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Abstract

One of the most desired information types
when planning a trip to some place is
the knowledge of transport, roads and
geographical connectedness of prominent
sites in this place. While some transport
companies or repositories make some of
this information accessible, it is not easy
to find, and the majority of information
about uncommon places can only be found
in web free text such as blogs and fo-
rums. In this paper we present an algo-
rithmic framework which allows an auto-
mated acquisition of map-like information
from the web, based on surface patterns
like “from X to Y”. Given a set of loca-
tions as initial seeds, we retrieve from the
web an extended set of locations and pro-
duce a map-like network which connects
these locations using transport type edges.
We evaluate our framework in several set-
tings, producing meaningful and precise
connection sets.

1 Introduction

Textual geographical information such as location
descriptions, directions, travel guides and trans-
port tables is extensively used by people. Dis-
covering such information automatically can as-
sist NLP applications such as question answering
(Santos and Cardoso, 2008), and can be useful
for a variety of other applications, including au-
tomatic map annotation.

Some textual geographical information can be
found in web sites of transport companies, tourist
sites and repositories such as Wikipedia. Such
sites usually utilize structured information such
as machine-readable meta-data, tables, schedule
forms or lists, which are relatively convenient
for processing. However, automatic utilization of

such information is limited. Even on these sites,
only a small fraction of the available geographi-
cal information is stored in a well-structured and
freely accessible form. With the growth of the
web, information can be frequently found in ‘or-
dinary’ web pages such as forums, travelogues or
news. In such sites, information is usually noisy,
unstructured and present in the form of free text.

This type of information can be addressed by
lexical patterns. Patterns were shown to be very
useful in all sorts of lexical acquisition tasks, giv-
ing high precision results at relatively low com-
putational costs (Pantel et al., 2004). Pattern-
driven search engine queries allow to access such
information and gather the required data very effi-
ciently (Davidov et al., 2007).

In this paper we present a framework that given
a few seed locations as a specification of a region,
discovers additional locations (including alternate
location names) and map-like travel paths through
this region labeled by transport type labels.

The type of output produced by our framework
here differs from that in previous pattern-based
studies. Unlike mainstream pattern-based web
mining, it does not target some specific two-slot
relationship and attempts to extract word tuples for
this relationship. Instead, it discovers geographi-
cal networks of transport or access connections.
Such networks are not unstructured sets of word
pairs, but a structured graph with labeled edges.

Our algorithm utilizes variations of the basic
pre-defined pattern “[Transport] from Location1
to Location2” which allows location names and
connections to be captured starting from the given
seed location set. We acquire search engine snip-
pets and extract contexts where location names co-
appear. Next we construct a location graph and
merge transport edges to identify main transport
group types. Finally, we improve the obtained data
by reducing transitive connections and identifying
key locations.



The obtained location data can be used as a
draft for preparation of travel resources and on-
demand travel plans. It can also be used for ques-
tion answering systems and for automated enrich-
ment and verification of existing geographical re-
sources.

We evaluate our framework on three different
regions of different scale and type: Annapurna in
Nepal, the south Israel area and the Cardiff area
in England. In our evaluation we estimated pre-
cision and the amount of discovered locations and
transport edges, and examined the quality of the
obtained map as a whole by visually comparing
the overall connectedness of the graph to an actual
road or transport map.

2 Related Work

In this paper we utilize a pattern-based lexical
acquisition framework for the discovery of geo-
graphical information. Due to the importance of
lexical databases for many NLP tasks, substantial
research has been done on direct or indirect auto-
mated acquisition of concepts (sets of terms shar-
ing a significant aspect of their meaning) and con-
cept relationships in the form of graphs connect-
ing concepts or terms inside concepts into usually
hierarchical or bipartite networks. In the case of
geo-mining, concepts can include sets of alterna-
tive names for some place, or sets of all locations
of the same type (e.g., all countries). Geographical
relationships can include nearness of two locations
and entity-location relationships such as institute-
address, capital-country, tourist site-city etc.

The major differences between relationship ac-
quisition frameworks come from the types and an-
notation requirements of the supplied input and
the basic algorithmic approach used to process
this input. A first major algorithmic approach
is to represent word contexts as vectors in some
space and use distributional measures and auto-
matic clustering in that space. Curran (2002)
and Lin (1998) use syntactic features in the vec-
tor definition. Caraballo (1999) uses conjunction
and appositive annotations in the vector represen-
tation.While efforts have been made for improv-
ing the computational complexity of these meth-
ods (Gorman and Curran, 2006), they remain data
and computation intensive.

