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Optimization of the MIMO Compound Capacity
Ami Wiesel, Yonina C. Eldar, and Shlomo Shamai (Shitz)

Abstract— In this paper, we consider the optimization of the
compound capacity in a rank one Ricean multiple input multiple
output channel using partial channel state information at the
transmitter side. We model the channel as a deterministic matrix
within a known ellipsoid, and address the compound capacity
defined as the maximum worst case mutual information in
the set. We find that the optimal transmit strategy is always
beamforming, and can be found using a simple one dimensional
search. Similar results are derived for the worst case sum-rate
of a multiple access channel with individual power constraints
and a total power constraint. In this multiuser setting we assume
equal array response at the receiver for all users. These results
motivate the growing use of systems using simple beamforming
transmit strategies.

Index Terms— MIMO, compound capacity, beamforming.

I. INTRODUCTION

THE use of multiple transmit and receive antennas is
known to improve the capacity and reliability of wireless

communication links. The two common techniques for exploit-
ing this multiple input multiple output (MIMO) channel are
space time coding, and MIMO precoding. Space time coding
is a technique that allows for spatial diversity without any
channel state information (CSI) at the transmitter. On the other
hand, when perfect CSI is available, the standard technique
is to use MIMO precoding algorithms, such as beamforming
(BF). These two strategies are based on two extreme assump-
tions on the availability of CSI at the transmitter side. In many
practical applications only partial CSI is available, in which
case it is not clear what the optimal transmit strategy is.

The capacity achieving transmit technique in MIMO chan-
nels with additive complex Gaussian noise is signaling using
random complex Gaussian vectors. The strategy is therefore
defined by the covariance matrix of these vectors. The eigen-
vectors of this matrix can be visualized as the directions in
which the transmitter signals. BF is defined as the transmit
strategy in which all of the transmitted power is allocated to
one eigenvector. In this case, the MIMO system is transformed
into a simple single input single output channel. This allows
the system designer to resort to well known conventional
scalar coding strategies.

Due to its importance, the optimization of the covariance
has been extensively studied. Different optimization criteria
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were considered, as well as different models for the CSI.
Most of the research in this area is devoted to stochastic
models of the CSI, i.e., scenarios in which the transmitter
has access to the statistics of the channel. Typically, the
channel is modelled as a complex normal random vector with
known mean and covariance. In this stochastic CSI model,
the mutual information is also a random quantity and must
be treated appropriately, either by considering its ensemble
average known as the ergodic capacity, or by considering its
cumulative distribution function (CDF) via the outage mutual
information. One of the first papers in this field is [1] where a
multiple input single output (MISO) channel was considered.
In this work, the structure of the optimal transmit strategy in
the sense of maximizing the ergodic capacity was derived. The
basic result was that if a non zero mean is available then the
optimal strategy is to transmit in its direction and uniformly
in all other directions. If a non trivial covariance matrix is
available, then the optimal strategy is to transmit along its
eigenvectors. Next, in [2] this work was generalized and
conditions for the optimality of BF in rank one Ricean MIMO
systems were found in closed form. Recently, an extension
of these results to the multiple access channel (MAC) of a
multiuser system was presented in [3]. In [4], [5] the ergodic
capacity and the outage mutual information were derived
analytically and the optimal transmit strategies were found
numerically. One of the interesting results was that a system
which switches between BF and uniformly transmitting in
all directions is close to optimal. The impact of correlation
between the antennas and more details on the optimal power
allocation strategies for maximizing the ergodic capacity were
discussed in [6]. Recently, in [7], the outage capacity with
no available CSI was analyzed. A competing stochastic CSI
model was introduced in [8] where the channel was modelled
using the probability distribution function of the phase shifts
between the antennas. Similarly to the previous references,
here too the ergodic capacity was optimized.

A different approach for describing partial CSI is using a
deterministic model for the channel, i.e., assuming that the
channel is a deterministic variable within a known set of possi-
ble values. When the set is a singleton, the CSI is complete and
perfect. The bigger the set is, the more uncertainty there is on
the actual realization of the channel. The use of deterministic
CSI models is common in the signal processing community
for designing algorithms which are robust to the uncertainty
[9]–[11]. In the context of information theory, the maximal
achievable rate of reliable communication over such channels
is the compound capacity and is defined as the maximum worst
case mutual information in the set [12]. (See also [13] for a tu-
torial on the topic.) A possible application is in communication
through a slow fading channel. In such channels, the system
cannot average over the realizations of the channel, and must
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cope with the specific realization. Assuming a strict constraint
on the quality of service, the system must be designed for
the worst case scenario. In this sense, compound capacity
is related to outage mutual information which also aims at
designing communication systems over slow fading channels.
More details on the compound capacity and its relation to
the outage capacity and other information theoretic notions
can be found in [14]. For completeness, we mention that the
compound capacity is also related to the problem of optimizing
the capacity of the worst case noise covariance [15].

