
Common Coupling and Pointer Variables,
with Application to a Linux Case Study

Stephen R. Schach Tokunbo O. S. Adeshiyan Daniel Balasubramanian

Gabor Madl Esteban P. Osses Sameer Singh
Karlkim Suwanmongkol Minhui Xie Dror G. Feitelson∗

Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37235

June 25, 2006

Abstract

Both common coupling and pointer variables can exert a deleterious effect
on the quality of software. The situation is exacerbated when global variables
are assigned to pointer variables, that is, when an alias to a global variable
is created. When this occurs, the number of global variables increases, and it
becomes considerably harder to compute quality metrics correctly. However,
unless aliasing is taken into account, variables may incorrectly appear to be
unreferenced (neither defined nor used), or to be used without being defined.
These ideas are illustrated by means of a case study of common coupling in the
Linux kernel.

Key words: Common coupling, aliasing, pointer variables, Linux, global variables,
definition–use analysis.

1 Introduction

The goal of software engineering is to produce high-quality maintainable software.
But there is little agreement regarding how quality and maintainability should be
measured, and whether they can be measured directly. Over the years, various indi-
rect measures have therefore been proposed. The degree of common coupling is one
of them: Significant common coupling should be avoided, so low levels of common
coupling are taken to indicate high quality and maintainability [12]. Such metrics are

∗On sabbatical leave from Hebrew University

1

especially useful for the comparison of contending software development practices,
such as open-source vs. closed source.

Common coupling refers to the use of global variables. Using global variables is
bad practice because it violates the principles of encapsulation, information hiding,
and abstraction [6, 13]. A global variable is volatile, in the sense that its value may
be changed in unpredictable ways, due to side effects of called functions.

Using global variables is bad practice; allowing pointer variables to point to global
variables is even worse. When global variables are used directly, it is relatively
straightforward to find all instances of these global variables and check their effect.
But with pointer variables, a global variable may have several aliases. This makes it
impractical to track the possible interactions among different modules, and increases
the risk of undesirable effects.

We demonstrate the problems that stem from using pointers to global variables
by means of a case study of common coupling in the Linux kernel.

The remainder of this paper is organized as follows: In Section 2 we discuss cou-
pling issues, especially global variables and common coupling. The effects of pointer
variables on common coupling are described in Section 3. The Linux case study is
presented in Section 4, and the results of the case study in Section 5. Our conclusions
appear in Section 6.

2 Coupling of Software Modules

A successful software project is one that meets its specifications within predefined
budget and time constraints. This criterion for success is applicable to traditional
closed-source software development, and has been measured for many thousands of
projects. In fact, such measurements are the basis for the claim that the software
industry is in a crisis; studies routinely show that the majority of projects fail to
meet their targets [5, 4].

Regrettably, this straightforward metric cannot be applied to open-source software
projects, because they typically have no detailed specifications, no budget, and no
deadlines. Therefore, indirect metrics have to be found. Given the availability of the
source code, it is natural to consider metrics that are based on the code itself, that
is, metrics for code quality. These have the additional appeal of being quantitative,
objective, and amenable to mechanized evaluation.

One such metric is the degree of coupling found in the code. Coupling between
software modules measures the degree to which they are dependent on each other.
One of the basic tenets of software engineering is that modules should be only weakly
coupled together, because this promotes easier maintenance and reuse [12, 6, 7]; con-
trariwise, strong coupling makes modules harder to understand and increases the
propensity for errors [1, 8].

There are many different types of coupling that can occur between software mod-

2

ules [7]. Coupling means that one module depends on the other, typically in the form
of using data that are produced by the other module. The distinctions are based on
whether passed data are also used for control or not, and whether they are passed
uni-directionally or bi-directionally.

Some form of coupling is obviously needed in order to allow the modules to work
together as parts of a single application. But not all forms of coupling are equal.
In 1974, Stevens, Myers, and Constantine published an ordinal scale of coupling [12].
The second worst form of coupling was what they called“common coupling”; the term
refers to the use of global (shared) variables, harking back to the COMMON keyword
from FORTRAN. It is widely agreed that common coupling should be avoided wher-
ever possible.

