response time and the throughput (see Chap-

ter 6, Figure 3).

2. We analyze the relations between the different parameters and perfor-

mance metrics mathematically by using operational analysis.

The second model is re-open model. This is an open model with re-

peated submittal of jobs: users arrive at a given arrival rate as in a conven-

tional open model, but once they arrive they may submit several jobs one

after the other with think times in between. If the total number of jobs (or

the probability to submit additional jobs) is fixed, the system cannot affect

the throughput. But if the probability to submit additional jobs depends on

system performance (and specifically on the response time) then throughput

is indeed affected.

This model may be suitable for a web server or similar systems. When

users surf to a site they usually send some number of requests. However, if

the performance is poor, a user may get discouraged and leave the site. On

the other hand, if the server is highly responsive, the users may extend their

activity and send more requests.

We first analyze the re-open model using a constant p value. We cal-

culate that the throughput is λ
1−p

, which means that the performance does

not affect the throughput. We next present various performance metrics in

Chapter 6, Figures 4-6. Figure 4 shows that the Think Rate doesn’t impact

the performance, Figure 5 shows the impact of p on all the rest of the met-

rics, and Figure 6 analyzes the relations between the throughput, throughput

per user, and response time.

Then, we analyze the re-open model when p is a decreasing function of

the response time. In this case, the throughput is dynamic and depends on

the performance of the system. Short response times lead to higher through-

put. But higher throughput will lead to more contention and thus to higher

response times, and hence to reduced throughput. Therefore, the through-

put and the response times balance each other, and we have a stabilizing

112 CHAPTER 7. SUMMARY

negative feedback effect.

We simulated the FCFS scheduler with two different functions that cal-

culate p based on the response time: The first function is an exponentially

decreasing function. The second is based on Shmueli and Feitelson work

[55, 56]. Our final goal is to evaluate both approaches. Figure 8 shows

that in both models, long run-times lead to a bigger chance of leaving the

system. Figure 7 shows the impact of the arrival rate on the performance

with both approaches. We can observe that the throughput when using

Shmueli’s approach converges to 1 for lower λ and the average wait time

is longer. Moreover, in Shmueli’s approach the throughput per user starts

higher, which means that users take advantage of the empty system to send

more jobs, but they keep sending a high number of jobs when the system

is loaded, and this leads to delays and subsequently to low throughput per

user when λ is high.

This work introduces and analyzes models that evaluate the throughput

of a proposed system design with reasonable workloads using analytical

modeling. It shows that our work in the area of simulations (Chapters 2-5),

with the final outcome of TBOUS, is relevant not only for performance eval-

uations of parallel workloads system, and even not only for simulations, but

for varied aspects under the important domain of performance evaluations.

Bibliography

[1] V. S. Adve and M. K. Vernon, “Performance analysis of mesh inter-

connection networks with deterministic routing”. IEEE Trans. Paral-

lel & Distributed Syst. 5(3), pp. 225–246, Mar 1994.

[2] J. Aikat, S. Hasan, K. Jeffay, and F. D. Smith, “Towards traffic bench-

marks for empirical networking research: The role of connection

structure in traffic workload modeling”. In 20th Modeling, Anal. &

Simulation of Comput. & Telecomm. Syst., pp. 78–86, Aug 2012.

[3] M. A. Amer, A. Chervenak, and W. Chen, “Improving scientific work-

flow performance using policy based data placement”. In 22nd Poli-

cies for Distrib. Syst. & Netw., pp. 86–93, Jul 2012.

[4] R. Bagrodia, R. Meyer, and M. Takai, “Parsec: a parallel simula-

tion environment for complex systems”. Computer 31, pp. 77–85, Oct

1998.

[5] N. Baldo, F. Maguolo, M. Miozzo, M. Miozzo, and M. Zorzi, “ns2-

miracle: a modular framework for multi-technology and cross-layer

support in network simulator 2”. In International Conference on Per-

formance Evaluation Methodologies and Tools, Feb 2016.

[6] P. Barford and M. Crovella, “Generating representative web work-

loads for network and server performance evaluation”. In SIGMET-

RICS Conf. Measurement & Modeling of Comput. Syst., pp. 151–160,

Jun 1998.

[7] I. Baumgart, B. Heep, and S. Krause, “Oversim: A scalable and flexi-

ble overlay framework for simulation and real network applications”.

In Peer-to-Peer Computing, Sep 2009.

[8] O. Boiman and M. Irani, “Detecting irregularities in images and in

video”. In 10th IEEE Intl. Conf. Comput. Vision, vol. 1, pp. 462–469,

Oct 2005.

113

114 BIBLIOGRAPHY

[9] R. Buyya and M. Murshed, “Gridsim: a toolkit for the modeling

and simulation of distributed resource management and scheduling for

grid computing”. Concurrency and Computation — Practice and Ex-

perience Jan 2003.

[10] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and

R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning al-

gorithms”. Software: Practice and Experience 41, pp. 23–50, Aug

2010.

[11] H. Casanova, F. Desprez, G. S. Markomanolis, and F. Suter, “Simula-

tion of MPI applications with time-independent traces”. Concurrency

& Computation — Pract. & Exp. 27(5), pp. 1145–1168, Apr 2015.

[12] V. Casolaa, A. Cuomob, M. Rakc, and U. Villanob, “The cloudgrid ap-

proach: Security analysis and performance evaluation”. Future Gen-

eration Computer Systems 29, pp. 387–401, Jan 2013.

[13] W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating

scientific workflows in distributed environments”. In 8th IEEE Intl.

Conf. E-Science, pp. 1–8, Oct 2012.

