
.

One-Dimensional Selections for
Feature-Based Data Exchange

Ari Rappoport† and Steven Spitz‡ and Michal Etzion§

Abstract

In the parametric feature based design paradigm, most features possess arguments that are subsets of the boundary of the
current model, subsets defined interactively by user selection of boundary entities. Any system for feature-based data exchange
(FBDE) must support the exchange of such selections. In this paper we describe in detail an algorithm for supporting one-
dimensional selections (sets of edges and curves) for FBDE. The algorithm is applicable to a wide class of FBDE architectures,
including the Universal Product Representation (UPR) and the STEP parametrics specification.

Categories and Subject Descriptors (according to ACM CCS): D.2.12 [Interoperability]: data mapping; I.3.5 [Computational Ge-
ometry and Object Modeling]: Breps, CSG, solid, and object representations, geometric languages and systems; I.3.6 [Method-
ology and Techniques]: graphics data structures and data types, languages, standards;

1. Introduction

Data exchange is a fundamentally important operation in solid
modeling. From a theoretical perspective, it forces us to clarify
the essential aspects of modeling paradigms by considering general
system-independent concepts and transformations between their
differing concrete implementations. From a commercial perspec-
tive, data exchange is still the main approach today for implement-
ing engineering collaboration. There are several other collaboration
technologies and methods, but data exchange is still the dominant
one.

All modern CAD systems utilize the parametric feature-based
modeling paradigm. They all support direct surface design, but the
main method through which parts are designed is the feature-based
one. When fine control over surfaces is needed, as in industrial de-
sign applications, those surfaces are usually combined as features
within the parametric feature history. It is thus extremely desirable
to address the problem of feature-based data exchange (FBDE).

Today there are two principal documented directions towards
FBDE: extensions to STEP, and our UPR architecture. Paramet-
ric extensions to STEP (see an overview of the specification
in [Pratt04], a description of a small scale prototype system in
[Mun03], and the influential EREP project [Hoffmann93]) define a
set of procedural commands (widely referred to as features, which
is the terminology we use in this paper) and mechanisms for their
representation and semantics in CAD systems. The proposed STEP

† The Hebrew University of Jerusalem and PROFICIENCY Ltd.
‡ PROFICIENCY Inc.
§ PROFICIENCY Ltd.

parametrics specification does not address the issue of differing fea-
ture semantics between CAD systems, leaving it to implementors
of STEP file import software.

The Universal Product Representation (UPR) architecture [Rap-
poport03, Spitz04] takes a radically different approach, using inher-
ent mechanisms for dynamic feature verification and feature rewrite
to handle differing semantics and CAD implementation problems.
A complete UPR system has been implemented and is being used
successfully in real projects.

The two approaches are radically different, but they do share
several specific algorithmic and representational problems. One of
these problems is how to address features whose arguments in-
clude parts of the boundary representation (Brep) of the model (as
it exists before the invocation of the feature). More specifically,
the problem is how to address user selection of Brep entities. In
the context of how CAD systems address this issue, the problem
is well-known and is usually referred to as the persistent naming
problem [Kripac97, Capoyleas96]. In the context of feature-based
data exchange, however, a full persistent naming solution is not es-
sential, as will be shown here.

In this paper we present an algorithm for supporting user selec-
tions of one-dimensional Brep entities for feature-based data ex-
change. By one-dimensional Brep entities we mean selection of an
edge or curve or a set of edges or curves. The twin problem of se-
lection of two-dimensional Brep entities (faces and sets of faces)
will be discussed elsewhere.

As far as we know, the present paper is the first one that identifies
this as a non-trivial problem and offers a solution. The STEP spec-
ification only specifies the data that resides in the file format and
does not address the import algorithm, which is the challenging



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

part, while neither the papers describing the KAIST project (e.g.
[Mun03]) nor the EREP papers [Hoffmann93] describe a solution
to the problem.

In Section 2 we explain the concept of 1-D selections in detail.
Section 3 reviews the UPR architecture, in the context of which
our selection algorithm operates. In Section 4 we provide a formal
problem statement. Section 5 presents the main result, detailing the
export process and import algorithm. In Section 6 we describe our
implementation.

2. Selections in Parametric Feature-Based Design

In this section we explain the concept of user selections in paramet-
ric feature-based design and why in the context of data exchange
there is no need for a full CAD persistent naming solution.

In parametric feature-based design, the model is represented by
a directed a-cyclic graph of operations called features (not to be
confused with the term feature when used for manufacturing oper-
ations in a multiple view architecture [Shah95]). The graph is usu-
ally referred to as the parametric history of the model. Most fea-
tures either create new geometry or modify a part’s existing geome-
try (some features only insert or modify meta-data and other model
attributes). The aggregate effect of all features up to and including
a given feature generates geometry, structured in a boundary rep-
resentation (Brep). Recall that a Brep contains two components: a
graph (topology) of vertices, edges, faces and shells (Brep entities)
and their interconnectivities, and a geometric manifestation of each
of those entities.