Using global variables is bad practice mainly because global variables allow for
side effects. Consider a module that uses a global variable g, and calls a function f()
from another module. When the function returns, the value of g may have changed.
Moreover, future changes to f() may cause new and unexpected behavior of g. Conse-
quently, the programmer cannot rely on g remaining consistent, and needs to handle
it with extreme care. Another reason that common coupling is considered bad prac-
tice is that it is susceptible to clandestine increase, where the coupling of a given
module increases without the module itself being modified in any way, just because
other modules have been modified [11].

3 The Effect of Pointer Variables on Common

Coupling

Programming languages such as C allow for pointer variables that point to other
variables. This mechanism can be used to create aliases; a given variable can be
accessed using its original name, and also through pointer variables that point to it.

Although pointer variables have some important applications in dynamic data
structures, their indiscriminate use causes many problems. Because these pointers
are variables, they can be assigned at runtime. Accordingly, a pointer may point to
different variables at different times in the execution of the program. This makes it
extremely hard, or even impossible, to perform a static analysis of the behavior of
the program.

One alternative is to utilize conservative approaches. For example, all modules
that access a global data structure in some way will be considered to be common
coupled, even if there are actually subsets of modules that do not really depend on
each other. For example, a global data structure may consist of two fields, x1 and x2.
One set of modules may access only x1 and another set may access only x2. In such
a case, claiming that the modules of the two sets are common coupled is inaccurate.

In other words, in order to determine the extent of common coupling (and, hence,
measure program quality indirectly), we need to be able to identify every instance of

3

process
descriptor

of
current
process

current

parent

sibling

prev

next

prev

nextchild

child

runqueue

pid hash

local copy
of current

Figure 1: Pointers that can be used to access a process descriptor in Linux.

a global variable. The presence of pointer variables can make such a determination
difficult or even impossible.

We now illustrate these ideas with a case study.

4 Case Study: The Linux Kernel

Tabulating the degree of common coupling has been used to assess the quality of the
code in the Linux operating system kernel, and how it changes with time. The original
study by Schach et al. found that the number of instances of common coupling grows
exponentially with version number [10]. A follow-up by Yu et al. [14] found that much
of the common coupling was of an especially bad type that coupled kernel modules
to non-kernel modules; this “category-5 global coupling” is described in Section 5.4.

A deficiency of these studies is that they were based on a lexical analysis of the
Linux source code. In other words, they identified references to global variables only if
the same name was used. However, the Linux kernel is rife with instances of references
to global variables using pointer variables. To see how presence of these aliases affected
the accuracy of these studies, consider the process descriptors in Linux.

The most heavily used global variables in Linux are the process descriptors. There
is a process descriptor for each process in the system. It resides in an 8-KB block of
memory that also holds the kernel stack of the process. This memory area is allocated
dynamically when the process is created. Accordingly, there is no pre-defined array
of process descriptors, as there was in early versions of Unix.

In Linux, a process descriptor is a structure of type task struct, which has 105

4

fields1. Process descriptors are most commonly accessed via global pointer variable
current, which points to the currently running process. (In reality, current is imple-
mented as a mask on the stack pointer register, based on the fact that the kernel stack
and process descriptor are co-located in the same memory block.) Of the 105 fields,
25 are pointers to various data structures; of these, 9 are pointers to other instances
of type task struct. They are used to link the process descriptors into three separate
data structures: the run-queue (or some other list of processes), the pid (process iden-
tifier) hash table, and the tree of process family relationships (connecting processes
to their parent, siblings, and children). The run-queue links, in particular, are used
by the scheduler to traverse all the runnable processes in the system and select one
for execution. To complicate matters further, there are at least 117 places in the code
where current is copied to a local pointer that is then used to access the current pro-
cess descriptor. In short, there are many different ways to access a process descriptor,
all using pointers (Fig. 1). The earlier works on common coupling in Linux (e.g., [14])
considered the use of only current itself.

