
Image-Based Rendering for Non-Diffuse Synthetic Scenes

Dani Lischinski Ari Rappoport
The Hebrew University

Abstract. Most current image-based rendering methods operate under the assumption that all
of the visible surfaces in the scene are opaque ideal diffuse (Lambertian) reflectors. This paper
is concerned with image-based rendering of non-diffuse synthetic scenes. We introduce a new
family of image-based scene representations and describe corresponding image-based rendering
algorithms that are capable of handling general synthetic scenes containing not only diffuse re-
flectors, but also specular and glossy objects. Our image-based representation is based on layered
depth images. It represents simultaneously and separately both view-independent scene informa-
tion and view-dependent appearance information. The view-dependent information may be either
extracted directly from our data-structures, or evaluated procedurally using an image-based ana-
logue of ray tracing. We describe image-based rendering algorithms that recombine the two
components together in a manner that produces a good approximation to the correct image from
any viewing position. In addition to extending image-based rendering to non-diffuse synthetic
scenes, our paper has an important methodological contribution: it places image-based render-
ing, light field rendering, and volume graphics in a common framework of discrete raster-based
scene representations.

1 Introduction

Image-based rendering is a new rendering paradigm that uses pre-rendered or pre-
acquired reference images of a 3D scene in order to synthesize novel views of the scene.
This paradigm possesses several important advantages compared to traditional render-
ing: (i) image-based rendering is relatively inexpensive and does not require special
purpose graphics hardware; (ii) The rendering time is independent of the geometrical
and physical complexity of the scene being rendered; and (iii) The pre-acquired images
can be of real scenes, thus obviating the need to create a full geometric 3D model in
order to synthesize new images.

While the ability to handle real scenes has been an important motivating factor in the
emergence of image-based rendering (particularly in the computer vision community
[17]), it soon became clear that image-based rendering is also extremely useful for
efficient rendering of complex synthetic 3D scenes [5, 12, 22, 23, 29].

Fig. 1. The result of warping two different ref-
erence views of a scene to a common new view.
The mirror reflections in the box are incorrect
and inconsistent.

Unfortunately, most current image-
based rendering methods operate under
the assumption that all of the visible sur-
faces in the scene are opaque ideal dif-
fuse (Lambertian) reflectors, i.e., it is
assumed that every point in the scene
appears to have the same color when
viewed from different directions. How-
ever, in practice, both real and synthetic
scenes often contain various non-diffuse
surfaces, such as specularly reflecting
mirrors, shiny floors, glossy tabletops,
etc. If any of these non-diffuse surfaces
are visible in the reference images of the

scene, new images of the scene produced by most current image-based rendering meth-
ods will be incorrect, exhibiting potentially severe inconsistencies, as illustrated in Fig-
ure 1. The inability of image-based rendering techniques to handle non-diffuse scenes
correctly, is a major limitation of their usefulness, applicability, and power. It should
be noted here that one particular variety of image-based rendering, referred to as light
field rendering [11, 20] is not subject to the above limitation, but at a significant storage
penalty.

The main contribution of this paper is a new image-based rendering approach that
correctly handles non-diffuse synthetic scenes with general view-dependent shading
phenomena, such as specular highlights, ideal specular reflections, and glossy reflec-
tions. In our approach, a scene is represented as a collection of parallel projections with
multiple depth layers (LDIs) [12, 23]. All view-independent scene information (i.e., ge-
ometry and diffuse shading) is represented using three orthogonal high-resolution LDIs.
The view-dependent scene information is represented as a separate (larger) collection
of low-resolution LDIs. Each of these LDIs captures the appearance of the scene from
a particular direction. We describe image-based rendering algorithms that recombine
these two components together to quickly produce a good approximation to the correct
image of the scene from any viewing position. By separating the representation in the
manner outlined above, we are able to obtain results superior in quality to those pro-
duced by light field rendering methods, while requiring considerably less storage. Our
image-based rendering techniques produce images with view-dependent shading and
reflections whose quality is comparable to those generated by a conventional ray tracer,
but faster.

Another important contribution of this paper is a methodological one. Our approach
places image-based rendering, light field rendering, and volume graphics [13] in a com-
mon framework: the framework of discrete raster-based scene representations. This
common framework enables better understanding of the relative advantages and disad-
vantages of these techniques.

2 Related work

An image-based rendering technique can be thought of as a combination of a discrete
raster-based scene representation with a rendering algorithm that operates on this rep-
resentation to produce images from various views. The rendering algorithm typically
utilizes the regularity, uniformity, and the bounded size of the raster-based representa-
tion to produce the new views rapidly. Four main kinds of raster-based representations
have been previously explored: image-based representations, discrete 4D light fields,
discrete volumetric representations, and ray representations.

2.1 Image-based representations

Image-based rendering techniques typically represent a scene as a collection of refer-
ence images: scene projections sampled on a discrete grid. This projections can be
spherical, cylindrical [4, 26], or planar [5, 17, 22, 28]. Each projection pixel can be
thought of as a scene sample, because it represents the color (and sometimes the depth)
of the nearest point in the scene that can be seen along the corresponding projection
line. New images can be generated from one or more projections by warping these
scene samples to the desired view. In order to correctly warp a scene sample, we must
know its depth. Depth information is either encoded implicitly in the form of corre-
spondences between pairs of points in different projections [17, 26], or it can be stored

explicitly with each scene sample. For example, in the case of synthetic scenes depth
information is readily available.

