1 Introduction

In this section we will complete the proof of alphabet reduction for constraint graphs.

Theorem 1 There exists $q > 1$, $0 < \epsilon < 1$ such that for every constraint graph $G = (V, E, \Sigma, C)$ there exists a constant c_Σ such that a constraint system C' of q-ary constraints can be constructed that satisfies:

- $|C'| \leq c_\Sigma \cdot (|V| + |E|)$
- **Soundness** $\text{unsat}(G) = 0 \Rightarrow \text{unsat}(C') = 0$
- **Completeness** $\text{unsat}(G) > 0 \Rightarrow \text{unsat}(C') \geq \epsilon \cdot \text{unsat}(G)$

Remark It is easy (and left as exercise) to translate such a constraint system C' to a constraint graph (binary constraints) with the desired parameters. Therefore, Theorem 1 constitutes the alphabet-reduction for constraint graphs.

Here is a rough idea of the proof. We can replace each variable v with a set of Boolean variables $\{v\}$, and expect a proper encoding from an assignment to v to an assignment to $\{v\}$. Then, given an assignment A to the new variables we would like to be able to test:

- For every $v \in V$, whether the assignment to $\{v\}$ (roughly) encodes an assignment to v.
- For every edge $(u, v) \in E$, whether the assignment to $\{v\}, \{u\}$ (roughly) encodes an assignment that satisfies the constraint on (v, u).

It is impossible to perform these tests by a single constraint in C' that reads only $q = O(1)$ Boolean variables. Therefore, the encoding (taking v to $\{v\}$) has to be locally testable, and each such constraint in G will be replaced by a number of new constraints in C'.

2 Local Testing Algorithms

Definition 2 (Local Testing Algorithm) A property is a subset $P \subseteq \{0, 1\}^n$. An algorithm A is called a (q, ϵ) Local Testing Algorithm (LTA) for P if for every $w \in \{0, 1\}^n$, A randomly computes indices $i_1, \ldots, i_q \in [n]$ and a function $\Phi : \{0, 1\}^q \to \{0, 1\}$ and outputs $\Phi(w_{i_1}, \ldots, w_{i_q})$, satisfying:

- If $w \in P$ then $\Pr[A^w = 0] = 0$.
- If $w \notin P$ then $\Pr[A^w = 0] \geq \epsilon \cdot \text{dist}(w, P)$.

Example Choose P to be the set of words in the Hadamard code,

$P = \{ w \in \{0, 1\}^l \mid \exists a \in \{0, 1\}^l, w(x) = < x, a > \}$

and consider the following Algorithm A:

- Randomly pick $x, y \in \{0, 1\}^l$.
- Output $w(x) \oplus w(y) = w(x \oplus y)$.

14-1
We have seen in the previous lecture that A is a $(3, \frac{1}{3})$-LTA for P.

We now state three lemmas (which are strengthenings of each other) which will give encodings to implement the idea of the proof of Theorem??.

Lemma 3 There exists $L_1 \in \mathbb{N}$ and an encoding $H : \Sigma \rightarrow \{0,1\}^{L_1}$ such that the property $P = \{ H(a) \mid a \in \Sigma \}$ has an LTA T_1, and the encoding H has relative distance at least $1/3$.

Lemma ?? has been proven in the previous lecture, taking H to be the Hadamard encoding, and the LTA T_1 is simply the linearity testing algorithm.

Lemma 4 For every $\Phi : \Sigma \times \Sigma \rightarrow \{0,1\}$ there exist $L_2 \in \mathbb{N}$ and an encoding $E_\Phi : \Sigma \times \Sigma \rightarrow \{0,1\}^{L_2}$ such that the property $P_\Phi = \{ E_\Phi(a,b) \mid \Phi(a,b) = 1 \}$ has an LTA T_2, and the encodings H,E_Φ have relative distance at least $1/3$.

We remark that Lemma ?? is stronger than Lemma ??, in that it allows the property P to depend on an arbitrary predicate Φ. For the case $\Phi \equiv 1$ the claim is already proven in Lemma ??.