A similar situation occurs for data structures that are pointed to by the process
descriptor. Sixteen of the fields of task struct are pointers to other structures, in-
cluding ones that describe the process’s memory layout and open files; some subfields
are also pointers to other structures. All these are often accessed via two or more
levels of indirection using current. But there are at least 148 cases where a local copy
of a pointer is made, affecting the access to 28 different subfields (of a total of 249
subfields that are defined). There are also at least 24 cases of aliases to aliases (that
is, a local pointer to current or to a field is copied to another local pointer). Again,
previous studies counted only the accesses using current, and missed those that use a
local copy.

5 Results

We investigated the common coupling induced by current. First, we looked solely
at the fields of task struct2. Then we also considered the fields of the other types of
structures pointed to by fields of task struct. In each case, we considered the situation
with and without aliasing.

Our results were obtained as follows: First, we identified all 8384 instances of
current in the Linux source code. Second, each instance of current was examined in-
dependently by two researchers and analyzed as described in the following subsections.
Third, the few discrepancies were easily resolved by the researchers concerned.

The reason why we decided to analyze the code manually, rather than use an

1This and other references to the Linux source code refer to kernel version 2.4.20, in order to be
able to draw comparisons with previous studies, especially [14].

2In what follows, for brevity we use the informal terminology “fields of task struct” rather than
the more precise “fields of instances of type task struct.”

5

Referenced via current: 89 Fields
Referenced only via aliasing: 1 Fields
Never referenced: 15 Fields
Total fields: 105 Fields

Table 1: Fields of task struct referenced via current.

automated tool, was that we could not find a tool with the required fidelity. Some
of the uses of current in Linux are rather subtle, because it is used both as a pointer
and as an identifier of the current process. The problem of determining what each
reference means is of course exacerbated when aliases are concerned. In addition,
we determined that 10 researchers, each working for just two hours a week, could
complete the task in several months; building a tool would take considerably longer.

5.1 Analysis of Fields of task struct

In this subsection, we consider the fields of task struct referenced using current. As
shown in Table 1, when we consider just current itself and the fields to which it points,
89 of the 105 fields of task struct are referenced. An example of such a reference (to
field processor) is

current->processor = 0;

If we also consider all aliases for current, a single additional field is referenced.
These are the statements in question:

struct task struct *tsk = current;
tsk->vfork done = NULL;

Clearly, aliasing has a negligible impact on the fields of task struct accessed via
current.

5.2 Wider Analysis

We now consider all fields referenced, directly or indirectly, by current. For example,
consider the statement

current->fs->altrootmnt = mnt;

Here, pointer variable current points to pointer field fs in task struct. Pointer fs is a
pointer to a structure of type fs struct. Field altrootmnt is a field of a structure of
type fs struct and is set equal to mnt. In this case, the fields referenced are fs and
altrootmnt; we refer to such fields collectively as subfields of current.

Another example is

6

Referenced via current: 280 Subfields
Referenced only via aliasing: 58 Subfields
Total referenced fields: 338 Subfields

Table 2: Subfields of current referenced via current or via an alias.

sig = fpu emulator cop1Handler(0, regs, ¤t->thread.fpu.soft);

In this example, current points to a struct of type task struct, which contains a field
thread, a struct of type thread struct. The latter has a field fpu that is a struct of type
fp status; this struct has a field soft. Here the subfields of current are thread, fpu, and
soft.

Table 2 shows the results when all subfields referenced using current and its aliases
are considered. The results in Table 2 incorporate those of Table 1. Now there are
58 fields that are accessed only via aliases. In other words, over 17 percent of the 338
fields would not be taken into account if aliasing were ignored.

5.3 Unreferenced and Undefined Global Variables

Every instance of a variable in a program is either a definition of that variable (that
is, a change made to the value of that variable) or a use of that variable (that is, a
utilization of the current value of that variable).

