1

Automatic Selection of High Quality Parses Created By a Fully
Unsupervised Par ser

Roi Reichart
ICNC
The Hebrew University
roiri@s.huji.ac.il

Abstract

The average results obtained by unsupervised
statistical parsers have greatly improved in the
last few years, but on many specific sentences
they are of rather low quality. The output of
such parsers is becoming valuable for vari-
ous applications, and it is radically less expen-
sive to create than manually annotated training
data. Hence, automatic selection of high qual-
ity parses created by unsupervised parsers is
an important problem.

In this paper we presemuprA, a POS-based
Unsupervised Parse Assessment algorithm.
The algorithm assesses the quality of a parse
tree using POS sequence statistics collected
from a batch of parsed sentences. We eval-
uate the algorithm by using an unsupervised
POS tagger and an unsupervised parser, se-
lecting high quality parsed sentences from En-
glish (WSJ) and German (NEGRA) corpora.
We show thatPupPA outperforms the leading
previous parse assessment algorithm for su-
pervised parsers, as well as a strong unsuper-
vised baseline. ConsequentiyuPA allows
obtaining high quality parses without any hu-
man involvement.

Introduction

Ari Rappoport
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The Hebrew University
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Many NLP systems use the output of supervised
parsers (e.g., (Kwok et al., 2001) for QA, (Moldovan
et al., 2003) for IE, (Punyakanok et al., 2008) for
SRL, (Srikumar et al., 2008) for Textual Inference
and (Avramidis and Koehn, 2008) for MT). To
achieve good performance, these parsers should be
trained on large amounts of manually created train-
ing data from a domain similar to that of the sen-
tences they parse (Lease and Charniak, 2005; Mc-
Closky and Charniak, 2008). In the highly variable
Web, where many of these systems are used, it is
very difficult to create a representative corpus for
manual annotation. The high cost of manual annota-
tion of training data for supervised parsers imposes
a significant burden on their usage.

A possible answer to this problem can be pro-
vided by high quality parses produced by unsuper-
vised parsers that require little to no manual efforts
for their training. These parses can be used either
as input for applications, or as training material for
modern supervised parsers whose output will in turn
be used by applications.

Although unsupervised parser results improve,
the quality of many of the parses they produce is still
too low for such goals. For example, the Seginer
(2007) parser achieves an F-score of 75.9% on the

In unsupervised parsing an algorithm should unwsJl0 corpus and 59% on theEGRALOQ corpus,

cover the syntactic structure of an input sentendeut the percentage of individual sentences with an
without using any manually created structural trainF-score of 100% is 21.5% fovsJl0 and 11% for

ing data.

The last decade has seen significaBEGRAL0. When requirements are relaxed, only

progress in this field of research (Klein and Manasking for an F-score higher than 85%, percentage
ning, 2002; Klein and Manning, 2004; Bod, 2006ais still low, 42% forwsJl0 and 15% foNEGRA10.
Bod, 2006b; Smith and Eisner, 2006; Seginer, In this paper we address the task of a fully un-
2007).

supervised assessment of high quality parses cre-



ated by an unsupervised parser. The assessmémg-art results without using manually created POS
should be unsupervised in order to avoid the proliags. The POS tags we use are induced by the un-
lems mentioned above with manually trained supesupervised tagger of (Clark, 2083)5ince both tag-
vised parsers. Assessing the quality of a learning affer and parser do not require any manual annotation,
gorithm’s output and selecting high quality instancegsupPA identifies high quality parses without any hu-
has been addressed for supervised algorithms (Caman involvement.

ana and Niculescu-Mizil, 2006) and specifically for The incremental parser of (Seginer, 2007) does
supervised parsers (Yates et al., 2006; Reichart andt give any prediction of its output quality, and
Rappoport, 2007; Kawahara and Uchimoto, 2008xtracting such a prediction from its internal data
Ravi et al., 2008). Moreover, it has been showstructures is not straightforward. Such a predic-
to be valuable for supervised parser adaptation béen can be given by supervised parsers in terms
tween domains (Sagae and Tsujii, 2007; Kawahausf the parse likelihood, but this was shown to be
and Uchimoto, 2008; Chen et al., 2008). Howevenf medium quality (Reichart and Rappoport, 2007).
as far as we know the present paper is the first vhile the algorithms of Yates et al. (2006), Kawa-
address the task of unsupervised assessment of thwra and Uchimoto (2008) and Ravi et al. (2008) are
quality of parses created lwsupervised parsers.  supervised (Section 3), the ensemble baserh al-

