Secretly Monopolizing the CPU Without Superuser Privilegs

Dan Tsafritf Yoav Etsiord Dror G. Feitelsoh

°School of Computer Science and Engineering fIBM T. J. Watson Research Center
The Hebrew University P. O. Box 218
91904 Jerusalem, Israel Yorktown Heights, NY 10598
{dants, etsman, féi@cs.huji.ac.il dants@us.ibm.com
Abstract 1 Introduction

We describe a “cheat” attack, allowing an ordinary pro-An attackercan be defined as one that aspires to per-
cess to hijack any desirable percentage of the CPUorm actions “resulting [in the] violation of the explicit
cycles without requiring superuser/administrator privi-or implicit security policy of a system”, which if suc-
leges. Moreover, the nature of the attack is such thatgessful, constitute areach[31]. Under this definition,

at least in some systems, listing the active processes withe said actions may be divided into two classes. One is
erroneously show the cheating process as not using ar§f hostile actionse.g. unlawful reading of sensitive data,
CPU resources: the “missing” cycles would either be at-spamming, lunching of DDoS attacks, etc. The other is
tributed to some other process or not be reported at all (ipf concealment actionsThese are meant to prevent the
the machine is otherwise idle). Thus, certain malicioushostile actions from being discovered, in an effort to pro-
operations generally believed to have required overcomlong the duration in which the compromised machine can
ing the hardships of obtaining root access and installing &€ used for hostile purposes. While not hostile, conceal-
rootkit, can actually be launched by non-privileged usergnent actions fall under the above definitions of “attack”
in a straightforward manner, thereby making the job of aand “breach”, as they are in violation of any reasonable
malicious adversary that much easier. We show that mosgecurity policy.

major general-purpose operating systems are vulnerable The “cheat” attack we describe embodies both a hos-
to the cheat attack, due to a combination of how they actile and a concealment aspect. In a nutshell, the attack
count for CPU usage and how they use this informatiorallows to implement @heat utility such that invoking

to prioritize competing processes. Furthermore,_recent cheat p prog

scheduler changes attempting to better support interac- : .
tive workloads increase the vulnerability to the attack,WOUId runthe prograrpr og in such a way thatitis "’.1”0'
and naive steps taken by certain systems to reduce thceateq exactly percento_f the_ CP_U cycles. '(I)'he hostile as-
danger are easily circumvented. We show that the attacRECt is thap can be arbitrarily big (e.9. 95%), bpt og

can nevertheless be defeated, and we demonstreate tr‘{Yé’“'d still get that many cycles, regardless of the pres-

. . . I ence of competing applications and the fairness policy of
by implementing a patch for Linux that eliminates the .
problem with negligible overhead. the system. The concealment aspect is finatg would

erroneously appear as consuming 0% CPU in monitor-
ing tools likeps, top, xosview, etc. In other words, the
cheat attack allows a program tb) consume CPU cy-
Prologue cles in a secretive manner, ar) consume as many of

these as it wants. This is similar to the common secu-
Some of the ideas underlying the cheat attack were imrity breach scenario where an attacker manages to obtain
plemented by Tsutomu Shimomura circa 1980 at Princesuperuser privileges on the compromised machine, and
ton, but it seems there is no published or detailed essayses these privileges to engage in hostile activities and to
on the topic, noanymention of it on the well [94]. Re- conceal them. But in contrast to this common scenario,
lated publications deal solely with the fact that general-the cheat attack requires no special privileges. Rather, it
purpose CPU accounting can be inaccurate, but nevaran be launched by regular users, deeming this important
conceive this can be somehow maliciously exploited (sedine of defense (of obtaining root or superuser privileges)
Section[ZB). Recent trends in mainstream scheduleras irrelevant, and making the job of the attacker signifi-
render a discussion of the attack especially relevant. cantly easier.

Concealment actions are typically associated with CPU between several programs to create the illu-
rootkits, consisting of “a set of programs and code that sion they execute concurrently). Specifically, after
allows a permanent or consistent, undetectable presence S is billed for consuming CPU during the last tick,
on a computer”[[25]. After breaking into a computer the tick handler checks wheth&rhas exhausted its
and obtaining root access, the intruder installs a rootkit ~ “quantum”, and if so,S is preempted in favor of
to maintain such access, hide traces of it, and exploit another process. Otherwise, it is resumed.
it. Thus, ordinarily, the ability to perform concealment
actions (the rootkit) is the result of a hostile action (the
break-in). In contrast, with the cheat attack, it is exactlyl.2 The Concealment Component

the opposite: the_z con(::ealment. action (the ability to aPThe fundamental vulnerability of the tick mechanism lies
bear as consuming 0% CPQ) IS af:tually what ma!«?s within the second item above: CPU billing is based on
possible to perform the hostile action (of monopolizing

e X eriodic sampling. Consequently, # can somehow
the CPU rega_rdless_ of the system s faimess pol!cy). W anage to arrange things such that it always starts to run
therefore begin by introducing the OS mechanism tha

}ust after the clock tick, and always goes to sleep just be-
fore the next one, thefi will never be billed. One might
naively expect this would not be a problem because ap-
plications cannot request timing services independent of
1.1 Operating System Ticks OS ticks. Indeed, it igechnically impossibldor non-
privileged applications to request the OS to deliver alarm
A general-purpose operating system (GPOS) typicallysignals in between ticks. Nevertheless, we will show that
maintains control by using periodic clock interrupts. there are several ways to circumvent this difficulty.
This practice started at the 196(s][12] and has contin- To make things even worse, the cheat attack leads to
ued ever since, such that nowadays it is used by moshisaccountingwhere another process is billed for CPU
contemporary GPOSs, including Linux, the BSD fam-time used by the cheating process. This happens because
ily, Solaris, AIX, HPUX, IRIX, and the Windows family. billing is done in tick units, and so whichever process
Roughly speaking, the way the mechanism works is thahappens to run while the tick takes place is billed for
at boot-time the kernel sets a hardware clock to genertheentiretick duration, even if it only consumed a small
ate periodic interrupts at fixed intervals (every few mil- fraction of it. As a result, even if the system administra-
liseconds; anywhere between 1ms to 15ms, dependingrs suspect something, they will suspect the wrong pro-
on the OS). The time instance at which the interrupt firescesses. If a cheating process is not visible through system
is called dick, and the elapsed time between two consecmonitoring tools, the only way to notice the attack is by
utive ticks is called dick duration The interruptinvokes its effect on throughput. The cheater can further disguise
a kernel routine, called thick handlerthat is responsi- jts tracks by moderating the amount of CPU it uses so as

ble for various OS activities, of which the following are not to have too great an impact on system performance.
relevant for our purposes:

allows a non-privileged application to conceal the fact it
is using the CPU.

1. Delivering timing servicesand alarm signals. For 1.3 The Hostile Component

e_xamplef a movie player that wants to wakeup %" rhe most basic defense one has against malicious pro-
time to display the next frame, requests the OS (us-

ing a system call) to wake it up at the designatedgrams is knowing what's going on in the system. Thus, a

time. The kernel places this request in an internals'tuatlon in which a non-privileged application can con-

: . ceal the fact it makes use of the CPU, constitutes a seri-
data structure that is checked upon each tick. When . . .)

: : i : ous security problem in its own right. However, there is
the tick handler discovers there’s an expired alarm, ."~ .
) : significantly more to cheat attacks than concealment, be-
it wakes the associated player up. The player then

. o fause CPU accounting is not conducted just for the sake
displays the frame and the scenario is repeated unti : ; . o)
the movie ends. of knowing what’s going on. Rather, this information has

)) a crucial impact on scheduling decisions.

2. Accounting for CPU usageby recording that the As exemplified in Sectiolil]5, the traditional design
currently running process .c.onsumed CPU cycles principle underlying general-purpose scheduling (as op-
during the last tick. Specifically, on every tick, posed to research or special-purpose schemes) is the
is stopped, the tick-handler is started, and the kersame: the more CPU cycles used by a process, the lower
nel incrementss’s CPU-consumption tick-counter jts priority becomes(T15]. Thisegative feedbaciun-
within its internal data structure. ning reduces priority to run more) ensures thit &l

3. Initiating involuntary preemption and thereby processes get a fair share of the CPU, and tBapKo-
implementing multitasking (interleaving of the cesses that do not use the CPU very much — such as

I/0O bound processes — enjoy a higher priority for thoseand so the negative feedback is strictly enforéed [36]. In-
bursts in which they want it. In fact, the latter is largely deed, having Linux-2.4 use accurate accounting informa-
what makes text editors responsive to our keystrokes ition defeats the cheat attack.
an overloaded systern_[[14]. The case of Linux 2.4 and 2.6 is not an isolated inci-
The practical meaning of this is that by consistently dent. It is analogous to the case of FreeBSD and the two
appearing to consume 0% CPU, an application gains gchedulers it makes available to its users. The default
very high priority. As a consequence, when a cheating4BSD” scheduler[[5] is vulnerable to cheat attacks due
process wakes up and becomes runnable (following theéo the sampling nature of CPU accounting, like Linux-
scenario depicted in the previous subsection) it usually2.4. The newer “ULE” scheduler[42] (designated to re-
has a higher priority than that of the currently running place 4BSD) attempts to improve the service provided
process, which is therefore immediately preempted in fato interactive processes, and likewise introduces an addi-
vor of the cheater. Thus, as argued above, unprivilegetonal weakness that is similar to that of Linux-2.6. We
concealment capabilities indeed allow an application toconclude that there’s a genuine (and much needed) intent
monopolize the CPU. However, surprisingly, this is notto make GPOSs do a better job in adequately supporting
the whole story. It turns out that even without conceal-newer workloads consisting of modern interactive appli-
ment capabilities it is still sometimes possible for an ap-cations such as movie players and games, but that this
plication to dominate the CPU without superuser privi-issue is quite subtle and prone to errors compromising
leges, as discussed next. the system (see Sectibnb.2 for further discussion of why
this is the case).