An unreferenced field is one that is neither defined nor used in the statements
we examined. As shown in Tables 3 and 2, following aliases exposes 58 additional
subfields that are not seen when references using only current are considered. They
are therefore classified as unreferenced when aliasing is not considered. But even
with aliasing there are six unreferenced fields. These six fields fall into the following
categories:

1. “Fields” that were found by mistake, due to outdated comments that mention
fields that no longer exist. There were four such fields.

2. A field (thread.usp) that exists, is mentioned in a comment, but is not referenced
from current. However, it could be referenced via some other mechanism of
which we are unaware.

3. A field (thread.esp) that occurs in only an assembler statement. We have set
this instance aside until we have done the necessary research into the nature
of common coupling between a second-generation language (assembler) and a
third-generation language (C).

An undefined field is one that is used but not defined in the statements we ex-
amined. As previously mentioned, without aliasing there were 64 unreferenced fields.
Aliasing caused 22 of them to become undefined, and 36 to become defined. Also,

7

Unreferenced Undefined Defined Total fields referenced
Without aliasing: 64 78 202 278
With aliasing: 6 89 249 338

Table 3: The effect of following aliases.

Category 0: 118 subfields (58.4%)
Category 1: 5 subfields (2.5%)
Category 2: 27 subfields (13.4%)
Category 3: 0 subfields (0.0%)
Category 4: 7 subfields (3.5%)
Category 5: 45 subfields (22.3%)
Total: 202 subfields (100.0%)

Table 4: Results of categorizing subfields of current without any aliasing.

without aliasing there were 78 undefined fields. Aliasing caused 11 of them to become
defined. So, as shown in Table 3, the number of unreferenced fields dropped from 64
to 6, and the number of undefined fields increased from 78 to 89 (= 78 + 22 − 11).

5.4 Categorization of Common Coupling

Yu et al. [14] categorized common coupling in kernel-based software. They set up
five categories of common coupling on the basis of the roles that the global variables
play. As explained in Section 5.3, every occurrence of a variable in the code can be
classified as either a definition or a use of that variable. Yu et al. [14] applied this
classification to occurrences of global variables in the code, and then categorized the
global variables as follows:

Category 1: Global variables that are defined in kernel modules but not used in
any kernel module. Global variables of this kind can be interpreted as “kernel
outputs”; in object-oriented terminology, they serve as“get”methods (accessors)
for certain internal kernel attribute. As such, their use is reasonable.

Category 0: 154 subfields (61.8%)
Category 1: 5 subfields (2.0%)
Category 2: 27 subfields (10.8%)
Category 3: 3 subfields (1.2%)
Category 4: 7 subfields (2.8%)
Category 5: 53 subfields (21.3%)
Total: 249 subfields (100.0%)

Table 5: Results of categorizing subfields of current incorporating aliasing.

8

Category 2: Global variables that are defined in a single kernel module, and used in
other kernel (and non-kernel) modules. Such a global variable can be interpreted
as a“get”within the kernel in addition to being a“get”used by external modules.
This is less desirable than category 1, but is still reasonable.

Category 3: Global variables that are defined in several different kernel modules.
This causes the different kernel modules to depend on one other, and is therefore
an undesirable usage mode.

Category 4: Global variables that are defined in non-kernel modules and used in
kernel modules. Although this creates a dependency of the kernel on non-kernel
code, it may be necessary as an input mode; in other words, this is similar
to a “set” method (mutator) of a kernel attribute. Although this is distinctly
undesirable, it may be hard to avoid.

Category 5: Global variables that are defined in both kernel and non-kernel mod-
ules, and used in kernel modules. This is an extreme form of coupling between
kernel and non-kernel code, and is highly undesirable.

Subsequently, Feitelson et al. observed that many of the subfields of current are
global variables that are neither defined nor used in the kernel. Accordingly, they
added a sixth category [2]:

Category 0: Global variables that are neither defined nor used in the kernel.