Due to its importance, the compound MIMO capacity
recently gained a considerable attention. In [16], [17] it
was shown that under different uncertainty sets the optimal
transmit strategy is uniform power allocation. However, the
uncertainty sets used in these papers are very different from
the structure of the stochastic CSI models used in [1]–[4].
Therefore, the results are different and it is difficult to compare
these two approaches. In another work [18], the compound
capacity was analyzed and bounded under a rank one Ricean
MIMO model when the specular component was unknown. It
was shown that if this component is random with an isotropic
distribution then the compound capacity is equal to the average
capacity.

In this paper, we follow the deterministic approach, but use
an uncertainty set with a structure that is very similar to the
CSI model used in [1]–[4]. Specifically, we model the rank one
Ricean MIMO channel as a matrix within a known ellipsoid
defined using the deterministic analogs of the channel’s mean
and covariance. We find that the optimal transmit strategy for
maximizing the compound capacity in such CSI models is
always BF. If the ellipsoid is symmetric with respect to its
center (mean), then the optimal direction is the right singular
vector of the center (mean) matrix. In more general scenarios,
we provide a simple strategy for finding the optimal direction
based on a one dimensional search. These results motivate the
growing use of simple BF transmit strategies.

After characterizing the MIMO compound capacity for
point to point systems, we consider the problem in a multiuser
setting. In particular, we address the optimization of the sum-
rate (throughput) in a MAC system. It was recently shown
that when perfect CSI is available BF maximizes the sum-rate
of the MAC as the number of users increases [19]. Next, in
[3], the MAC ergodic sum-rate with a mean or a covariance
feedback model was considered under the assumption of equal
array response at the receiver for all users. Conditions for the
optimality of BF in this stochastic CSI model were derived.
We continue with our new approach and characterize the worst
case sum-rate of the MAC under a deterministic CSI model
that resembles the stochastic CSI model of [3]. We consider
two alternative power allocation policies: individual power
constraints, and a total power constraint. Again, we show that
BF strategies maximize the compound sum-rate under both
policies.

The paper is organized as follows. We begin in Section II
by defining our channel model and introducing the compound
optimization problem. We provide our main result in Theorem
1 and discuss its consequences. Next in Section III, we extend
this result to the MAC. The connection between our work and
previous results based on stochastic CSI models is addressed
in Section IV. In particular, we discuss the relation between

the compound capacity and the outage mutual information.
The following notation is used. Boldface upper case letters

denote matrices, boldface lower case letters denote column
vectors, and standard lower case letters denote scalars. The
superscripts (·)H and (·)−1 denote the Hermitian and the
matrix inverse operators, respectively. [x]i denotes the i’th
element of the vector x. By Tr {·} we denote the trace
operator, and by I we denote the identity matrix of appropriate
size. |·| denotes the determinant, and ‖·‖ denotes the standard
Euclidean norm. Finally, X � 0 means that X is a Hermitian
positive semidefinite matrix.

II. OPTIMIZATION OF THE COMPOUND CAPACITY

In this section, we address the optimization of the com-
pound capacity in point to point, rank one Ricean MIMO
channels. Consider a point to point communication system
with K transmit antennas and N receive antennas. Mathe-
matically, the system can be represented using the following
MIMO channel model:

y = Hx + w, (1)

where y is a received vector of length N , H is a size N ×K
channel matrix, x is a length K transmitted random vector
with zero mean and covariance E{xxH} = Q satisfying
Tr {Q} ≤ P , and w is a length N zero mean, complex
Gaussian noise vector with covariance σ2I. We model the rank
one Ricean MIMO channel H as an unknown deterministic
matrix within the following set

H = hrhH
t + D;

Tr
{
DWDH

}
≤ 1, (2)

where hr �= 0 is a length N vector denoting the array response
at the receiver’s side, ht is a length K vector denoting the
array response at the transmitter’s side, and W � 0 is a weight
matrix. In our terminology, hrhH

t is the rank one specular
component of the channel, and D is the scattering component.
We assume that the transmitter knows hrhH

t and W, but does
not have access to the specific realization of H within the
set. In Section IV, we will show that this CSI model is the
deterministic analog of the stochastic CSI model used in [1]–
[4], where hrhH

t is the rank one mean channel and W is
related to its covariance.