[14] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical process-

ing in big data systems: A cross-industry study of MapReduce work-

loads”. Proc. VLDB Endowment 5(12), pp. 1802–1813, Aug 2012.

[15] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluat-

ing MapReduce performance using workload suites”. In 19th Model-

ing, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 390–399,

Jul 2011.

[16] P. Cremonesi and G. Serazzi, “End-to-end performance of web ser-

vices”. In Performance Evaluation of Complex Systems: Techniques

and Tools, M. C. Calzarossa and S. Tucci (eds.), pp. 158–178,

Springer-Verlag, 2002. Lect. Notes Comput. Sci. vol. 2459.

[17] P. A. Dinda, G. Memik, R. P. Dick, B. Lin, A. Mallik, A. Gupta, and

S. Rossoff, “The user in experimental computer systems research”. In

Workshop Experimental Comput. Sci., Jun 2007.

[18] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Wer-

man, “Synthesizing sound textures through wavelet tree learning”.

IEEE Comput. Graphics & Applications 22(4), pp. 38–48, Jul 2002.

BIBLIOGRAPHY 115

[19] M. R. Ebling and M. Satyanarayanan, “SynRGen: An extensible file

reference generator”. In SIGMETRICS Conf. Measurement & Model-

ing of Comput. Syst., pp. 108–117, May 1994.

[20] B. Efron, “Bootstrap methods: Another look at the jackknife”. Ann.

Statist. 7(1), pp. 1–26, Jan 1979.

[21] B. Efron and G. Gong, “A leisurely look at the bootstrap, the jack-

knife, and cross-validation”. The American Statistician 37(1), pp. 36–

48, Feb 1983.

[22] C. Ernemann, B. Song, and R. Yahyapour, “Scaling of workload

traces”. In Job Scheduling Strategies for Parallel Processing, D. G.

Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 166–182,

Springer-Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[23] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Parallel job

scheduling for power constrained HPC systems”. Parallel Comput.

38(12), pp. 615–630, Dec 2012.

[24] D. G. Feitelson and E. Shmueli, “A case for conservative workload

modeling: Parallel job scheduling with daily cycles of activity”. In

17th Modeling, Anal. & Simulation of Comput. & Telecomm. Syst.,

Sep 2009.

[25] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance

evaluation”. In IEEE Intl. Symp. Performance Analysis Syst. & Soft-

ware, pp. 221–230, Mar 2006.

[26] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using

the Parallel Workloads Archive”. J. Parallel & Distributed Comput.

74(10), pp. 2967–2982, Oct 2014.

[27] S. Floyd and V. Paxson, “Difficulties in simulating the Internet”.

IEEE/ACM Trans. Networking 9(4), pp. 392–403, Aug 2001.

[28] G. R. Ganger and Y. N. Patt, “Using system-level models to evaluate

I/O subsystem designs”. IEEE Trans. Comput. 47(6), pp. 667–678,

Jun 1998.

[29] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, and R. Rallo,

“Planetsim: A new overlay network simulation framework”. In In-

ternational Workshop on Software Engineering and Middleware, vol.

3437, pp. 123–136, Sep 2004.

116 BIBLIOGRAPHY

[30] S. K. Garg and R. Buyya, “Networkcloudsim: Modelling parallel ap-

plications in cloud simulations”. In Utility and Cloud Computing, pp.

105–113, Dec 2011.

[31] E. Gul, B. Atakan, and O. B. Akan, “Nanons: A nanoscale network

simulator framework for molecular communications”. Nano Commu-

nication Networks 1, pp. 138–156, June 2010.

[32] F. Hernández-Campos, K. Jeffay, and F. D. Smith, “Modeling and gen-

erating TCP application workloads”. In 4th Broadband Comm., Netw.

& Syst., pp. 280–289, Sep 2007.

[33] W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic improve-

ment of locality in storage systems”. ACM Trans. Comput. Syst. 23(4),

pp. 424–473, Nov 2005.

[34] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan,

“Modeling of workload in MPPs”. In Job Scheduling Strategies for

Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 95–

116, Springer-Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[35] P. Kamath, K.-c. Lan, J. Heidemann, J. Bannister, and J. Touch, “Gen-

eration of high bandwidth network traffic traces”. In 10th Modeling,

Anal. & Simulation of Comput. & Telecomm. Syst., pp. 401–412, Oct

2002.

[36] D. Klusek, L. Matyska, and H. Rudov, “Alea – grid scheduling simula-

tion environment”. In Parallel Processing and Applied Mathematics,

vol. 4967, Sep 2007.

[37] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs”. ACM Trans.

Graph. 21(3), pp. 473–482, Jul 2002.

[38] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic work-

load generation technique for stress testing session-based systems”.

IEEE Trans. Softw. Eng. 32(11), pp. 868–882, Nov 2006.

[39] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut

textures: Image and video synthesis using graph cuts”. ACM Trans.

Graph. 22(3), pp. 277–286, Jul 2003.

[40] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quanti-

tative System Performance: Computer System Analysis Using Queue-

ing Network Models. Prentice-Hall, Inc., 1984.

BIBLIOGRAPHY 117

[41] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “Mdcsim:

A multi-tier data center simulation platform”. In IEEE International

Conference on Cluster Computing and Workshops, Aug 2009.

[42] A. M. Lindsay, M. Galloway-Carson, C. R. Johnson, D. P. Bunde,

and V. J. Leung, “Backfilling with guarantees made as jobs arrive”.

Concurrency & Computation — Pract. & Exp. 2012.

[43] U. Lublin and D. G. Feitelson, “The workload on parallel supercom-

puters: Modeling the characteristics of rigid jobs”. J. Parallel & Dis-

tributed Comput. 63(11), pp. 1105–1122, Nov 2003.

