
An Architecture for Universal CAD Data Exchange

Ari Rappoport
∗

ABSTRACT
Parametric feature-based CAD data exchange is one of the
most important open problems in solid modeling. The prob-
lem is significant and challenging both scientifically and com-
mercially. In this paper we present a very general outline of
the Universal Product Representation (UPR) architecture,
which provides universal support for all data levels employed
by today’s CAD systems. The architecture has been imple-
mented with successful results.

Categories and Subject Descriptors
D.2.11 [software architectures]: domain specific archi-
tectures; D.2.12 [interoperability]: data mapping; I.3.5
[computational geometry and object modeling]: Breps,
CSG, solid, and object representations, geometric languages
and systems; I.3.6 [methodology and techniques]: graph-
ics data structures and data types, languages, standards; J.2
[physical sciences and engineering]: engineering; J.6
[computer-aided engineering]: CAD, CAM.

General Terms
Design, Standardization, Languages, Verification.

Keywords
CAD Data Exchange, Parametric Data Exchange, Feature-
Based Data Exchange, Universal Data Exchange.

1. INTRODUCTION
In this paper we address CAD Data Exchange (DE), which

is one of the most important open problems in solid mod-
eling. Data exchange is an extremely significant issue, both
scientifically and commercially. Scientifically, parametric

∗School of Computer Science and Engineering, The He-
brew University, Jerusalem Israel, and Proficiency Ltd.
arir@cs.huji.ac.il.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03, June 16–20, 2003, Seattle, Washington, USA.
Copyright 2003 ACM 1-58113-706-0/03/0006 ...$5.00.

feature-based DE is challenging in terms of semantics, al-
gorithms and data structures of geometric operations and
algorithms for mapping between them. Commercially, DE
is currently the preferable approach to CAD interoperability,
a major topic in engineering collaboration. An in-depth dis-
cussion of the problem motivation is given in [Rappoport03].

In this paper we present a novel architecture for CAD
data exchange. The architecture is designed to support all
of the important data levels employed by current CAD sys-
tems, including the parametric feature-based design level.
It is explicitly designed to handle the technical and business
considerations that affect data exchange today.

2. PREVIOUS WORK
The main data exchange solutions in use today are IGES

and STEP [Bloor95]. Both are data standards created by
committees. IGES originally supported drawings and wire-
frames, and was later extended to support surfaces and
solids. STEP was designed with the intent of being flexi-
ble with respect to future enhancements. It includes its own
data modeling language and a modular architecture. It is
mostly used today for exchange of 3-D boundary representa-
tions and assemblies, and some of its industry specific exten-
sions are also in use. Neither IGES nor STEP support the
parametric feature based design modeling paradigm. There
is a STEP specification for the representation of manufactur-
ing features, which is not directly relevant to data exchange.
There is work in progress for supporting parametric design
in STEP [Pratt01], but it is a long way until it is put to use.

At this time the main detailed published proposal for fea-
ture based DE is the Erep file format [Hoffmann93a]. The
Erep project was a pioneering research project whose main
direction was well-defined specification of feature based de-
sign, and the Erep file format can be viewed as a DE so-
lution. The project’s contribution to theory was ground
breaking, even though it has dealt with only a few of the
CAD design features. However, it still had not had any
practical effect on data exchange.

Engen was a STEP-related project for addressing feature
based DE [Shih97]. A prototype for limited DE of para-
metric 2-D sketches was reported, but no progress had been
reported beyond that.

Although fundamentally different in many aspects, IGES,
STEP and Erep are very similar when viewed as data ex-
change architectures. All of them rely on a documented,
common data model. In all of them, the architecture cen-
ters around a file format that is the storage embodiment
of the data model. There are no built-in mechanisms to



deal with incompatibilities or failures. All of them thus op-
erate in an ideal world that assumes that all parties that
interface with them operate perfectly and according to an
agreed specification. The analysis presented in the next sec-
tion shows how problematic this mode of operation is for
data exchange, both practically and theoretically.

3. GUIDING PRINCIPLES
Our DE architecture is based on recognizing the following

major observation and respecting its implications: there are
and will always be both functional and implementational in-
compatibilities between CAD systems. A major goal in the
design of our architecture is to find ways to overcome this
problem. In this section we discuss the reasons for those
various incompatibilities and their nature.

3.1 Inherent Functional Incompatibilities
A universal CAD data exchange architecture must deal

with the fact that CAD system functionalities are not fully
compatible. The domain of engineering software is extremely
rich; it is always possible to think of a new function that can
be put to use for assisting some engineering activity.

Such new functions are continuously being introduced by
CAD systems, because market dynamics encourage CAD
vendors to offer capabilities that are not offered by their
competitors. Competition and the domain complexity en-
sure that such inherent functional incompatibilities will be
present in the forseeable future. It is not realistic to expect
that CAD vendors will trim down the functionality of their
products only in order to fit a particular DE solution.