The second major algorithmic approach is to
use lexico-syntactic patterns, which have been
shown to produce more accurate results than fea-

ture vectors at a lower computational cost on large
corpora (Pantel et al., 2004). Most related work
deals with discovery of hypernymy (Hearst, 1992;
Pantel and Lin, 2002) and synonymy (Widdows
and Dorow, 2002; Davidov and Rappoport, 2006).
Some studies deal with the discovery of more spe-
cific relation sub-types, including inter-verb re-
lations (Chklovski and Pantel, 2004) and seman-
tic relations between nominals (Davidov and Rap-
poport, 2008). Extensive frameworks were pro-
posed for iterative discovery of pre-specified (e.g.,
(Riloff and Jones, 1999)) and unspecified (e.g.,
(Agichtein and Gravano, 2000)) relation types.

Some concepts and relationships examined by
seed-based discovery methods were of a geo-
graphical nature. For example, (Etzioni et al.,
2004) discovered a set of countries and (Davidov
et al., 2007) discovered diverse country relation-
ships, including location relationships between a
country and its capital and a country and its rivers.
As noted in Section 1, the type of output that we
produce here is not an unstructured collection of
word pairs but a labeled network. As such, our
task here is much more complex.

Our study is related to geographical informa-
tion retrieval (GIR) systems. However, our prob-
lem is very far from classic GIR problem settings.
In GIR, the goal is to classify or retrieve possi-
bly multilingual documents in response to queries
in the form ‘theme, spatial relationship, location’,
e.g., ‘mountains near New York’ (Purves et al.,
2006). Our goal, in contrast, is not document re-
trieval, but the generation of a structured informa-
tion resource, a labeled location graph.

Spatial relationships used in natural language
tend to be qualitative and descriptive rather than
quantitative. The concept of Naive Geography,
which reflects the way people think and write
about geographical space, is described in (Egen-
hofer and Shariff, 1995). Later in (Egenhofer
and Shariff, 1998) they proposed a way to convert
coordinate-based relationships between spatial en-
tities to natural language using terms as ‘crosses’,
‘goes through’ or ‘runs into’. Such terms can be
potentially used in patterns to extract geographi-
cal information from text. In this paper we start
from a different pattern, ‘from ... to’, which helps
in discovering transport or connectedness relation-
ships between places, e.g., ‘bus from X to Y’ and
‘road from X to Y’.

The majority of geographical data mining



frameworks utilize structured data such as avail-
able gazetteers and Wikipedia metadata. Sev-
eral other studies utilize semi-structured data like
Wikipedia links (Overell and Ruger, 2007) or sub-
structures in web pages, including addresses and
phone numbers (Borges et al., 2007).

The recent Schockaert et al.( 2008) framework
for extraction of topological relationships from the
web has some similarities to our study. In both
cases the algorithm produces map-like structures
using the web. However, there are significant dif-
ferences. They utilize relatively structured address
data on web pages and rely on the order of named
entities in address data for extracting containment
relationships. They also use co-appearances in
addresses (e.g., ‘R1 / R2’ and ‘R1 & R2’ as in
“Newport & Gabalfa, Cardiff”) to deduce location
boundaries. This allows them to get high precision
data for modern and heavily populated regions like
Cardiff, where the majority of offices have avail-
able well-formatted web pages.

However, in less populated regions (a major tar-
get for tourist information requests), this strategy
could be problematic since a major information
source about these places would be not local web
sites (in which local addresses are likely to be
found) but foreign visitor sites, web forums and
news. We rely on free text available in all types
of web pages, which allows us to capture unstruc-
tured information which contains a significant por-
tion of the web-available geographical knowledge.

Our goals are also different from Schockaert et
al.( 2008), since we focus on obtaining informa-
tion based on paths and transport between loca-
tions, while in their work the goal is to find a net-
work representing nearness of places rather than
their connectivity by means of transport or walk-
ing. Nevertheless, in one of our evaluation settings
we targeted the area of Cardiff as in (Schockaert
et al., 2008). This allowed us to make an indi-
rect comparison of a relevant part of our results
to previous work, achieving state-of-the-art per-
formance.