In other words, there exists a six-way categorization of common coupling in kernel-
based software on the basis of definition–use analysis. Furthermore, the higher the
category number, the more undesirable is the resultant common coupling.

Without aliasing, 202 fields of current are defined, as shown in Table 3. The
categorization of these global variables is shown in Table 4. When aliasing is taken
into account, the number of defined fields increases to 249; their distribution is shown
in Table 5.

We observe first that the number of fields increases by nearly 25 percent when
aliasing is taken into account, and second that the distribution of global variables
among the categories changes. In particular, some fields moved “up” to higher cate-
gories, which indicates a stronger form of coupling, which is undesirable. Notably, in
the initial categorization there were no fields in category 3, but with aliasing three
such fields were found. More significantly, the number of fields in highly undesirable
category 5 increased from 45 to 53, an increase of over 17 percent. These changes are
shown in more detail in Table 6.

5.5 References to Global Variables

We also counted the number of references (that is, individual occurrences in the code)
to each of the fields and subfields accessible from current. Comparing Tables 7 and

9

to
from UR UD 0 1 2 3 4 5

Unreferenced: 6 22 33 0 3 0 0 0
Undefined: 0 67 9 0 0 1 0 1

Category 0: 0 0 112 0 0 0 2 4
Category 1: 0 0 0 5 0 0 0 0
Category 2: 0 0 0 0 24 2 0 1
Category 3: 0 0 0 0 0 0 0 0
Category 4: 0 0 0 0 0 0 5 2
Category 5: 0 0 0 0 0 0 0 45

Table 6: Re-categorization of fields of current as a result of considering references

made via aliases.

Kernel Non-kernel
Category 0: 0 (0.0%) 1410 (23.3%)
Category 1: 6 (1.4%) 18 (0.3%)
Category 2: 96 (21.8%) 191 (3.2%)
Category 3: 0 (0.0%) 0 (0.0%)
Category 4: 18 (4.1%) 131 (2.2%)
Category 5: 320 (72.7%) 4310 (71.1%)
Total: 440 (100.0%) 6060 (100.0%)

Table 7: Results of analyzing individual occurrences of fields of current without alias-

ing.

Kernel Non-kernel
Category 0: 0 (0.0%) 1894 (25.3%)
Category 1: 6 (1.0%) 18 (0.2%)
Category 2: 96 (15.2%) 197 (2.6%)
Category 3: 13 (2.1%) 10 (0.1%)
Category 4: 16 (2.5%) 166 (2.2%)
Category 5: 500 (79.2%) 5214 (69.5%)
Total: 631 (100.0%) 7499 (100.0%)

Table 8: Results of analyzing individual occurrences of fields of current with aliasing.

10

References to fields of current

Without aliasing
0 20 40 60 80 100 120 140 160

W
ith

 a
lia

si
ng

0

20

40

60

80

100

120

140

160

Figure 2: References to fields of current in 839 Linux files with aliasing and without

aliasing.

8, we see that not only does the number of references increase when aliasing is taken
into account, the percentage of references in the different categories changes as well.
And again, at least for the kernel modules, the percentage of references made to fields
belonging to undesirable categories increased. In non-kernel modules, the percentage
of references made to such fields decreased slightly, whereas their absolute numbers
increased significantly. This was due to the introduction of many new subfields in
category 0, which were found only with aliasing.

5.6 Correlation with and without Aliasing

Finally, we considered the effect of aliasing on each of the 839 modules. First, we
looked at the extent of aliasing. This is shown in Fig. 2, a scatter plot of the total
number of direct or indirect references to fields of current with and without considering
aliasing.

Each dot corresponds to a single Linux file (module). The 717 files that lie on
the diagonal are not affected by aliasing, whereas the 122 files above the diagonal use
aliasing. In 47 of those files, the total number of fields referenced directly or indirectly
increases when aliasing is taken into account; in 67 files, the total number of direct or
indirect references to fields increases; in 20 files, fields of current are referenced only
as a consequence of aliasing.