In addition to obtaining depths or correspondences, the key challenge in these ap-
proaches is to handle the gaps that appear in the synthesized images. Such gaps appear
when areas in the reference images are stretched by the warp to the new image, and
when parts that are occluded in all of the reference images come into view. Mark et al.
[22] handle these problems using multiple reference images, each represented as a mesh
of micro-polygons. Gortler et al. [12] use a layered depth image (LDI) and “splat” each
pixel onto the screen [32].

Layered depth images were also used by Max [23, 24] in order to represent in a hier-
archical fashion and render complex photorealistic models of botanical trees. There are
similarities between his approach and the one presented in this paper: both approaches
use parallel projection LDIs, and store a normal with each scene sample in order to per-
form shading after the reprojection. However, our approach concentrates on the issue
of handling view-dependent shading phenomena, which was not addressed by Max.

As pointed out earlier, creating a new image by warping scene samples is only
correct when the samples correspond to ideal diffuse surfaces. There have been a
few attempts to extend reprojections and view-interpolation to non-diffuse scenes [1, 2,
6], but these approaches are not completely image-based. They require access to the
original scene geometry to handle various cases in which reprojection cannot produce
the correct results. Thus, these methods handle diffuse pixels quickly, but still have to
do a lot of work for the remaining pixels.

2.2 Light field rendering

While image-based rendering techniques represent both the geometry and the color of
each scene sample, light field rendering techniques [11, 20] avoid the representation
of geometry altogether. Instead they represent a scene as a 4D subset of the complete
5D light field that describes the flow of light at all positions in all directions. This 4D
function, which Gortler et al. dub a Lumigraph, describes all of the light entering or
leaving a bounded region of space. Once the Lumigraph has been constructed, images
of the region’s contents can be quickly generated from any viewpoint outside the region.

Light field rendering is simpler and more robust than most previous image-based
rendering techniques because it does not require depth values, optical flow information,
or pixel correspondences, and it is not limited to diffuse scenes. However, it also has
several significant limitations: (i) high-fidelity light fields require a very large amount
of storage; (ii) computing the light field of a synthetic scene can take a very long time;
and (iii) the 4D light field describes the flow of light in a bounded region of space free of
objects, and it is not yet clear how to extend light-fields to allow free navigation inside
a scene.

2.3 Volume graphics

Image-based rendering techniques were not the first to utilize the advantages of regular
and uniform discrete representation of 3D scenes: similar representations have been
actively explored in the field of volume visualization [9, 15, 16, 18, 32].

In particular, a subfield of volume visualization, referred to as volume graphics [13]
is concerned with the synthesis, representation, manipulation, and rendering of vol-
umetric objects stored in a 3D volume buffer. Unlike volume visualization, which
focuses primarily on sampled and computed volumetric datasets, volume graphics is
concerned primarily with volumetric representation of synthetic 3D scenes. Similarly

to image-based rendering, volume graphics is insensitive to the geometric complexity
of the scene and of the objects contained in it. Volumes have an advantage over images
in that they constitute a more complete representation of the environment: not only the
boundary of the objects is represented, but also their interior. However, the price of the
extra dimension is much higher storage requirements and longer rendering times.

Several researchers in volume graphics have investigated algorithms for rendering
non-diffuse synthetic scenes from their volumetric representation. Volumetric ray trac-
ing [19, 31] can be used for this purpose, handling specular reflections and other non-
diffuse phenomena via recursive tracing of secondary rays. Yagel et al. [33] describe
discrete ray tracing, a technique in which discrete (voxelized) rays are tracked through
the 3D volume buffer until they encounter a voxel occupied by a voxelized surface. Our
proposed approach utilizes a related technique, which traces a ray in a layered depth
projection of the scene.

The discrete scene representation and the rendering algorithms that we propose to
explore can be viewed as bridging the gaps between the image-based rendering, light
field rendering, and volume graphics approaches surveyed above.

2.4 Ray representations

Researchers in solid modeling have explored object representation schemes based on
ray sampling. Van Hook [30] extended the ordinary z-buffer by storing a list of objects
at each pixel, supporting faster visualization of Boolean operations for simulation of
NC machining operations. This method requires special purpose hardware that is not
currently available.

Groups from Cornell and Duke universities have devised a hardware architecture
called the “ray casting engine”, in which a geometric object is represented by a discrete
2D matrix defined by a parallel projection of the surfaces defining the object in a certain
direction. Each matrix element contains a list of surfaces pierced by the corresponding
ray. The resulting representation was dubbed the “ray representation” or “rayrep” [10].
It was argued that using the rayrep, several important solid modeling operations are
easier to solve [27]. One of these operations was ray tracing the solid, but the results
were not of high visual quality.