3.2 Semantics Known at Runtime Only
As convincingly noted in [Hoffmann93b], CAD system

functionality is not defined rigorously anywhere. Parametric
design features are documented in a user’s guide, and their
geometric semantics are nowhere specified formally.

This problem is not due to incompetence or lack of coop-
eration on the side of the CAD vendors. Formal semantics of
geometric operations is a challenging theoretical issue whose
solution is expected from academic research. CAD vendors
are thus forced to ultimately rely on actual coding for de-
termining the full semantics of geometric operations.

In many cases the general semantics of a feature can be
quite easily defined formally, but not in a way that covers all
possible input configurations. For example, ‘constant radius
fillet’ (or round) is theoretically well understood in terms of
3-D pointsets. However, in practice, the exact nature of
the surfaces and topology created by a particular constant
radius round feature (and whether or not it will work suc-
cessfully) strongly depend on the relationship between the
solid’s local and global geometry and the size of the radius.

As a result, the precise geometric semantics of feature
operations can only be inferred from the actual behavior of
the CAD system.

3.3 Implementational Incompatibilities
Computer science has still not found a practical and the-

oretically fullproof method for modeling geometric entities.
Real numbers are modeled using floating point arithmetic,
which means that even the most fundamental computations
can produce inconsistent results (e.g., the ‘is point on line’
query regarding the intersection point between two lines.)

CAD systems are implemented by different software teams.
Even if two CAD systems allegedly support a data type with
the exact same semantics, they will utilize differing imple-
mentations. As a result, exchange of any geometric data
item between the two systems may fail due to tolerancing
problems. This issue must be taken into account by any
CAD DE architecture.

3.4 Bugs
Software systems always contain bugs. A data exchange

architecture provides integration between software systems,
and should be as resistant to their bugs as possible.

3.5 Economic Feasibility of Implementation
The implementational effort of our architecture must be

linear (or almost linear) in the number of CAD system ver-
sions supported. Otherwise it will not be feasible to sustain
support for a solution over time.

3.6 Implications
Inherent functional incompatibilities prevent usage of a

common data model. The fact that some functional seman-
tics can be discovered only during runtime, and the exis-
tence of implementational differences and bugs, mean that
we cannot specify a single DE flow in advance. The archi-
tecture must be capable of recognizing runtime failures and
recuperating from them.

4. THE UPR ARCHITECTURE
In this section we provide a very general description of a

novel architecture for complete CAD data exchange, called
the Universal Product Representation (UPR).

4.1 A Star Architecture
To ensure economic feasibility, we, like previous DE ar-

chitectures, use a star architecture. Each CAD system in-
terfaces with a central data repository through export and
import modules (Figure 1). Unlike previous approaches, this
does not mean that we enforce an identical data model on
all participating systems (see below).

4.2 Universal Support of Data Types
To address inherent functional incompatibilities, we take

the exact opposite route to the ‘least common denominator’
approach of previous solutions: the UPR data structures are
flexibly designed to support all possible data types; they can
represent the union of the data types supported by CAD
systems, not only their intersection.

4.3 Data Unification
To optimize the UPR data structures, during design we

study the semantics of each data type of the supported CAD
systems and identify data types that are of similar seman-
tics. Initial semantics assumptions are made according to
the CAD system’s user guide, and are modified after ex-
tensive empirical usage of the CAD system by experienced
users. Data types that are finally considered similar share
data structures.

Data unification is only an optimization. When data
types are incompatible, they are not unified and are handled
through rewrites (see below). This stands in sharp contrast
to previous methods, in which each and every data type is
‘unified’ by adopting a ‘standard’ definition.



Data Item

Verification
data

Data Item

Verification
data

....

Unified data Rewrite A
Other
rewrites

UPR Import Flow

CAD System

Export

CAD System

Import

UPR Architecture

Figure 1: For each data item, the UPR architecture

stores import flow rewrites and verification data.

As a simple example, take the very common case of CAD
systems using different terms to denote semantically iden-
tical operations (e.g., 2-D Sketch and 2-D Section, Round
and Fillet). In this case unification simply amounts to se-
lecting one of these terms and storing the data under its
title. Another simple example is given by a ‘triangle’ object
represented by three vertices: one system may use a clock-
wise orientation while another may use a counter-clockwise
one. The UPR would arbitrarily select one of these options;
import procedures would employ the appropriate orienta-
tion.

In practice, data unification requires unifying data struc-
tures that are not formally mathematically equivalent. For
example, as mentioned above, almost all of the design fea-
tures provided by CAD systems are not formally specified.
While their ‘ordinary’ semantics may possibly be understood
and expressed formally, their behavior under various config-
urations is in many cases hard to define. Nonetheless, we
may allow their unification provided that their ‘inordinary’
behavior occurs in a small number of cases, and relying on
the rewrite mechanism (see below) to handle these cases.