3 The Algorithm

As input to our algorithm we are given a seed of
a few location names specifiying some geograph-
ical region. In this section we describe the algo-
rithm which, given these names, extracts the la-
beled structure of connections between entities in
the desired region. We first use a predefined pat-

tern for recursive extraction of the first set of enti-
ties. Then we discover additional patterns from
co-appearing location pairs and use them to get
more terms. Next, we label and merge the ob-
tained location pairs. Finally, we construct and
refine the obtained graph.

3.1 Pattern-based discovery with web queries

In order to obtain the first set of location connec-
tions, we use derivatives of the basic pattern ‘from
X to Y’. Using Yahoo! BOSS, we have utilized
the API’s ability to search for phrases with wild-
cards. Given a location name L we start the search
with patterns “from * to L”, “from * * to L”. These
are Yahoo! BOSS queries where enclosing words
in “” means searching for an exact phrase and ‘*’
means a wildcard for exactly one arbitrary word.

This pattern serves a few goals beyond the dis-
covery of connectedness. Thus putting ‘*’s inside
the pattern rather than using “from L to” allowed
us to avoid arbitrary truncation of multiword ex-
pressions as in ‘from Moscow to St. Petersburg’
and reduced the probability of capturing unrelated
sentence parts like ‘from Moscow to cover deficit’.

Location names are usually ambiguous and this
type of web queries can lead to a significant
amount of noise or location mix. There are two
types of ambiguity. First, as in ‘from Billericay to
Stock....’, stock can be a location or a verb. We
filter most such cases by allowing only capital-
ized location names. Besides, such an ambiguity
is rarely captured by ‘from * to L’ patterns. The
second type is location ambiguity. Thus ‘Moscow’
refers to at least 5 location names including farms
in Africa and Australia and a locality in Ireland. In
order to reduce mixing of locations we use the fol-
lowing simple disambiguation technique. Before
performing “from...to” queries, we downloaded up
to 100 web pages pointed by each possible pair
from the given seed locations, generating from
a location pair L1, L2 a conjunctive query “L1

* L2”. Then we extracted the most informative
terms using a simple probabilistic metric:

Rank(w) =
P (w|QueryCorpus)

P (w|GeneralCorpus)
,

comparing word distribution in the downloaded
QueryCorpus to a large general purpose offline
GeneralCorpus1. We thus obtained a set of

1We used the DMOZ corpus (Gabrilovich and
Markovitch, 2005).



query-specific disambiguating words. Then we
added to all queries the same most frequent word
(DW) out of the ten words with highest ranks.
Thus for the seed set {Moscow, St. Petersburg},
an example of a query is <“from * to Moscow”
Russia>.

3.2 Iterative location retrieval

We retrieved all search engine snippets for each
of these initial queries2. If we succeeded to get
more than 50 snippets, we did not download the
complete documents. In case where only a hand-
ful of snippets were obtained, the algorithm down-
loaded up to 25 documents pointed by these snip-
pets in an attempt to get more pattern instances.
In the majority of tested cases, snippets provide
enough information for our task, and this informa-
tion was not significantly extended by download-
ing the whole documents.

Once we retrieve snippets we identify terms
appearing in the snippets in wildcard slots. For
example, if the query is <“from * to Moscow”
Russia> and we encounter a snippet “...from
Vladivostok to Moscow...”, we add ‘Vladivostok’
to our set of seeds. We then continue the search in
a breadth first search setting, stopping the search
on three conditions: (1) runaway detected – the
total frequency of newly obtained terms through
some term’s patterns is greater than the total fre-
quency of previously discovered terms+seeds. In
this case we stop exploration through the prob-
lematic term and continue exploration through
other terms3; (2) we reached a predefined maxi-
mal depth D4; (3) no new terms discovered.

At the end of this stage we get the extended
set of terms using the set of snippets where these
terms co-appear in patterns.

3.3 Enhancement of initial pattern set

In order to get more data, we enhance the pattern
set both by discovery of new useful secondary pat-
terns and by narrowing existing patterns. After ob-
taining the new pattern set we repeat the extraction
stage described in Section 3.2.