1.4 The Interactivity Component and the Continuing to survey the OS spectrum, Solaris repre-

. ; sents a different kind of vulnerability to cheat attacks.
Spectrum of Vulnerability to Cheating This OS maintains completely accurate CPU account-

Not all GPOSs are vulnerable to cheat attacks to the sami@g (which is not based on sampling) and daessuffer
degree. To demonstrate, let us first compare betweeffom the interactivity weakness that is present in Linux-
Linux-2.4 and Linux-2.6. One of the radical differences 2.6 and FreeBSD/ULE. Surprisingly, despite this con-
between the two is the scheduling subsystem, which haiguration, it is still vulnerable to the hostile component
been redesigned from scratch and undergone a Comp|e@§ cheating. The reason is that, while accurate informa-
rewrite. A major design goal of the new scheduler was tation is maintained by the kernel, the scheduling subsys-
improve users’ experience by attempting to better identem does not make use of it (!). Instead, it utilizes the
tify and service interactive processes. In fact, the leagsampling-based information gathered by the periodic tick
developer of this subsystem argued that “the improvehandler[35]. This would have been acceptable if all ap-
ment in the way interactive tasks are handled is actuallyplications “played by the rules” (in which case periodic
the change that should be the most noticeable for ordisampling works quite well), but such an assumption is
nary users”[[B]. Unfortunately, with this improvement of course not justified. The fact that the developers of
also came increased vulnerability to cheat attacks. the scheduling subsystems did not replace the sampled
In Linux-2.6, a process need not conceal the fact it ishformation with the accurate one, despite its availabil-
using the CPU in order to monopolize it. Instead, it canity, serves as a testament of their lack of awareness to the
masquerade as being “interactive”, a concept that is tiegpossibility of cheat attacks.
within Linux-2.6 to the number of times the process vol- ~ Similarly to Solaris, Windows XP maintains accurate
untarily sleeps(I32]. Full details are given in Sectidn 6, accounting that is unused by the scheduler, which main-
butin a nutshell, to our surprise, even after we introducedains its own sample-based statistics. But in contrast to
cycle-accurate CPU accounting to the Linux-2.6 kernelSolaris, XP also suffers from the interactivity weakness
and made the cheating process fully “visible” at all times, of Linux 2.6 and ULE. Thus, utilizing the accurate infor-
the cheater still managed to monopolize the CPU. Thenation would have had virtually no effect.
reason turned out to be the cheater’s many short volun- From the seven OS/scheduler pairs we have examined,
tary sleep-periods while clock ticks take place (as specenly Mac OS X was found to be immune from the cheat
ified in Sectio_LR). This, along with Linux-2.6's ag- attack. The reason for this exception, however, is not a
gressive preference of “interactive” processes yielded th better design of the tick mechanism so as to avoid the at-
new weakness. tack. Rather, it is because Mac OS X uses a different tim-
In contrast, the interactivity weakness is not presening mechanism altogether. Similarly to several realtime
in Linux-2.4, because priorities do not reflect any con-OSs, Mac OS X usesne-shot timerso drive its timing
siderations that undermine the aforementioned negativand alarm event§ 20, 47,120]. These are hardware inter-
feedback. Specifically, the time remaining until a procesgupts that are set to go off only for specific needs, rather
exhausts its allocated quantum also serves as its priorityhan periodically. With this design, the OS maintains an

One-shot OSs Ticking OSs

use sampling for
billing

FreeBSD/4BSD

Mac OS X Linux-2.4

Realtime OSs...

collect FreeBSD/ULE
accurate
runtime data problematic

handling of interactives

Figure 1: Classification of major operating systems in terms of feztuelevant for the cheat attack. General-purpose OSs are
typically tick-based, in which case they invariably use png and are therefore vulnerable to cheat attacks to vaniegrees.

ascending list of outstanding timers and sets a one-sh@ Potential Exploits and Related Work
event to fire only when it is time to process the event at
the head of the list; when this occurs, the head is poped2.1 The Privileges-Conflict Axis
and a new one-shot event is set according to the new
head. This design is motivated by various benefits, sucAhe conflict between attackers and defenders often re-
as reduced power consumption in mobile devi¢e$ [40]volves around privileges of using resources, notably net-
better alarm resolutiori [15], and less OS “noise”] [53]. Work, storage, and the CPU. The most aggressive and
However, it causes the time period between two consecgeneral manifestation of this conflict is attackers that as-
utive timer events to be variable and unbounded. As @ire to have all privileges and avoid all restrictions by ob-
consequence, CPU-accounting based on sampling is f@ining root/administrator access. Once obtained, attack
longer a viable option, and the Mac OS X immunity to €rs can make use of all the resources of the compromised
cheat attacks is merely a side effect of this. Our findinggnachine in an uncontrolled manner. Furthermore, using
regarding the spectrum of vulnerabilities to cheat attack$00tkits, they can do so secretly in order to avoid detec-
are summarized in Fi@] 1. tion and lengthen the period in which the resources can
While it is possible to rewrite a tick-based OS to be be exploited. Initially, rootkits simply replaced various
one-shot, this is a non-trivial task requiring a radical System programs, such aststat to conceal network ac-
change in the kernel (e.g. the Linux-2.6.16 kernel sourcdivity, Is to conceal files, anps/top to conceal processes
tree contains 8,997 occurrences of the tick frequétity and CPU usagé [55]. But later rootkits migrated into the
macro, spanning 3,199 files). Worse, ticks have beekernel [9/46] and underneathiit [27], reflecting the rapid
around for so long, that some user code came to directlscalation of the concealment/detection battle.
rely on them [[52]. Luckily, eliminating the threat of At the other end of the privileges conflict one can find
cheat attacks does not necessitate a radical change: thegéacks that are more subtle and limited in nature. For
exists a much simpler solution (Sectidn 6). Regardlessgxample, in order to take control over a single JVM in-
the root cause of the problem is not implementation dif-stance running on a machine to which an attacker has
ficulties, but rather, lack of awareness. no physical access, Govindavajhala and Appel suggest
the attacker should “convince it [the machine] to run the
[Java] program and then wait for a cosmic ray (or other
natural source) to induce a memory error”; they then
This paper is structured as follows. Sectidn 2 places thehow that “a single bit error in the Java program’s data
cheat attack within the related context and discusses thgpace can be exploited to execute arbitrary code with a
potential exploits. Sectiofd 3 describes in detail how toprobability of about 70%” within the JVM instance[21].
implement a cheating process and experimentally evaluWhen successful, this would provide the attacker with
ates this design. Sectifh 4 further shows how to applythe privileges of the user that spawned the JVM.
the cheating technique to arbitrary applications, turning When positioning the general vs. limited attacks at op-
them into “cheaters” without changing their source code posite ends of the privileges-conflict “axis”, the cheat at-
Sectior[b provides more details on contemporary schedack is located somewhere in between. It is certainly not
ulers and highlights their weaknesses in relation to theas powerful as having root access and a rootkit, e.g. the
cheat attack on an individual basis. Secf{ibn 6 describeattacker cannot manipulate and hide network activity or
and evaluates our solution to the problem, and Seflion Tile usage. On the other hand, the attack is not limited to
concludes. only one user application, written in a specific language,