Data unification serves to reduce the number of disparate
data types in the UPR. The exact magnitude of this reduc-
tion depends on the functional similarities between the CAD
systems and on the degree of practical compromising exhib-
ited by the UPR designer. Since almost all modern CAD
systems are based on the same fundamental paradigm and
generally provide similar functionality to their users, data
unification can be expected to produce effective results.

4.4 Rewrites and Import Flow
As emphasized above, a major guideline of the UPR is

addressing functional and implementational incompatibili-
ties. We answer this design goal by the concept of a rewrite
of a data item as another data item. A data item rewrite
is used during import, in two cases: (1) when the target
CAD system does not have a compatible data type, and (2)
when import has failed for some reason. The implied import
flow is: if you do not succeed (for any reason) in importing
the unified data item into a CAD system, rewrite it and try
again.

A set of data type rewrites is attached to any unified type
(Figure 1). Rewrites usually modify the data itself, but
they may also be purely functional, representing a different
algorithm for importing the same data. When a rewrite

modifies the data, the data type conversion is quite possibly,
but not always, semantically lossy.

There are many situations where data type rewrites are
highly applicable in the CAD domain. The main example
involves loss of associativity in some form. As an exam-
ple take the common ‘Extrusion’ parametric feature. The
Extrusion operation takes a 2-D set and extrudes it in 3-D
space according to a given axis and a given size. The Extru-
sion feature usually offers many different parameters. Two
useful parameters are related to the extrusion size: the size
can be given explicitly as a distance (this is sometimes called
a ‘blind’ extrusion), or it can be given by specifying the ex-
trusion to end when the extruded 2-D set meets a certain
geometric entity already present in the model (say, a Brep
face of the solid model). This latter usage is termed ‘asso-
ciative’ because the extrusion size is automatically modified
when the geometric location of the target entity is modi-
fied. Suppose now that the unified data type representing
the Extrusion operation contains a ‘target entity’ parame-
ter. Suppose further that this capability is lacking in some
CAD system. A data rewrite of the unified Extrusion can be
defined by replacing the ‘target entity’ parameter by an ‘ab-
solute size’ parameter. In effect, an ‘Associative Extrusion’
data type is converted into a ‘Blind Extrusion’ data type.
Such a conversion makes sense from a data exchange per-
spective when the two operations are expected to possess
similar geometric semantics (that is, when the geometric
changes performed on the model are identical).

In many cases, there exists a natural hierarchy of data
rewrites. In the Extrusion example above, the rewrite into
a blind extrusion is not the last one that can be attempted.
If a blind extrusion does not succeed, it can be rewritten
into a ‘glue faces’ operation. This operation can be im-
plemented by computing the set of faces generated by the
original feature (in this case, if the associative extrusion and
the blind extrusion generate an equivalent set of faces) and
gluing them into the model. This rewrite is possible when
the target CAD system supports a ‘glue faces’ operation.

Note that in the two given examples, an actual execution
of the rewrite requires data that is not necessarily exported
into the unified data type. In the first example, we would
need the length of the extrusion, and in the second exam-
ple the set of faces generated by the extrusion. There are
three main alternatives for dealing with such data: it can
be computed during export, requested during run-time from
the CAD system from which the data had been exported, or
computed during import. The last alternative is usually not
feasible, because the data usually depends on internal imple-
mentation in the source CAD system. The first alternative
is the most general but also the most demanding in terms
of export efficiency and storage size. The second alternative
is the most flexible but it requires access to the source CAD
system during import into the target CAD system, which
complicates the operating environment of the architecture
as well as possibly increasing its cost due to the additional
CAD licenses required.

The rewrite hierarchy is not fixed. It may be the case that
a user would prefer a particular rewrite for one project and
a different one for another project. In this case the sequence
of rewrites that are attempted at runtime can be determined
by configuration data that can be specified by users prior to
the execution of the data exchange operation.

Note that rewrites enable a direct interface between pairs



of CAD systems when this is of advantage, even though the
architecture itself is a star one. In order to provide such a
direct interface, all we need is to add a ‘source target CAD
pair’ field to the rewrite. When the import flow mechanism
is faced with the need to select a rewrite, it can try to first
identify the presence of a relevant field of this sort, and in-
voke the corresponding rewrite before the invocation of other
rewrites. Such a capability might be useful for optimization
purposes or for unique requirements of a particular project.