What is important for the purposes of this paper is to understand
the role played by the Brep in user interaction and model defi-
nition. In interactive feature-based design, which is the dominant
paradigm today used by virtually all CAD systems, at any point in
time the user sees a 3-D graphical view of the current Brep on the
screen. The user either defines new features or edits existing fea-
tures, and the 3-D display is updated to reflect the changes to the
geometric representation generated by the feature graph. However,
the Brep is not used only for viewing and for decisions regarding
the next design operation. Crucially, the Brep is also used for for-
mal definition of the semantics of some of the future features. This
is the main difference between the parametric feature-based design
paradigm and classical CSG (in addition to the quantitative differ-
ence of the number and types of operations, of course).

Every feature has arguments that define its semantics. For a ma-
jority of cases, and certainly so for the more useful and commonly
used features, Brep entities constitute arguments for features. The
way this is done is by letting the user select a set of Brep entities on
the 3-D view and define them as arguments to the present feature.
There may be several different such arguments for a single feature.

Here are some examples for features whose arguments include
user defined selections:

• Round (or fillet): this feature replaces a sharp edge, or more com-
monly, a set of sharp edges, by smooth surfaces. When the new
surfaces are cylindrical the feature is called a constant radius
round, and there is a variable radius version as well. The user
selected Brep entities are in this case the edges to be smoothed.

• Extrude until face: the extrude feature is probably the most com-
mon of all, taking a parametric 2-D sketch and extruding it to

create a 3-D shape. When an extrude is defined to be until face
the created 3-D shape is trimmed when it is blocked by an exist-
ing model face. That face is the user selected Brep entity in this
case.

• Draft: this is a complex feature mostly used for plastic injection
molding. A set of partial faces is skewed at a specified angle,
creating a global modification of prior geometry. In this case, the
user needs to select the set of faces, and optionally sketch curves
on those faces to define partial faces.

Selections that serve as feature arguments are defined by the user
by selecting Brep entities shown in the 3-D model display. In fact,
allowing such selections is a primary constraint on the nature of
those 3-D displays, as discussed in [Rappoport96]. Some CAD sys-
tems allow the user to select only a subset of the feature argument,
completing the rest automatically. The main automatic completion
method is to add to the entities explicitly selected by the user all
entities that are (recursively) adjacent with smooth geometric con-
nectivity (such as G-1 continuity).

CAD systems must represent selected Brep entities in a way that
generalizes over the current geometry, because at any point in time
the user may modify the parameters of any feature. When this hap-
pens, the system plays the feature history again, a process which
usually results in a different geometry. A purely static geomet-
ric representation of the selections would hence not be valid. This
problem is known as the persistent naming problem. To tackle this
problem, CAD systems abstract away some of the properties of the
selected entities, usually those that are independent of the numeri-
cal values in the model and are functions of more intrinsic proper-
ties, such as Brep topology, identities of the features (or carrier sur-
faces) creating Brep entities, qualitative geometric properties (such
as convexity), etc. In other words, they represent selections using
generic names that are persistent under parameter changes (hence
the term). For a general solution to generic naming of Brep entities
see [Rappoport97], and for solutions in the context of CAD systems
see e.g. [Kripac97, Capoyleas96].

When performing feature-based data exchange, there are no
parametric changes. On the contrary, the main goal is to construct a
model in the target system that is as similar as possible to the model
in the source system. Hence it is possible, at least in principle, to
use representational methods that are different in character and are
closer to Brep geometry. The approach taken in this paper is such a
method, as described in the next sections.

3. Review of the UPR FBDE Solution

The solution we describe in this paper to the 1-D selections problem
is applicable to a wide variety of FBDE architectures. However, the
specific algorithmic assumptions we make are valid in the context
of our UPR architecture. Therefore, in this section we describe it
briefly, emphasizing the aspects that are relevant to this paper.

The UPR differs from all other data exchange approaches in that
it recognizes that CAD system capabilities are variable, both in
terms of functional semantics and in terms of implementation of
theoretically equivalent operations. Due to market forces and the
richness of the feature-based design paradigm, it is not realistic to
dictate an ultimate set of features that are supported by a CAD sys-
tem. Each CAD system might provide features that are not directly



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

provided by other systems. In addition, due to the semantical com-
plexity of certain features, a feature’s implementation in one CAD
system might result in geometry that is somewhat different from
the geometry that a different system generates from the ‘same’ fea-
ture. That is, the feature is the same at a certain level of abstraction
(usually, overall function as perceived by the user), but different
at a detailed geometric level of abstraction. Finally, we should ex-
pect the geometry generated by features to be different due to the
fact that different systems utilize different tolerances for different
operations, a phenomenon that plagues ordinary (geometric) data
exchange [Qi04].

The UPR is thus explicitly designed to handle the following two
cases: (i) a data item explicitly supported by one system and not
by another, and (ii) incompatibilities between systems that can be
identified only during run-time due to lack of formal specification
of implementational differences.

The UPR representation of a feature makes use of two central
concepts to address the above: rewrites and verifications. Each fea-
ture has an associated set of rewrites, which are intuitively different
ways to import that feature into a system that had not succeeded im-
porting it using other means. So instead of dictating a certain fixed
representation, the UPR allows an unlimited number of represen-
tations that attempt to simulate the semantics of a feature (usually
at decreasing levels of abstraction, starting from fully parametric
and ending at fully geometric [Spitz04]). In addition to rewrites,
each feature stored a set of verification data, used to dynamically
identify whether feature import has succeeded or not.