1.5 Roadmap

on the condition of a low probability event such as a cos-was spread using a computer virus or worm. This po-
mic ray flipping an appropriate bit. Instead, at its fullest, tential development is very worrying, as it foreshadows
the cheat attack offers non-privileged users one generia new type of exploit for computer viruses. So far, com-
functionality of a rootkit: A ubiquitous way to control, puter viruses targeting the whole Internet have been used
manipulate, and exploit one computer resource — CPUnainly for launching DDoS attacks or spam emaill[34].
cycles — in a fairly secretive manner. In this respect,In many cases these viruses and worms were found and
cheating is analogous to attacks like the one suggestagprooted because of their very success, as the load they
by Borisov et al. that have shown how to circumventplace on the Internet become unignorable [38]. But Stan-
the restrictions imposed by file permissions in a fairly iford et al. described a “surreptitious” attack by which a
robust way [8]. As with cheating, non-privileged users worm that requires no special privileges can spread in
are offered a generic functionality of rootkits, only this a much harder to detect contagion fashion, without ex-
time concerning files. An important difference, how- hibiting peculiar communication pattens, potentially in-
ever, is that Borisov’s attack necessitates the presence écting upwards of 10,000,000 hosks1[49]. Combining
a root setuid program that uses thecess/open idiom such worms with our cheat attack can be used to cre-
(awidely discouraged practide [ﬂl,]whereas our attack ate a concealed ad-hoc supercomputer and run a compu-
has no requirements but running under a ticking OS. tational payload on massive resources in minimal time,
harvesting a huge infrastructure similar to that amassed
by projects like SETI@homé][2]. Possible applications
include cracking encryptions in a matter of hours or days,
Cheating can obviously be used for launching DoS atfunning nuclear simulations, and illegally executing a
tacks. Since attackers can hijack any amount of CPWvide range of otherwise regulated computations. While
cycles, they can run a program that uselessly consumdbis can be done with real rootkits, the fact it can also po-
e.g. 25%, 50%, or 75% of each tick’s cycles, dependtentially be done without ever requiring superuser privi-
ing on the extent to which they want to degrade the efleges on the subverted machines is further alarming. In-
fective throughput of the system; and with concealmendeed, with methods like Borisov's (circumvent file per-
capabilities, users may feel that things work slower, butmissions[[8]), Staniford’s (networked undetected conta-
would be unable to say why. This is similar to “shrew” gion [49]), and ours, one can envision a kind of “rootkit
and “RoQ” (Reduction of Quality) attacks that take ad- without root privileges”.

vantage of the fact that TCP interprets packet loss as an

mdm_aﬂon of (_:ongesnon and .halves a connection’s transz_3 The Novelty of Cheating

mission rate in response. With well-timed low-rate DoS

traffic patterns, these attacks can throttle TCP flows towhile the cheat attack is simple, to our knowledge, there
a small fraction of their ideal rate while eluding detec- js no published record of it, nor any mention of it on the
tion [28,[23/50]. web. Related publications point out that general-purpose
Another related concept is “parasitic computing”, with CPU accounting might be inaccurate, but never raise the
which one machine forces another to solve a piece of gossibility that this can be maliciously exploited. Our
complex computational problem merely by sending to itfirst encounter with the attack was, interestingly, when it
malformed IP packets and observing the respohise [6loccurred by chance. While investigating the effect of dif-
Likewise, instead of just denying the hijacked cyclesferent tick frequencie$§T15], we observed thabeserver
from other applications, a cheating process can leveragégervicing aXine movie player was only billed for 2% of
them to engage in actual computation (but in contrast, ithe cycles it actually consumed, a result bf X starting
can do so effectively, whereas parasitic computing is exto run just after a tick (followingKine’s repetitive alarm
tremely inefficient). Indeed, SectiGh 4 demonstrates hovgignals to display each subsequent frame, which are de-
we secretly monopolized an entire departmestered |ivered by the tick handler), an@) X finishing the work
cluster for our own computational needs, without “doing within 0.8 of a tick duration. This pathology in fact out-
anything wrong”. lined the cheat attack principles. But at the time, we did
A serious exploit would occur if a cheat application not realize that this can be maliciously done on purpose.
1 . _ We were not alone: There have been others that were
The access system call was designed to be used by setuid root . . .
programs to check whether the invoking user has appromiemmis- aware of the accounting problem, but failed to realize the
sions, beforeopening a respective file. This induces a time-of-check- consequences. Liedtke argued that the system/user time-
to-time-of-use (TOCTTOU_) race cc_)ndition whereby an adaersan used statistics, as e.g. provided by gegrusage system
make a name refer to a different file after thecess and before the - ‘1ot e inaccurate “when short active intervals are
open. Thus, its manual page states that “decess system call is . . .
a potential security hole due to race conditions and shoetembe timer-scheduled, i.e. start always directly after a clock
used” [1]. interrupt and terminate before the next one’l[30] (exactly

2.2 Denying or Using the Hijacked Cycles

describing the behavior we observed, but stopping short clock — hrocess scheduled clock

from recognizing this can be exploited). interrupt time Interrupt
The designers of the FreeBSD kernel were also aware
o . e prev process runs other
this might occur, contending that “since processes tend proc proc
to synchronize to 'tick’, the statistics clock needs to be _ scheduler
independent to ensure that CPU utilization is correctly Prévious proc eyt process other process
is billed handler stops is billed

accounted”[[2B]. Indeed, FreeBSD performs the billing
activity (second item in Sectidn_1.1) independently of the
gtnh deirn“;kd;f(gpgrt:fﬁe(gggtg_ tgﬂ Itnvg\;/)h’ilzt tﬁ;g%ree;;tr:n;ﬁz_ cess starts runni_ng immediately aﬁe(one clock tick, bopst
.] . before the next tick, so as not to be billed.
viates some of the concerns raised by Liedike [30] and
largely eliminates the behavior we observed [15], it is
nonetheless helpless against a cheat attack that factog1 Using the CPU Without Being Billed
this design in (Sectio 5) and only highlights the lack of
awareness to the possibility of systematic cheating. ~ When atick (= periodic hardware clock interrupt) occurs,
Solaris designers noticed that “CPU usage measurdhe entire interval since the previous tick is billed to the
ments aren’t as accurate as you may think ... especiall pplication that ran just before the current tick occurred.
at low usage levels”, namely, a process that consumes litt is mechanism usually provides reasonably accurate
tle CPU “could be sneaking a bite of CPU time wheneveilling, despite the coarse tick granularity of a few mil-
the clock interrupt isn’t looking” and thus “appear to use liseconds and the fact that nowadays the typical quanta
1% of the system but in fact use 5%"]10]. The billing iS much shorter, for many applicatioris [BIThis is a
error was shown to match the inverse of the CPU utiliza"eSult of the probabilistic nature of the sampling: Since
tion (which is obviously not the case when cheating, as? large portion of the quanta are shorter than one clock
CPU utilization and the billing error are in fact equal). tick, and the scheduler can only count in complete tick
Windows XP employs a “partial decay” mechanism, Units, many of the quanta are not billed at all. Bpt when
proclaiming that without it “it would be possible for @Shortquantum does happen to include a clock interrupt,
threads never to have their quantums reduced; for eXt__he associated application is overbilled and charged a full
ample, a thread ran, entered a wait state, ran again, arftfk- Hence, on average, these two effects tend to cancel
entered another wait state but was never the currentlut: because the probability that a quantum includes a
running thread when the clock interval timer fire@"[44]. tick is proportional to its duration.
Like in the FreeBSD case, partial decay is useless against Fig.[d outlines how this rationale is circumvented. The
a cheat attack (Secti@h 5), but in contrast, it doesn’t evefiepicted scenario has two component3:start running
need to be specifically addressed, reemphasizing the el@fter a given billing sample, an@)stop before the next.
siveness of the problem. Implementing the first component is relatively easy, as
We contend, however, that all the above can be considoth the biIIing_ and _the firing of pend_ing aIa_lrm timers are
ered as anecdotal evidence of the absence of awarenes<igne upon a tick (first and second items in Sedfioh 1.1;
cheat attacks, considering the bottom line, which is thafandling the situation where the two items are indepen-
all widely used ticking operating systems are susceptiblél€nt, as in FreeBSD, is deferred to Sectign 5). Con-

to the attack, and have been that way for yéhrs sequently, if a process blocks on a timer, it will be re-
leased just after a billing sample. And in particular, set-

ting a very short timer interval (e.g. zero nanoseconds)
3 Implementation and Evaluation will wake a process up immediately after the very next
tick. If in addition it will have high priority, as is the case
As outlined above, the cheat attack exploits the combinawhen the OS believes it is consistently sleeping, it will
tion of two operating system mechanisms: periodic samalso start to run.
pling to account for CPU usage, and prioritization of pro- The harder part is to stop running before the next tick,
cesses that use less of the CPU. The idea is to avoid thghen the next billing sample occurs. This may happen
accounting and then enjoy the resulting high priority. Weby chance as described above in relatioXioe andX.
next detail how the former is achieved. The question is how to do this on purpose. Since the
2We conceived the attack a few years affeil [15], as a resultlis-a OS does not provide Intra-t_ICk t|m|r_lg services, .the _pl’(_)-
pute between PhD students regarding who gets to use thedepsal ~ C€SS Needs some sort of a finer-grained alternative timing

compute clusters for simulations before some approachaagilthes.
We eventually did not exercise the attack to resolve theutispex- 3In this context, quantum is defined to be the duration betvtieen
cept for the experiment described in Seciiod 4.1, which wapenly time an application was allocated the CPU and the time in Rvitic
authorized by the system personnel. relinquished the CPU, either voluntary or due to preemption

Figure 2: The cheat attack is based on a scenario where a pro-

inline cycle_t get_cycles() voi d cheat _attack(double fraction)

{ {
cycle_t ret; cycle_t work, tick_start, now,
asmvol atile("rdtsc" : "=A" (ret));
return ret; work = fraction * cycles_per_tick();

nanosl eep(&zero,0); // sync with tick
tick_start = get_cycles();
cycle_t cycles_per_tick()