A classical result in information theory states that the
following compound capacity is the maximal achievable rate
of reliable communication over the above channel [12], [13],
[18]:

C
(
hrhH

t ,W
)

= max
Q � 0

Tr {Q} ≤ P

min
Tr{DWDH}≤1

I(Q,D), (3)

where

I(Q,D) = log
∣∣∣∣I +

1
σ2

(
hrhH

t + D
)
Q
(
hrhH

t + D
)H ∣∣∣∣ , (4)

is the mutual information between y and x. It can be achieved
by signaling with complex Gaussian vectors x of covariance
Q � 0. BF is defined as the transmit strategy when Q = qqH

is rank one, i.e., x = xq where x is a complex Gaussian
random variable.
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In the following theorem we provide the solution to the
optimization of the point to point compound capacity:

Theorem 1. Consider the optimization of the rank one Ricean
MIMO compound capacity of C

(
hrhH

t ,W
)
:

C
(
hrhH

t ,W
)

= max
Q � 0

Tr {Q} ≤ P

min
Tr{DWDH}≤1

log
∣∣∣∣I +

1
σ2

(
hrhH

t + D
)
Q
(
hrhH

t + D
)H ∣∣∣∣ . (5)

Its optimal value is

C
(
hrhH

t ,W
)

= log
(

1 +
P

σ2
‖hr‖2c

)
, (6)

where

c =

{
hH

t

[
I − (I + λW)−1

]2
ht, hH

t Wht > 1
‖hr‖2 ;

0, else,
(7)

and λ > 0 is the unique root of the following non linear
equation

hH
t (I + λW)−1 W (I + λW)−1 ht =

1
‖hr‖2

. (8)

If hH
t Wht > 1

‖hr‖2 then the optimal Q is

Q = P
q (λ)qH (λ)
‖q (λ) ‖2

, (9)

where

q (λ) =
[
I − (I + λW)−1

]
ht. (10)

Otherwise, any feasible Q will result in a zero compound
capacity.

Proof: We begin the proof by showing that the optimal
argument D of the inner minimization in (5) can be chosen as
D = hrdH for some d. This will allow us to optimize over
the vector d instead of the matrix D. In particular, we prove
that if D is optimal then D̃ = hrdH with dH = hH

r

‖hr‖2 D is

also optimal. Now, assume that D is feasible, then D̃ is also
feasible since

Tr
{
D̃WD̃H

}
= Tr

{
hr

hH
r

‖hr‖2
DWDH hr

‖hr‖2
hH

r

}
=

hH
r DWDHhr

hH
r hr

≤ max
v �=0

vHDWDHv
vHv

= λmax

(
DWDH

)
≤ Tr

{
DWDH

}
≤ 1, (11)

where λmax(A) is the maximal eigenvalue of A, and we used
the identity λmax(A) = maxv �=0

vHAv
vHv . In addition, D̃ results

in an equal or better objective value than that of D since

����I +
1

σ2

�
hrh

H
t + D

�
Q
�
hrh

H
t + D

�H
����

=
N�

i=1

�
1 +

1

σ2
λi

��
hrh

H
t + D

�
Q
�
hrh

H
t + D

�H
��

≥ 1 +
1

σ2
λmax

��
hrh

H
t + D

�
Q
�
hrh

H
t + D

�H
�

= 1 +
1

σ2
max
v �=0

vH
	
hrh

H
t + D



Q
	
hrh

H
t + D


H
v

vHv

≥ 1 +
1

σ2

hH
r

	
hrh

H
t + D



Q
	
hrh

H
t + D


H
hr

hH
r hr

= 1 +
hH

r hr

σ2

�
hH

t +
hH

r

‖hr‖2
D

�
Q

�
ht + DH hr

‖hr‖2

�
=

�����I +
1

σ2

�
hrh

H
t + hr

hH
r

‖hr‖2
D

�
Q

�
hrh

H
t + hr

hH
r

‖hr‖2
D

�H
�����

=

����I +
1

σ2

�
hrh

H
t + �D�Q

�
hrh

H
t + �D�H

���� , (12)

where λi(A) are the eigenvalues of A, and we used the
identities |A| =

∏
i λi (A), λmax(A) = maxv �=0

vHAv
vHv and

|I + AB| = |I + BA|.
Therefore, we can restrict ourselves to solutions of the form

D = hrdH which yield the following program

max
Q � 0

Tr {Q} ≤ P

min
Tr{hrdHWdhH

r }≤1
(13)

log
∣∣∣∣I +

1
σ2

(
hrhH

t + hrdH
)
Q
(
hrhH

t + hrdH
)H ∣∣∣∣ ,

Using |I + AB| = |I + BA| yields

max
Q � 0

Tr {Q} ≤ P

min
dHWd≤ 1

‖hr‖2

(14)

log
(

1 +
1
σ2

‖hr‖2 (ht + d)H Q (ht + d)
)

.