For the present paper, the concept of verification data is most
relevant, because we rely on it in some of our algorithms. In par-
ticular, when a partial feature history has been verified as having
been imported successfully, this serves as an assertion that various
situations are not possible, simplifying the design of our selection
algorithms. If such a situation does occur, this signals that there is
a bug somewhere in the system, in which case the system attempts
a graceful recovery. All of those mechanisms are taken care of at
the global architectural level and do not form a part of the selection
algorithms, which operate at a more detailed level.

Structurally, the UPR is a star architecture, like STEP. Export
and import modules are responsible for communication with the
source and target CAD systems respectively. This specific choice,
which is a natural one to make considering the economics of de-
veloping a solution that is meant to support many CAD systems, is
independent of the selection problem discussed in this paper. Our
selection algorithms are applicable also to FBDE systems that use
a direct source to target translation.

4. Problem Statement

In this section we formally define the problem that this paper deals
with, including assumptions on the context in which the solution is
used. In general, a FBDE system needs to support all types of user
selections that serve as feature arguments. However, due to the fact
that the actual algorithms we have developed for one-dimensional
and two-dimensional selections are rather different from each other,
in this paper we focus on 1-D selections only. Our 2-D selections
algorithm will be described in a separate paper. Thus, in this paper,
our goal is to

• provide support for one-dimensional user selections that serve as
feature arguments in feature-based data exchange systems.

We further state that such support is to be implemented as part of
a FBDE system that defines features one after the other in the target
CAD system. Although at the moment this is the only approach
towards FBDE (as exhibited by the UPR architecture and STEP),
it is not absolutely inconceivable that other, conceptually different,
approaches are possible. The fact that we assume that features are
imported one by one implies the following concrete assumption:

• denote by F the feature for which user selections are defined dur-
ing the import process. Then when the selections are to be spec-
ified, the target CAD system holds a boundary representation of
the model as defined by the features up to F. Furthermore, this
Brep is available for inspection and usage by the selections sup-
port algorithm.

This assumption means that selections can be specified to the
target system in terms of identifiers of actual present Brep entities.

A consequence of the previous assumption is that the model de-
fined by the features up to F is also assumed to be correct. This is
a fine point that needs to be clarified. As noted in Section 3, a re-
alistic feature-based data exchange architecture cannot commit to
transfering each and every feature to the target system such that it is
both parametric and generates geometry that is identical to that in
the source system. To define correctness we thus have two options:
either require that the target model generates identical geometry (up
to a geometric tolerance, see below) and allow loss of parametricity
in some cases, or require the model to be fully parametric and allow
the geometry to be different. In this paper we take the first option,
because it conforms to the standard definition of the term ‘data ex-
change’ and is the one that is required in practice. Note however
that it is possible to take the second option, which is an interesting
direction research-wise.

As a result of that choice, we can assume that the model defined
by the features up to F contains geometry that is similar to the ge-
ometry in the source CAD system, but not necessarily a feature
history identical to that in the source CAD system. Now, due to
the fact that all practically useful geometric representations today
use floating point arithmetic, the best we can actually hope for is
that the geometries on both sides are identical up to a geometric
tolerance. There are many ways to formalize this concept mathe-
matically, and we will not attempt to do so here because it would
certainly be outside the scope of this paper (see [Qi04] for a re-
cent relevant discussion). Our algorithms will utilize the following
version of this assumption:

• any point that lies on the boundary of the model in the source
system lies at a distance no greater than Delta from the boundary
of the model in the target system, and vice versa.

This assumption does not have a negative effect on the robust-
ness of our algorithm. The algorithm is designed to recognize cases
in which the assumption does not hold, in which case it signals this
to the main processor of the UPR architecture for graceful recov-
ery. As explained in Section 3, in the UPR every feature has an
associated verification data, whose purpose is to ensure that the as-
sumption does hold.

So far we have only addressed one component of a boundary
representation, namely the geometric pointset defined by it. How-



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

Figure 1: Brep differences: two (left), three (middle) and six (right)
edges to represent a cylinder.

ever, there is a second component: the boundary graph that repre-
sents the vertices, edges and faces and their interconnectivity re-
lationships. Now, different CAD systems may represent this graph
in arbitrarily different ways; this is in fact a main difficulty that
our algorithm strives to overcome. We do not need to assume any
CAD commonality regarding this graph representation (beyond the
well-behaved edge overlap assumption given below), because dif-
ferences not handled by our algorithm are treated by the general
rewrites mechanism. Section 5.5 deals with this last issue. A sim-
ilar comment holds for whether or not our CAD system supports
non-manifold geometry or only manifold geometry.

Figures 1 and 2 show how Breps representing the same geomet-
ric pointset can differ in their topologies. A cylinder can be rep-
resented using two circular edges and three faces (cylindrical face
and two disks), or by using an additional edge to split the cylindri-
cal face (usually, this is done in order to establish a well-defined
parametrization of the face or to avoid a single face having two
bounding unconnected loops), or by using a yet additional edge to
split the cylinder (usually, this is done in order to avoid the same
edge appearing twice in the same loop.)