2Yahoo! Boss allows downloading up to a 1000 descrip-
tions, up to 50 in each request. Thus for each seed word, we
have performed a few dozen search requests.

3Note that the ‘problematic’ term may be the central term
in the region we focus upon – if this happen it means that the
seeds do not specify the region well.

4Depth is a function of the richness of transport links in
the domain. For connected domains (Cardiff, Israel) we used
4, for less connected ones (Nepal) we used 10.

Adding secondary patterns. As in a number of
previous studies, we improve our results discover-
ing additional patterns from the obtained term set.
The algorithm selects a subset of up to 50 discov-
ered (t1, t2) term pairs appearing in ‘from t1 to t2’
patterns and performs the set of additional queries
of the form <“t1 * t2” DW>.

We then extract from the obtained snippets the
patterns of the form ‘Prefix t1 Infix t2 Postfix’,
where Prefix and Postfix should contain either a
punctuation symbol or 1-3 words. Prefix/Postfix
should also be bounded from left/right by a punc-
tuation or one of the 50 most frequent words in the
language (based on word counts in the offline gen-
eral corpus). Infix should contain 1-3 words with
the possible addition of punctuation symbols5.

We examine patterns and select useful ones ac-
cording to the following ranking scheme, based
on how well each pattern captures named entities.
For each discovered pattern we scan the obtained
snippets and offline general corpus for instances
where this pattern connects one of the original
or discovered location terms to some other term.
Let T be the set of all one to three word terms
in the language, Td ⊂ T the set of discovered
terms, Tc ⊂ T the set of all capitalized terms and
Pat(t1, t2) indicates one or more co-appearances
of t1 and t2 in pattern Pat in the retrieved snippets
or offline general corpus. The rank R of pattern
Pat is defined by:

R(Pat) =
|{Pat|Pat(t1, t2), t1 ∈ Tc, t2 ∈ Td}|
|{Pat|Pat(t1, t2), t1 ∈ T, t2 ∈ Td}|

In other words, we rank patterns according to the
percentage of capitalized words connected by this
pattern. We sort patterns by rank and select the
top 20% patterns. Once we have discovered a new
pattern set, we repeat the term extraction in Sec-
tion 3.2. We do this only once and not reiterate
this loop in order to avoid potential runaway prob-
lems. Obtained secondary patterns include dif-
ferent from/to templates “to X from Y by bus”;
time/distance combinations “X -N km bus- Y”, “X
(bus, N min) Y” or patterns in different languages
with English location/transport names.

Narrowing existing patterns. When available
data volume is high, we would like to take advan-
tage of more data by utilizing more specific pattern

5Search engines do not support punctuation in queries,
hence these symbols were omitted in web requests and con-
sidered only when processing the retrieved snippets.



sets. Since Yahoo! allows to obtain only the first
1K snippets, in case we get more than 10K hits,
we extend our queries by adding the most com-
mon term sequences appearing before or after the
pattern. Thus if for the query “from * to Moscow”
we got more than 10K hits and among the snippets
we see ‘... bus from X to Moscow...’ we create an
extended pattern ‘bus from * to Moscow’ and use
the term extraction in Section 3.2 to get additional
terms. Unlike the extraction of secondary patterns,
this narrowing process can be repeated recursively
as long as a query brings more than 10K results.

3.4 Extraction of labeled connections
At the end of the discovery stage we get an ex-
tended set of patterns and a list of search engine
snippets discovered using these patterns. Each
snippet which captures terms t1, t2 in either pri-
mary ‘from t1 to t2’ or secondary patterns repre-
sents a potential connection between entities.

Using an observed property of the primary pat-
tern, we select as a label a term or set of terms ap-
pearing directly before ‘from’ and delimited with
some high frequency word or punctuation. For
example, labels for snippets based on ‘from...to’
patterns and containing ‘the road from...’, ‘got a
bus from’, ‘a TransSiberian train from...’ would
be road, bus and TransSiberian train.