Lemma ?? allows us to check that an assignment for a set of Boolean variables that encode a pair of Σ-variables is correct. However, this is useless if we cannot check that this assignment is also consistent with an assignment for the variables that encode a single Σ-variable. This is taken care of by the following lemma, which is generalized to both previous lemmas.

Lemma 5 For every $\Phi : \Sigma \times \Sigma \rightarrow \{0,1\}$ there exists $L_1,L_2 \in \mathbb{N}$ and encodings $H : \Sigma \rightarrow \{0,1\}^{L_1}$ and $E_\Phi : \Sigma \times \Sigma \rightarrow \{0,1\}^{L_2}$ such that the property

$$P_\Phi = \{ (H(a),E_\Phi(a,b)) \mid a,b \in \Sigma, \Phi(a,b) = 1 \} \cup \{ (H(b),E_\Phi(a,b)) \mid a,b \in \Sigma, \Phi(a,b) = 1 \}$$

has an LTA T_3, and the encodings H,E_Φ have relative distance at least $1/3$.

3 Proof of Theorem ??

We are now ready to prove Theorem ?? assuming the correctness of the three lemmas above.

Proof We begin by describing the reduction, and then prove its correctness. Given a constraint graph G we construct the variables and constraints of C' as follows.

- **The Variables:** For every $v \in V$ define L_1 variables $[v]$. For every $e = (v_1,v_2) \in E$ define L_2 variables $[e]$. So

$$V' = \bigcup_{v \in V} [v] \cup \bigcup_{e \in E} [e].$$

Assume for simplicity that $L_1 = L_2$ (otherwise we can use a repetition of the encodings to obtain equality).

- **The Constraints:** Consider the following LTA T: given an assignment $A : V' \rightarrow \{0,1\}$

1. Randomly choose $e = (v_1,v_2) \in E$. Test $A|_e$ using T_2. If the test fails, output 0. Otherwise, 2. Randomly choose $v \in \{v_1,v_2\}$ and test $A|_v$ using T_1. If the test fails, output 0. Otherwise, 3. Output the test of $A|_{[v]\cup[e]}$ using T_3.

Each of the steps in T reads a constant number of variables, so T does as well. The number of random bits T uses is $r(T) = \log(|E|) + r(T_2) + 1 + r(T_1) + r(T_3) = \log(|E|) + s$ where s depends only on Σ and not on E.

For every $\rho \in \{0,1\}^{r(T)}$ let c_ρ be the constraint that T computes when ρ are the random bits T uses. For each such ρ we will define a constraint in C':

$$C' = \{ \Phi_\rho \mid \rho \in \{0,1\}^{r(T)} \}$$

14-2
Clearly, $|V'| \leq \max(L_1, L_2) \cdot (|V| + |E|) \leq c_\Sigma \cdot (|V| + |E|)$. Also, the size of C' is $|C'| = 2^{r(T)} = E \cdot 2^* = E \cdot c_\Sigma$.

The constraints in C' simulate T, and therefore we have for every assignment A to V', $unsat_A(C') = Pr(T^A = 0)$.

We will now show this constraint system to be sound and complete:

- **Completeness** If $unsat(G) = 0$, then there exists an assignment a to V that satisfies all constraints in C. Encode a as A according to lemmas ??, ?? and ??, and these lemmas imply that $Pr(T^A = 0) = 0$.

- **Soundness** Assume $unsat(G) = \alpha > 0$. Let $A : V' \rightarrow \{0,1\}$ be the best possible assignment for V'. Define $a(v)$ to be the value in Σ whose encoding $H(a(v))$ is the closest to $A|_v$. By definition, $unsat_a(G) \geq \alpha$.

Consider an edge $e = (v_1, v_2) \in E$, whose constraint Φ is not satisfied by a, and denote $w = A|_e$. We analyze the probability of failure of T conditioned on having chosen e in the first step.