[44] P. Magnusson, M. Christensson, and J. Eskilson, “Simics: A full sys-

tem simulation platform”. Computer 35, pp. 50–58, Aug 2002.

[45] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance

by Design: Computer Capacity Planning by Example. Prentice Hall,

2004.

[46] R. Morris and Y. C. Tay, A Model for Analyzing the Roles of Net-

work and User Behavior in Congestion Control. Tech. Rep. MIT-LCS-

TR898, MIT Lab. Computer Science, May 2003.

[47] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,

“Groudsim: An event-based simulation framework for computational

grids and clouds”. In European Conference on Parallel Processing,

vol. 6586, pp. 305–313, Aug 2010.

[48] S. Park, A. Savvides, and M. B. Srivastava, “Sensorsim: a simulation

framework for sensor networks”. In ACM international workshop on

Modeling, analysis and simulation of wireless and mobile systems, pp.

104–111, Aug 2000.

[49] K. Pawlikowski, “Steady-state simulation of queueing processes: A

survey of problems and solutions”. ACM Comput. Surv. 22(2), pp.

123–170, Jun 1990.

[50] R. S. Prasad and C. Dovrolis, “Measuring the congesion responsive-

ness of Internet traffic”. In 8th Passive & Active Measurement Conf.,

pp. 176–185, Apr 2007.

[51] A. Rajbhandary, D. P. Bunde, and V. J. Leung, “Variations of conser-

vative backfilling to improve fairness”. In Job Scheduling Strategies

for Parallel Processing, N. Desai and W. Cirne (eds.), pp. 177–191,

Springer-Verlag, 2013. Lect. Notes Comput. Sci. vol. 8429.

118 BIBLIOGRAPHY

[52] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus

closed: A cautionary tale”. In 3rd Networked Systems Design & Im-

plementation, pp. 239–252, May 2006.

[53] S. L. Scott and G. S. Sohi, “The use of feedback in multiprocessors

and its application to tree saturation control”. IEEE Trans. Parallel &

Distributed Syst. 1(4), pp. 385–398, Oct 1990.

[54] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evalu-

ate the performance of parallel system schedulers”. In 14th Modeling,

Anal. & Simulation of Comput. & Telecomm. Syst., pp. 167–176, Sep

2006.

[55] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system per-

formance on user behavior from traces of parallel systems”. In 15th

Modeling, Anal. & Simulation of Comput. & Telecomm. Syst., pp. 274–

280, Oct 2007.

[56] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-

systems schedulers: Are we doing the right thing?” IEEE Trans. Par-

allel & Distributed Syst. 20(7), pp. 983–996, Jul 2009.

[57] F. Singhoff, J. Legrand, L. Nana, and L. Marc, “Cheddar: a flexible

real time scheduling framework”. SIGAda XXIV, pp. 1–8, Dec 2004.

[58] J. Sommers and P. Barford, “Self-configuring network traffic genera-

tion”. In 4th Internet Measurement Conf., pp. 68–81, Oct 2004.

[59] A. Spink and T. Saracevic, “Human-computer interaction in informa-

tion retrieval: Nature and manifestations of feedback”. Interacting

with Computers 10(3), pp. 249–267, Jun 1998.

[60] D. N. Tran, W. T. Ooi, and Y. C. Tay, “SAX: A tool for studying

congestion-induced surfer behavior”. In 7th Passive & Active Mea-

surement Conf., Mar 2006.

[61] R. Ubal, B. Jang, and P. Mistry, “Multi2sim: A simulation framework

for cpu-gpu computing”. In International Conference on Parallel Ar-

chitectures and Compilation Techniques, vol. 19–23, Sep 2012.

[62] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive

network traffic generation”. IEEE/ACM Trans. Networking 17(3), pp.

712–725, Jun 2009.

BIBLIOGRAPHY 119

[63] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D.

Smith, “Tmix: A tool for generating realistic TCP application work-

loads in ns-2”. Comput. Commun. Rev. 36(3), pp. 67–76, Jul 2006.

[64] T. Wenisch, R. Wunderlich, and M. Ferdman, “Simflex: Statistical

sampling of computer system simulation”. IEEE Micro 26, pp. 18–31,

Aug 2006.

[65] Y. Wexler, E. Schechtman, and M. Irani, “Space-time video comple-

tion”. In Conf. Comput. Vision & Pattern Recog., vol. 1, pp. 120–127,

Jun 2004.

[66] W. Willinger, V. Paxson, and M. S. Taqqu, “Self-similarity and heavy

tails: Structural modeling of network traffic”. In A Practical Guide to

Heavy Tails, R. J. Adler, R. E. Feldman, and M. S. Taqqu (eds.), pp.

27–53, Birkhäuser, 1998.

[67] S. Yang and G. de Veciana, “Bandwidth sharing: The role of user

impatience”. In IEEE Globecom, vol. 4, pp. 2258–2262, Nov 2001.

[68] N. Zakay and D. G. Feitelson, “Workload resampling for performance

evaluation of parallel job schedulers”. Concurrency & Computation

— Pract. & Exp. 26(12), pp. 2079–2105, Aug 2014.

`

 VIII

 VII

ʤʮʥʸʺ ʡʺʫʮ

:ʭʩʠʡʤ ʭʩʸʮʠʮʤ ʬʲ ʱʱʡʺʮ ,ʭʩʸʮʠʮ ʺʴʥʱʠʫ ʹʢʥʮ ʸʹʠ ,ʤʦ ʨʸʥʨʷʥʣ

1. N. Zakay and D. G. Feitelson, “On identifying user session boundaries in
parallel workload logs ”. In Job Scheduling Strategies for Parallel Processing,
W. Cirne et al. (eds.), pp. 216–234, Springer-Verlag, 2012. Lect. Notes
Comput. Sci. vol. 7698.