Once we acquire labels for the primary patterns,
we also attempt to find labels in snippets obtained
for secondary patterns discovered as described in
Section 3.3. We first locate some already labeled
pairs in secondary patterns’ snippets where we can
see both label and the labeled term pair. Then,
based on the label’s position in this snippet, we
define a label slot position for this type of snip-
pet. Suppose that during the labeling of primary
pattern snippets we assigned the label ‘bus’ to the
pair (Novgorod, Moscow) and during the pattern
extension stage the algorithm discovered a pattern
Pnew = ‘ride to t2 from t1,’ with a corresponding
snippet ‘... getting bus ride to Moscow from Nov-
gorod...’. Then using the labeled pair our algo-
rithm defines the label slot in such a snippet type:
‘getting [label] ride to t2 from t1’. Once a label
slot is defined, all other pairs captured by Pnew

can be successfully labeled.

3.5 Merging connection labels
Some labels may denote the same type of con-
nection. Also, large sets of connections can
share the same set of transport types. In this

case it is desired to assign a single label for
a shared set of transports. We do this by a
simple merging technique. Let C1, C2 be sets
of pairs assigned to labels L1, L2. We merge
two labels if one of the following conditions holds:

(1)|C1 ∩ C2| > 0.75 ∗min(|C1|, |C2|)
(2)|C1 ∩ C2| > 0.45 ∗max(|C1|, |C2|)

Thus, either one group is nearly included in the
other or each group shares nearly half with the
other group. We apply this rule only once and do
not iterate recursively. At this stage we also dis-
miss weakly populated labels, keeping the 10 most
populated labels.

3.6 Processing of connection graph

Now once we have merged and assigned the la-
bels we create a pattern graph for each label and
attempt to clean the graph of noise and unneces-
sary edges. Our graph definition follows (Wid-
dows and Dorow, 2002). In our pattern graph for
label L, nodes represent terms and directed edges
represent co-appearance of two terms in some pat-
tern in snippet labeled by L. We do not add unla-
beled snippets to the graph. Now we use a set of
techniques to reduce noise and unnecessary edges.

3.6.1 Transitivity elimination
One of the main problems with the pattern-based
graph is transitivity of connections. Thus if loca-
tion A is connected to B and B to C, we frequently
acquire a “shortcut” edge connecting A to C. Such
an edge diminishes our ability to create a clear and
meaningful spatial graph. In order to reduce such
edges we employ the following two strategies.

First, neighboring places frequently form fully
connected subgraphs. We would like to sim-
plify such cliques to reduce the amount of tran-
sitive connections. If three overlapping sets of
nodes {A1 . . . An−2},{A2 . . . An−1},{A3 . . . An}
form three different cliques, then we remove all
edges between A1 and the nodes in the third clique
and between An and the nodes in the first clique.

Second, in paths obtained by directional pat-
terns, it is common that if there is a path A1 →
A2 · · · → An where A1 and An are some
major ‘key’ locations6, then each of the nodes
A2 . . . An−1 tend to be connected both to A1 and

6Such locations will be shown in double circles in the
evaluation.



to An while intermediate nodes are usually con-
nected only to their close neighbors. We would
like to eliminate such transitive edges leaving only
the inter-neighbor connections.

We define as key nodes in a graph, nodes whose
degree is more than 1.5 times the average graph
degree. Then we eliminate the transitive con-
nections: if A1 is a key node and A1 is con-
nected to each of the nodes A2 . . . An−1, and
∀i ∈ {2 . . . n − 1}, Ai is connected to Ai+1,
then we remove the connection of A1 to all nodes
A3 . . . An−1 , leaving A1 only connected to A2.

3.6.2 Clearing noise and merging names
Finally we remove potential noise which acciden-
tally connects remote graph parts. If some edge
discovered through a single pattern instance con-
nects distant (distance>3) parts of the graph we
remove it.

Additionally, we would like to merge common
name alternations and misspellings of places. We
merge two nodes A and B into one node if ei-
ther (1) A, B have exactly the same edges, and
their edge count is greater than 2; or (2) edges
of A are subset of B’s edges and the string edit
distance between A and B is less than a third of
min(StringLength(A), StringLength(B)).

4 Evaluation

Since our problem definition differs significantly
from available related work, it is not possible to
make direct comparisons. We selected three dif-
ferent cases (in Nepal, Israel, Wales) where the
obtained information can be reliably verified, and
applied our framework on these settings. As a de-
velopment set, we used the Russian rail network.