If $Pr[T^e_2 = 0] \geq \epsilon/6$ then T fails with probability at least $\epsilon/6$ which is a constant and we are done. If not, then $Pr[T^w_2 = 0] < \epsilon/6$. So there exist $\sigma_1, \sigma_2 \in \Sigma$ such that $\Phi(\sigma_1, \sigma_2) = 1$ and

$$dist(w, P_\beta) \leq \frac{Pr[T^w_2 = 0]}{\epsilon} \leq \frac{1}{6}$$

where ϵ is the soundness parameter of T_2. Since $\Phi(a(v_1), a(v_2)) = 0$ either $\sigma_1 \neq a(v_1)$ or $\sigma_2 \neq a(v_2)$. Assume wlog that $\sigma_1 \neq a(v_1)$, and note that in step 2 of T we chose $v = v_1$ with probability $1/2$.

We claim that in this case the string $w' = A|_{[v][\cup]e}$ has relative distance at least $\frac{1}{12}$ from the property tested by T_3. Here we use the assumption that $|[v]| = L_1 = L_2 = |[e]|$. Since $a(v_1) \neq \sigma_1$ it means that w must be changed in at least $L_1/6$ bits (since H has relative distance 1/3) in order to make it an encoding of σ_1. But the length of w is half that of w' so we get a relative distance of 1/12. Clearly this implies, $Pr[T^w_3 = 0] \geq \epsilon \cdot \frac{1}{12}$.

We have seen therefore that there is some constant $\epsilon' > 0$ such that $Pr(T^A = 0) \geq \epsilon' \cdot \alpha$.

\[\blacksquare\]

4 Proof of Lemmas ?? and ??.

4.1 Lemma ??, Self Correction for the Hadamard Code, Quadratic Functions Encoding

(Throughout the proof, we assume w.l.o.g. that every element in $\Sigma \times \Sigma$ has a binary representation in l bits).

The proof of Lemma ?? relies on the fact that the Hadamard code is not only locally testable, but also locally decodable

Claim 6 There exists a random algorithm $SelfCorr$ such that for every word $w \in \{0,1\}^2$ whose relative distance from the Hadamard code is at most $\epsilon > 0$, $SelfCorr$ reads two (randomly chosen) bits from w and computes $H(a)[x]$ such that

$$Pr[Selfcorr^w(x) = H(a)[x]] \geq 1 - 2 \cdot \epsilon.$$
Proof Here is a description of the algorithm: randomly choose \(y \in \{0, 1\}^l \) and return \(w(y) \oplus w(x \oplus y) \). The probability that both bits were identical to their respective bits in \(H(a) \) is greater than \((1 - 2 \cdot \epsilon)\).

How is this helpful? Suppose first that \(\Phi \) were a linear function rather than a general predicate. In other words there is some \(b \in \{0, 1\}^l \) such that \(\Phi(a) = \langle b, a \rangle \). Then, one can test the property

\[
P_{\Phi} = \{ H(a) \mid \Phi(a) = 1 \}
\]

by doing the following:

1. Run the LTA (from Lemma ??) that tests whether \(w \) is a legal Hadamard codeword (linearity testing). If it fails, then output ‘fail’. Otherwise,

2. Run \(SelfCorr^w(b) \) and accept iff it outputs 1.

If \(w \in \{0, 1\}^2 \) is far from a Hadamard codeword, then step 1 will fail with constant probability. Otherwise, if \(w \) is close to a codeword \(H(a) \) for which \(\langle b, a \rangle \neq 1 \) then step 2 will fail with constant probability.

In order to prove lemma ?? we need to generalize this idea to every Boolean function \(\Phi \) (not only linear functions).

Proof of Lemma ?? We begin by describing the encoding \(E_\Phi \) which is done in two steps.

1. Step 1 – a circuit for \(\Phi \) We will consider \(C_\Phi \), the canonical boolean circuit that computes \(\Phi \). The size of this circuit depends only on \(\Sigma \). Since \(\Sigma \) is constant, \(C_\Phi \) is of constant size.