2. N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers ”. In 4th Intl. Conf. Performance
Engineering, pp. 149–159, Apr 2013.

3. N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers ”. Concurrency & Computation — Pract.
& Exp. 26(12), pp. 2079–2105, Aug 2014. This is an extended journal version
of the original paper.

4. N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics in
trace-based simulation of parallel job scheduling ”. In 22nd Modeling, Anal.
& Simulation of Comput. & Telecomm. Syst., pp. 51–60, Sep 2014.

5. N. Zakay and D. G. Feitelson, “Semi-open trace based simulation for reliable
evaluation of job throughput and user productivity ”. In 7th IEEE Intl. Conf.
Cloud Comput. Tech. & Sci., pp. 413– 421, Nov 2015.

6. N. Zakay and D. G. Feitelson, “Models for Evaluating Throughput”,
unpublished.

 ʬʠʰʺʰ ʭʤ ʭʩʸʡʧʮʤ ʭʩʸʮʠʮʤ ʬʫʡ .ʤʮʱʸʥʴ ʭʸʨʹ ʺʧʠ ʤʣʥʡʲʥ ʭʩʮʱʸʥʴʮ ʭʩʸʮʠʮ ʤʹʩʮʧʫ ʭʰʹʩ
.ʤʣʥʡʲʬ ʭʩʴʱʥʰ ʭʩʴʺʥʹ ʯʩʠ ,ʸʮʥʬʫ .ʣʡʬʡ ʯʥʱʬʨʩʩʴ ʸʥʸʣ ʸʥʱʴʥʸʴʥ ʩʠʫʦ

 VI

 ʭʩʹʮʺʹʮʤʭʥʩʱʬ ʺʥʮʣʥʷ ʺʥʣʥʡʲ ʬʹ ʺʫʸʲʮʤ ʩʲʥʶʩʡʬʥ ʺʥʢʤʰʺʤ ʺʠ ʸʮʹʬ ʡʥʹʧ ʸʺʥʩ ʤʦ ʯʫʬ .
.ʭʮʶʲ ʤʲʢʤʤ ʩʰʮʦ ʺʠ ʸʹʠʮ ʺʥʰʥʹʤ ʺʥʣʥʡʲʤ ʯʩʡ ʺʥʩʥʬʺʤʥ ʭʩʹʮʺʹʮʤ

ʺʹʮ ʣʶʩʫ ʯʩʡʤʬ ʥʰʹʸʣʰ ʤʬʩʧʺʡ ,ʺʠʦ ʺʥʹʲʬ ʺʰʮ ʬʲ ʭʩʹʮʺʹʮ ʬʹ ʤʡʥʹʧ ʤʰʥʫʺ .ʭʩʢʤʰʺʮ ʭʩʹʮ
 ʺʫʸʲʮʡʠʩʤ .ʭʩʣʡʥʲ ʭʤ ʤʡʹ ʤʸʥʶʤ ʤʮ ʯʮʦʬ ʺʫʸʲʮʡ ʭʩʣʡʥʲ ʭʩʹʮʺʹʮʤ ʥ ʭʩʹʥʲʥ ʭʩʸʶʥʲ ʭʤ ʦʠ

ʸʤ ʤʣʥʡʲʤ ʯʮʦ .ʸʧʠ ʥʤʹʮʯʹʱ ʠʸʷʰ ʺʫʸʲʮʡ ʭʩʹʮʺʹʮ ʬʹ ʳʩʶ (session) ʥʰʬʹ ʤʣʥʡʲʤ ʩʱʮʥʲ .
 ʩʡʢʬ ʭʩʰʥʺʰ ʭʩʬʩʫʮ ʥʮʫ(ʺʥʣʣʥʡ ʺʥʣʥʡʲ ʹʮʺʹʮʤ ʺʥʤʦʹʹ ʧʬʤ ʺʠʤʣʥʡʲ) ʪʠ , ʭʩʬʬʥʫ ʭʰʩʠ ʭʤ

 ʥʮʫ ʺʥʣʥʡʲ ʩʶʡʷʮ ʬʲ ʭʩʨʸʴ .ʭʩʹʮʺʹʮʤ ʬʹ ʱʰʹʱʤ ʩʰʡʮ ʯʩʩʴʠʬʥ ʺʥʤʦʬ ʺʰʮ ʬʲ ʺʥʰʥʹ ʺʥʨʩʹ ʥʰʧʺʰ
 ʭʩʹʮʺʹʮ ʬʹ ʱʰʹʱʤ ʺʠʡ ʲʣʩʮʤ ʩʴ ʬʲ[ʨʬʷʥʮ ʤʣʥʡʲ ʱʮʥʲ1 ʥʬʠ ʺʥʰʡʤʡ ʥʰʹʮʺʹʤ .] ʥʰʹʸʣʰ ʸʹʠʫ

.ʨʬʷʥʮ ʤʣʥʡʲ ʱʮʥʲʮ ʭʩʹʮʺʹʮʤ ʺʥʢʤʰʺʤ ʺʠ ʷʩʱʤʬ
ʥʫʺ(ʤʣʥʡʲʤ ʳʨʹ ʠʩʤ ʭʩʹʮʺʹʮʤ ʺʥʢʤʰʺʤʡ ʤʡʥʹʧ ʺʴʱʥʰ ʤʰworkflow .ʭʤʬʹ) ʺʷʱʤ ʺʥʲʶʮʠʡ