{ while(1) {
nanosl eep(&zero,0); // sync with tick now = get_cycles();
cycle_t start = get_cycles(); if(now- tick_start >= work) {
nanosl eep(&zero,0); // avoid bill
for(int i=0; i<1000 ; i++) tick_start = get_cycles();
nanosl eep(&zero, 0); }
/1 do sone short work here...
return (get_cycles() - start)/1000; }
} }

Figure 3: The complete code for the cheater procegslé_t is typedef-ed to be an unsigned 64-bit integer).

mechanism. This can be constructed with the help 0f3.2 EXxperimental Results

thecycle counteravailable in all contemporary architec-

tures. The counter is readable from user level using af© demonstrate that this indeed works as described, we
appropriate assemb|y instruction, as in gm_cydes implemented such an application andraniton a2.8GHz

function (Fig [B, top/left) for the Pentium architecture. ~ Pentium-IV, running a standard Linux-2.6.16 system de-
fault installation with the usual daemons, and no other

The next step is figuring out the interval between eachser processes except our tests. The application didn't
two con;ecutlve clock ticks, |n.cycle_s. This can be dongy any useful work — it just burned cycles. At the
by a routine such asycles_per_tick (Fig.[d bottom/left), same time we also ran another compute-bound applica-
correctly assuming a zero sleep would wake it up at thgjon, that also just burned cycles. An equitable scheduler
nextclockinterrupt, and averaging the duration of a thoushoy|d have given each about 50% of the machine. But
sand tlcks._ While this was sufficient for our purposes, &pne cheat application was set to use 80%, and got them.
more precise m_e_thod would be to tab_ulate all thousand During the execution of the two competing applica-
timestamps |nd|V|duaIIy, calculgte '.[he intervals b?twe_entions, we monitored every important event in the system
them, and .exclude outliers that indicate some activity 'n'(such as interrupts and context switches) using the Klog-
terfered with the measurement. Alterna_tl_vel_y, the df”‘tagertool [1T]. A detailed rendition of precisely what hap-
can be deduced from various OS'Sp.eC'f'C |nformat|onpened is given in Figl4. This shows 10 seconds of exe-
sources, e.g. by _observmg LlnuX]sroc/mter_rupts file cution along theX axis, at tick resolution. As the system
(reveals the OS tick frequency) artoc/cpuinfo (pro- default tick rate is 250 Hz, each tick represents 4ms. To
cessor frequency). show what happens during each tick, we spread those

It is now possible to write an application that uses any4ms along thé” axis, and use color coding. Evidently,
desired fraction of the available CPU cycles, as in thethe cheat application is nearly always the first one to run
cheat_attack function (Fig.[B, right). This first calcu- (on rare occasions some system daemon runs initially for
lates the number of clock cycles that constitute the dea shorttime). But after 3.2ms (that is, exactly 80% of the
sired percentage of the clock tick interval. It then iter- tick) it blocks, allowing the honest process or some other
ates doing its computation, while checking whether theProcess to run.
desired limit has been reached at each iteration. When Fig.[H scatter-plots the billing accuracy, where each
the limit is reached, the application goes to sleep forpoint represents one quantum. With accurate accounting
zero time, blocking till after the next tick. The only we would have seen a diagonal, but this is not the case.
assumption is that the computation can be broken intdVhile the cheat process runs for just over 3ms each time,
small pieces, which is technically always possible to doit is billed for O (bottom right disk). The honest process,
(though in Sectiofl4 we further show how to cheat with-on the other hand, typically runs for less than 1ms, but is
out this assumption). This solves the problem of know-billed for 4 (top left); on rare occasions it runs for nearly
ing when to stop to avoid being billed. As a result, thisa whole tick, due to some interference that caused the
non-privileged application can commandeer any desire¢heater to miss one tick (top right); the cheater neverthe-
percentage of the CPU resources, while looking as if it idess recovers at the following tick. The other processes
using zero resources. run for a very short time and are never billed.

2 - ~100 4 . .
o) | Q ol
g 3 80 g £ g 3 -
I L6 O S
OE) 2 £ OGS 24
X T4 X 28
e 1 £ 521
T 20 3
g g
g B
£ 0 e L A B p 0 € O™ T T 1
B 0 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4

cheater (80,2794 inter—tick time—line [sec] cheater e quanta

. 0 ° 5
honest quration [ms]

B honest [19.72%] « others

B others [00.01%]

Figure 4:Timeline of 10 seconds of competition between a cheat and honFigure 5: Billing accuracy achieved during the

est processes. Legends give the distribution of CPU cycles. test shown in FidJ4.

Tasks: 70 total, 3 running, 67 sleeping, 0 stopped, 0 zonhi e

Cpu(s): 99.7%us, 0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si
Mem 513660k total, 306248k used, 207412k free, Ok buffers
Swap: Ok total, Ok used, Ok free, 227256k cached

PID USER PR N VI RT RES SHR S 9%€CPU %UEM TI ME+ COMVAND
5522 dants 21 0 2348 820 728 R 99.3 0.2 0:07.79 honest
5508 dants 16 0 2232 1168 928 R 0.3 0.2 0:00.04 top
5246 dants 16 0 3296 1892 1088 S 0.0 0.4 0:00.04 csh
5259 dants 16 0 3304 1924 1088 S 0.0 0.4 0:00.06 csh
5509 dants 16 0 3072 1552 964 S 0.0 0.3 0:00.03 bmno-klog.sh
5521 dants 15 0 2352 828 732 S 0.0 0.27 0:00.00 cheater

Figure 6: Snippet of the output of thep utility for userdants (the full output includes dozens of processes, and the eheat
appears near the end and is hard to notice). The honest pnsdeiied for 99.3% of the CPU, while actually getting onl§92.
The cheater looks as if it is not getting any CPU, while it alifuconsumes 80%.

The poor accounting information propagates to systenfact successful regardless of the number of competitors
usage monitoring tools. Like any monitoring utility, the that form the background load. This is demonstrated in
view presented to the user byp is based on OS billing Fig.[d: An honest process (left) gets égual shareof
information, and presents a completely distorted picturehe CPU, which naturally becomes smaller and smaller
as can be seen in Fifl 6. This dump was taken abowuds more competing processes are added. For example,
8 seconds into the run, and indeed the honest processwghen 5 processes are present, each gets 20%. In con-
billed for 99.3% of the CPU and is reported as having runtrast, when the process is cheating (right) it always gets
for 7.79 seconds. The cheater on the other hand is showwhat it wants, despite the growing competition. The rea-
as using 0 time and 0% of the CPU. Moreover, it is re-son of course is that the cheater has very a high priority,
ported as being suspended (status S), further throwing ofis it appears as consuming no CPU cycles, which implies
any system administrator that tries to understand what ian immediate service upon wakeup.
going on. As a result of the billing errors, the cheater has
the highest priority (lowest numerical value: 15), which
allows it to continue with its exploits. 4 Running Unmodified Applications

Our demonstration used a setting of 80% for the cheat) o)
application (a 0.8 fraction argument to thieeat attack A Potential drawback of the above design is that it re-
function in Fig[B). But other values can be used. Fg. 7Avires modifying the application to mcorporate_the cheat
shows that the attack is indeed very accurate, and cafPde. Ideally, from an attacker's perspective, there
achieve precisely the desired level of usage. Thus, an aghould be a “cheat” utility such that invoking e.g.
tacker that wants to keep a low profile can set the cheat-
ing to be a relatively small value (e.g. 15%); the chances

users will notice this are probably very slim. would execute the application as a 95%-cheater, without

Finally, our demonstration have put forth only one having to modify and recompile its code. This section
competitor against the cheater. But the attack is indescribes two ways to implement such a tool.

cheat 95% application

all processes are honest

one is a (80%) cheater

> 100 _
2 80 S
g o :
pad Ny
= 40 [=)]
>
2 2
S 20 E
T 0 =
% 0 20 40 60 80 100
[$)
®©

desired cheat rate [%CPU]

Figure 7: The attack is very accurate and
the cheater gets exactly the amount of CPU

cycles it requested. Figure 8:

4.1 Cheat Server

The sole challenge a cheat application faces is obtaining
a timing facility that is finer than the one provided by
the native OS. Any such facility would allow the cheater
to systematically block before ticks occur, insuring it is
never billed and hence the success of the attack. In th
previous section, this was obtained by subdividing the
work into short chunks and consulting the cycle counter
at the end of each. A possible alternative is obtaining |
the required service using an external machine, namely
acheat server

The idea is very simple. Using a predetermicbeat
protocol a client opens a connection and requests the
remote server to send it a message at some designated
high-resolution time, before the next tick on the local 1.
host occurs. (The request is a single UDP packet spec-
ifying the required interval in nanoseconds; the content 2.
of the response message is unimportant.) The client then
polls the connection to see if a message arrived, instead
of consulting the cycle counter. Upon the message ar-
rival, the client as usual sleeps-zero, wakes up just after
the next tick, sends another request to the server, and so
on. The only requirement is that the server would indeed
be able to provide the appropriate timing granularity. But
this can be easily achieved if the server busy-waits on its 3.
cycle counter, or if its OS is compiled with a relatively
high tick rate (the alternative we preferred).