Another source of topology differences is shown in Figure 2. A
loft feature is defined using cross sections, which are interpolated
to a solid. The faces of the solid may include remnants of all of the
edges defining the cross sections, or remnants of only some or part
(vertices) of them, or be simplified to include non remnants at all.

Because we assume that the geometries of the source and tar-
get models are similar, we can in practice safely make another as-
sumption about the correlation between topology and geometry:
that when a source edge s intersects a target edge t, it does so in a
geometrically well-behaved manner. Formally, we assume that ev-
ery boundary point in the intersection is either a vertex of s or a ver-
tex of t. This assumption is not strictly needed for our algorithm;
it just enables us to implement a specific sub-algorithm (generic
overlap test) in a certain efficient way.

In order to simplify the presentation (and because this is the case
in all practical systems), we assume that a single edge must be con-
nected. Note that this is only a terminological comment and does
not impose any real restriction.

In this paper we deal with the implementation of cross-CAD user
defined selections, which is a basic building block for a feature-
based data exchange system. We do not deal with higher level op-
erations required in such a system. In particular, we do not address
the case where feature semantics on the target system does not al-

Figure 2: Brep differences: loft definition using cross sections, and
the resulting solids in several CAD systems. Note the vertices in the
middles of the vertical edges in the bottom left.

low usage of the type of selections defined in the source system as
arguments of that feature. As a simple example, the source CAD
system may allow an ‘extrude until face’ for every type of face,
while the target system may only allow planar faces in this role. In
the UPR architecture, such semantic differences are handled by the
feature rewrite mechanism, which, again, is a higher-level mecha-
nism than the selections mechanism.

5. The Algorithm

In this section we present our 1-D selection algorithm. We describe
the main idea (5.1), the export process and what data is stored in
the UPR (5.2), the main algorithm (5.3) and the main operations it
utilizes (5.4), and finally cases that necessitate rewrites (5.5).

5.1. The Main Idea

In Section 2 we had already noted that a generic selection represen-
tation in the style of persistent naming solutions is not essential in
our case, because the geometries on both sides can be assumed to
be identical up to a tolerance. It is thus of conceptual elegance to
try to utilize only that static geometry. The general idea is then:

• Export the geometry of the selection into the UPR.
• When selections need to be defined during import, select a subset

of the current Brep (in the target system) that covers as much as
possible the selections stored in the UPR.

• If there are edges in the UPR selection that cannot be exactly
covered by edges in the current Brep, create new edges or split
existing edges in the current model so that an exact cover is ob-
tained, or use other feature rewrites to preserve feature semantics
as much as possible.



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

The important thing to note here is that the second step is not
trivial. In particular, it is not the case that every selected edge in the
source system corresponds to exactly one edge in the target system.
The naïve algorithm that loops over the selected edges in the UPR
and tries to find for each of them a target system edge identical to
it (up to a tolerance) will simply fail. The reason for that is that we
cannot make assumptions regarding the topology of the two Breps,
only about their geometry, as noted in Section 4. This is a main
difficulty that our algorithm attempts to overcome.

5.2. Export to UPR

The goal of the export process is to make sure that all data needed
during the import phase is available in the UPR. Since the import
algorithm only needs the geometric pointset defining the selection,
it is straightforward to represent it in the UPR given that this in-
formation is provided by the source CAD system. In principle, any
1-D Brep data structure will be capable of storing the information;
due to the philosophy behind the UPR, which is designed to sup-
port the union of object types generated by CAD systems, we use
the same curve types used in the source CAD system. This means
that in principle there should not be any degradation in the quality
of the representation, and specifically no loss of tolerance.

To simplify our descriptions, in this paper we will refer to the
selection as stored in the UPR as the ‘source selection’ a term jus-
tified by the comments just made.

Because we deal with 1-D selections, there are exactly two types
of Brep entities that can participate in each selection: vertices and
edges. Our import algorithm can be implemented more efficiently
if the adjacency information of those entities is stored explicitly.
However, this trivial observation is not a mandatory requirement
for the correctness of the algorithm.

One theoretical problem that can be stated is what to do if the
source CAD system does not provide access to the Brep entities
that comprise the geometry of the selections. It is only a theoret-
ical problem because virtually all modern CAD systems provide
detailed access to Breps. In this paper we thus assume that selec-
tion geometry is easily accessible through the CAD system API.
Standalone identification of selection geometry without using the
CAD API is an interesting theoretical computational problem, but
one that we will not address in this paper.

In some situations we may export relevant symbolic model data
along with the selection geometry. For example, when the model
contains several parametric history graphs, the ID of the graph con-
taining each part of the selection can be stored with the selection
geometry, in order to make it easier to locate the target image of
that body during import or in order to identify the correct body if
several bodies overlap geometrically. The IDs of the owning fea-
tures of each selection part can be used in the same manner (in the
terminology of some CAD systems, an owning feature of a Brep
entity is the first feature that had caused the entity to be added to
the model’s Brep). These kinds of techniques are obvious and we
will not elaborate on them further in this paper.

5.3. The Import Algorithm

The main part of the algorithm is the process done during import.
Recall that the Brep of the model, as generated by the features

preceding the feature F whose arguments are our selections, is as-
sumed to be present in the target system. What we seek is a set of
entities belonging to that Brep that are an exact cover of the selec-
tion geometric pointset. We do not need to know the connectivity
structure of the entities to be selected, only the entity set.