11

Fields referenced References to fields
Without aliasing With aliasing Without aliasing With aliasing

Maximum 27 30 298 376
Mean 2.80 3.08 8.07 9.83
Median 1 2 3 3
Minimum 0 1 0 1

Table 9: Descriptive statistics for all 839 files.

Fields referenced References to fields
Without aliasing With aliasing Without aliasing With aliasing

Maximum 25 30 298 376
Mean 5.56 7.44 18.64 30.13
Median 3 6 6 16
Minimum 0 1 0 1

Table 10: Descriptive statistics for the 122 files that use aliasing.

Most files have only a few references, but a few files have many. In some cases,
most or even all the references are due to aliases. These results are reflected in Table
9, which shows descriptive statistics for all 839 files, and in Table 10, which shows
the corresponding statistics for the 122 files that use aliasing. In each case, the range
is large, the mean is small, and the median is smaller than the mean, sometimes by
a factor of 2 or 3. In other words, the use of aliases is unevenly distributed.

Not only is aliasing unevenly distributed among files (modules), it is highly un-
evenly distributed among directories. There is a heavy use of aliases in the kernel
subdirectory (the “kernel” in [10] and [14]), some use in mm (memory management),
and some use in arch (architecture-specific code). In particular, many of the files that
reference fields of current only via an alias are of the form arch/*/kernel/semaphore.c.
There are exceedingly few uses of aliases in drivers, #include files, the file system (fs),
and the networking code.

Then we computed the correlation between common coupling in the absence of
aliasing and common coupling in the presence of aliasing. More precisely, because the
data are so unevenly distributed and because of the large number of identical values,
we used the nonparametric Spearman rank correlation coefficient, corrected for ties
[3].

First we considered all 839 files, and then we looked at the 122 files that use
aliasing. Our results appear Table 11. We conclude that in general those files that
are highly common coupled when aliasing is not considered are also highly common
coupled when aliasing is considered. We deduce that the increases in common coupling
reflected in Table 6 when aliasing is considered are generally associated with those
files that have high common coupling when aliasing is not considered.

12

Fields referenced References to fields
Rank correlation P -value Rank correlation P -value

All 839 files 0.9172 <0.0001 0.8785 <0.0001
122 files that use aliasing 0.8409 <0.0001 0.8339 <0.0001

Table 11: Correlation between common coupling in the absence of aliasing and in the

presence of aliasing.

5.7 Implications for Earlier Research

As outlined at the start of Section 4, the case study in this paper extends and corrects
the results of the original case study by Schach et al. [10] and the follow-up case study
by Yu et al. [14]. However, the results of this paper do not change the conclusions of
[10] and [14]; on the contrary, they strengthen them.

Both Schach et al. and Yu et al. counted only common coupling induced by the
global variables themselves; they overlooked common coupling induced by aliases
of those global variables. Had they included this additional common coupling, the
number of instances of common coupling would have been even larger than what they
reported; both papers focused on directory kernel, where the use of aliases is the heav-
iest. Accordingly, the results of this paper do not invalidate [10] and [14], but rather
reinforce their conclusion that, in the long term, Linux will become nonmaintainable
unless Linux is refactored to greatly reduce the amount of common coupling.

5.8 Threats to the Validity of the Linux Case Study

In this case study, we have considered all fields referenced directly or indirectly by
pointer variable current. We have also considered aliases of current and of pointer
variables referenced directly or indirectly by current. However, we have not considered
all of the many aliases in Linux. A consequence is that there may be many more global
variables than those that we have identified.

We have identified a number of fields that apparently either are never referenced,
or are never defined. Some Linux fields are initialized by copying. That is, sometimes
a structure is created as a copy of a preinitialized “standard” version of the structure.
The structure as a whole is copied, thereby defining the relevant fields. However, the
only definition mechanism we have considered is assignment. Accordingly, we may
have miscategorized some global variables as unreferenced.