.ʺʥʣʥʡʲʤ ʯʩʡ ʺʥʩʥʬʺʤ ʺʠ ʸʮʹʬ ʤʬʥʫʩ ʤʩʮʣʤ ʣʶʩʫ ʭʩʠʸʮ ʥʰʧʰʠ ,ʨʬʷʥʮ ʤʣʥʡʲ ʱʮʥʲʮ ʺʥʩʥʬʺ ʸʥʮʩʹ
 ʺʫʸʲʮ ʸʶʩʩʮ ʤʦ ʸʡʣ .ʭʩʹʮʺʹʮʤ ʬʠ ʺʫʸʲʮʤʮ ʡʥʹʮ ʺʴʱʥʤ ʺʥʲʶʮʠʡ ʤʹʲʰ ʺʥʩʥʬʺʤ ʤʧʥʺʴ ʩʶʧ

(semi open system) ʬʹ ʬʥʣʩʮ ʤʬʩʫʮ ʸʹʠ ,ʺʥʠʩʶʮʡ ʥʮʫ ,ʥʬʠ ʺʥʩʮʣʤʡ .ʭʩʹʮʺʹʮʤ ʺʥʢʤʰʺʤ
ʺʫʸʲʮʤ ʩʲʥʶʩʡʬ ʭʤʬʹ ʺʥʣʥʡʲʤ ʬʹ ʤʲʢʤʤ ʩʰʮʦ ʺʠ ʭʩʮʩʠʺʮ ʭʩʹʮʺʹʮʤ [4] ʤʩʮʣʤʤ ,ʪʫʮ ʤʠʶʥʺʫ .

ʭʩʰʥʹ ʤʣʥʡʲ ʩʱʮʥʲ ʺʸʶʩʩʮ ʥʰʲʶʤ ,ʳʱʥʰʡ .ʭʩʰʥʹ ʯʥʮʦʺ ʩʮʺʩʸʥʢʬʠ ʸʥʡʲ ʭʩʰʥʹ ʺʬʥʶʩʰʥ ʤʷʥʴʺ ʯʫʥ
ʮʦʺʮʯ ʠʸʷʰʤUser Priority Scheduler (UPS) ʷʴʱʮ ʸʹʠ ʸʹʠʫ ʺʫʸʲʮʤ ʬʹ ʤʷʥʴʺʡ ʸʫʩʰ ʸʥʴʩʹ

 ʺʥʩʮʣʤʤ ʺʥʲʶʮʠʡ ʥʬʠ ʭʩʸʥʴʩʹ ʣʥʮʠʬ ʥʠ ʯʩʧʡʤʬ ʯʺʩʰ ʠʬ ʭʬʥʠ ,ʥʰʬʹ ʤʩʮʣʤʤ ʺʥʲʶʮʠʡ ʥʺʥʠ ʭʩʣʮʥʠ
[ʤʧʥʺʴ ʺʫʸʲʮ ʬʲ ʺʥʱʱʡʺʮʤ ʭʥʩʫ ʺʥʶʥʴʰʹ5].

 ʺʥʸʥʢʱʥ ʺʥʧʥʺʴ ʺʥʫʸʲʮʺʥʶʥʴʰ ʺʩʰ ʬʹ ʭʥʧʺʡ ʭʢ.ʩʨʩʬʰʠ ʭʩʲʥʶʩʡ ʧʥ ʩʴʫ ʺʥʧʥʺʴ ʩʶʧ ʺʥʫʸʲʮ ,ʭʬʥʠ
[ʭʩʲʩʶʮ ʥʰʧʰʠʹ5ʥʩʸʬʥʴʥʴ ʺʥʧʴ ʯʤ]ʺ ʺʠʦ ʤʣʥʡʲ ʺʸʥʶʹ ʺʥʸʮʬ ,ʡ ʺʩʰʩʩʴʥʠ ʺʥʮʩʩʷʤ ʺʥʡʸ ʺʥʫʸʲʮ

 ʯʺʩʰ ʠʬ ʯʫʬʥ ʤʩʮʣʤʤ ʬʹ ʨʬʷ ʠʩʤ ʤʷʥʴʺʤ ʺʥʧʥʺʴ ʺʥʫʸʲʮʡ ,ʳʱʥʰʡ .ʺʥʠʩʶʮʡʣʥʮʠʬ ʬʹ ʤʷʥʴʺʤ ʺʠ
 ʠʩʤ ʪʠ ,ʤʸʥʢʱ ʺʫʸʲʮʡ ʹʮʺʹʤʬ ʠʥʤ ʭʥʩʫ ʵʥʴʰʤ ʯʥʸʺʴʤ .ʺʲʶʥʮʤ ʺʫʸʲʮʤʡʥʸʬ .ʺʩʢʥʶʩʩ ʠʬ ʥʰʧʰʠ

 :ʤʡʩʨʰʸʨʬʠ ʭʩʲʩʶʮ ʺʥʧʥʺʴ ʩʶʧ ʺʥʫʸʲʮ ʬʹ ʭʩʬʣʥʮ ʩʰʹ ʥʰʧʰʠ .ʺʩʮʰʩʣ ʤʷʥʴʺ ʭʲ ʺʠ ʭʩʧʺʰʮ
 ,ʭʤʬʹ ʭʩʸʨʮʸʴʤʤʬʹ ʺʥʰʥʫʺʤʭ ,ʭʺʥʲʶʮʠʡ ʭʩʲʥʶʩʡ ʣʥʮʠʬ ʤʰʥʫʰʤ ʪʸʣʤʰʠ ʯʫʥ , ʺʠ ʭʩʢʩʶʮ ʥʰʧ