By switching the fine-grained timing source — from
the cycle counter to the network — we gain one impor- 4.,
tant advantage: instead of polling, we can now sleep-wait
for the event to occur, e.g. by using teelect system
call. This allows us to divide the cheater into two sepa-
rate entities: theéarget applicationwhich is the the un-
modified program we want to run, and thieeat client
which is aware of the cheat protocol, provisions the tar-
get application, and makes sure it sleeps while ticks oc-
cur. The client exercises its control by using the standard

SIGSTOP/SIGCONT signals, as depicted in Fig. 9: 6.

1 3 5 7 9
all the others ==
one competitor

1 3 5 7 9
all the others mmm
one cheater

number of competing processes

Cheating is immune to the background load.

ro

ram cheat client cheat server,
[default; 250Hz] [10,000Hz]
SIGSTOP
I [sleep zero |
SIGCONT request msg 80%
[select |
@
SIGSTOP [sendmsg]|
I [sleep zero |
k- SIGCONT }—O—Qrequest msg 80%}—
select q
o
)
SIGSTOP
I sleep zero
k- SIGCONT request msg 80%
select

Figure 9: The cheat protocol, as used by a 80%-cheater.

The client forks the target application, sends it a
stop signal, and goes to sleep till the next tick.

Awoken on a tick, the client does the following:
(a) It sends the cheat server a request for a timing
message including the desired interval.

(b) It sends the target applicatiorcant signal to
wake it up.

(c) It blocks-waiting for the message from the
cheat server to arrive.

As the cheat client blocks, the operating system will
most probably dispatch the application that was just
unblocked (because it looks as if it is always sleep-
ing, and therefore has high priority).

At the due time, the cheat server sends its message
to the cheat client. This causes a network interrupt,
and typically the immediate scheduling of the cheat
client (which also looks like a chronic sleeper).

. The cheat client now does two things:

(a) It sends the target applicatiorstop signal to
prevent it from being billed

(b) It goes to sleep-zero, till the next (local) tick.

Upon the next tick, it will resume from stEp 2.

100 - voi d cheat _anal ysi s()

3 go. sum of honest processes [10 per node] {
5 60- cycle_t ¢ = get_cycles();
Q.
<
%’ 40" sum of cheaters [one per node] [cheat 60%] if(c-tick_start >= WORK) {
£ 207 nanosl eep(&zero, 0);
= 0 ‘ ‘ ‘ ‘ ‘ tick_start = get_cycles();
1 2 4 8 16 32 }
cluster size [UP nodes] [log scale] }

Figure 10: The combined throughput of honest vs. 60%-Figure 11: The injected cheat “analysis” routine. (The
cheating processes, as a function of the number of clustizsno WORK macro expends to the number of cycles that reflect the
used. On each node there are ten honest processes and olesired cheat fraction; theck_start global variable is initial-
cheater running. The cheaters’ throughput indicates that t ized beforehand to hold the beginning of the tick in which the
server simultaneously provides good service to all clients application was started.)

To demonstrate that this works, we have implemented The routine we used is listed in FigJ11. Invoking it
this scenario, hijacking a shared departmental cluster obften enough would turn any application into a cheater.
Pentium-IV machines. As a timing server we used an oldThe question is where exactly to inject this code, and
Pentium-IIl machine, with a Linux 2.6 system clocked what is the penalty in terms of performance. The answer
at 10,000 Hz. While such a high clock rate adds overto both questions is obviously dependent on the instru-
head [15], this was acceptable since the timing servemented application. For the purpose of this evaluation,
does not have any other responsibilities. In fact, it couldwe chose to experiment with an event-driven simulator of
easily generate the required timing messages for the fulh supercomputer scheduler we use as the basis of many
cluster size, which was 32 cheat clients in our case, agesearch effori[39. 18, 18,51]. Aside from initially read-
indicated by FiglTl0. ing an input log file (containing a few years worth of par-
allel jobs’ arrival times, runtimes, etc.), the simulatsr i
strictly CPU intensive. The initial part is not included in
our measurements, so agtto amortize the instrumen-

Using a cheat server is the least wasteful cheating metho@tion overhead and overshadow its real cost by hiding it
in terms of throughput loss, as it avoids all polling. The Within more expensive I/O operations.
drawback however is the resulting network traffic that Fig. [I2 shows the slowdown that the simulator ex-
can be used to detect the attack, and the network latengyerienced as a function of the granularity of the injec-
which is now a factor to consider (observe the cheaterstion. In all cases the granularity was fine enough to
throughput in FiglIl0 that is higher than requested). Ad+turn the simulator into a full fledged cheater. Instru-
ditionally, it either requires a dedicated machine to hostmenting every machine instruction in the program in-
the server (if it busy-waits to obtain the finer resolution) curs a slowdown of 123, which makes sense because
or the ability to install a new kernel (if resolution is ob- this is approximately the duration cheat_analysis in
tained through higher tick rate). Finally, the server con-cycles. This is largely dominated by thdtsc opera-
stitutes a single point of failure. tion (read time-stamp counter; wrappeddmst_cycles),
Binary instrumentation of the target application is which takes about 90 cycles. The next grain sizebsa
therefore an attractive alternative, potentially prorgli sic block namely, a single-entry single-exit instructions
a way to turn an arbitrary program into a cheater, requirsequence (containing no branches). In accordance to the
ing no recompilation and avoiding the drawbacks of thewell known assertion that “the average basic block size
cheat-server design. The idea is to inject the cheatings around four to five instructionsl [56], it incurs a slow-
code directly into the executable, instead of explicitly in down of of 25, which is indeed a fifth of the slowdown
cluding it in the source code. To quickly demonstrate theassociated with instructions. #ace of instructions (as-
viability of this approach we usdein, a dynamic binary sociated with the hardware trace-cache) is defined to be
instrumentation infrastructure from Intél[33], primaril a single-entry multiple exits sequence of basic blocks
used for analysis tasks as profiling and performance evathat may be separated spatially, but are adjacent tempo-
uation. Being dynamic, Pin is similar to a just-in-time rally [43]. This grain size further reduces the slowdown
(JIT) compiler that allows attachingnalysis routineso to 15. Instrumenting at the coarser function level brings
various pieces of the native machine code upon the firstis to a slowdown factor of 3.6, which is unfortunately
time they are executed. still far from optimal.

4.2 Binary Instrumentation

1000 = T —. 100
£ 100 112 . I s
s D 25 15 : 5 oo o RS e e e
o 10 = - - =3 | ! |
= E 3.0 H = 0 - |
S 1 102 1 455, s 4
? oSk g 20
01 L Ib I I I ! ! = 0 ——y [! 1 T
//7,5\ /0 &, qQ, }2//7 .S@/ /70 /76 i (. (. K A A
granularity: g, K¢ Yoy g e //7"«;0"«%’700 NGO
” e honest ==& 7 56 I”’&,l, Y%,
cheater @SO &

Figure 12:The overheads incurred by cheat-instrumentation,Figure 13: Throughput of a 80%-cheater competing against
as function of the granularity in which tlebeat_analysis rou- an honest process, under the operating systems with which we
tine is injected. The Y axis denotes the slowdown penalty dueexperimented. These measurements were executed on the fol-
to the instrumentation, relative to the runtime obtainecewh lowing OS versions: Linux 2.4.32, Linux 2.6.16, Window XP
no instrumentation takes place (“none”). SP2, Solaris 10 (SunOS 5.10 for i386), and FreeBSD 6.1.

The average instructions-per-functionnumberwithinab General-Purpose Schedulers
simulator run, is very small (about 35), the result of mul-
tiple abstraction layers within the critical path of execu- The results shown so far are associated with Linux-
tion. This makes the function-granularity inappropriate2.6. To generalize, we experimented with other tick-
for injecting the cheat code to our simulator, when at-ing operating systems and found that they are all sus-
tempting to turn it into an efficient cheater. Furthermore,ceptible to the cheat attack. The attack implementation
considering the fact that nowadays a single tick consistsvas usually as shown in Fifil 3, possibly replacing the
of millions of cycles (about 11 millions on the platform nanosleep with a call topause, which blocks on a re-
we used, namely, a 2.8 GHz Pentium-1V at 250 Hz tickpeated tick-resolution alarm-signal that was set before-
rate), a more adequate grain size for the purpose of chealtand usingsetitimer (all functions are standard POSIX;
ing would be, say, tens of thousands of cycles. Thus, ahe exceptions was Windows XP, for which we used
slightly more sophisticated approach is required. Luck-Win32's GetMessage for blocking). Fig[IB shows the
ily, simple execution profiling (using Pin or numerous outcome of repeating the experiment described in Sec-
other tools) quickly reveal where an application spendgion @ (throughput of simultaneously running a 80%-
most of its time; in the case of our simulator this was cheater against an honest process) under the various OSs.
within two functions, the one that pops the next eventto Our high level findings were already detailed in Sec-
simulate and the one that searches for the next parallelon [[2 and summarized in Fifll 1. In this section we
job to schedule. By instructing Pin to instrument only describe in more detail the design features that make
these two functions, we were able to turn the simulatorschedulers vulnerable to cheating; importantly, we ad-
into a cheater, while reducing the slowdown penalty todress the “partial quantum decay” mechanism of Win-
less than 2% of the baseline. We remark that even thougtiows XP and provide more details regarding FreeBSD,
this selective instumentation process required our manwhich separates billing from timing activity and requires
ual intervention, we believe it reflects a fairly straight- a more sophisticated cheating approach.
forward and simple methodology that can probably be

automated with some additional effort.