Recently, Benouamer [3] proposed using three sets of rayreps projected in orthog-
onal directions for computing Boolean operations when converting CSG objects to a
boundary representation (Brep). The rayreps are generated by ray casting, and the Brep
is obtained by a surface reconstruction algorithm in the spirit of the “marching cubes”
algorithm [21]. The emphasis in his work is on the resulting geometry, its tolerance
with respect to manufacturing applications, and the simplicity of implementation rather
than on rendering and visual quality.

3 A new discrete representation

The main new idea behind our approach is to represent simultaneously but separately
both view-independent scene information (geometry, diffuse shading, etc.) and view-
dependent appearance information. The two components are combined during render-
ing to efficiently produce correct images of non-diffuse scenes.

Both kinds of scene information are represented using a collection of parallel pro-
jections of the scene, where each projection is a layered depth image (LDI) [12, 23]1.

1The LDIs described by Gortler et al. [12] are defined using a general perspective projection of the scene.

4321 5 6 7 8 9 10 11 12

c

e

a

b

d

h

g

f

(a) (b) (c)

Fig. 2. (a) A parallel LDI of a simple 2D scene. Pixel 6 in the LDI stores scene samples a� b� c� d,
and pixel 9 stores scene samples e� f� g� h. (b) and (c) illustrate (in 2D) the view-independent
LDIs and the LLF, respectively.

Each LDI pixel contains a list of scene samples corresponding to all surface points in
the scene intersected by the projection ray through the center of the pixel (see Fig-
ure 2a). The scene samples all lie on a 2D raster, when seen from the direction of
projection, but their positions along the projection axis can be arbitrary (thus, there is
no discretization along the depth axis). The difference between the representation of
the view-independent and the view-dependent components is in the type of information
stored with each scene sample and in the number of projections.

3.1 The layered depth cube

The view-independent component of our representation consists of three high-resolution
parallel LDIs corresponding to three orthogonal directions (see Figure 2b). We refer to
this component as the layered depth cube (LDC). With each scene sample of the LDC
we store its depth value (the orthogonal distance from a reference plane perpendicular
to the direction of projection). We also store the surface normal, the diffuse shading, a
bitmask describing the visibility of the light sources, and the directional BRDF at the
surface point2. Note that for diffuse scenes this representation is complete (modulo the
finite spatial resolution of the LDIs). Specifically, if h is the spacing between adjacent
pixels in the LDIs, we are guaranteed to have at least one scene sample on any surface
element of size

p
�h, regardless of its orientation.

3.2 The layered light field

The view-dependent component of our representation is referred to as the layered light
field (LLF). The LLF consists of a potentially large collection of low-resolution parallel
LDIs corresponding to various directions (we have experimented with 66, 258, and
1026 directions, uniformly distributed on the unit sphere), as illustrated in Figure 2c.
Each scene sample in the LLF contains, in addition to its depth, the total radiance
leaving the scene sample in the direction of projection. Thus, each of the LDIs samples

Similarly to Max [23], we use parallel projections since they offer computational advantages, as we shall see
in section 4.3.

2In practice, we store an index into a table containing the material properties of surfaces in the scene.

the light field along oriented lines parallel to the direction of projection. Assume that
the LLF has n LDIs, each with spacing of h between adjacent pixels. In this case, we
are guaranteed that any point p in the scene lies within a distance of

p
�

�
h from n light

field samples, each corresponding to a different direction. Thus, given any point p in the
scene we can reconstruct the light field at that point by interpolating between n samples.
Naturally, the accuracy of the reconstruction depends on the number of directions n and
on the spacing h between adjacent parallel projection lines.

3.3 Rendering overview

At this point, we have the necessary ingredients for describing our non-diffuse image-
based rendering algorithm for synthetic scenes. Rendering proceeds in two stages: First,
we apply 3D warping to the high-resolution view-independent LDIs. This stage is de-
scribed in more detail in Section 4.1. The 3D warping results in a primary image, which
is a correct representation of the geometry of the scene, as seen from the new viewpoint,
along with the diffuse component of the shading. In each pixel of the primary image
we store the scene sample visible through that pixel.

The second stage utilizes the normal, the light source visibility mask, and the direc-
tional BRDF at each visible scene sample to compute the view-dependent component of
the shading. First, specular highlights from the light sources in the scene are added, by
simply evaluating the local specular shading model (e.g., Phong) for each of the visible
light sources (visibility is stored in the light source bitmask). Then, to add reflections
of other objects in the scene we use two techniques:
1. Light-field gather: this technique integrates the light field at the point of interest

using the directional BRDF to weigh each incoming direction. The light field is
reconstructed from the LLF as described in Section 4.2. Light-field gather works
very well with glossy objects with fuzzy reflections, but in order to generate sharp
reflections (e.g., on mirrors) it is more effective to use image-based ray tracing.

2. Image-based ray tracing: this technique recursively traces reflected rays from the
point of interest. These rays are traced using the view-independent LDIs, as de-
scribed in Section 4.3. After k reflections recursion is terminated and we perform a
light-field gather. Experiments have shown that deeper recursion increases the ren-
dering time, but allows us to use a sparser LLF. In most scenes, tracing just one
generation of reflected rays yields very good results.