The algorithm proceeds one edge at a time (see below). For each
edge e in the source selection, we want to find an exact cover made
up of target Brep edges. However, in general there is no such ex-
act cover because it may happen that a target edge that is essential
for covering e is a proper superset of e. Instead of finding an exact
cover, we find any cover, or, if desired, a valid cover for e. A valid
cover for a source edge e is a set c of one or more target edges that
covers e but does not include points that are outside of the selection
pointset. Thus, selecting the edges in a valid cover as arguments of
the imported feature F in the target system does not harm the cor-
rectness of the selection. For simplicity of exposition, the pseudo-
code assumes that a valid cover is required; however, as noted in
the description of Algo 2 below, it may actually be preferable to
find any cover without ensuring its validity.

Algo 1: Main loop
For each edge e in source selection
Find a valid cover
If no such set can be found,

invoke the rewrites procedure (5.5).
Return the union of all valid covers found (in-

cluding rewrite fixes, if such were done).

Note that the same target edge t may participate in more than a
single valid cover. For example, suppose that the circular edge of
the top of a cylinder was subdivided in the source system into two
half-circles e1 and e2. In this case, the target edge t is the valid
cover for both e1 and e2. This does not cause any harm to the al-
gorithm, because the final target selection is the union of all valid
covers found, which in this case simply amounts to the single edge
t. Next we show how we find a valid cover for a source edge e:

Algo 2: Finding a cover for a source edge e
Find a target edge t that overlaps with e
Cover := t
While e is not covered and there are remain-

ing target edges to examine
Add adjacent overlapping edges to t to Cover.

If e is not covered
return FAIL

If validity needs to be verified
If Cover is a valid cover,

return Cover + VALID tag.
Else return FAIL + failure information.

Else return Cover.

We start by finding a single edge t that overlaps with e. We
use the term overlap to mean that their pointset intersection is not
empty or degenerate (intersection at a vertex.) We extend t with ad-
jacent edges that overlap e, so that t is possibly a chain that overlaps
e. The extension process is a (recursive) search on the adjacency
graph of the target Brep. The search halts on adjacent edges that do
not overlap e.

At the end of this process, we are at one of three possible situa-
tions:

1. We have found an exact cover for e. In this case, either both e
and t are closed, or the vertices of e coincide with the boundary



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

vertices of t (the boundary vertices are those vertices that bound
a single edge. )

2. We have found a proper (but not necessarily valid) cover for e.
In this case, either t is closed and e is open, or t is open and both
boundary vertices of t are not in the interior of e (and at least
one of them is not on a vertex of e.)

3. We have consumed all adjacencies without being able to cover
e. In this case, t is open and at least one boundary vertex of t lies
in the interior of e.

In case 1, we have found what we wanted. In case 3, the edge e
cannot be covered by edges in the current target Brep, which means
that it is not possible to define the desired feature’s selections at
this stage. In this case a rewrite is required. Treatment of rewrites is
explained in Section 5.5 below. In case 2, we have found a cover c
for e, but we may want to ensure that it is a valid cover. If it is not,
selecting c as the feature’s argument may result in selections that
are larger than those made in the source system, which may in turn
result in different geometries.

The reason why we may prefer not to verify validity of a cover
has to do with the expected rate of invalidity occurrence: if it hap-
pens only rarely that a cover is not valid, it may be more efficient
overall not to verify it at this stage. Recall again that each and every
feature holds verification data that can be invoked by the main im-
port loop of the whole architecture, so if the feature fails to import
correctly it will be discovered anyway. In many cases it might be
the case that it is not important to know exactly why import failed
(whether it was a selections problem or another problem), in which
case there is no reason to verify a cover’s validity at this point in
the selections algorithm.

If we do want to verify validity, our task now is to find whether
or not a given set c of target edges form a valid cover for a given
source edge e. This can be done elegantly as follows. For any target
edge t in c, we now find a source cover for it, using a very simi-
lar algorithm, in which source and target are transposed. However,
there is one fundamental difference between those two stages: at
the present stage, we are not looking for a valid cover of t but for
any cover of t. It is OK to use any source edge ei now, even if it in-
cludes points that are outside of t, because all we want is to ensure
that t’s pointset is fully contained in the selection pointset.

In order to be convinced of the correctness of the above algo-
rithm, note that we are at a stage in which we are handling a source
edge e. All we need in order to handle it correctly is a valid cover
made up of target edges. Those edges are in turn valid if they can
be covered by a set of source edges. The crucial point is that those
latter source edges will be dealt with in due course, when the main
loop (Algo 1) will deal with them. Thus, the process does not have
to continue recursively back and forth between the source selec-
tions and target Brep. Naturally, we may want to store edge visit
tags in order to make the algorithm more efficient, by not checking
covers for edges that have already been totally covered.