_ ~ 5.1 Multilevel Feedback Queues
Finally, note that all slowdowns were computed with

respect to the runtime of a simulator that weinstru- Scheduling in all contemporary general-purpose operat-
mented, but still executed under Pin. This was done so asig systems is based omaultilevel feedback queughe

not to pollute our evaluation with unrelated Pin-specific details vary, but roughly speaking, the priority is a com-

performance issues. Indeed, running the simulator nabination of a static component (“nice” value), and a dy-

tively is 45% faster than the Pin baseline, a result of Pinnamic component that mostly reflects lack of CPU us-

essentially being a virtual machine[33]. Other binaryage, interpreted as being “I/O bound”; processes with
instrumentation methods, whether staficl [48], exploitingthe highest priority are executed in a round-robin man-
free space within the executable itsélfl[41], or linking to ner. As the cheat process avoids billing, it gets the high-
it loadable module$]4], do not suffer from this deficiency est priority and hence can monopolize the CPU. This is
and are expected to close the gap. what makes cheating widely applicable.

A potential problem with the multilevel feedback cessor between competing processeisiux 2.6 there-
gueues is that processes with lower priorities mightfore attempts to provide special treatment to processes it
starve. OSs employ various policies to avoid this. For exdidentifies as interactive by maintaining their priority hig
ample Linux 2.4 uses the notion of “epochd”[86]. Upon and by allowing them to continue to execute even if their
a new epoch, the scheduler allocates a new quantum tallocation runs out, provided other non-interactive pro-
all processes, namely, allows them to run for an addicesses weren't starved for too longl[32]. A similar mech-
tional 60ms. The epoch will not end unéll runnable anism is used in thlLE scheduler ofrreeBSD[42].
processeshave exhausted their allocation, insuring all In both systems, interactive processes are identified
of them get a chance to run before new allocations ar¢yased on the ratio between the time they sleep and the
granted. Epochs are initiated by the tick handler, as parime they run, with some weighting of their relative influ-
of the third item in SectiofiIl1. The remaining time a ence. If the ratio passes a certain threshold, the process is
process has to run in the current epoch also serves as iggemed interactive. This mechanism plays straight into
priority (higher values imply higher priority). Schedul- the hands of the cheater process: as it consistently ap-
ing decisions are made only when the remaining allocapears sleeping, it is classified interactive regardless of
tion of the currently running process reaches zero (posthe specific value of the ratio. The anti-starvation mech-
sibly resulting in a new epoch if no runnable processesnism is irrelevant because other processes are allowed
with positive allocation exist), or when a blocked processto run at the end of each tick when the cheater sleeps.
is made runnable. Thus, cheating would have been applicable even in the

This design would initially seem to place a limit on the face of completely accurate CPU accounting. (The same
fraction of cycles hijacked by the cheater. However, asobservation holds for Windows XP, as described in the
always, cheating works because of the manner Linux-2.sext subsection.)

rewards sleepers: upon a new epoch, a currdntigked We contend that the interactivity weakness manifested
process gets to keep half of its unused allocation, in adpy the above is the result of two difficulties. The first is
dition to the default 60ms. As a cheater is never billedhow to identify multimedia applications, which is cur-
and always appears blocked when a tick takes place, itgently largely based on their observed sleep and CPU
priority quickly become$ =7, 602~ = 120 (the max- consumption patterns. This is a problematic approach:
imum possible), which means it is always selected to rumhyr cheater is an example of a “false positive” it might
when it unblocks. yield. In a related work we show that this problem is
In Solaris, the relationship between the priority and jnherent, namely, that typical CPU-intensive interactive
the allocated quantum goes the other way [35]. When &pplication can be paired with non-interactive applica-
thread is inserted to the run-queue, a table is used to ations that have identical CPU consumption pattefnk [14].
locate its new priority and quantum (which are two sep-Thus, it is probably impossible to differentiate between
arate things here) based on its previous priority and thenultimedia applications and others based on such crite-
reason it is inserted into the queue — either because itfa, and attempts to do so are doomed to fail; we argue
time quantum expired or because it just woke up aftefhat the solution lies in directly monitoring how applica-
blocking. The table is designed such that processes thaibns interact with devices that are of interest to human
consume their entire allocation receive even longer alysers[[15].
locations, but are assigned lower priorities. In contrast, The second difficulty is how to schedule a process
threads that block or sleep are allocated higher priorigentified as being interactive. The problem here arises
ties, but shorter quanta. By avoiding billing the cheaterf,om the fact that multimedia applications often have
is considered a chronic sleeper that never runs, causingoth realtime requirements (of meeting deadlines) and
its priority to increase until it reaches the topmost prior-sjgnificant computational needs. Such characteristics are

ity available. The short-quanta allocation restriction iSincompatibIe with the negative feedback of “running re-
circumvented, because the scheduler maintains its owg,ces priority to run more”, which forms the basis of

(misguided) CPU-accounting based on sampling ticks. tnhe classic general-purpose schedulifig [5] (as in Linux
2.4, Solaris, and FreeBSD/4BSD) and only delivers fast
5.2 Prioritization For Interactivity response times to applications that require little CPU.
Linux-2.6, FreeBSD/ULE, and Windows XP tackled this
An obvious feature of the Linux 2.4 and Solaris schemegproblem in a way that compromises the system. And
is that modern interactive processes (as games or movighile it is possible to patch this to a certain extent, we
players that consume a lot of CPU cycles) will end upargue that any significant divergence from the aforemen-
having low priority and will be delayed as they wait for tioned negative-feedback design necessitates a much bet-
all other processes to complete their allocations. This iger notion of what is important to users than can ever be
an inherent feature of trying to equally partition the pro-inferred solely from CPU consumption patterns [14, 16].

5.3 Partial Quantum Decay timer interrupts

Case 1
In Windows XP, the default time quantum on a work- n cheater cheater h
station or server is 2 or 12 timer ticks, respectively, with fans funs
the quantum itself having a value of “6” (3 2) or “36” Case 2 HZ ticks
(3 x 12), implying that every clock tick decrements the
guantum by 3 unitd[44]. The reason a quantum is stored Ihs cr:ﬁg;er I C?ﬁﬁtser Ih
internally in terms of a multiple of 3 units per tick rather
than as single units is to allow for “partial quantum de- Case3 OVATHZticks
cay”. Specifically, each waiting thread is charged one Ih cheater [l cheater I
unit upon wakeup, so as to prevent situations in which sleeps sleeps

a thread avoids billing just because it was asleep when

the tick occurred. Hence, the cheater loses a unit upofigure 14:The three possible alignments of the two FreeBSD

each tick. Nonetheless, this is nothing but meaninglesslocks: no STATHZ tick between consecutive HZ ticks

in comparison to what it gains due its many sleep events(case 1), STATHZ ticks falls on an even timer interrupt along
After a nonzero wait period (regardless of how Short),S’de a HZz tick (case 2), and a STATHZ tick falling on an odd

Windows XP grants the awakened thread a “priorityCIOCk interrupt between HZ ticks (case 3).
boost” by moving it a few steps up within the multi-

level feedback queue hierarchy, relative to its base prioriem that was available to us runs with a HZ frequency
ity. Generally, following a boost, threads are allowed to 5f 1000Hz and STATHZ frequency ef133Hz.