ʩʶʷʠʸʨʰʩʠʤʤ .ʭʩʬʣʥʮʤ ʩʰʹ ʸʥʡʲ)ʤʷʥʴʺʤʥ ʤʰʺʮʤʤ ʯʮʦ ʥʮʫ(ʭʩʰʥʹʤ ʭʩʩʲʥʶʩʡʤ ʩʣʣʮ ʯʩʡʺʥʠʶʥʺ ʥʬʠ
 ʠʬʮʤ ʤʮʹʡ ,ʺʠʦ ʤʣʥʡʲ .ʩʨʩʬʰʠ ʭʩʲʥʶʩʡ ʧʥʺʩʰ ʸʥʡʲ ʭʢ ʺʥʧʥʺʴ ʩʶʧ ʺʥʫʸʲʮ ʬʹ ʤʰʡʤʤ ʺʠ ʺʥʸʴʹʮ

ʤʷʥפʺʤ ʯʣʮʥʠʬ ʭʩʬʣʥʮ (Models for evaluating throughputʥʴ ʭʸʨ) ʷʬʧ ʤʥʥʤʮ ʪʠ ,ʤʮʱʸ
.ʥʰʬʹ ʤʦʺʤ ʺʣʥʡʲʮ ʩʬʸʢʨʰʩʠ

ʩʴʸʢʥʩʬʡʩʡʤ

[1] N. Zakay and D. G. Feitelson, “On identifying user session boundaries in
parallel workload logs”. In Job Scheduling Strategies for Parallel Processing,
W. Cirne et al. (eds.), pp. 216–234, Springer-Verlag, 2012. Lect. Notes
Comput. Sci. vol. 7698.

[2] N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers”. In 4th Intl. Conf. Performance
Engineering, pp. 149–159, Apr 2013.

[3] N. Zakay and D. G. Feitelson, “Workload resampling for performance
evaluation of parallel job schedulers”. Concurrency & Computation — Pract.
& Exp. 26(12), pp. 2079–2105, Aug 2014.

[4] N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics in
trace-based simulation of parallel job scheduling”. In 22nd Modeling, Anal. &
Simulation of Comput. & Telecomm. Syst., pp. 51–60, Sep 2014.

[5] N. Zakay and D. G. Feitelson, “Semi-open trace based simulation for reliable
evaluation of job throughput and user productivity”. In 7th IEEE Intl. Conf.
Cloud Comput. Tech. & Sci., pp. 413– 421, Nov 2015.

 V

ʸיʶʷʺ

ʢʥʶʩʩʤʥ ʺʥʩʺʥʠʩʶʮʤ ʸʥʴʩʹʺʥʩ ʭʩʲʥʶʩʡ ʺʥʫʸʲʤ ʢʩʹʤʬ ʩʣʫʡ ʤʣʥʡʲ ʩʱʮʥʲ ʬʹ
ʸʺʥʩ ʺʥʰʩʮʠ

Improved Realism and Representativeness of Workloads to
Improve Reliability of Performance Evaluations

ʩʠʫʦ ʬʠʰʺʰ :ʨʰʣʥʨʱ

ʯʥʱʬʨʩʩʴ ʸʥʸʣ ʸʥʱʴʥʸʴ :ʤʧʰʮ

 ʺʫʸʲʮ ʸʹʠʫʤʹʣʧ ʺʲʶʥʮʤʺʥʠ ʲʩʮʨʤʬ ʩʨʷʸʴ ʠʬ ʤʦ , ʣʩʮ ʸʶʥʮʡ ʤʸʥʷʺʤ ʬʬʢʡʤʤʥʡʢʤʥʷʮʡ . ʭ
 ʭʩʩʺʥʲʮʹʮ ʭʩʸʥʴʩʹ ʤʢʩʹʮ ʠʩʤ ʭʠ ʷʸʥ ,)ʤʩʶʬʥʮʩʱ(ʤʩʮʣʤʡ ʤʺʥʠ ʭʩʫʩʸʲʮ ʤʬʧʺʤʡ ,ʺʠʦ ʭʩʲʥʶʩʡʡ

 ,ʯʫʬ .ʤʲʮʨʤʬ ʺʣʮʲʥʮʬ ʺʫʴʥʤ ʠʩʤ ʺʥʰʩʮʠʤ ʺʥʩʮʣʤ ʠʩʤ ʺʩʨʩʸʷ ʺʥʫʸʲʮʤ ʬʲ ʺʲʸʫʮ ʤʲʴʹʤ ʺʬʲʡʥ
ʹʮʥʮʮʹʥ .ʸʡʣ ʬʹ ʥʴʥʱʡ ʺ

(ʤʣʥʡʲʤ ʱʮʥʲʮ ʭʩʲʴʹʥʮ ʺʫʸʲʮʤ ʬʹ ʭʩʲʥʶʩʡʤworkload ʺʥʫʸʲʤ ,ʯʫʬ .ʥʡ ʺʬʴʨʮ ʺʫʸʲʮʤʹ)
 ʺʥʴʥʫʺ ʭʩʺʩʲʬ ʺʥʩʰʸʣʥʮ ʺʥʩʮʣʤʡ ,ʪʫʮ ʤʠʶʥʺʫ .ʩʢʥʶʩʩ ʤʩʤʩ ʤʣʥʡʲʤ ʱʮʥʲʹ ʺʥʹʸʥʣ ʺʥʰʩʮʠ ʭʩʲʥʶʩʡ