An alternative formulation of the algorithm is: as before, for each
source edge find a set of target edges that cover it, not necessarily an
exact covering. In general, the result is a graph of source edges and
a graph of target edges. We know that the target graph covers the
source graph. To check whether this cover is exact or proper we test
whether the boundary vertices of the source graph coincide with
the boundary vertices of the target graph (the boundary vertices are
the vertices that bound a single edge.) If they do not coincide, then

obviously we have a proper cover. If they do coincide, then we must
show that the cover is exact. Let’s assume that the cover is not exact,
so the difference between the target pointset and the source pointset
is not empty. Let’s take the boundary points of the set difference. At
least one of these points is internal to a target edge t (if they were all
vertices of target edges, then we would have target edges that do not
cover any source edges, which is impossible by construction.) This
point must cover a source vertex. By our assumption, the source
vertex is not a boundary vertex, so it bounds at least 2 source edges.
One of these source edges overlaps t at this vertex. The other source
edges cannot overlap t at this vertex, but since they are covered they
must overlap other target edges at this point. This implies that there
are at least 2 target edges that intersect at this point, so a target
vertex must exist at this point, which is a contradiction.

5.4. Overlap Tests

A careful reading of the algorithm as described above shows that
the main computational operation that is needed in order to imple-
ment it correctly is an overlap test, which will classify the overlap
situation between two edges. However, due to efficiency reasons we
also use a separate sub-algorithm for finding an initial target edge t
that participates in a cover for a given source edge e.

5.4.1. Initial cover edge

For finding an initial cover edge t of a source edge e, we utilize an
efficient point based technique. We select a random point p interior
to the source edge e, and locate it in the current target model. Due
to our assumption of model equivalence between source and target,
the projection must lie on the boundary of the target model. Ob-
viously, ‘on’ the boundary means using an appropriate numerical
tolerance. If the point is too far from the boundary something very
wrong must have happened, so we signal a serious error and exit
the selections module.

Now, there are several possibilities regarding the location of the
point p on the target Brep:

1. It is inside an edge t (again, using an appropriate tolerance). This
is the common case, where the desired result has been identified
immediately.

2. It is on a vertex. This is a rare case, but it can happen. From
an implementation point of view, the simplest way to tackle this
case is to select a new random point in the edge e until the point
p does not lie on a vertex. Alternatively, we take a target edge
that is adjacent to the vertex and overlaps the source edge e. If no
such edge exists, then as before we signal a serious error. This
tradeoff between running time and implementation effort (and
thus code complexity) is standard in computational geometry,
and systems may use different considerations in balancing the
two.

3. It is on a face. In this case the topologies of the source and tar-
get model are radically different – there is an edge selected in
the source that does not appear in the target topology. We add
the edge e to a list of such edges to be handled separately, as
explained in Section 5.5.

4. If the tolerance is too large, then the point can lie on more than
one edge, more than one vertex, and more than one face. For a
theoretically correct treatment of such cases, we would need a
separation assumption that the minimum distance between ver-
tices is larger than Delta, that the max-min distance between



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

edges/faces is greater than Delta, etc. Practically, however, it is
simpler to reduce the tolerance and try again.

5.4.2. Generic edge overlap

Recall that the edge overlap test needs to classify the situation be-
tween the two edges as an exact overlap or a full containment or
a partial overlap. As in the previous sub-algorithm, we do this us-
ing efficient point based techniques. Recall also our edge overlap
assumption, that if a source and a target edges (partially or fully)
overlap it is in a geometrically well behaved manner.

We partition the source edge into regions by projecting the ver-
tices of the target edge onto the source edge. One of the vertices
must be on the source edge, but the other may not be. The result has
one, two or three regions (connectivity components.) Each region
is either completely covered by the target edge or disjoint from the
target edge. We now classify each region with respect to the target
edge by classifying the mid-point of the region. This is basically
the standard set Boolean operation CSG algorithm applied to one-
dimensional entities.

Recall that the UPR architecture invoked verification algorithms
after the import of each and every feature, so a problem will be
immediately discovered, and it is easy to identify the source of the
problem as an incorrect overlap test (most likely stemming from
a tolerance problem) if needed. Hence our overlap test algorithm
provides both efficient running time and an eventual guarantee of
correctness.

5.5. Rewrites

Recall that the motivation for developing a selection algorithm such
as the one detailed in this paper is to allow us to select Brep entities
that serve as feature arguments in the context of feature based data
exchange. Now, it is certainly possible that those Brep entities are
simply not there at the target system when the need for them arises.

It might be argued that this situation means that the previous fea-
tures have not been imported properly. However, we disagree with
such an objection: the Brep topology in a CAD system is part of the
internal representation of the system and should not make any dif-
ference to the user. What matters to the user are the design intent,
as embodied (in today’s CAD systems) in the parametric feature
history, and the pointset geometry of the resulting model (because
this is the thing that eventually obtains a physical manifestation).
The internal division into vertices, edges and faces is a necessity
resulting from our boundary representation technology. The exter-
nal availability of Brep entities is useful exactly for the subject of
this paper, selections to serve as feature arguments (including an-
notations), and for model visualization [Rappoport96].

In other words, vertices, edges and faces are important to the
user inasmuch as the user is allowed to do something with them.
Now, a proper place for ensuring that entities that are supposed to
be present are indeed present is exactly when the user actually does
something with them, which, in our FBDE context, is when the
feature that needs those selections is imported.

Having said all that, the case of useful edges being present in the
source system and not being present in the target system or vice
versa is a case that we have rarely encountered in practice, apart
from datums and in the non-manifold paradigm discussed below.