Our POS-based Unsupervised Parse Assessment  gorithm (Reichart and Rappoport, 2007) can be ap-
(PupPA) algorithm uses statistics about POS tag seplied to unsupervised parsers in a way that preserves
quences in a batch of parsed sentehc@he con- the unsupervised nature of the selection task.
stituents in the batch are represented using the POSTo compare between two algorithms, we use each
sequences of their yield and of the yields of neighef them to assess the quality of the sentences in En-
boring constituents. Constituents whose representglish and German corpora (WSJ and NEGRA)e
tion is frequent in the output of the parser are conshow that for every sentence length (up to 20) the
sidered to be of a high quality. A score for eachlyuality of the top scored sentences according to
range of constituent length is calculated, reflectingupa is higher than the quality o$ePAs list (for
the robustness of statistics used for the creation eleryk). As in (Reichart and Rappoport, 2007), the
the constituents of that length. The final sentencguality of a set selected from the parser’s output is
score is a weighted average of the scores calculatedaluated using two measures: constituent F-Score
for each constituent length. The score thus integratesid average sentence F-score.
the quality of short and long constituents into one Section 2 describes theupa algorithm, Sec-
score reflecting the quality of the whole parse tree.tion 3 discusses previous work, and Sections 4 and

PUPA provides a quality score for every sentenc® present the evaluation setup and results.
in a parsed sentences set. An NLP application can
then decide if to use a parse or not, according t8 The POS-based Unsupervised Parse
its own definition of a high quality parse. For ex-  Assessment (PUPA) Algorithm
ample, it can select every sentence whose Score|ishis section we detail our parse assessment algo-
above some threshold, or thetop scored sentences.ithm. Its input consists of a sdt of parsed sen-
The selection strategy is application dependent aRgnces, which in our evaluation scenario are pro-
is beyond the scope of this paper. duced by an unsupervised parser. The algorithm

The unsupervised parser we use is the Seginggsigns each parsed sentence a score reflecting its
(2007) incremental parsemwhich achieves state-of- quality.

1The algorithm can be used with supervised POS taggers >*www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html,
and parsers, but we focus here on the fully unsupervised sciite neyessenmorph model.
nario, which is novel and more useful. For completeness of “*This is in contrast to algorithms for selection from the re-
analysis, we experimented withUPA using a supervised POS sults of supervised constituency parsers, which were evaluated
tagger (see Section 5). Usimg PA with supervised parsers is only for English (Yates et al., 2006; Reichart and Rappoport,
left for future work. 2007; Ravi et al., 2008).

2www.seggu.net/ccl. 5This is the traditional parsing F-score.



The algorithm has three steps. First, the words in
I are POS tagged (in our case, using the fully unsu-
pervised POS induction algorithm of Clark (2003)). ‘
Second, POS statistics about the constituent in P /’\
are collected. Finally, a quality score is calculated ' P ! P
for each parsed sentencelirusing the POS statis- POS2  POS3  POSt POSS  POS6
tics. In the following we detail the last two steps.

will give you the ball

) o ) Figure 1: An example parse tree for contexts and neigh-
Collecting POS dtatistics. In its second step, the pors (see text).

algorithm collects statistics about the constituents in
the input set/. Recall that thejield of a constituent

is the set of words covered by it. ThruPA con- I ' level fituents. CO h iahb
stituent representation (PCR) consists of three fea- &' SENtENCE 1EVE CONSUILENTS, as no neignbors,
nd thus both its left and right contexts &feLL.