6 Conclusions

It is widely agreed that common coupling, that is, the use of global variables, should
be minimized, and that pointer variables need to be handled with care. In this paper

13

we have demonstrated four examples of what can happen when pointer variables and
common coupling interact.

First, the creation of an alias for a global variable means that another global
variable has been created3. That is, aliasing of global variables is antithetical to the
goal of minimizing the number of global variables in a program. This holds irrespective
of whether the global variable in question is a pointer variable (as is the case in this
paper). However, the severity of the situation is aggravated when the global variable
in question is a pointer. When a pointer to a structure is a global variable, then all the
fields of that structure become global variables, too. Creating an alias to the pointer
results in even more global variables. That is, aliasing can create global variables that
do not exist in the absence of aliasing.

Second, if fields of the structure in question are themselves pointer variables, then
the items to which they point are also global variables, and this may be taken to any
level. Again, if there is aliasing as well, then the number of global variables can be
further increased.

Third, the presence of aliasing means that considerable additional work may have
to be done in order to compute quality metrics correctly. These metrics include the
number of global variables and their categorization in terms of definition–use analysis.

Fourth, without taking aliasing in account, variables may incorrectly appear to be
unreferenced (neither defined nor used), or to be used without being defined.

In conclusion, the combination of global variables and pointer variables is highly
undesirable. In those situations where global variables are essentially unavoidable,
pointer variables should be eschewed.

References

[1] A. B. Binkley and S. R. Schach, “Validation of the coupling dependency metric as

a predictor of run-time failures and maintenance measures”. In 20th Intl. Conf.

Softw. Eng., pp. 452–455, Apr 1998.

[2] D. G. Feitelson, T. O. S. Adeshiyan, D. Balasubramanian, Y. Etsion, G. Madl,
E. P. Osses, S. Singh, K. Suwanmongkol, C. Xie, and S. R. Schach, Fine-Grain

Analysis of Common Coupling and its Application to a Linux Case Study. Tech-
nical Report 2005-37, Hebrew University School of Computer Science and Engi-
neering, Jun 2005.

[3] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods. John Wiley
& Sons, 1973.

3More precisely, what has been created is a reference to an existing global variable. From the
viewpoint of a programmer, however, the effect is as if a new global variable has been created.

14

[4] J. Johnson, K. D. Boucher, K. Connors, and J. Robinson, “Project man-

agement: the criteria for success”. Softwaremag.com, Feb/Mar 2001. URL
www.softwaremag.com/archive/2001feb/CollaborativeMgt.html.

[5] C. Jones, Patterns of Software System Failure and Success. Intl Thomson Com-
puter Pr (Sd), 1995.

[6] G. Myers, Reliable Software through Composite Design. Mason and Lipscomb
Publishers, 1974.

[7] A. J. Offutt, M. J. Harrold, and P. Kolte, “A software metric system for module

coupling”. J. Syst. & Softw. 20(3), pp. 295–308, Mar 1993.

[8] J. Rilling and T. Klemola, “Identifying comprehension bottlenecks using program

slicing and cognitive complexity metrics”. In 11th IEEE Intl. Workshop Program

Comprehension, pp. 115–124, May 2003.

[9] S. R. Schach, Object-Oriented and Classical Software Engineering. McGraw-Hill,
7th ed., 2007. (published in July 2006).

[10] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt,“Maintainability

of the Linux kernel”. IEE Proc.-Softw. 149(2), pp. 18–23, 2002.

[11] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and J. Offutt, “Quality impacts

of clandestine common coupling”. Softw. Quality J. 11, pp. 211–218, 2003.

[12] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design”. IBM

Syst. J. 13(2), pp. 115–139, 1974.

[13] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a Dis-

cipline of Computer Program and Systems Design. Prentice Hall, Englewood
Cliffs, NJ, 1979.

[14] L. Yu, S. R. Schach, K. Chen, and J. Offutt, “Categorization of common coupling

and its application to the maintainability of the Linux kernel”. IEEE Trans.

Softw. Eng. 30(10), pp. 694–706, Oct 2004.

15