3.4 Discussion

Our scene representation can be thought of as a parametric family of image-based scene
representations. Different members of this family are obtained by different choices of
the number of the directions in the LLF, the spatial resolution of the different types
of LDIs, and the depth of recursive ray tracing. In particular, it is shown below that
within this family we can obtain an image-based representation that is essentially a
slightly generalized version of the discrete 4D light field [11, 20]. Another member of
the family is an efficient alternative to the 3D volume buffer [13].

Comparison with light field rendering. If the light-field LDIs are of sufficiently high
resolution, and if their corresponding directions sample the unit sphere densely enough,
we obtain a discrete representation of the light field, similar to the 4D discrete light
fields used in light field rendering [11, 20]. Recall that these 4D light fields require the
viewpoint to lie in a free region of space, outside the region represented by the light

field. The LLF removes this restriction by storing multiple layers per pixel, and by
storing a depth value along with each scene sample.

The 4D light field stores only information describing the appearance of the scene
from different directions, but it does not contain any explicit geometric information
beyond that. This allows images of the scene to be rendered very simply and rapidly,
but requires high directional and spatial resolutions to achieve high image quality, re-
sulting in potentially enormous storage requirements. Gortler et al. [11] observe that
by using approximate geometric information the quality of the reconstruction can be
significantly improved. Our representation takes this idea even further: it relies on the
LDC to accurately represent the scene geometry, and uses the LLF only to supplement
the view-dependent shading where needed. Thus, we obtain high quality images using
low directional and spatial resolution of the light field. The price we must pay for these
advantages is somewhat slower rendering: a classical case of space-time trade-off.

Comparison with volume graphics. Our view-independent representation compo-
nent resembles volumetric representations of synthetic scenes [13]. Indeed, the simi-
larity between a projection-based representation and a volumetric one is not at all sur-
prising, since it is easy to see how a volumetric representation can be constructed from
the projection-based one (for example, such techniques are used in medical imaging for
constructing volume data from CT scans). However, with the aid of 3D image warping,
we can produce images of the scene directly from our projection-based representation,
without ever constructing the full 3D volume buffer. The main differences between our
representation and a full 3D volume buffer are:
1. Three n � n LDIs require less storage than a volume buffer of the same resolution,

as long as the average number of depth layers per pixel is less than n��. It seems
reasonable to assume that for high-resolution discrete representations, the spatial
resolution of the scene projections is considerably higher than the average depth
complexity (i.e., a ���� LDI is likely to have average depth complexity much lower
than �����). Thus, the LDIs should be much more economical in terms of storage
than a full 3D volume buffer, particularly at high resolutions.

2. The LDIs have infinite resolution along the projection axis of each LDI, whereas a
volume buffer is not capable of resolving cases where two or more surfaces occupy
the same voxel.

3. Similarly to image-based ray tracing, it is possible to render images of non-diffuse
scenes by recursively tracing discrete rays in the 3D volume buffer [33]. In our
representation, the LLF lets us eliminate the recursion altogether, or terminate it
after a small number of reflections.

4 Computational elements for rendering

4.1 3D warping

Rendering begins by 3D warping the view-independent LDIs in order to generate a
primary image of the scene. This stage determines which scene sample is visible at each
pixel of the new image. We have implemented the fast LDI warping algorithm described
by Gortler et al. [12]. There are, however, a few important differences between our
implementation and theirs. Gortler et al. warp a single LDI to produce a new image.
Using McMillan’s ordering algorithm [25] they are guaranteed to project scene samples
onto the new image plane in back-to-front order. Thus, there is no need to perform
depth comparisons, and splatting can be used to fix holes due to stretching of the scene

samples. In our case, all three LDIs must be warped to ensure that no surfaces are
missed (since there might be surfaces in the scene that are only sampled by one of
the three LDIs). Therefore, we do perform a depth comparison before writing each
scene sample onto the new image. It should be noted that the cost of performing these
comparisons is negligible. Also, since scene samples are not guaranteed to arrive in
back-to-front order we can’t use Gortler’s simple splatting approach. Currently, in order
to handle holes we first warp the LDIs, and then scan the resulting image looking for
holes (pixels not covered by any scene samples and pixels whose depth is significantly
larger than that of most of their neighbors). For each pixel suspected as a hole, we
follow a ray from the eye to find the visible scene sample, using the image-based ray
tracing algorithm of Section 4.3. In the examples shown in Section 5 there were less
than two percent of such pixels. However, this problem clearly deserves a more robust
solution, and we hope to address it in the future.

4.2 Light field gather

Next, we need to solve the following problem: given a point p in the scene, the di-
rectional BRDF (without the diffuse component) �bd, and an outgoing direction ��o,
estimate the view-dependent component of the radiance reflected from p in direction
��o. We solve this problem by using the LLF to reconstruct the light field at p and
“pushing” it through the BRDF:

Lout � �
foreach direction ��i in the LLF

if �bd ���i� ��o� � �
Lin � radiance arriving at p from ��i

Lout � Lout � �bd ���i� ��o� Lin cos �i	��i

endif
endfor

To reconstruct the radiance arriving at p from a direction in the LLF we project p onto
the reference plane of the corresponding LDI, and establish the coordinates of the four
nearest LDI pixels. At each of these pixels, we scan the list of scene samples until
we find one visible from p (i.e., with depth greater than that of p), and retrieve the
radiance stored in this sample. The requested radiance value is then obtained by bi-
linear interpolation of the four retrieved values.