tures: (1) the ordered POS tag sequence of the coh ;
We have also explored other representations of

stituent’s yield, (2) the constituents’ right context, ) _
and (3) the constituents’ left context. IeiftlaandI:giEt CO”:EXL:' barlsedr?tn;rli PIOfSU:?ghS{ ?1]( tih?]'r
We definecontext to be theeftmost and rightmost Y <. 0> | NESE, We represented the IeTurght neign-
. . . bor using only the leftmost/rightmost POS tags of
POS tags in the yield of theeighbor of the con- .~ . .
) . . . . its yield or other subsets of the yield's POS tags.
stituent (if there is only one POS tag in the neigh: L .
. . . These variations produced lower quality results than
bor’s yield, this POS tag is the context). For th . . . ) :
. . . he main variant above in our experiments, which
right and left contexts we consider the right and lef . . .
. . . . . were for English and German. Exploring the suit-
neighbors respectively. A constituef is the right . . .
: . . . ) ability of our representation for other languages is
neighbor of a constituerdts if C1 is the highest level left for future research
constituent such that the first word in the yield(of '
comes immediately after the last word in the yield ocore computation. The third and last step of the
Cs. A constituentC' is the left neighbor of a con- algorithm is a second pass ovEfor computing a
stituentCy, if C is the highest level constituent suchquality score for each parse tree.
that the first word in the yield of’; comes immedi-  Short constituents tend to be more frequent than
ately after the last word in the yield ¢f;. long ones. In order not to distort our score due to
Figure 1 shows an example, an unlabeled tree fgarsing errors in short constituenes)PA computes
the sentence ‘I will give you the ball'. The tree haghe grade using a division into lengths, in three steps.
6 constituents (C0-C5). C3 and C4 have both righgirst, constituents are assigned to bins according to
and left neighbors. For C3, the POS sequence of iteeir length, each bin containing the constituents of
yield isPOS2, POS3the left neighbor is C1 and thus a certain range of lengths. Denote this range by
the left context i$20S1 and the right neighbor is C4 W (for width), and the number of bins by ().
and thus the right context iBOS4 Note that the For example, in our experiments the longest possible
left and right neighbors of C3 have only one POSonstituent is of length 20, so we can tdké = 5,
tag in their yield and therefore this POS tag is theesulting in N (W) = 4: bin 1 for constituents of
context. For C4 the yield iBOS4 the left neighbor length 1-5, bir2 for constituents of length 6-10, and
is C3 (and thus the left context ®OS2,POSB and so on for bins 3, 4.
the right neighbor is C5 (and thus the right context The score obin; is given by
is POS5,POSp C1, whose yield i0S1 has only .
a right neighbor, C2, and thus its right context is (1) BinScore(bin;) = Y125 (X —t +2) - }gt}
POS2,POS@&Nd its left context isNULL. C2 and C5
(whose yields are0S2, POS3, POS4, POS5, PASE6 Where X is the maximal number of occurrences
C2 andPOS5, POSdor C5) have only a left neigh- of constituents in the bin that we consider as impor-
bor. For C2, this is C1 (and the context#©S) tant for the score (see below for its selectiofd);|
while for C5 this is C4 (with the contextOSj). is the number of constituents in binoccurring at

The right context of both constituentsN&JLL. As




leastt times in the batch of parsed sentences, aréarameters. PUPA has two parametersX, the
|C?| is the number of constituents in binin words, maximal number of occurrences considered in equa-
the score is a weighted average: the fraction of thion (1), andP, the number of POS tags induced by
constituents in the bin occuring at least 2 times (witthe unsupervised POS tagger. In the following we
weightX), plus the fraction of the constituents in thepresent the unsupervised technique we used to tune
bin occuring at least 3 times (with weighf — 1), these parameters.
etc, until the fraction of the constituents in the bin Figure 2 showsic(t), the number of constituents
occuring at leasK times (with weight 2). appearing at leagttimes inwsx20 (left) andNE-

A score for the division intdV bins is given by ~ GRA20 (right). For both corpora, the pattern is

YY) BinScore(bin;) shown when using 5 POS tag® (= 5, solid line)
@) Score(N(W) = &= and 50 POS tags (P = 50, dashed line). The distri-

. . . . bution obeys Zipf’s law: many constituents appear a
WhereZ is the maximum bin score (according tosmaII number of times while a few constituents ap-

(1)) andM is the number of bins containing at least .
. pear a large number of times. We denotetthelue
one constituent. If, for exampley (W) = 4 and