Figure 3: The revolve on top of the box uses an edge as an axis.
The edge is present in the source CAD system (Catia V5) but not in
the target system (UG NX), which simplifies Brep when possible.

This shows us that there probably is a ‘user-natural’ Brep topology
for a given feature history. The Brep topologies in CAD systems
are not equivalent (if they were, the algorithm in this paper would
be greatly simplified), but the entities by which they differ are in
practice usually entities that the user is not allowed to select as
useful feature arguments.

A datum example where the Breps do differ is given in Figure
3. In this model, there is a 2-D sketch extruded to a box, and then
a revolved sketch is joined on top of the box. The source system
(Catia V5) has an edge resulting from the first extrude that is used
as the axis of revolution. The edge is there because the 2-D sketch
had a vertex at the middle of the bottom edge of the 2-D rectangle
extruded. The target system (UG NX) does not allow that edge to
be present in the model because it has a policy of simplifying the
Brep if possible. Here, our rewrite case handler would try to define
in the target system a new feature, a datum axis feature, positioned
to coincide with the problematic edge, so that it could serve as the
axis of revolution. The new axis feature could be added either fully
parametrically (if the target system allows it, say by equations tying
its position and orientation with that of the box’s faces) or as a fixed
axis, thus losing some of the parametricity of the model, but still
retaining most of it. This is a nice example of the rewrite concept
of the UPR architecture – as we see, a rewrite can insert a wholly
new feature if it is needed in order to enable the parametric import
of another feature into the target system.

Another case in which CAD systems exhibit meaningful Brep
entity differences is the case of non-manifold Breps. This is actu-
ally a different modeling paradigm altogether: the modeled object
is not a geometric pointset but a geometric pointset having an in-
ternal subdivision. Although non-manifold geometry has been long
recognized as useful for many applications (most notable for en-
gineering finite-element analyses), only some CAD systems (e.g.,
I-DEAS) support this paradigm generically today.

Non-manifold support has direct consequences on our ability to
handle the selections-on-face case (e.g. item 3 in Section 5.4.1).
First let us assume that the target system supports non-manifold
representations. We need to add source system selections to the tar-



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

get Brep model as user-selectable entities. Since the target system
supports non-manifolds, it is reasonable to expect it to provide a
‘split face by adding a new edge’ feature to the user. In this case
our system would first use this feature in order to create the miss-
ing edges on the appropriate faces, and then import the feature re-
quiring those selections using the usual feature import procedure.
Note that again, the target model would contain a different number
of features from the source model.

It may be the case that a system that supports non-manifold Brep
representation does not provide direct support for non-manifold op-
erations to the user, as features that can be added to the feature
graph as seen by the user. However, it is still possible in principle
that such operations are available to CAD extension programmers
through the CAD system’s API, and can be added internally to the
feature graph. In this case we proceed as before, and the features
seen by the user at the source and target system are similar. It is
also possible that the target system provides a ‘split face’ feature
even if in general it does not support non-manifold representation.

Even when a ‘split face’ feature of the kind we had used is not
provided, in many systems it can be emulated. Many systems con-
tain a ‘patch’ feature whose arguments are a solid Brep B and an
open surface sheet S having a material side and boundary edges that
are assumed to lie on the boundary of the solid B. The result of the
feature is to glue S to the boundary of B and discard that part of B’s
boundary that lies on the non-material side of S. We had used the
patch feature in our algorithm for solving the geometry per feature
(GPF) problem [Spitz04].

To emulate split face using patch, we prepare a surface sheet that
coincides with part of the target face and whose boundary edges
include the desired selection edges. The material side is specified
to be identical to that of the face. This may result in the desired
selection edges being added to the current Brep.

This positive result is however not guaranteed, because it de-
pends on the specific implementation of the patch feature and on
the target system’s general policy. It is possible that such an input
to the patch feature be considered invalid, because it tries to force a
non-manifold situation into a system that takes pain to ensure that
such situations are not present, or simply because the system de-
tects that no portion of the previous Brep is removed and hence
the feature is considered redundant. The problem here is the classic
problem [Mäntylä88] of what is considered by CAD systems to be
a valid face. Another manifestation of the problem is that many sys-
tems actively unify faces by removing edges separating them when
those faces are considered to be the ‘same’ face, e.g., when they are
co-planar.

To summarize, our capability of creating selection edges where
they do not exist is a function of the feature repertoire of the target
system. When the target system does not allow a direct or emu-
lated split face feature, it may still be possible to import the fea-
ture F parametrically, by replacing F by a totally different feature
combination that achieves the same geometric effect. This should
be examined on an individual feature basis. The UPR architecture
enables doing that through its support of feature rewrites, using a
single feature or a number of features.

6. Implementation

The 1-D selection algorithms described in this paper have been im-
plemented in the UPR architecture at Proficiency Ltd. The current
UPR implementation supports the five high-end CAD systems in
the market: Catia 4, Unigraphics, I-DEAS, ProEngineer, and Catia
5. Several versions and most of the design features of each system
are supported. The data exchange process is controlled by a web
server through a web-based user interface. The server locates ex-
port and import ‘agents’ over a network and distributes export and
import jobs according to load parameters. The software is being
used routinely in real product projects.