exhaust their full quantum, after which they are demoted pgth the HZ and STATHZ timers are derived from a
one queue in the hierarchy, allocated another quantumingle timer interrupt, configured to fire at a higher fre-
and so forth until they reach their base priority again.quency of 2x HZ = 2000Hz. During each timer inter-
This is sufficient to allow cheating, because a cheater i1°‘upt the handler checks whether the HZ and/or STATHZ
promoted immediately after being demoted (as it sleepgicik handlers should be called — the first is called ev-

on every tick). Thus, it consistently maintains a higherery 2 interrupts, whereas the second is called every 15—

position relative to the “non-boosted” threads and there- g interrupts & 292). The possible alignments of the

fore always gets the CPU when it awakes. By still allow- v are shown iﬁid:M. The HZ ticks are executed

ing others to run at the end of each tick, it prevents theyy each even timer interrupt (case 1). Occasionally the
anti-starvation mechanism from kicking in. HZ and STATHZ ticks align on an even timer interrupt
Note that this is true regardless of whether the billing(case 2), and sometimes STATHZ is executed on an odd
is accurate or not, which means XP suffers from the in-timer interrupt (case 3). By avoiding HZ ticks we also
teractivity weakness as Linux 2.6 and FreeBSD/ULE.avoid STATHZ ticks in case 2. But to completely avoid
To make things even worse, “in the case where a waibeing billed for the CPU time it consumes, the cheater
is not satisfied immediately” (as for cheaters), “its [the must identify when case 3 occurs and sleep between the
thread’s] quantum is reset to a full turi”J44], rendering two consecutive HZ tick surrounding the STATHZ tick.
the partial quantum decay mechanism (as any hypotheti- The kernel’s timer interrupt handler calculates when
cal future accurate billing) completely useless. to call the HZ and STATHZ ticks in a manner which re-
aligns the two every second. Based on this, we mod-
ified the code in Fig[d3 to pre-compute ax2HZ sized
5.4 Dual Clocks STATHZ-bitmap, in which each bit corresponds to a spe-
cific timer interrupt in a one second interval, and set-
CompromisingFreeBSD, when configured to use its ting the bit for those interrupts which drive a STATHZ
4BSD default schedulel [37], required us to revisit the tick. Further, the code reads the number of timer inter-
code given in Figl13. Noticing that timer-oriented appli- rupts that occurred since the system was started, avail-
cations often tend to synchronize with ticks and start toable through a&ysctl call. The cheater then requests the
run immediately after they occur, the FreeBSD design-system for signals at a constant HZ rate. The signal han-
ers decided to separate the billing from the timing activ-dler in turn accesses the STATHZ bitmap with a value of
ity [26]. Specifically, FreeBSD uses two timers with rel- (interrupt_index + 1) mod (2x HZ) to check whether
atively prime frequencies — one for interrupts in chargethe nexttimer interrupt will trigger a STATHZ tick. This
of driving regular kernel timing events (with frequency mechanism allows the cheater thread to identify case 3
HZ), and one for gathering billing statistics (with fre- and simply sleep until the next HZ tick fires. The need
quencySTATHZ. A running thread’s time quantum is to occasionally sleep for two full clock ticks slightly re-
decremented by 1 every STATHZ tick. The test sys-duces the achievable throughput, as indicated in[Elg. 13.

6 Protecting Against the Cheat Attack ture to replace thdime_slice field that counts down

a process’ CPU allocation in a resolution of “jiffies”
6.1 Degrees of Accuracy (the Linux term for clock ticks). It is replaced by

two fields: ns_time_slice, which counts down the al-
While all ticking OSs utilize information that is exclu- |ocated time slice in nanoseconds instead of jiffies, and
sively based on sampling for the purpose of schedulns_|ast_update, which records whens_time_slice was
ing, some operating system also maintain precise CPUrst updated. The value ob_time_slice is decremented
usage information (namely, Solaris and Windows XP).py the elapsed time sinees_last_update, in two places:
Under this design, each kernel entry/exit is accompanie@n each clock tick (this simply replaces the original
by reading the cycle counter to make the kernel awargime_slice jiffy decrement, but with the improvement
of how many cycles were consumed by the process thugf only accounting for cycles actually used by this pro-
far, as well as to provide the user/kernel usage statisticgess), and from within thechedule function just before
(Incidentally this also applies to the one-shot Mac OSa context switch (this is the new part). The rest of the
X.) Solaris, provides even finer statistics by saving thekernel is unmodified, and still works in a resolution of
time a thread spends in each of the thread states (runningffies. This was done by replacing accessetit®_slice
blocked, etc.). While such consistently accurate informawith an inlined function that wrapas_time_slice and
tion can indeed be invaluable in various contexts, it doegounds it to jiffies.

not come without a price. Somewhat surprisingly, using this patch did not solve
Consider for example the per system call penalty.the cheat problem: a cheat process that was trying to ob-
Mamtamm_g user/kernel statistics requires that (att_Deas tain 80% of the cycles still managed to get them, despite
the following would be added to the system call invo- the fact that the scheduler had full information about this
cation path: twordtsc operation_s (of reading the cycle (Fig.[13). As explained in Sectidd 5, this happened be-
counter at kernel entry and exit), subtracting of the as¢ayse of the extra support for “interactive” processes in-
sociated values, and adding the difference to some acCyroqyced in the 2.6 kernel. The kernel identifies pro-
mulator. On our Pentium-1V 2.8GHz this take200 ;egses that yield a lot as interactive, provided thizie
cycles (as eachdtsc operation takes-90 cycles and |eyvel is not too high. When an “interactive” process ex-
the arithmetics involves 64bit integers on a 32bit ma-payts its allocation and should be moved from the “ac-
chine). This penalty is significant relative_ to the duration;,e array” into the “expired array”, it is nevertheless al-
of short system calls, e.g. on our systesigprocmask |g\ed to remain in the active array, as long as already ex-
takes~430/1020 cycles with an invalid/valid argument, yireq processes are not starved (they're not: the cheater
respectively, implying 20-47% of added overhead. runs less than 100% of the time by definition, and thus
Stating a similar case, Liedtke argued against this typghe Linux anti-starvation mechanism is useless against
of kernel fine-grained accountirig 130], and indeed the ast). |n effect, the scheduler is overriding its own quanta
sociated overheads may very well be the reason why sysyjiocations; this is a good demonstration of the two sides
tems like Linux and FreeBSD do not provide such a serf cheating prevention: it is not enough to have good in-
vice. Itis notour intent to express an opinion on the mat-formation — it is also necessary to use it effectively.
ter, but rather, to ma_ke the tradeoff ex_plicit and to high- In order to rectify the situation, we disallowed pro-
!'ght thg fact that designers neB(_:It_face it Wher_1 Protect- cesses to circumvent their allocation by commenting out
ing against cheat attacks. Specifically, there is no need %he line that reinserts expired “interactive” processes to
knowexactlyhow many cycles were consumed by a run-y, o 4tje array. As shown in Fif16, this has finally
ning process uposachkermel entry (and user/kernel or o ccoeqed to defeat the attack. The’timeline is effec-
finer statistics are obviously irrele_vant too). The,SChEd'tively divided into epochs of 200ms (corresponding to
uler would be pgrfectly happy with a much lazier ap- the combined duration of the two 100ms time-slices of
proach: that Fhe mfprma‘uon would be updatedy upon the two competing processes) in which the processes
a context switchThis is a (1) far less frequent and a (2) ﬁhare the CPU equitably. While the “interactive” cheater

far mo:e expegs;r\]/e e;/enttlﬁ co(rjndpadrlson tr? a('jsysftem(;:_a as higher priority (as its many block events gains it a
Invocation, and therelore the added overnead of rea Inﬂigher position in the multilevel queue hierarchy), this is

the cycle counter is made relatively negligible. limited to the initial part of the epoch, where the cheater
repeatedly gets to run first upon each tick. However, after
6.2 Patching the Kernel ~125ms of which the cheater consumes 80%, its alloca-
tion runs out (125m§0%=100ms). It is then moved to
We implemented this “lazy” perfect-billing patch within the expired array and its preferential treatment is tem-
the Linux 2.6.16 kernel. 1t is only a few dozen lines porarily disabled. The honest process is now allowed to
long. The main modification is in thiask_struct struc- catch up and indeed runs fe75ms until it too exhausts

£

process total resource use

g S
S 3 80 o g 2, “default | nice
E 60 = S= . (figs. on left)) +19
x 2 w3d o8° cheater] 80.28%)| 46.13%
T 20 ‘L‘ 25, . honest 19.71%| 53.87%
o g oo other 0.01%| 0.00%
E 0T T T 1 T T T 1 1 10 E O #—7—71 711

01 2 3 456 7 8 9 10 01 2 3 4

cheater inter—tick time [sec]

used quanta

honest duration [ms]
others

Figure 15:In Linux 2.6, cheating is still possible even with perfedtibg (compare with Fig€15).