The above routine works well for glossy surfaces, but is not well-defined for ideal
specular reflectors, because their BRDF is only non-zero in the mirror-reflected direc-
tion. In this case, we find all of the directions in the LLF that fall within a small cone
around ��i (the mirror-reflected direction). The opening angle of the cone depends on
the directional density of the LLF: it is chosen large enough so that at least three di-
rections would be found. Radiance values are retrieved from each of these directions
as above and the radiance arriving at p from ��i is estimated by a normalized weighted
average of these values. The weight for each LLF direction is cosn �, where � is the
angle between the LLF direction and ��i, and n is a user-specified parameter.

4.3 Image-based ray tracing

For the sake of exposition, we begin by describing a rather naive algorithm, which will
then be improved. Given a 3D ray and a parallel LDI, we first project the ray onto
the reference plane of the LDI, and clip the resulting 2D ray to the square window

containing the projection of the scene. We then visit all of the pixels in the LDI that
are crossed by the 2D ray, starting from the origin. As we step from one pixel to the
next, we keep track of the depth interval
Zin� Zout� spanned by the 3D ray while inside
each pixel. The depths of the scene samples in each visited pixel are compared against
this interval. If a single sample is found whose depth lies inside
Zin � �� Zout � ��, we
report this sample as a ray-surface intersection. If more than one depth value falls inside
the depth interval, we report the value nearest to the ray’s origin. The magnitude of �
depends on the resolution of the LDI and on the angle between the surface normal of
the scene sample and the direction of projection. This operation must be performed for
each of the three LDIs, because there might be surfaces that are only sampled by one of
the LDIs, being parallel to the projection directions of the other two.

The problem with the simple routine described above is that it may have to visit up
to �n LDI pixels (at most �n pixels in each of the three n�n LDIs). At each LDI pixel,
it does O�d� work, where d is the depth complexity there. As a result, this algorithm is
too slow to be used with high-resolution LDIs. Fortunately, the algorithm can be sped
up drastically by using hierarchical data structures. Consider the case of an LDI with a
single depth layer — a regular range image. To speed up image-based ray tracing we
construct a quadtree for this range image. An internal node in the quadtree stores the
minimum and the maximum depth of all the pixels in the corresponding sub-region of
the range image. A leaf node stores the depth of a single pixel. Given a 2D ray we can
establish whether an intersection exists by a simple depth-first traversal of the quadtree.
Whenever we encounter an internal node whose depth range is disjoint from the depth
interval of the ray, the entire subtree can be safely skipped. If the depth intervals are
not disjoint, we recursively traverse the node’s children, visiting them in the same order
as the ray. This algorithm is similar to one described by Cohen and Shaked [7] for
speeding up ray tracing of terrain. This similarity is not surprising, since digital terrain
data is a height field, just like a range image.

To extend the above algorithm to LDIs with multiple layers, think of an LDI as a
stack of range images: The topmost layer is the “normal” image of the scene, after
parallel projection and hidden surface removal. The second layer is an image showing
only those parts of the scene occluded by exactly one surface, and so forth. We could
simply construct a quadtree for each range image in the stack, and have each ray traverse
each of these quadtrees independently. However, we can perform the traversal in a more
efficient manner by taking advantage of the special structure possessed by successive
depth layers of the same LDI. Note that a pixel in depth layer i � � is non-empty
(contains a scene sample) only if the same pixel was non-empty in layers 1 through i.

Traverse(node, ray, Zin, Zout):
if Zout 	 node
Zmin return
if Zin � node
Zmax then

Traverse(node.crosslink, ray, Zin, Zout)
return

endif
if Leaf(node) then

scan layers for intersections
else foreach non-empty child of node

Update Zin and Zout
Traverse(child, ray, Zin, Zout)

endfor
endif

This means that if we encounter an
empty node in the quadtree of layer i,
there is no need to traverse the cor-
responding nodes in layers i � � and
deeper. Thus, we begin by constructing
a separate quadtree for each depth layer
of the LDI, but then we create cross links
between the quadtrees: each non-empty
node in the quadtree of layer i points to
its twin in the quadtree of layer i � �.
Now, given a ray, we start a recursive
traversal from the root node of the first
layer’s quadtree. The traversal routine is
given in the pseudocode on the right. As

Table 1. Scene statistics and rendering times. All sizes are in megabytes, all timings are in
seconds on a 200 MHz Pentium-Pro running Linux.

sphere & cylinder teapot teapot & spheres
primitives 8 9,121 9,179
LDC size 42.5 28.8 50.6
avg (max) # layers 0.97 (3) 0.53 (4) 1.23 (10)
LLF resolution ��� ��� ����� ��� ��� ���

LLF size 11.7 19.3 3.1
construction time 582 726 2420
warping time 2.9 1.3 3.5
view-dependent pass 2.7 / 4.3 / 4.5 3.2 / – / – 2.7 / 11.1 / –
0 / 1 / 7 reflections
total rendering time 5.6 / 7.2 / 7.5 4.5 / – / – 6.2 / 14.6 / –
Rayshade time 8.2 126.1 22.2

before, Zin and Zout is the depth interval spanned by the ray inside the node. Note
that the non-empty children of a node should be visited in the order in which they are
encountered by the ray.