We have estimated the quality of our framework
using several measures and observations. First, we
calculated the precision and quantity of obtained
locations using map information. Then we manu-
ally estimated precision of the proposed edges and
their labels, comparing them with factual infor-
mation obtained from maps7, transport companies
and tourist sites. Finally we visually compared a
natural drawing of the obtained graph with a real
map. In addition, while our goals differ, the third
evaluation setting has deliberate significant simi-
larities to (Schockaert et al., 2008), which allows
us to make some comparisons.

7We recognize that in case of some labels, e.g. ‘walk’, the
precision measure is subjective. Nevertheless it provides a
good indication for the quality of our results.

4.1 The Annapurna trek area

One of the most famous sites in Nepal is the Anna-
purna trekking circuit. This is a 14-21 day walk-
ing path which passes many villages. Most of the
tourists going through this path spend weeks in
prior information mining and preparations. How-
ever, even when using the most recent maps and
guides, they discover that available geographical
knowledge is far from being complete and precise.
This trek is a good example of a case when formal
information is lacking while free-text shared expe-
rience in the web is abundant. Our goal was to test
whether the algorithm can discover such knowl-
edge automatically starting from few seed location
names (we used Pokhara, which is one of the cen-
tral cities in the area, and Khudi, a small village).
The quality of results for this task was very good.
While even crude recall estimation is very hard for
this type of task, we have discovered 100% of the
Annapurna trek settlements with population over
1K, all of the flight and bus connections, and about
80% of the walking connections.

On Figure 1 we can compare the real map and
the obtained map8. This discovered map includes
a partial map9 for 4 labels – flights, trek, bus and
jeep. You can see on the map different lines for
each label. The algorithm discovered 132 enti-
ties, all of them Annapurna-related locations. This
includes correctly recognized typos and alterna-
tive spellings, and the average was 1.2 names per
place. For example for Besisahar and Pokhara
the following spellings were recognized based
both on string distance and spatial collocation:
Besishahar, Bensisahar, BesiSahar, Besi Sahar,
Beshishahar, Beisahar, Phokra, Pohkala, Poka-
hara, Pokhara, Pokhar, Pokra, Pokhura, Pokhra.

We estimated correctness of edges comparing
to existing detailed maps. 95% of the edges were
correctly placed and labeled. Results were good
since this site is well covered and also not very
interconnected – most of it is connected in a sin-
gle possible way. After the elimination process
described in the previous section, only 6% of the
nodes participate in 3-cliques. Thus, due to the
linearity of the original path, our method success-

8Graph nodes were manually positioned such that edges
do not intersect. Recall that our goal is to build a network
graph, which is an abstract structure. The 2-D embedding of
the graph shown here is only for illustrative purposes and is
not part of our algorithm.

9A few dozens of correctly discovered places were omit-
ted to make the picture readable.



Figure 1: Real path map of Annapurna circuit
(above) compared to automatically acquired graph
(below). The graph nodes were manually posi-
tioned such that edges do not cross each other.
Dozens of correctly discovered places were omit-
ted for readability. Double circles indicate key
nodes as explained in section 3.6.1

fully avoided the problem of mixing transitively
connected nodes into one large clique.

4.2 The Israeli south

The southern part of Israel (mostly the Negev
desert) is a sparsely populated region containing
a few main roads and a few dozen towns. There
is a limited number of tourists sites in the Negev
and hence little web information is supposed to be
available. Our goal was to see if the algorithm can
successfully detect at least major entities and to
discover their connectedness.

We discovered 56 names of different places, of
them 50 correctly belong to the region, where the
region is defined as south from the Ashquelon-

Jerusalem-Yericho line, the other 6 were Is-
raeli cities/locations outside the region (Tiberias,
Metulla, Ben Gurion, Tel Aviv, Ashdod, Haifa).
In addition we discovered 23 alternative names for
some of the 56 places. We also constructed the
corresponding connectedness graphs.

We tested the usefulness of this data attempting
to find the discovered terms in the NGA GEOnet
Names Server10 which is considered one of the
most exhaustive geographical resources. We could
find in the database only 60% of the correctly dis-
covered English terms denoting towns, so 40% of
the terms were discovered by us and ignored by
this huge coverage database. We also tested the
quality of edges, and found that 80% of the dis-
covered edges were correctly placed and labeled.
Figure 2 shows a partial graph of the places ob-
tained for the ‘road’ label.