) . . here the slope changes from steep to moderate b
there is no constituent whose length is between 1;/9( P g P y
€,

. . wow- Practically, we approximate the ‘real’ elbow
ar\d 15 then bin number 3 is gmpty. If every Othe\r/alue and definé.;;,,, to be the smallestfor which
bin contains at least one constituehf, = 3.

ne(t + 1) —ne(t) = 1. WhenP = 5, tepoy 1S 32

To get a final score for the parse tree of sentengg \v/s3'and 19 for NEGRA. When P = 50,500 IS
S that is independent of a specific bin division, We, ¢ < \vS3 and 9 for NEGRA thow

sum the scores of the various bin division:

The number of constituents appearing more than
Y=Y Seore(N(W)) telbow times is consider_ably smaller than the number
(3) PupaScore(S) = &W=— of constituents appearirig;,,, times or less. There-

fore, the fact that a constituent appe&g,, + S
whereY is the length ofS' (which is also its max- times (for a positive intege$) is not a better indica-
imum bin width). PupaScore thus takes values in tion of its quality than the fact that it appeatsow
the ([0, 1] range. times. We thus select to bet.jpow-

In equation (1), if, for exampleX = 20 then The graphs also demonstrate that for both cor-
the weight of the fraction of the bin’s constituentspora, t..,, for P = 50 is smaller thant,;;,, for
occurring at least 2 times is 20 while the weight ofP = 5. Generallyt.;.., is @ monotonically decreas-
the fraction of the constituents occurring at least 1fthg function of P. Lower t..,, Values imply that
times is 12 and of the fraction of constituents occureupAwould be less distinctive between constituents
ring at least 20 times is 2. We consider the numbejuality (see equation (1); recall th&t = t.p0u0)-
of times a constituent appears in a batch to be an iRve thus want to select thE value that maximizes
dication of its correctness. The difference between®8;;,,,,. We therefore minimizeP. t.;.., values for
and 2 occurrences is therefore more indicative thar < {3,...,10} are very similar. IndeedpupPA
the difference between 20 and 19 occurrences. Mogghieves its best performance fBre {3,...,10}
generally, the more times a constituent occurs, thend it is insensitive to the selection @ in this
less indicative any additional appearance is. range. In Section 5 we report results with= 5.

In equation (2) we give all bins the same weight.

Short constituents are more frequent and are genéy- Related Work

ally more likely to be correct. However, the cor-Unsupervised parsing has been explored for several
rectness of long constituents is an indication that thdecades (see (Klein, 2005) for a recent review). Re-
parser has a correct interpretation of the tree strucently, unsupervised parsing algorithms have for the
ture and that it is likely to create a high quality treefirst time outperformed the right branching heuristic
The usage of equal bin weights was done to baland@seline for English. These include CCM (Klein and
the tendency of parse trees to have more short coltanning, 2002), the DMV and DMV+CCM models
stituents. (Klein and Manning, 2004), (U)DOP based mod-




15000 8000 a way that preserves the unsupervised nature of the

7000 Pl selection task. In Section 5 we provide a detailed

g

é,loooo 1 cooo | comparison betweeRrUPA and SEPA showing the

H 2000 ] first to be superior. Below is a brief description of
2 s000| 30004 ] the SEPAalgorithm.

E 20007] ] The input of theSEPA algorithm consists of a
g 1002"\___ ’ parsing algorithm4, a training set, and a test set
- ° oo ° e (which in the unsupervised case might be the same

_ _ _ set). The algorithm provides, for each of the test
Figure 2: Number of constituents appearing at least get's parses generated Hywhen trained on the full

times (c(1)) as a function of. Shown are WSJ (Ieft) aining set, a grade assessing the parse quality, on
and NEGRA (right), where constituents are representeéj continuous scale between 0 to 100.  The qual-
according topupPA's PCR with 5 POS tagsH{ = 5, solid ) q

line) or 50 POS tagsi — 50, dashed line). ity grade is calculgted in the following way ran-
dom samples of sizé are sampled from the train-

ing data and used for training the parsing algorithm

els (Bod, 2006a; Bod, 2006b), an exemplar based. In that wayN committee members are created.
approach (Dennis, 2005), guiding EM using conThen, each of the test sentences is parsed by each of
trastive estimation (Smith and Eisner, 2006), and thghe N committee members and an agreement score
incremental parser of Seginer (2007) that we use inging from 0 to 100 between the committee mem-
this work. To obtain good results, manually create@ers is calculated. All unsupervised parsers men-
POS tags are used as input in all of these algorithniigned above (including the Seginer parser), have a
except Seginer’s, which uses plain text. training phase where parameter values are estimated