5 Results

In this section we demonstrate our approach on several non-diffuse test scenes. We
compare the resulting images to those generated by conventional ray tracing, which is
a very accurate method for computing view-dependent reflections. In all our test cases
we have outperformed ray tracing in terms of computing time. The visual quality of
the reflections is comparable to that achieved by ray tracing, even on ideal specular
reflectors. Furthermore, for glossy surfaces with fuzzy reflections we achieve superior
quality along with a dramatic speedup.

We have extended Rayshade [14], a public domain ray-tracer, to generate parallel
LDIs of non-diffuse synthetic 3D scenes. One version of the resulting program is used
to generate the LDC, while another version computes the LLF. Our current implementa-
tion inserts into a particular LDI only scene samples that are front facing with respect to
the parallel projection directions. Thus, the LDC actually consists of six LDIs (two for
each of the three orthogonal axes), and not three LDIs as described earlier. We expect
that using only three LDIs, each containing both front- and back-facing scene samples,
would prove more economical both in terms of storage and in terms of processing times.

We have experimented with three test scenes. Various scene statistics and rendering
times are summarized in Table 1.

Our first test scene contains a sphere and a cylinder with a mirror-like surface inside
a box with diffuse walls and glossy (but not reflective) floor. The scene is illuminated
from above by four point light sources. The average depth complexity for this scene
is 0.97 (it is less than 1, because the box containing the scene is missing one wall and
has no ceiling). The storage requirements for both components of our representation
are 54.2 megabytes. Note that this statistic is the raw size of our non-optimized data
structures. For example, we currently store the normal as three floating point numbers,
whereas a more efficient implementation could have used two fixed point numbers,

in addition to some form of geometric compression [8]. Still, note that these storage
requirements are considerably lower than those of a ���� 3D volume buffer, which
would have required 128 megabytes, even if only one byte per voxel was used. A ���
��� ���� Lumigraph data structure requires 192 megabytes of raw storage, and would
have taken about 8,400 seconds to compute for this scene, while our representation was
constructed in less 582 seconds. Furthermore, recall that six such Lumigraph slabs are
required to cover all viewing directions.

Figure 3 shows four ���� ��� images of the same scene from an arbitrarily chosen
viewpoint. Image (d) was rendered using Rayshade, while the other three were gener-
ated using our (precomputed) image-based representation. In all three images the six
view-independent LDIs were first warped to produce a primary image without reflec-
tions, which were then added using three different techniques. In (a) view-dependent
reflections were computed by performing a light-field gather (Section 4.2) at each re-
flective pixel, using a specular exponent n � ��. In (b), reflections were added by
tracing one generation of reflected rays using the image-based ray tracing algorithm
described in Section 4.3. In (c), reflections were added by recursive image-based ray
tracing with up to seven generations of reflected rays. The LLF in all three images
consists of 258 LDIs corresponding to uniformly distributed directions on the sphere.
Since the directional resolution of the LLF is relatively low, when we use the light-field
gather on ideal specular reflectors, the resulting reflections appear blurry (3a). Note,
however, that the geometry of the scene is still sharp and accurate. This is in contrast
to light field rendering techniques, where lowering the resolution of the discrete 4D
light field results in overall blurring of the image. Tracing one generation of reflected
rays drastically improves the accuracy of the reflections at a modest additional cost.
Allowing deeper recursion further improves the recursive reflections visible in the im-
age (the reflection of the sphere in the cylinder), and the resulting image (3c) is almost
indistinguishable from the one generated by Rayshade (3d).

Note that for a scene as simple as this one (eight simple primitives), ordinary ray
tracing is extremely fast: in fact, it took Rayshade only 8.2 seconds to produce the image
in Figure 3(d). Still, even for this simple scene, our image-based rendering algorithm
outperforms Rayshade.

It is interesting to examine the effect of the number of projections used in the LLF
on the quality of the reflections. Figure 4 shows images that were generated using 66,
258, and 1026 directional samples in the LLF. As the directional resolution of the LLF
increases, there is noticeable improvement in the accuracy of the reflections in the top
row, which uses light-field gather to compute the view-dependent reflections. In the
bottom row, which uses one level of image-based ray tracing, the effect is not nearly
as drastic. These results illustrate that recursive image-based ray tracing effectively
compensates for low directional resolution in the LLF.

The case of near-ideal mirror reflectors is particularly demanding, and, as just
shown, such surfaces are better handled by using at least one level of image-based
ray tracing. However, for rougher glossy surfaces, an LLF with reasonable directional
resolution suffices to produce a good approximation to the exact image. Figure 5 shows
a teapot on a glossy floor. The left image was produced by our image-based approach,
using a light field gather at each reflective pixel. The right image was produces by
Rayshade. Rayshade can only generate glossy reflections by supersampling. As a re-
sult, Rayshade takes twenty-eight times longer3 than our method to generate the image,
and the fuzzy reflection is still somewhat noisy. (Although, as a side-effect of the su-
persampling the Rayshade image is anti-aliased, while our image is not).