4.5 Dynamic Import Verification
In order to be able to implement the outlined import flow,

which involves iterative attempts of data rewrites and re-
newed imports, it is essential to be able to recognize import
failures. Each data type stored in the UPR, including the
unified data types and all of their rewrites, need to have
success verification mechanisms associated with them. In
some cases, success verification is only a matter of obtain-
ing a binary answer from the CAD system (yes or no). In
most cases, however, success verification requires additional
data to be stored within the data type. For example, the
success of an Extrusion feature can really only be verified by
comparing the geometry generated by it in the source CAD
system with that generated by the target CAD system.

Data import verification in general, and feature verifica-
tion in particular, are topics that merit a detailed discussion
which is certainly beyond the scope of this paper. For the
purposes of this paper it is sufficient to recognize that provi-
sions for storing verification data must be made within the
UPR data structures, and that import verification is a basic
ingredient of the import flow execution.

In practice, it is sometimes possible to relax those strict
verification requirements. For example, suppose that we
have no rewrites for design features and we must invoke a
‘final geometry’ global solid rewrite whenever there exists a
single feature that does not produce accurate geometry. In
this case we do not need verification data for every feature,
and it is sufficient to store verification data only for the final,
global geometry.

Note that the actual cause of failures is of implementa-
tional importance, because dealing with CAD system bugs
requires implementation mechanisms that are different from
those required by functional incompatibilities.

4.6 Summary
In order to effectively communicate with the reader, in

this section we have presented the main concepts behind
our architecture in a gradual manner. Following is a brief
summary of the resulting architecture.

Our data exchange solution uses a star architecture with a
central UPR kernel that contains data structures for repre-
senting the union of the data and operation types supported
by CAD systems. In order to take part in the architecture,
a CAD system needs to implement two modules: export
and import. The export module moves data items from the
CAD system into the appropriate data types, performing
data unification when needed (or as a post-process). The
import module examines the set of data items that need to
be exchanged. For each data item, it locates an import pro-
cedure corresponding to the item’s data type, and invokes
it. Success of import is verified immediately afterwards; if it
has failed, another import procedure is located according to
rewrites present in the UPR and configuration data. That

import procedure is invoked, repeating the process until suc-
cess is reported. The key concepts here are universal data
type support, rewrites, and dynamic import verification.

For the sake of concise communication, we refer to the
architecture as ‘the UPR architecture’. The term UPR di-
rectly communicates the idea of representing the union of
data types that are present in the product engineering world,
but it does not directly convey the other main ideas of the
architecture. However, we have selected it as our key term
because it is short and at least partially descriptive, recog-
nizing that it is not feasible to attempt to directly convey
too many concepts by a single term.

5. RESULTS AND DISCUSSION
The UPR architecture has been implemented at Profi-

ciency Ltd. The current implementation supports the five
high-end CAD systems in the market: Catia 4, Unigraphics,
I-DEAS, ProEngineer, and Catia 5. Several versions and a
majority of the design features of each system are currently
supported. The runtime architecture is a distributed archi-
tecture having three layers: users that access the system
through a web based user interface; a web server that dis-
tributes jobs between agents; and computational export and
import agents that interface with the CAD systems.

The number of DE operations executed through the sys-
tem so far is well over 100,000. The DE quality that has
been achieved constitutes a dramatic improvement over pre-
vious data exchange solutions. Currently, the data exchange
quality is very close to a 100%, of which 70%-100% is fully
parametric feature-based, depending on project type (differ-
ent projects use different modeling techniques and features).
Thus, we have demonstrated the first working solution for
feature based data exchange, and it is of proven practical
value to real engineering projects.

Space constraints on this paper had forced us to give here
only a very general description of the architecture. There
are many interesting conceptual, algorithmic and implemen-
tational details that have not been discussed. We intend to
report upon these in future papers.

Acknowledgement. The Proficiency UPR implementa-
tion is headed by Alex Tsechansky. The content of this
paper is patent pending.

References
[Bloor95] Bloor, M.S., Owen, J., Product Data Exchange, UCL

Press, University College London, Gower Street, London,
1995.

[Hoffmann93a] Hoffmann, C.M., Juan, R., Erep, an editable,
high-level representation for geometric design and analysis.
In: P. Wilson, M. Wozny, and M. Pratt, (Eds), Geometric
and Product Modeling, pp. 129-164, North Holland, 1993.

[Hoffmann93b] Hoffmann, C.M., On the semantics of generative
geometry representations. 19th ASME Design Conference,
Albuquerque, New Mexico, September 1993.

[Pratt01] Pratt, M.J., Anderson, B.D., A shape modelling ap-
plications programming interface for the STEP standard.
Computer-Aided Design 33:531–543, 2001.

[Rappoport03] Rappoport, A., The Universal Product Represen-
tation (UPR) Architecture for CAD Data Exchange. Tech-
nical Report, 2003.

[Shih97] Shih, C.-H., Anderson, B., A design/constraint model
to capture design intent. Solid Modeling ’97, ACM Press,
pp. 255–264, 1997.