Quality assessment of a learning algorithm’s outfrom unlabeled dateSEPAcan thus be applied to the
put and selection of high quality instances have beamsupervised case.
addressed for supervised algorithms (see (CaruanaAutomatic selection of high quality parses has
and Niculescu-Mizil, 2006) for a survey) and specifbeen shown to improve parser adaptation. Sagae and
ically for supervised constituency parsers (Yates @tsujii (2007) and Kawahara and Uchimoto (2008)
al., 2006; Reichart and Rappoport, 2007; Ravi et alapplied a self-training protocol to a parser adaptation
2008). For dependency parsing in a corpus adaptgeenario but used only high quality parses to retrain
tion scenario, (Kawahara and Uchimoto, 2008) builthe parser. In the first work, high quality parses were
a binary classifier that classifies each parse in thselected using an ensemble method, while in the sec-
parser’s output as reliable or not. To do that, thegnd a binary classifier was used (see above). The
selected 2500 sentences from the parser’s outpfitst system achieved the highest score in the CoNLL
compared them to their manually created gold star2007 shared task on domain adaptation of depen-
dard, and used accurate (inaccurate) parses as p@iincy parsers, and the second system improved over
tive (negative) examples for the classifier. Their apthe basic self-training protocol. Chen et al. (2008)
proach is supervised and the features used by tharsed target domain sentences and used short de-
classifier are dependency motivated . pendencies information, which is often accurate, to

As far as we know, the present paper is the first tadapt a dependency parser to the Chinese language.
address the task of selecting high quality parses from Automatic quality assessment has been exten-
the output of unsupervised parsers. The algorithnsvely explored for machine translation (Ueffing and
of Yates et al. (2006), Kawahara and UchimotdNey, 2007) and speech recognition (Koo et al.,
(2008) and Ravi et al. (2008) are supervised, pe2001). Other NLP tasks where it has been explored
forming semantic analysis of the parse tree and goldclude semi-supervised relation extraction (Rosen-
standard-based calssification, respectively. Howeld and Feldman, 2007), IE (Culotta and McCal-
ever, theSEPAalgorithm of Reichart and Rappoportlum, 2004), QA (Chu-Carroll et al., 2003), and dia-
(2007), an algorithm for supervised constituencyog systems (Lin and Weng, 2008).
parsers, can be applied to unsupervised parsers inThe idea of representing a constituent by its yield



and (a different definition of) context is used by than the gold standard parses of the set) or erroneous
CCM unsupervised parsing model (Klein and Man(if it does not). Then, recall, precision and F-score

ning, 2002). As far as we know the current work isare calculated over these constituents. In the sec-
the first to use unsupervised POS tags for the seleand measure, the constituent F-score of each of the

tion of high quality parses. parses in the set is computed, and then results are
averaged.
4 Evaluation Setup There are applications that use individual con-

W - ith f 20 dstituents from the output of a parser while others
© experiment With sentences of up to WOrlReed the whole parse tree. For example, if the se-

from the English WSJ Penn TreebanWs((jJZr?, lected set is used for training supervised parsers such
25236 sentences, 225126 constituents) and the G&E the Collins parser (Collins, 1999), which collects

rln;snloNEGRA corpliag(\r)lirgnts, 1997NE(GR€2?]’ constituent statistics, the constituent F-score of the
sentences, constiteunts), bot COlalected set is the important measure. In applica-

taining newspaper texts. tions such as the syntax based machine translation

The unsupervised parsers of the kind addressed o[ of (Yamada and Knight, 2001), a low qual-
in this paper output unlabeled parse trees. To evg

- i ) fy tree might lead to errorenous translation of the
uate the quality of a single parse tree with res|Oe%9éntence. For such applications the average F-score
to another, we use the unlabeled F-scdvd’( =

o URUP is more indicative. These measures thus represent
=2 2), whereUR andU P are unlabeled recall

UR+UP v e i complementary aspects of a set quality and we con-
and unlabeled precision respectively. sider both of them.