3Rayshade timing were measured using a uniform grid to accelerate ray-scene intersections.

Fig. 3. From left to right: (a) warp + light-field gather; (b) warp + one level of reflection + light-
field gather; (c) warp + seven levels of reflections; (d) Rayshade.

66 258 1026

Fig. 4. The effect of the LLF directional resolution on reflection quality. Top row: warp + light
field gather; Bottom row: warp + one level of reflection + light-field gather.

Fig. 5. Glossy reflections:
left (a) our method; right
(b) Rayshade (using supersam-
pling).

Fig. 6. Higher depth complex-
ity: right (a) our method; left
(b) Rayshade.

Note that for this scene, the warping stage is roughly twice as fast as in the previous
scene (see Table 1). The reason is that the LDIs in the teapot scene have roughly twice
lower average depth complexity (see Table 1). The time of the view-dependent pass on
the other hand is somewhat higher for this scene. The main reason is that there are more
directions in the LLF, and our current implementation of the light-field gather simply
loops over all of these directions, rather than employing a more sophisticated search
scheme.

Finally, we tested our method on a scene with higher depth complexity, shown in
Figure 6. The LDIs in our image-based representation of this scene have up to 10 depth
layers per pixel. As expected, the total rendering time for our method is larger than for
the simple scene in Figure 3: warping takes slightly longer because of increased depth
complexity, and for the same reason image-based ray tracing takes longer in the view-
dependent pass. Again, our approach has generated the image faster than Rayshade.

The results in this section demonstrate that our technique can be considered output-
sensitive with respect to view-dependent shading: For diffuse scenes, the technique is,
in principle, as efficient as previous reprojection methods. We pay an extra price only
in non-diffuse scenes, and the price is proportional to the number of visible non-diffuse
points. Furthermore, ideal mirror reflections take longer to produce than fuzzier glossy
reflections.

6 Conclusions

We have introduced a new image-based representation for non-diffuse synthetic scenes,
and have described efficient rendering algorithms that correctly handle view-dependent
shading and reflections. Our scene representation is more space-efficient than previous
discrete scene representations that support non-diffuse scenes, namely the 4D light field
and the 3D volume buffer. Our results demonstrate that our approach is capable of
producing view-dependent shading and reflections whose quality is comparable to that
of conventional ray tracing, while outperforming ray tracing even on simple scenes. We
believe that the performance gap between our technique and ray tracing will continue
to grow as we further optimize and tune our implementation, and apply our techniques
to more complex scenes.

The main disadvantage of our approach is that the size of our data structures and
consequently the rendering time depend on the depth complexity of the scene. We
should investigate ways for reducing the number of layers that must be represented in
our data structure without affecting the accuracy of the resulting images.

There are many ways to further optimize and improve the techniques that we have
described:
� In order to avoid warping all of the LDIs for each frame, we should investigate the

possibility of pre-warping the LDIs to a single reference LDI once in several frames,
similarly to Gortler et al.[12].4

� Geometric as well as entropy compression techniques for our representation should
be developed. There is currently considerable redundancy in our representation, and
we should explore ways of eliminating it.

� It would be useful to have an automatic way of determining a good combination of
representation parameters (LDI resolutions, number and distribution of directions in
the LLF) for a particular scene. Furthermore, we should explore an adaptive variant
of our representation, rather than using uniform directional and spatial resolutions.

4Thanks to an anonymous reviewer for suggesting this idea.

� In order to ensure high visual accuracy of the rendered images we should investigate
efficient and robust anti-aliasing techniques. This issue has not been resolved yet in
the context of image-based rendering, and progress in this area could significantly
contribute to other image-based rendering techniques as well.

� Similarly to most previous image-based representations, our representation is only ef-
fective for static scenes. A change in the scene (including motion of objects, changes
in material properties, and in the positions and intensities of light sources) currently
requires the entire representation to be recomputed. Efficiently updating the repre-
sentation after a change in the scene is an interesting direction for future research.

Acknowledgements:. This research was supported in part by the Israel Science Foun-
dation founded by the Israel Academy of Sciences and Humanities, and by an academic
research grant from Intel Israel.

References

1. Stephen J. Adelson and Larry F. Hodges. Generating exact ray-traced animation frames by
reprojection. IEEE Computer Graphics and Applications, 15(3):43–52, May 1995.

2. Sig Badt, Jr. Two algorithms taking advantage of temporal coherence in ray tracing. The
Visual Computer, 4(3):123–132, September 1988.

3. M.O. Benouamer and D. Michelucci. Bridging the gap between CSG and Brep via a triple
ray representation. In Proc. Fourth ACM/Siggraph Symposium on Solid Modeling and Ap-
plications, pages 68–79. ACM Press, 1997.

4. Shenchang Eric Chen. QuickTime VR — an image-based approach to virtual environment
navigation. In Computer Graphics Proceedings, Annual Conference Series (Proc. SIG-
GRAPH ’95), pages 29–38, 1995.

5. Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In
Computer Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH ’93), pages
279–288, 1993.

6. Christine Chevrier. A view interpolation technique taking into account diffuse and specular
inter-reflections. The Visual Computer, 13:330–341, 1997.

7. Daniel Cohen and Amit Shaked. Photo-realistic imaging of digital terrains. Computer
Graphics Forum, 12(3):363–373, 1993. Proceedings of Eurographics ’93.

8. Michael F. Deering. Geometry compression. In Computer Graphics Proceedings, Annual
Conference Series (Proc. SIGGRAPH ’95), pages 13–20. Addison Wesley, August 1995.

9. Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In John Dill,
editor, Computer Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 65–74, August
1988.

10. J. L. Ellis, G. Kedem, T. C. Lyerly, D. G. Thielman, R. J. Marisa, J. P. Menon, and H. B.
Voelcker. The ray casting engine and ray representations: a technical summary. Inter-
nat. J. Comput. Geom. Appl., 1(4):347–380, 1991.

11. Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The Lumi-
graph. In Computer Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH
’96), pages 43–54, 1996.

12. Steven J. Gortler, Li-Wei He, and Michael F. Cohen. Rendering layered depth images. Tech-
nical Report MSTR-TR-97-09, Microsoft Research, Redmond, WA, March 1997.

13. Arie Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics. IEEE Computer, 26(7):51–
64, July 1993.

14. Craig E. Kolb. Rayshade User’s Guide and Reference Manual, 1992. Available at
http���www�graphics�stanford�edu��cek�rayshade�doc�guide�guide�html.

15. Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear–warp factoriza-
tion of the viewing transformation. In Computer Graphics Proceedings, Annual Conference
Series (Proc. SIGGRAPH ’94), pages 451–458, July 1994.

16. David Laur and Pat Hanrahan. Hierarchical splatting: A progressive refinement algorithm
for volume rendering. In Thomas W. Sederberg, editor, Computer Graphics (SIGGRAPH
’91 Proceedings), volume 25, pages 285–288, July 1991.

17. Stephane Laveau and Olivier Faugeras. 3-D scene representation as a collection of images
and fundamental matrices. In Proceedings of the Twelfth International Conference on Pattern
Recognition, pages 689–691, Jerusalem, Israel, October 1994.

18. Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applica-
tions, 8(3):29–37, May 1988.

19. Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–
261, July 1990.

20. Marc Levoy and Pat Hanrahan. Light field rendering. In Computer Graphics Proceedings,
Annual Conference Series (Proc. SIGGRAPH ’96), pages 31–42, 1996.

21. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21, pages 163–169, July 1987.

22. William R. Mark, Leonard McMillan, and Gary Bishop. Post-rendering 3D warping. In
Proceedings of the 1997 Symposium on Interactive 3D Graphics. ACM SIGGRAPH, April
1997.

23. Nelson Max. Hierarchical rendering of trees from precomputed multi-layer Z-buffers. In
Xavier Pueyo and Peter Schröder, editors, Rendering Techniques ’96, pages 165–174. Euro-
graphics, Springer-Verlag Wien New York, 1996. ISBN 3-211-82883-4.

24. Nelson Max, Curtis Mobley, Brett Keating, and En-Hua Wu. Plane-parallel radiance trans-
port for global illumination in vegetation. In Julie Dorsey and Philipp Slusallek, editors,
Rendering Techniques ’97, pages 239–250. Eurographics, Springer-Verlag Wien New York,
1997. ISBN 3-211-83001-4.

25. Leonard McMillan. A list-priority rendering algorithm for redisplaying projected surfaces.
UNC Technical Report 95-005, University of North Carolina, Chapel Hill, 1995.

26. Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering sys-
tem. In Computer Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH ’95),
pages 39–46, 1995.

27. J. Menon, R.J. Marisa, and J. Zagajac. More powerful solid modeling through ray represen-
tations. IEEE Computer Graphics and Applications, 14(3):22–35, 1994.

28. Steven M. Seitz and C. R. Dyer. Physically-valid view synthesis by image interpolation.
In IEEE Computer Society Workshop: Representation of Visual Scenes, pages 18–27, Los
Alamitos, CA, June 1995. IEEE Computer Society Press.

29. Jonathan Shade, Dani Lischinski, David H. Salesin, Tone DeRose, and John Snyder. Hierar-
chical image caching for accelerated walkthroughs of complex environments. In Computer
Graphics Proceedings, Annual Conference Series (Proc. SIGGRAPH ’96), pages 75–82, Au-
gust 1996.

30. Tim Van Hook. Real-time shaded NC milling display. In David C. Evans and Russell J.
Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 15–
20, August 1986.

31. Sidney Wang and Arie E. Kaufman. Volume-sampled 3D modeling. IEEE Computer Graph-
ics and Applications, 14(5):26–32, September 1994.

32. Lee Westover. Footprint evaluation for volume rendering. In Forest Baskett, editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 367–376, August 1990.

33. Roni Yagel, Daniel Cohen, and Arie Kaufman. Discrete ray tracing. IEEE Computer Graph-
ics and Applications, 12(5):19–28, September 1992.