ʡ ʭʩʹʮʺʹʮ ʭʩʢʥʬ- ʺʰʮ ʬʲ ʺʥʩʺʩʮʠ ʺʥʫʸʲʮʡ ʥʨʬʷʥʤ ʸʹʠ ʤʣʥʡʲ ʩʱʮʥʲʥʮʠʬʣ ʬʹ ʭʩʲʥʶʩʡʤ ʺʠ
 ʠʩʤ ʤʩʶʡʩʨʥʮʤ .ʺʲʶʥʮ ʺʫʸʲʮʭʩʨʬʷʥʮ ʤʣʥʡʲ ʩʱʮʥʲ ʬʹ ʭʩʢʥʬʹ ʤʰʡʮ ʬʫ ʺʠ ʭʩʬʩʫʮ ʤʣʥʡʲʤ ʪʥʡʱʤ

 ʡʫʸʥʮʤʥʭʩʩʺʩʮʠ ʭʩʹʮʺʹʮ ʬʹ.
 ʭʩʹʮʺʹʮ ʸʹʠʫʢʥʬʡ ʣʥʡʲ ʬʹ ʣʧʠ ʳʶʸ ʷʴʱʮ ʢʥʬ ʬʫ ,ʨʬʷʥʮʺʥ ,ʭʬʥʠ .ʣʧʠ ʭʩʲʥʶʩʡ ʯʣʮʥʠ ʯʫʬʥ ,

 ,ʬʹʮʬ .ʤʣʥʡʲ ʩʱʮʥʲ ʸʴʱʮ ʸʥʡʲ ʭʩʲʥʶʩʡʤ ʺʠ ʷʥʣʡʬ ʭʩʶʥʸ ʥʰʧʰʠ ʫ"ʣʡʺʰʮ ʬʲ ʺʠ ʪʩʸʲʤʬ ʧʥʥʸ
 ʤʣʥʡʲ ʩʱʮʥʲ ʬʹ ʡʸ ʸʴʱʮʡ ʪʸʥʶ ʹʩ ʭʩʲʥʶʩʡʤ ʬʹ ʪʮʱʤʬʲʡʩ ʢʩʹʤʬ ʤʶʥʴʰʤ ʪʸʣʤ .ʺʥʮʥʣ ʺʥʰʥʫʺ

 ʬʲ ʭʩʱʱʥʡʮ ʸʹʠ(ʭʩʨʱʩʨʨʱ ʭʩʬʣʥʮʡ ʹʮʺʹʤʬ ʠʩʤ ʤʦ ʪʸʥʶ ,ʭʬʥʠ .)ʭʩʨʬʷʥʮ ʤʣʥʡʲ ʩʱʮʥʲʮ ʲʣʩʮ
 ʭʤ ,ʭʩʲʥʶʩʡ ʺʥʫʸʲʤ ʸʥʡʲ ʺʥʹʩʮʢʥ ʯʥʥʢʮ ʭʩʷʴʱʮ ʯʫʠ ʥʬʠ ʭʩʬʣʥʮʹ ʣʥʲʡʥʠʬ ʺʠ ʭʩʸʮʹʮ ʠʷʥʥʣ

.ʭʩʨʬʷʥʮ ʤʣʡʥʲ ʩʱʮʥʲ ʬʹ ʺʥʡʥʹʧʤ ʺʥʰʥʫʺʤ
 ʭʩʲʩʶʮ ʥʰʧʰʠ ,ʭʩʢʶʩʩʮ ʸʺʥʩ ʥʩʤʩ ʤʣʥʡʲʤ ʩʱʮʥʲʹ ʺʰʮ ʬʲ ʤʣʥʡʲ ʩʱʮʥʲ ʬʹ ʺʥʩʺʥʠʩʶʮʤ ʺʠ ʡʬʹʬ

ʭʩʨʬʷʥʮ ʭʩʬʣʥʮ ʬʹ ʺʥʩʮʰʩʣʤ ʭʲ ʭʩʶʥʸʹ ʤʣʥʡʲʤ ʩʱʮʥʲʡ ʭʩʷʬʧʤ ʬʹ ʷʸ ʬʥʣʩʮ ʩʣʩ ʬʲ ʤʹʲʰ ʤʦ .
ʺʥʰʹʬ ,ʥʤʮʩʢʣ- ʹʣʧʮʬʹ [ʭʩʨʬʷʥʮ ʭʩʢʥʬʮ ʲʣʩʮʤ ʸʠʹ2 ,3.]

 ʺʥʲʶʮʠʡ ʹʥʮʩʹʡʹʣʧʮ ʤʮʩʢʣ ʨʬʷʥʮ ʤʣʥʡʲ ʱʮʥʲ ʬʲ ʥʰʧʰʠ ,ʢʩʹʤʬ ʭʩʬʥʫʩ ʸʴʱʮ :ʭʩʠʡʤ ʭʩʸʡʣʤ ʺʠ
ʭʩʮʥʣ ʤʣʥʡʲ ʩʱʮʥʲ ʺʩʨʱʩʨʨʱ ʰʮ ʬʲ(,)ʪʮʱ ʧʥʥʸ ʡʹʧʬ ʺʤʣʥʡʲʤ ʱʮʥʲʡ ʲʶʥʮʮʤ ʱʮʥʲʤ ʩʥʰʩʹ ʬʲ(

 ,)ʺʫʸʲʮʡ ʭʩʲʥʶʩʡʤ ʬʲ ʲʩʴʹʮ ʱʮʥʲʤ ʪʩʠ ʷʥʣʡʬ ʺʰʮʤʣʥʡʲʤ ʱʮʥʲ ʪʹʮ ʺʫʸʠʤ ʧʩʨʡʤʬ ʺʰʮ ʬʲ(
 ,)ʭʩʲʥʶʩʡʤ ʺʥʫʸʲʤ ʬʹ ʺʥʱʰʫʺʤʥ ʯʫ ʬʹ ʤʲʴʹʤʤ ʺʠ ʸʥʷʧʬ ʸʦʥʲ(ʭʩʮʩʥʱʮ ʺʥʲʸʥʠʮ ʬʹ ʤʮʩʢʣ ʳʣʥʲ