Now, introducing a simple change of variables Q′ = 1
P Q, we

can normalize Tr {Q} (In order to keep the notations simple,
we continue to use Q instead of Q′):

max
Q � 0

Tr {Q} ≤ 1

min
dHWd≤ 1

‖hr‖2

(15)

log
(

1 +
P

σ2
‖hr‖2 (ht + d)H Q (ht + d)

)
.

If hH
t Wht ≤ 1

‖hr‖2 then d = −ht, C
(
hrhH

t ,W
)

= 0 and
any feasible Q will attain it. We now consider the case when
hH

t Wht > 1
‖hr‖2 . Due to the monotonicity of the objective

function in the quadratic form (ht + d)H Q (ht + d), we can
optimize it instead:

max
Q � 0

Tr {Q} ≤ 1

min
dHWd≤ 1

‖hr‖2

(ht + d)H Q (ht + d) . (16)

It is easy to see that the objective is convex in d and concave
(linear) in Q. Moreover, the constraint set of the minimization
is convex, and the constraint set of the maximization is convex
and compact. Therefore, minimax theory [20] states that there
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is a saddle point, i.e., a point {d,Q} such that Q solves the
problem

max
Q � 0

Tr {Q} ≤ 1

(
ht + d

)H
Q
(
ht + d

)
, (17)

and d solves the problem

min
dHWd≤ 1

‖hr‖2

(ht + d)H Q (ht + d). (18)

The Lagrangian associated with program (17) is

L1 = −
(
ht + d

)H
Q
(
ht + d

)
− Tr {YQ} + ν [Tr {Q} − 1] ,

(19)

where Y � 0 and ν ≥ 0 are the dual variables. The matrix Q
is optimal if and only if it satisfies:

−
(
ht + d

) (
ht + d

)H − Y + νI = 0;

Tr
{
YQ

}
= 0;

ν
[
Tr
{
Q
}
− 1
]

= 0. (20)

It is easy to check that

Q =

(
ht + d

) (
ht + d

)H
‖ht + d‖2

, (21)

along with

Y = ‖ht + d‖2I −
(
ht + d

) (
ht + d

)H
;

ν = ‖ht + d‖2, (22)

satisfy these exact conditions. In addition, the saddle point
must satisfy the optimality conditions associated with program
(18). The Lagrangian of this problem is

L2 = (ht + d)H Q (ht + d) + λ

[
dHWd − 1

‖hr‖2

]
, (23)

where λ ≥ 0 is a Lagrange multiplier. The necessary and
sufficient optimality conditions are(

Q + λW
)
d = −Qht; (24)

λ

[
d

H
Wd − 1

‖hr‖2

]
= 0. (25)

Plugging Q from (21) into (24) results in:(
ht + d

)
+ λWd = 0. (26)

Solving for d yields

d = − (I + λW)−1 ht. (27)

Due to hH
t Wht > 1

‖hr‖2 , the optimal multiplier λ > 0 is

strictly positive. Therefore, d must satisfy the complementary
slackness condition:

hH
t (I + λW)−1 W (I + λW)−1 ht =

1
‖hr‖2

. (28)

It is easy to see that the left hand side of (28) is monotonically
decreasing in λ from hH

t Wht > 1
‖hr‖2 when λ = 0 to 0 when

λ → ∞. Therefore, a unique solution for λ in (28) always
exists. Finally, plugging the optimal d and Q into (16) and
(21) yields (7) and (9), respectively. This concludes the proof.

For completeness, we mention that an alternative proof
can be obtained using the well known minimax theorem and
interchanging the order of the minimization and maximization
in (16). More details on this procedure can be found in [10].