Following the unsupervised parsing literature, The parser we use is the incremental parser of

multiple brackets and brackets covering a Singlf‘Seginer, 2007), POS tags are induced using the un-
word are not counted, but the sentence level braCkglthervised POS tagger of ((Clark, 2003), neyessen-
is. We exclude punctuation gnd null elements a%orph model). In each experiment, the tagger was
cording to the scheme of (Klein, 2005?' trained with the raw sentences of the experiment cor-
The performance of unsupervised parsersys and then the corpus words were POS tagged.
markedly degrades as sentence length increases-,q output of the unsupervised POS tagger de-
For example, the Average sentence F—score for W%@nds on a random initialization. We ran the tagger

sentences of length 10 is 71.4% compared to 5855'[imes, each time with a different random initializa-
for sentences of length 20 (the numbers for NEGR'%on, and then raruPA with its output. The results

0 0
are 48.2% and 36.9%). We therefore evaluziea we report forrurAare the average over these 5 runs.

(and the k_’ase"”e) for sentences of a given Ieng_tlk-'{andom selection results (given for reference) were
We do this for every sentence of length 2-20 iNso averages over 5 samples

ws20 andNEGRA20. , . .
PUPA’s parameter estimation is completely unsu-

b Folr_ everly sgnrt‘ence Ienglh_we usePul_PAand the pervised (see Section 2). No development data was
aseline algorithmgEPA) to give a quality score to used to tune its parameters,

each of the sentences of that length in the experi- A 200 sentences development set from each cor-

mental corpus. We then compare the quality of the N
. ... pus was used for calibrating the parameters of the
top k parsed sentences according to each algorithm,

We do this for every; from 1 to the number of sen- SEPAaIgO”thm' Based on th_e analy3|3$1i_PAper—
formance with different assignments of its param-
tences of lengtfiL.

. . eters given by Reichart and Rappoport (2007) (see
Following Reichart and Rappoport ‘2007)’ WE USGection 3), we ran theEePA algorithm with sam-
two measures t9 evaluate the quallty_gfsel of ple size 6EPA parametelS) of 30% and 80%, and
parses: theconstituent F-score (the traditional F-

din th ing literat q with 2 — 10 committee membera7)®. The optimal
scoreused in eparS|_ng iterature), an i age parameters werd& = 10,5 = 80 for wsx20, and
F-score of the parses in the set. In the first mea-

sure we treat the whole set as a bag of constituents. sy tried highenv values but observed no improvements in

Each constituent is marked as correct (if it appearsras performance.
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Figure 3:1n all graphs: pupA: solid line. SEPA line with triangles. Mmc: line with circles. Random selection is
presented for reference as a dotted lifiep two rows. Average F-score fopura, SEPAandMcC for sentences from
WSJ (top row) and NEGRA (bottom row)Bottom two rows. Constituents F-score farura, SEPA and MC for
sentences from WSJ (top row) and NEGRA (bottom row). Resutpeesented for sentence lengths of 5,10,15 and
20 (patterns for other sentence lengths between 2 and 2@graimilar). PUPAis superior in all cases. The graphs
for pruPAandsePAshow a downward trend because parsed sentences were smoediag to score, which correlates
positively with F-score (unlik&c). The graphs converge because on the extreme right aletetstreces were selected.

N =10, S = 30 for NEGRAZ20. McC (for minimum constituents).

The incremental parser does not give any predic-

We also compareuPAto a baseline selecting the tion of its output quality as supervised generative

sentences with the lowest number of COﬂStituentgarsers do. We are thus not able to compare to such
Since the number of constituents is an indication of score.
the complexity of the syntactic structure of a sen-
tence, it is reasonable to assume that selecting tRe R€SUlts
sentences with the lowest number of constituents Eigure 3 shows Average F-score and Constituents F-
a good selection strategy. We denote this baseline Bgore results foruPA sepAandmc, for sentences



of lengths 5,10,15 and 20 wsX20 andNEGRA20. by an unsupervised POS tagger. SiRcaPAS per-

The top two rows are for Average F-score (top rowformance for a smaller number of POS tags is better
WSJ, bottom row: NEGRA), while the bottom two (see our parameter tuning discussion above), the bot-
rows are for Constituents F-score (top row: WSXom line is thatrupa pefers using induced POS tags
bottom row: NEGRA). over gold POS tags.