.)ʭʩʲʥʶʩʡʤ ʬʲ ʥʬʠʫ ʭʩʲʥʸʩʠ
 ʠʩʤʹ ʤʦ ʹʣʧʮ ʤʮʩʢʣʡ ʩʣʥʧʩʩʹ ʤʮʬʹ ʩʥʰʩʹ ʺʸʹʴʠʮ ʥʮʫ(ʺʥʮʩʥʱʮ ʺʥʰʥʫʺ ,ʪʸʥʠʣʥʲʥ ,ʱʮʥʲ) ʪʠ

ʤʣʥʡʲʤ ʱʮʥʲ ʬʹ ʤʰʡʮʤ ʬʹ ʭʩʱʩʱʡʤ ʭʩʡʩʫʸʮʤ ʺʠ ʺʸʮʹʮ ʠʩʤ , ʺʥʣʥʡʲʤ ʬʹ ʤʶʩʸʤ ʺʥʰʥʫʺ ʥʮʫ
ʥʹʱʤ ʤʰʡʮʱʰ (sessions)ʥ .ʺʫʸʲʮʤ ʩʹʮʺʹʮ ʬʹ ʩʲʥʡʹʤʥ ʩʮʥʩʤ ʤʣʥʡʲʤ ʸʥʦʧʮ

ʺʥʶʥʴʰʤ ʺʥʩʮʣʤʤ ʹʥʮʩʹʡ (ʤʧʥʺʴ ʤʸʥʶʡ ʺʫʸʲʮʤ ʬʲ ʺʥʣʡʲʤ ʺʠ ʺʥʶʩʸʮopen system model .)
ʤʬʹ ʤʲʢʤʤ ʯʮʦ ʩʴʬ ʷʸ ʺʥʲʩʢʮ ʺʥʹʷʡʹ ʠʩʤ ʤʦ ʬʹ ʺʥʲʮʹʮʤʯ ʮʤ ʤʣʥʡʲʤ ʱʮʥʲʡʥ ʺʥʬʺ ʩʬʡ ,ʨʬʷ

 ʤʷʩʢʥʬʡʤʬ ʤʮʸʢʹ ʺʫʸʲʮʡ ʭʩʹʮʺʹʮʤ ʺʥʢʤʰʺʤ ʬʹʯ ʺʠʦʫ ʺʫʸʲʮ ʩʲʥʶʩʡ ,ʳʱʥʰʡ .ʤʦ ʩʥʺʩʲʡ ʲʩʢʤʬ
ʩʰʮʦ ʩʴ ʬʲ ʭʩʣʣʮʰ ʭʩʲʥʡʷʤ ʺʬʥʶʩʰʤʥ ʱʮʥʲʤ ʩʠʰʺ ʺʧʺ ,ʺʫʸʲʮʡ ʤʩʩʤʹʥ ʤʰʺʮʤʥʩʤʹ ʺʫʸʲʮʡ

ʺʨʬʷʥʮʤ ʤʷʥʴʺʤ ʬʲ ʺʲʶʥʮʤ ʺʫʸʲʮʤ ʺʲʴʹʤ ʺʠ ʪʩʸʲʤʬ ʺʥʬʥʫʩ ʠʬ ʥʬʠ ʺʥʩʮʣʤ .ʺʬʥʶʩʰʤʥ.
ʭʩʸʮʹʮ)ʹʣʧʮ ʤʮʩʢʣ ʺʥʲʶʮʠʡ ʥʸʶʥʰʹ ʥʠ ʭʩʨʬʷʥʮ(ʤʣʥʡʲ ʩʱʮʥʲ .ʤʦ ʡʶʮ ʤʰʹʮ ʠʬ ʹʣʧʮ ʤʮʩʢʣ ʭʢ

 ʬʹ ʤʲʢʤʤ ʩʰʮʦ ʺʠʤʺʥʣʥʡʲ ʺʨʬʷʥʮʤ ʺʫʸʲʮʡ ,ʭʬʥʠ .,ʬʲʥʴʡ ʥʬʠ ʭʩʰʮʦ ʺʥʡʥʢʺʮ ʭʩʲʡʥʰ ʡʥʸʬ

 IV

 III

ʲʬʹ ʥʺʫʸʣʤʡ ʤʺʹʲʰ ʺʠʦ ʤʣʥʡ ʯʥʱʬʨʩʩʴ ʸʥʸʣ ʸʥʱʴʥʸʴ.

 II

ʢʥʶייʤʥ ʺʥיʺʥʠיʶʮʤ ʸʥיפʹʺʥי ʤʣʥʡʲ יʱʮʥʲ ʬʹ
 ʸʺʥי ʺʥʰיʮʠ ʭיʲʥʶיʡ ʺʥʫʸʲʤ ʢיʹʤʬ יʣʫʡ

ʤʩʴʥʱʥʬʩʴʬ ʸʥʨʷʥʣ ʸʠʥʺ ʺʬʡʷ ʭʹʬ ʸʥʡʩʧ

ʺʠʮ

 ʠʫʦ ʬʠʰʺʰי

ʭʩʬʹʥʸʩʡ ʤʨʩʱʸʡʩʰʥʠʤ ʨʰʱʬ ʹʢʥʤ

 ʸʡʮʨʴʱ2017