The main result of Theorem 1 is that the optimal transmit
strategy for maximizing the compound capacity in our model
is always BF in the direction of q (λ) in (10). This direction
is defined by the λ which satisfies (8). Finding this λ is very
easy. Using the eigenvalue decomposition of W = UΔUH

where U is an orthogonal matrix and Δ is a diagonal matrix
with the elements δi, we rewrite the condition as∑

i

δi

(1 + λδi)
2

∣∣[UHht

]
i

∣∣2 =
1

‖hr‖2
. (29)

As explained in the proof, the left hand side of (29) is
monotonically decreasing in λ ≥ 0. Therefore, any simple
bisection can efficiently solve for λ. Moreover, (29) belongs
to a well known family of non linear equations called secular
equations for which there are highly efficient root finding
algorithms [21].

An important practical case is when the optimal BF is in
the direction of ht. This is probably the standard technique
in many applications due to its simplicity. The following
corollary provides a sufficient optimality condition for this
transmit strategy:

Corollary 1. If ht is a scaled eigenvector of W then BF along
the mean ht maximizes the compound capacity C

(
hrhH

t ,W
)

in (5). A common example where this condition holds is W =
αI for some α ≥ 0.

Proof: Theorem 1 shows that BF along q (λ) of (10) is
optimal. Now, if ht is a scaled eigenvector of W then it is
also a scaled eigenvector of

[
I − (I + λW)−1

]
, and q (λ) is

equal to ht up to a scaling.
One of the interesting properties of Theorem 1 is the

existence of a saddle point in our problem. As explained in
the proof, interchanging the order of the maximization and
minimization in (5) does not change the optimal value of
the optimization. This means that there is no advantage in
better feedback in such channels. Suppose perfect feedback
was available, then in the worst case scenario the capacity
would be the minimum of the maximal mutual information.
The saddle point property shows that this minimum is equal to
the compound capacity (which is the maximum of the minimal
mutual information). More details on this property can be
found in [13].

Another of property of Theorem 1 is that the addition of
antennas in the receiver does not change the basic structure of
the compound capacity and that the capacity depends on hr

only through its norm. This result resembles previous results
in [16], [18] where it was shown that under similar models
the compound capacity is invariant to multiplying the channel
by a unitary matrix on the left.

III. MULTIPLE ACCESS CHANNEL COMPOUND CAPACITY

In this section, we extend Theorem 1 to a multiuser system.
In particular, following [3], we consider a MAC with M users
signaling to a single base station. We assume that each user is
equipped with K transmit antennas, and that the base station is
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equipped with N receive antennas. In this system, the channel
model is

y =
M∑
i=1

Hixi + w, (30)

where y is a length N received vector, Hi for i = 1, · · · , M
are N × K channel matrices, xi for i = 1, · · · , M are the
length K transmit vectors of the multiple users, and w is a
length N complex Gaussian noise vector of covariance σ2I.

As before, we model the rank one Ricean MIMO channels
Hi for i = 1, · · · , M as unknown deterministic matrices:

Hi = hr,ihH
t,i + Di;

Tr
{
DiWiDH

i

}
≤ 1. (31)

We assume that the transmitters know hr,ihH
t,i and Wi, but do

not have access to the specific realizations of Hi. Following
[3], we assume that the array response at the receiver hr,i =
hr �= 0 is the same for all users, while the array responses
at the multiple transmitters ht,i are different. Physically, this
means that the multiple signals arrive at the receiver in
phase (see [3] for more details). However, it is important to
remember that this model has its limitations. For example,
consider the case when K = 1, then hr,i = hr means that the
channels of all the users are just scaled versions of each other.
Clearly, this does not reflect the system. Therefore, although
outside the scope of this paper, we believe that the more
general problem is also very interesting.

In general, the main performance measure in the MAC is the
capacity region, i.e., the region of all the sets of rates that allow
simultaneous reliable communication for all users. Following
[3], we will restrict ourselves to the sum-rate (throughput),
i.e., the set of rates within this region that has the maximal
sum. It can be shown that when the transmitters have full CSI
the sum-rate is equal to:

log

∣∣∣∣∣I +
1
σ2

M∑
i=1

HiQiHH
i

∣∣∣∣∣ , (32)

where Qi = E{xixH
i } for i = 1, · · · , M is the transmit

covariance matrix of the i’th user. As before, when only
partial deterministic CSI is available, we propose to optimize
the worst case sum-rate of MAC. For more details on the
compound capacity of the MAC we refer the reader to [12],
[13]. We now characterize this worst case sum-rate under
two alternative power policies. Our first result follows [3]
and provides the worst case sum-rate under individual power
constraints:

Theorem 2. Consider the optimization of the worst case sum-
rate of the MAC with individual power constraints:

CI = max
Qi � 0

Tr {Qi} ≤ Pi

min
Tr{DiWiDH

i }≤1
(33)

log

∣∣∣∣∣I +
1
σ2

M∑
i=1

(
hrhH

t,i + Di

)
Qi

(
hrhH

t,i + Di

)H ∣∣∣∣∣ .
Its optimal value is

CI = log

(
1 +

M∑
i=1

Pi

σ2
‖hr‖2ci

)
, (34)

where ci for u = 1, · · · , M are defined as

ci =

{
hH

t,i

[
I − (I + λiWi)

−1
]2

ht,i, hH
t,iWiht,i > 1

‖hr‖2 ;
0, else,

(35)

and λi > 0 are the unique roots of the following non linear
equations

hH
t,i (I + λiWi)

−1 Wi (I + λiWi)
−1 ht,i =

1
‖hr‖2

. (36)

In this case, the optimal Qi are

Qi = Pi
qi (λi)qH

i (λi)
‖qi (λi) ‖2

, (37)

where

qi (λi) =
[
I− (I + λiWi)

−1
]
ht,i. (38)

Proof: The proof is very similar to the proof of Theorem
1, therefore we only provide the main differences. We begin
as in (12) by showing that if Di for i = 1, · · · , M are optimal
then D̃i = hrdH

i with dH
i = hH

r

‖hr‖2 Di yield an equal or better
objective value:

�����I +
1

σ2

M�
i=1

�
hrh

H
t,i + Di

�
Qi

�
hrh

H
t,i + Di

�H

����� (39)

≥ 1 +
1

σ2
λmax


M�

i=1

�
hrh

H
t,i + Di

�
Qi

�
hrh

H
t,i + Di

�H

�

= 1 +
1

σ2
max
v �=0

vH
��M

i=1

	
hrh

H
t,i + Di



Qi

	
hrh

H
t,i + Di


H
�
v

vHv

≥ 1 +
1

σ2

hH
r

��M
i=1

	
hrh

H
t,i + Di



Qi

	
hrh

H
t,i + Di


H
�
hr

hH
r hr

= 1 +
1

σ2

M�
i=1

hH
r hr

�
hH

t,i +
hH

r

‖hr‖2
Di

�
Qi

�
ht,i + DH

i
hr

‖hr‖2

�

=

�����I +
1

σ2

M�
i=1

�
hrh

H
t,i + �Di

�
Qi

�
hrh

H
t,i + �Di

�H

����� .
Therefore, solving (33) reduces to the following program

max
Qi � 0

Tr {Qi} ≤ P

min
Tr{hrdH

i WidihH
r }≤1

(40)

log

∣∣∣∣∣I +
1
σ2

M∑
i=1

(
hrhH

t,i + hrdH
i

)
Qi

(
hrhH

t,i + hrdH
i

)H ∣∣∣∣∣ .
Using |I + AB| = |I + BA|, and normalizing the covariances
as in (14)-(15) yields

max
Qi � 0

Tr {Qi} ≤ 1

min
dH

i Wdi≤ 1
‖hr‖2

(41)

log

(
1 +

M∑
i=1

Pi

σ2
‖hr‖2 (ht,i + di)

H Qi (ht,i + di)

)
.
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Due to the monotonicity of the objective function in the sum
of quadratic forms, we can optimize the sum instead:

max
Qi � 0

Tr {Qi} ≤ 1

min
dH

i Wdi≤ 1
‖hr‖2

(42)

M∑
i=1

Pi

σ2
‖hr‖2 (ht,i + di)

H Qi (ht,i + di) .

It is easy to see that the above problem is separable and can
be reduced to M independent optimization problems of the
form (16) which have we have already solved in the previous
section.

Theorem 2 proves that under our definitions BF is also
optimal in the MAC. Moreover, the multiuser optimization
problem decouples into multiple single user optimization prob-
lems which are easy to solve. The optimal transmit strategy
of each of the users does not depend on the CSI of the other
users. This resembles the results of [3] where the transmit
strategy of each user using stochastic CSI depends only on its
own CSI.