PuPAandsePAare both better than random selec-
tion for both corpora for every sentence length. The [wsiz
McC baseline is better than random selection only for | euea 8275 | 7934 | 7577 | 7346 | 7168 | 703
NEGRA (in which case it outperformsepPA). For e T Tom T e

WSJ, however, random selection is a better strategy [ NEGRA2

PUPA 70.66 67.06 61.89 58.75 56.6 54.73
thanMC SEPA 66.19 | 62.75 | 59.41 | 57.16 | 55.23 53.7

MC 69.41 | 65.79 | 60.87 | 58.08 55.9 54.36
It is clear from the graphs th&tupA outperforms
SEPA and Mc in all experimental conditions. We Table 1: Average F-score for the top k% of constituents
observed very similar patterns in all other sentenciélected fromvs20 (up) andveGrA20 (down). No sen-
lengths inws20 andNEGRA20 for both Average tence length restriction is imposed. Results presented for
F-score and Constituent F-score. In other words, fq -+ SEPA@ndmc. Average F-score of random se-
. 1Q&ction is 66.55Ws20) and 47.05NEGRA20). PUPAIS
every sentence length in both corpap@PAoutper- g nerior over all methods.
forms sepaandmc in terms of both measures. we
present our results per sentence length to deprive t%e
possibility thatPuPA is useful only for short sen-
tences or that it prefers sentences whose syntacti¢e introduced>urA, an algorithm for unsupervised
structure is not complex (i.e. with a small number oparse assessment that utilizes POS sequence statis-
constituents, likexc). tics. PUPAis a fully unsupervised algorithm whose
Table 1 shows that the same pattern of resulggarameters can be tuned in an unsupervised man-
holds when evaluating on the whole corpuss(®0 ner. Experimenting with the Seginer unsupervised
or NEGRA20) without any sentence length restricparser and Clark’s unsupervised POS tagger on En-
tion. glish and German corporapypPAwas shown to out-
Note that whilepupPA is a fully unsupervised al- perform both the leading parse assessment algorithm
gorithm, sepAarequires a few hundreds of sentencefor supervised parsersg€pA even when its param-
for its parameters tuning. eters are tuned on manually annotated development
The main result of this paper is for sentencedata) and a strong baselinec).
whose length is up to 20 words (note that most un- Using pupA, we extracted high quality parses
supervised parser literature reports numbers for seflem the output of a parser which requires raw text
tences up to length 10). We have also ran the expeaas input, using POS tags induced by an unsupervised
iments for the remaining length range, 20-40. Foragger.PuPAthus provides a way of obtaining high
NEGRA, PUPAis superior ovemc up to length 36, quality parses without any human involvement.
and both are much better thaarPA For WSJpuUPA For future work, we intend to use parses selected
andsepPAboth outperformMmc, butsePAis a bit bet- by pupA from the output of unsupervised parsers
ter thanPuPA. When evaluating on the whole corpusas training data for supervised parsers, and in NLP
(i.e. without sentence length restriction, like in Ta-applications that use parse trees. A challenge for
ble 1) pupPAis superior over botsErpAandMc for  the first direction is the fact that state of the art su-
WSH0 andNEGRA4O0. pervised parsers require labeled parse trees, while
For completeness of analysis we also experimodern unsupervised parsers create unlabeled trees.
mented in the condition wherupPA uses gold stan- CombiningPupPA with algorithms for labeled parse
dard POS tags as input. The number of these tagstiees induction (Haghighi and Klein, 2006; Reichart
35 for WSJ and 57 for NEGRA. InterestinggyPA  and Rappoport, 2008) is a one direction to overcome
achieves in this condition the same performance diis challenge. We also intend to uBePAto assess
when using the same number of POS tags inducelde quality of parses created by supervised parsers.
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