Suppose \(X \) are the input variables of the circuit \(C_\Phi \). We will also add a variable for each of the internal edges in \(C_\Phi \), and let these variables by \(Y \). Each gate in \(C_\Phi \) can now be described by a quadratic equation in its input and output variables:

If \(z_1, z_2 \) are input variables to some gate and \(z_3 \) is the output variable of the gate, then

- A NOT gate can be described by the equation \(z_1 + z_3 = 1 = 0 \).
- An AND gate can be described by the equation \(z_3 - z_1z_2 = 0 \).
- An OR gate can be described by the equation \(z_3 + z_1z_2 - z_2 - z_1 = 0 \).

Denote these equations by \(\{ f_i = 0 \}_{i \leq |m|} \) where \(m \) is the number of gates in \(C_\Phi \). Note that these are all quadratic equations. When the variables are assigned Boolean values, the \(f_i \) formulas are also Boolean. Given an assignment \(a : X \rightarrow \{0, 1\} \) there is a unique assignment \(a' : X \cup Y \rightarrow \{0, 1\} \) that agrees with \(a \) on \(X \) and such that all equations \(\{ f_i \} \) are satisfied.

2. Step 2 – encoding using quadratic functions Let \(Z = X \cup Y \) and suppose \(a : Z \rightarrow \{0, 1\} \) is an assignment for \(Z \). We will encode \(a \) as \(E_\Phi(a) = H(a \odot a) \).

All in all the encoding of an assignment \(a : X \rightarrow \{0, 1\} \) consists of extending \(a \) to an assignment \(a' : X \cup Y \rightarrow \{0, 1\} \) according to the computation of the gate (i.e. \(a' \) is the unique assignment that satisfies all equations \(f_i \)). Then, \(a' \) is encoded by \(H(a' \odot a') \). The encoding \(E_\Phi \) takes \(a \rightarrow a'

Notice that the set of linear functions on \(z \odot z \) is the set of quadratic functions on \(z \) (the linear part is also represented as \(z_i^2 = z_i \)).

Claim 7 There are constants \(q > 1 \) and \(\epsilon > 0 \) and a \((q, \epsilon)\)-LTA for the property \(P = \{ H(z \odot z) \mid z \in \{0, 1\}^k \} \).

Proof Given \(w \), denote \(w_{diag} = \{ w(x) \mid x_{ij} \leq \delta(i, j) \} \) to be the part of \(w \) that encodes only the linear part of \(b \odot b \).
• Randomly choose \(a_1, a_2 \in \{0,1\}^k \).

• Check that \(\text{SelfCorr}^w(a_1) \cdot \text{SelfCorr}^w(a_2) = \text{SelfCorr}^w(a_1 \otimes a_2) \)

It is easy to see that when \(w \in P \) the test succeeds. If \(w \) is \(\delta \) far from \(P \), then the third \(\text{SelfCorr} \) application will give the wrong answer with probability \(\Theta(\delta) \), causing the algorithm to fail with probability \(\Theta(\delta) \).

The LTA \(T_2 \) will consist of two steps: Given an assignment \(w \)

• Check that \(w \) is a legal codeword in \(H(z \otimes z) \).

• Randomly choose \(\alpha \in \{0,1\}^n \) and denote \(f_\alpha(z) = \sum_i \alpha_i f_i(z) \). If \(\text{SelfCorr}^w(f_\alpha) \) is 1 return 0 (\(f_\alpha \) is a quadratic function on \(z \) and therefore a linear function on \(z \otimes z \)).

• The value of \(\Phi \) is one of the bits in \(z \) (the output of the last gate). Decode and return it using \(\text{SelfCorr} \).

\[\square \]

Notice that if \(z \) is not an encoding of a feasible computation in \(C_\Phi \), then \(\{ f_i(z) \} \) is a non-zero Boolean vector, and then it is known that \(\Pr_\alpha(f_\alpha(z) = 1) = \frac{1}{2} \). Apart from that, the algorithm is a composition of LTA’s, and therefore Local Testability is preserved. \[\square \]

4.2 Lemma ??

Proof of Lemma ?? We had \(E_\Phi(a, b) = H(z \otimes z) \), when \(z \) includes the binary representation of \((a, b) \). All that is needed is to locally test, using \(T_1 \), the part in \(w \) that encodes just \((a, b) \). \[\square \]