In our implementation, the UPR file stores all relevant data, in-
cluding the selection data, represented geometrically as described
in this paper. Intermediate computations (such as point projections
for the edge overlap tests) are usually done on the UPR data struc-
tures, but obviously any other software library, including that of the
target CAD system, could be used as well.

As mentioned in Section 5.5, we rarely encounter the need to in-
voke the rewrites procedure. This stems from the fact that although
the internal Breps used by CAD systems are different, the selection
model presented to the user is quite similar.

Figure 4 shows a part made up of a union of four cylinders and
a round, resulting in Breps that are substantially different. Figure
5 shows a part originally designed in ProEngineer and exchanged
into Catia V5. In both cases, our algorithm finds the correct edges
and the UPR architecture performs a perfect feature-based data ex-
change.

7. Discussion

The issue of supporting one-dimensional selections is a crucial one
in feature-based data exchange systems and algorithms. Selections
are used as feature arguments in the most frequent and fundamental
features, among them rounds and extrusions. Selections are what
endows models with true associativity, and FBDE systems must
support selections in a way that is as close as can be to the design
intent as expressed in the source CAD system.

In this paper we have provided the first solution of which we
are aware to this important problem. Our solution is applicable to a
wide variety of FBDE architectures, among them the UPR and the
STEP architectures, which are the only documented ones at present
(note that the UPR has been implemented in practice, while STEP
is only a proposed specification.) Our algorithms have been imple-
mented in the UPR architecture, and are thus being used on a daily
basis in real projects.

As we had mentioned previously, a full solution to the selections
problem should include selections of two-dimensional entities. We
have designed and implemented algorithms that solve that problem
as well. However, they are different from the algorithms of the 1-D
case, so due to space constraints they will be described in a different
paper.

Future CAD systems may let users express their intents at a
higher level of abstraction than that of feature-based design, for
example using purely functional specification. It is reasonable to
expect that selections will continue to play a role in such systems as
well. In such systems, the data exchange problem could be required
to prefer preservation of functional spec rather than of lower level



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

Figure 4: Three CAD systems, before a round feature (left) and after it (right). Top: Catia V4; middle: Catia V5 (ProEngineer has a similar
topology); bottom: UG NX. Note how Brep topology around the round differs.



Ari Rappoport & Steven Spitz & Michal Etzion / One-Dimensional Selections for Feature-Based Data Exchange

Figure 5: A real part, in Catia V5 (top) and ProEngineer (bottom), before (left) and after (right) rounding the protrusion on the right side.

geometry. In such a scenario support for selections would require
the development of different algorithms, which would probably be
more in the direction of today’s persistent naming algorithms.

Acknowledgements. The Proficiency UPR implementation is a
collective effort of the Proficiency Data Exchange development
team, headed by Alex Tsechansky. The content of this paper is
patent protected. We thank Mike Ricci for the valve example.

References

Capoyleas96 Capoyleas, V., Chen, X., Hoffmann, C.M., Generic
naming in generative, constraint-based design. Computer-Aided
Design, 28(1):17-26, 1996.

Hoffmann93 Hoffmann, C.M., Juan, R., Erep, an editable, high-
level representation for geometric design and analysis. In: P.
Wilson, M. Wozny, and M. Pratt, (Eds), Geometric and Product
Modeling, pp. 129-164, North Holland, 1993.

Kripac97 Kripac, J., A mechanism for persistently naming
topological entities in history-based parametric solid models.
Computer-Aided Design, 29(2):113–122, 1997. Also: proceed-
ings, Solid Modeling ’95, pp. 21–30, ACM Press, 1995.

Mäntylä88 Mäntylä, M., An Introduction to Solid Modeling,
Computer Science Press, Maryland, 1988.

Mun03 Mun, D., Han, S., Kim, J., Oh, Y., A set of standard
modeling commands for the history-based parametric approach.
Computer-Aided Design, 35:1171-1179, 2003.

Pratt04 Pratt, M.J., Extension of ISO 10303, the STEP stan-
dard, for the exchange of procedural shape models. Proceedings,
Shape Modeling International 2004 (SMI ’04).

Qi04 Qi, J., Shapiro, V., Epsilon-solidity in geometric data trans-
lation, TR SAL 2002-4, Spatial Automation Laboratory, Univer-
sity of Wisconsin-Madison, June 2004.

Rappoport96 Rappoport, A., Breps as displayable-selectable
models in interactive design of families of geometric objects.
Geometric Modeling: Theory and Practice, Strasser, Klein, Rau,
(Eds), Springer-Verlag, pp. 206-225, 1996.

Rappoport97 Rappoport, A., The Generic Geometric Com-
plex (GGC): a modeling scheme for families of decomposed
pointsets. Proceedings, Solid Modeling ’97, May 1997, Atlanta,
ACM Press.

Rappoport03 Rappoport, A., An architecture for universal CAD
data exchange. Proceedings, Solid Modeling ’03, June 2003,
Seattle, Washington, ACM Press.

Shah95 Shah, J.J., Mantyla, M., Parametric and Feature-Based
CAD/CAM, Wiley, 1995.

Spitz04 Spitz, S., Rappoport, A., Integrated feature-based and ge-
ometric CAD data exchange. Proceedings, Solid Modeling ’04,
June 2004, Genova, Italy, ACM Press.