Usually, the sum-rate of the MAC is optimized under
individual power constraints as in Theorem 2. However, the
problem of optimizing the sum-rate under a total power
constraint has also been addressed [22]. Therefore, in the
following theorem we derive the worst case sum-rate under
a total power constraint:

Theorem 3. Consider the optimization of the worst case sum-
rate of the MAC with a total power constraint:

CT = max
Qi � 0�M

i=1 Tr {Qi} ≤ P

min
Tr{DiWiDH

i }≤1
(43)

log

∣∣∣∣∣I +
1
σ2

M∑
i=1

(
hrhH

t,i + Di

)
Qi

(
hrhH

t,i + Di

)H ∣∣∣∣∣ .
Its optimal value is

CT = log
(

1 +
P

σ2
‖hr‖2 max

i=1,··· ,M
ci

)
, (44)

where ci for i = 1, · · · , M are defined as

ci =

{
hH

t,i

[
I − (I + λiWi)

−1
]2

ht,i, hH
t,iWiht,i > 1

‖hr‖2 ;
0, else,

(45)

and λi > 0 are the unique roots of the following non linear
equations

hH
t,i (I + λiWi)

−1 Wi (I + λiWi)
−1 ht,i =

1
‖hr‖2

. (46)

In this case, the optimal Qi’s are all zero except for the Qi

with the index i = max
i′=1,··· ,M

ci′ which is defined as:

Qi = P
qi (λi)qH

i (λi)
‖qi (λi) ‖2

, (47)

where

qi (λi) =
[
I − (I + λiWi)

−1
]
ht,i. (48)

Proof: Using the same steps as in the proof of Theorem
2 we can reduce (43) to the following program

max
Qi � 0�

i Tr {Qi} ≤ 1

min
dH

i
Widi≤ 1

‖hr‖2

M�
i=1

(ht,i + di)
H Qi (ht,i + di) .

(49)

The inner minimization can be separated into multiple mini-
mizations over all i. By defining

fi (Qi) = min
dH

i Widi≤ 1
‖hr‖2

(ht,i + di)
H Qi (ht,i + di) (50)

for i = 1, · · · , M , we have the following chain

max
Qi � 0

�M
i=1 Tr {Qi} ≤ 1

M∑
i=1

fi (Qi) (51)

= max
σi ≥ 0

�M
i=1 σi ≤ 1

max
Qi � 0

Tr {Qi} ≤ σi

M∑
i=1

fi (Qi) (52)

= max
σi ≥ 0�M

i=1 σi ≤ 1

max
Qi � 0

Tr {Qi} ≤ 1

M∑
i=1

σifi (Qi) (53)

= max
σi ≥ 0�M

i=1 σi ≤ 1

M∑
i=1

σi max
Qi � 0

Tr {Qi} ≤ 1

fi (Qi) (54)

= max
i

max
Qi � 0

Tr {Qi} ≤ 1

fi (Qi) , (55)

where we have added slack variables in (52), normalized the
traces in (53) as we did in (14)-(15). We then separated the
inner maximizations in (54), and used the fact that the solution
of (54) is just the maximum element in the sum as in (55).
Finally, each of the inner maximizations in (55) is identical
to that of (16) which we have already solved.

Interestingly, Theorem 3 shows that BF remains optimal for
maximizing the worst case sum-rate even when a total power
constraint is applied. In this case, the system chooses only one
user that signals with all of the available power.

IV. RELATION TO STOCHASTIC CSI MODELS

Most of the previous references regarding the optimality of
BF examined the use of stochastic CSI models. As explained
in the introduction there is an intimate relation between this
model and our deterministic CSI model. In this section, we
will discuss this relation. In order to keep the notations simple,
we will address the point to point case but the extension to
the multiuser system is straight forward.

The most common stochastic CSI model is the complex
Gaussian model1 [2] :

Hs = hr,shH
t,s + Ds;

Ds = D̃sW
− 1

2
s , (56)

where hr,s �= 0 is a length N vector, ht,s is a length K vector,
D̃s is a N ×K matrix with independent, zero mean, and unit
variance complex Gaussian random variables, Ws 	 0 is a
K×K matrix (which we assume invertible for simplicity). It is

1We use the subscript s to denote variables of the stochastic model as
opposed to variables of the deterministic model in (2)
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easy to see the resemblance between the deterministic model
in (2) and the stochastic model in (56). The only difference
is that in the deterministic model D is a deterministic matrix
within an ellipsoid defined by W, and in the stochastic model
Ds is a random matrix whose covariance is defined by Ws.

In stochastic CSI models, the mutual information in (4) is
a random quantity since it is a function of Ds. One of the
standard measures for analyzing such systems is the outage
mutual information, i.e., the inverse function of the CDF of
the mutual information

Iout = OUT (Pout), (57)

where

Pout = Pr (I(Q,Ds) ≤ Iout) . (58)

The inverse is unique due to the monotonicity of the CDF.
The meaning of (57) is that there is a probability of Pout that
in any realization of H from the ensemble, we will obtain a
mutual information I less than Iout. Therefore, the system is
designed to maximize the outage mutual information [4].