Figure 2: Partial graph for Israel south settings.

4.3 The Cardiff area
Cardiff is the capital, largest city and most pop-
ulous county in Wales. Our goal was to see
if we can discover basic means of transport and
corresponding locations connected to and inside
Cardiff. This exploration also allowed us to com-
pare some of our results to related studies. We ex-
ecuted our algorithm using as seeds Grangetown,
Cardiff and Barry. Table 1 shows the most utilized
merged labels obtained for most edge-populated
graphs together with graph size and estimated pre-
cision. In case of flights, treks and trains, precision
was estimated using exact data. In other cases we
estimated precision based on reading relevant web
pages. We can see that the majority of connectiv-
ity sets are meaningful and the precision obtained
for most of these sets is high. Figure 3 shows a
partial graph for ‘walking’-type labels and Figure

10http://earth-info.nga.mil/gns/html/



Nodes Edges(Prec) Label
88 120(81) walking,walk,cycling,short ride

taxis, Short bus ride,short walk
131 140(95) flights, airlines,# flights a day
12 16(100) foot path, trek, walking # miles
36 51(89) train, railway, rail travel,rail
32 98(65) bus, road, drive,direct bus

Table 1: The merged labels obtained for 5
most edge-populated graphs, including number of
nodes and edges for each label. The estimated pre-
cision according to each label definition is shown
in parentheses.

4 shows such a graph for train labels11. Compar-
ing the obtained map with real map data we notice
a definite correlation between actual and induced
relative connection of discovered places.

(Schockaert et al., 2008) used their frame-
work to discover neighborhoods of Cardiff. In
our case, the most appropriate relation which con-
nects neighborhood locations is walking/cycling.
Hence, comparing the results to previous work, we
have examined the results obtained for the ‘walk-
ing’ label in details. (Schockaert et al., 2008) re-
port discovery of 68 locations, of them 7 are al-
ternate entries, 4 can be considered vernacular or
colloquial, 10 are not considered to be neighbor-
hoods, and 5 are either close to, but not within,
Cardiff, or are areas within Cardiff that are not
recognized neighborhoods. In our set we have dis-
covered 88 neighborhood names, of them 18 are
alternate entries of correct neighborhoods, 4 can
be considered vernacular or colloquial, 3 are not
considered to be neighborhoods, and 15 are areas
outside the Cardiff area.

Considering alternate entries as hits, we got su-
perior precision of 66/88 = 0.75 in comparison to
49/68 = 0.72. It should be noted however that we
found many more alternative names possibly due
to our larger coverage. Also both our framework
and the goal were substantially different.

5 Discussion

In this paper we presented a framework which,
given a small set of seed terms describing a ge-
ographical region, discovers an underlying con-
nectivity and transport graph together with the ex-
traction of common and alternative location names
in this region. Our framework is based on the

11Spatial position of displayed graph components is arbi-
trary, we only made sure that there are no intersecting edges.

Figure 3: Partial graph of the obtained Cardiff re-
gion for the walk/walking/cycling label.

Figure 4: Partial graph of the obtained Cardiff re-
gion for the railway/train label.

observation that ‘from...to’-like patterns can en-
code connectedness in very precise manner. In our
framework, we have combined iterative pattern-
and web-based relationship acquisition with the
discovery of new patterns and refinement of the lo-
cation graph. In our evaluation we showed that our
framework is capable of extracting high quality
non-trivial information from free text given very
restricted input and not relying on any heavy pre-
processing techniques such as parsing or NER.

The success of the proposed framework opens
many challenging directions for its enhancement.
Thus we would like to incorporate in our net-
work patterns which allow traveling times and dis-
tances to be extracted, such as ‘N miles from X
to Y’. While in this paper we focus on specific
type of geographical relationships, similar frame-
works can be useful for a wider class of spatial re-
lationships. Automated acquisition of spatial data
can significantly help many NLP tasks, e.g., ques-
tion answering. We would also like to incorpo-
rate some patterns based on (Egenhofer and Shar-
iff, 1998), such as ‘crosses’, ‘goes through’ or
‘runs into’, which may allow automated acquisi-
tion of complex spatial relationships. Finally, we
would like to incorporate in our framework mod-



ules which may allow recognition of structured
data, like those developed by (Schockaert et al.,
2008).
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