In general, the calculation of the outage capacity is very
difficult. In [4], it was derived for the MISO case using
integrals over the complex plane. Using these integrals, the
authors maximized OUT (Pout) with respect to Q. In the
special case of Ws = αI, they found that the optimal Q
has the structure Q = p1hr,shH

t,s + p2I for some power
allocation p1 ≥ 0 and p2 ≥ 0. To our knowledge, there
is no solution for the general case of arbitrary hr,shH

t,s and
Ws. Fortunately, the following lemma shows that there is an
intimate relationship between the compound capacity and the
outage mutual information:

Lemma 1. Let Hs satisfy the stochastic model in (56). Then,

OUT (Pout) ≥ C

(
hr,shH

t,s,
1

CDF−1
χ2

2NK
(1 − Pout)

Ws

)
, (59)

where C(·, ·) is defined in (6) of Theorem 1, and CDF−1
χ2

2NK
(·)

is the inverse cumulative distribution function (CDF) of a Chi
Squared random variable with 2NK degrees of freedom.

Proof: Let us define the event Aα as the event when the
realization of Hs falls within the ellipsoid set defined in (2)
with hr = hr,s, ht = htr,s and W = αWs. The probability
of this event is

Pr (Aα) = Pr
(

Tr
{
DsWsDH

s

}
≤ 1

α

)
= Pr

(
Tr
{
D̃sD̃H

s

}
≤ 1

α

)
= CDFχ2

2NK

(
1
α

)
. (60)

By conditioning on Aα, we have

Pr (I(Q,Ds) ≤ C (Xs, αWs))
≤ 0 · Pr (Aα) + 1 · (1 − Pr (Aα))

= 1 − CDFχ2
2NK

(
1
α

)
. (61)

Applying OUT (·) on both sides, noting the monotonicity of
OUT (·), and solving for α yields the required inequality.
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Fig. 1. Outage capacity as a function of the outage probability.

In other words, the compound capacity provides a lower
bound on the outage capacity, and instead of maximizing the
outage capacity we can maximize the bound. Given a target
probability Pout, one can solve the right hand side of (59)
and then the optimal Q will promise a lower bound on the
outage mutual information of probability Pout. It is important
to emphasize that this is only a lower bound which is not
necessarily tight. For example, there may be circumstances in
which the compound capacity is zero, but the outage capacity
is not. Nonetheless, the proposed strategy is a very simple ad
hoc approach to the outage capacity problem. Due to Theorem
1, it will allow a BF based solution for this important problem.

A. Numerical example of the outage capacity

As explained, it is very difficult to handle the outage capac-
ity analytically. Therefore, we now present a simple numerical
example that illustrates the use of Lemma 1. We consider a
system with K = 4 transmit antennas and N = 1 receive
antennas. The transmitter has the following stochastic CSI:
The channel is modeled as a random complex Gaussian vector
with mean [1, 0, 0, 0]H and covariance W where [W]i,i = 1
for all i and [W]i,j = 0.5 for i �= j. Our objective is to
maximize the outage capacity for an outage probability of
Pout = 0.05. To our knowledge, there is no known technique
for this optimization. Therefore, we propose to maximize the
lower bound in Lemma 1 using the compound capacity. For
comparison, we also simulate two other strategies: uniform
power allocation, and BF along the mean (center). We numer-
ically estimate the outage capacity using 100000 Monte Carlo
simulations. The results are presented in Fig. 1. It is easy to
see that at around the target outage probability our approach
provides the highest outage capacity among the three transmit
strategies.

V. CONCLUSION

We derived the compound capacity in a rank one Ricean
MIMO channel using a deterministic CSI model. We showed
that the optimal transmit strategy in this case is always BF,
and can be found using a simple one dimensional search.
These results strengthen previous results on the optimality
of BF and motivate the growing use of systems using this
practical transmit strategy. Due to its simplicity, we find that
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the compound capacity is an attractive alternative to the outage
capacity as a design criterion in slow fading MIMO channels.

We also addressed the MAC compound capacity under a
similar deterministic CSI model. We considered two problem
formulations: MAC with individual power constraints, and
MAC with a total power constraint. Assuming equal array
response at the receiver, the optimal solution in both problems
is based on BF. An interesting extension of this work is
to use a more general CSI model. For example, one can
relax the assumption of equal array response, or relax the
rank one constraint on the mean matrix. In these cases, BF
based solutions will not necessarily be optimal and therefore
optimality conditions should be derived and analyzed.
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