its quantum and is removed from the active array, leavlems. One is that it requires a very high tick rate, which
ing it empty. At this point the expired/active array are leads to excessive overhead. The other is that it does not
swapped and the whole thing is repeated. completely eliminate the cheat attack. An attack is still
The above exposes a basic tradeoff inherent to priorpossible using an extension of the cheat server approach
itizing based on CPU consumption patterns: one mustiescribed in Sectio 4. The extension is that the server
either enforce a relatively equitable distribution of CPU is used not only to stop execution, but also to start it. A
cycles, or be exposed to attacks by cheaters that can eagriant of this is to randomize the clock in order to make
ily emulate “interactive” behavior. (We note in passing it impossible for an attacker to predict when ticks will
that processes with +Ifice value are never regarded as occur as suggested by Liedtke in relation to user/kernel
interactive by the 2.6 kernel, so the “optimization” that statisticsl[3D]. This can work, but at the cost of overheads
allows interactive processes to deprive the others is efand complexity. Note however that true randomness is
fectively disabled; see right table in F[g15.) hard to come by, and it has already been shown that
Finally, let us discuss the patch overheads. Thea system’s random number generator could be reverse-
schedule function was ~80 cycles (=5%) slower: engineered in order to beat the randomnkess [24]. A third
1636 + 182 cycles on average instead %57 4+ 159 possible approach is to block access to the cycle counter
without the patch{ denotes standard deviation). At the from user level (this is possible at least on the Intel ma-
same time, the overhead of a tick handler (§oked- chines). This again suffers from two problems. First, it
uler_tick function) was reduced by 17%, frof#39 + withdraws a service that may have good and legitimate
9323 to 6971 4 9506. This is probably due to the fact uses. Second, it too does not eliminate the cheat attack,
that after the patch, the cheater ran much less, and therenly make it somewhat less accurate. A cheat application
fore generated a lot less timers for the handler to processan still be written without access to a cycle counter by
Note that these measurements embodydinect over- finding approximately how much application work can
head only (does not include traps to the kernel and backye done between ticks, and using this directly to decide
nor cache pollution due to the traps or context switches)when to stop running.
Also note that as the high standard deviations indicate,
the distribution of ticks has a long tail, with maximal 6.4 A Note About Sampling
values around 150,000 cycles. Lastly, the patch did not
affect the combined throughput of the processes, at all. In the system domain, it is often tempting to say “let us
do this chore periodically”. It is simple and easy and
6.3 Other Potential Solutions therefore often the right thin.g to do. But if the chore is
somehow related to accounting or safeguarding a system,
Several solutions may be used to prevent cheating appland if “periodically” translates to “can be anticipated”,
cations from obtaining excessive CPU resources. Herghen the design might be vulnerable. This observation
we detail some of them, and explain why they are infe-is hardly groundbreaking. However, as with ticks, we
rior to the accurate billing we suggested above. Perhapsuspectitis often brushed aside for the sake of simplicity.
the simplest solution is to charge for CPU usage up-frontWithout any proof, we now list a few systems that may
when a process is scheduled to run, rather than relyingosses this vulnerability.
on sampling of the running process. However, this will At a finer granularity than ticks, one can find Cisco’s
overcharge interactive processes that in fact do not usBetFlowrouter tool that “preforms 1 in N periodic [non-
much CPU time. Another potential solution is to use probabilistic] sampling”[[1B] (possibly allowing an ad-
two clocks, but have the billing clock operate at a finerversary to avoid paying for his traffic). At coarser gran-
resolution than the timer clock. This leads to two prob-ularity is found the per-nodiafod of the MOSIX cluster

full data zoom in

'a' —_—

g 4 00 o 80 . 4

— (2]

© 3 - 80 g % £ 60 o 3

£ 60 = S'c

~ 2 - X O o 40 2

=] 40 9 ==

T - T 2= 2 o 1

o 0 s 33 . "

E o (U= 0 T T T 1 O ¢——7T T T

0 200 400 600 800 1000 0 20 40 60 80 0 1 2 3 4
inter—tick time [ms]
cheater [50.02%)]
B honest [49.97%]
B others [00.01%)]

used quanta duration [ms]

Figure 16:Cheating is eliminated when expired processes are notertdnbto the active list (compare with Figl 15).

infrastructure [[7], which wakes up every 5 seconds toCPU usage before a context switch occurs, we achieve
charge processes that migrated to the node (work can mufficient accuracy in a manner more suitable for systems
partitioned to shorter processes). The FAQ of IBM’s in- like Linux and FreeBSD that are unwilling to pay the as-
ternal file infrastructure calle@SA(Global Storage Ar- sociated overhead of the Solaris/Windows way. Once the
chitecture) states that “charges will be based on daily filanformation is available, the second part of the solution
space snapshotd” [22] (raising the possibility of a well-is toincorporateit within the scheduling subsystem (So-
timed mv between two malicious cooperating users).laris and XP don’t do that).
And finally, the US ArmyMDARS (Mobile Detection The third component is tose the information judi-
Assessment Response System) patrol robots that “stogiously. This is not an easy task, as indicated by the fail-
periodically during their patrols to scan for intruders us-ure of Windows XP, Linux 2.6, and FreeBSD/ULE to do
ing radar and infrared sensors” in search of moving ob-so, allowing a cheater to monopolize the CPU regardless
jects [45] again raise the question of what exactly doesf whether accurate information is used for scheduling
“periodically” mean. or not. In an attempt to better support the ever increasing
CPU-intensive multimedia component within the desk-
. top workload, these systems have shifted to prioritizing
7 Conclusions processes based on their sleep-evémetyuencyinstead
. .,)]) of duration This major departure from the traditional
The “cheat” attack is a simple way to exploit computer yoneral-purpose scheduler design [5] plays straight into
syste.ms. It allows an ur_1pr|V|Ieged user-level ap.pl|cat|onthe hands of cheaters, which can easily emulate CPU-
to seize whatever fraction of the CPU cycles it wants, ;sa4e patterns that multimedia applications exhibit. A

often in a secretive manner. The cycles used by thgager alternative would be to explicitly track user interac
cheater are attributed to some other innocent applicagy,g [12]716].

tion or simply unaccounted for, making the attack hard

to detect. Such capabilities are typically associated with

rootkits that, in contrast, require an attacker to obtain suAcknowledgments
peruser privileges. We have shown that all major general-

purpose systems are vulnerable to the attack, with th@jany thanks are due to Tal Rabin, Douglas Lee Schales,

exception of Mac OS X that utilizes one-shot timers to and Wietse Venema for providing feedback and he|p|ng

drive its timing mechanism. to track down the Tsutomu Shimomura connection.
Cheating is based on two dominant features of

general-purpose systems: that CPU accounting and timer

servicing are tied to periodic hardware clock interrupts, References

and that the scheduler favors processes that exhibit low

CPU usage. By systematically sleeping when the inter- [1] access(2) —~ manual, ~ FreeBSD URL

rupts occur, a cheater appears as not consuming CPU http://www.freebsd.org/cgi/man.cgi?query=access.

and is therefore rewarded with a consistent high priority, [2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and

which allows it to monopolize the processor. D. Werthimer, ‘SETlhome: an experiment in public-
The first step to protect against the cheat attack is to ~ resource computirig Comm. of the ACM (CACM)

maintain accurate CPU usage information. This is al- 45(11) pp. 56-61, Nov 2002.

ready done by Solaris and Windows XP that account for [3] J. Andrews, ‘Interview: Ingo Molnat. URL

each kernel entry. In contrast, by only accounting for http://kerneltrap.org/node/517, Dec 2002.

[4] A. Anonymous,

(5]

‘Building ptrace
codes. Phrack 10(59) p. 8, Jul 2002.
http://www.phrack.org/archives/59.

M. J. Bach,The Design of the UNIX Operating System
Prentice-Hall, 1986.

injecting shell-
URL

[6] A-L. Barabasi, V. W. Freeh, H. Jeong, and J. B. Brock-

man, “Parasitic compuitiny Nature412, pp. 894—-897,
Aug 2001.

[7] A. Barak, A. Shiloh, and L. Amar, An organizational

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

grid of federated MOSIX clustels In 5th IEEE Int'l
Symp. on Cluster Comput. & the Grid (CCGridylay
2005.

N. Borisov, R. Johnson, N. Sastry, and D. Wagnéiix*
ing races for fun and profit: how to abuse atimia 14th
USENIX Security Sympp. 303—-314, Jul 2005.

J. Butler, J. Undercoffer, and J. PinkstorHitiden pro-
cesses: the implication for intrusion detectiom |IEEE-
Information Assurance Workshop (IAW)p. 116-121,
Jun 2003.

A. Cockceroft, “How busy is the CPU, really? SunWorld
12(6), Jun 1998.

D. Dean and A. J. Hu, Fixing races for fun and profit:
how to useaccess(2) In 13th USENIX Security Symp.
pp. 195-206, Aug 2004.

E. W. Dijkstra, ‘The structure of the “THE"-
multiprogramming systein Comm. of the ACM
(CACM)11(5), pp. 341-346, May 1968.

C. Estan and G. Vargheséd\ew directions in traffic mea-
surements and accounting: focusing on the elephants,
ignoring the micé. ACM Trans. Comput. Sys21(3)

pp. 270-313, Aug 2003.

Y. Etsion, D. Tsafrir, and D. G. Feitelson,Désktop
scheduling: how can we know what the user waht$®
14th Int’l Workshop on Network & Operating Syst. Sup-
port or Digital Audio & Video (NOSSDAVYpp. 110-115,
Jun 2004.

Y. Etsion, D. Tsafrir, and D. G. FeitelsonEffects of
clock resolution on the scheduling of interactive and soft
real-time processés In SIGMETRICS Conf. Measure-
ment & Modeling of Comput. Systpp. 172-183, Jun
2003.

Y. Etsion, D. Tsafrir, and D. G. FeitelsonPtocess pri-
oritization using output production: scheduling for mul-
timedid. ACM Trans. on Multimedia Comput. Commun.
& Appl. (TOMCCAPYX(4), pp. 318-342, Nov 2006.

Y. Etsion, D. Tsafrir, S. Kirkpatrick, and D. G. Feitels,
“Fine grained kernel logging with Klogger: experience
and insights. In ACM EuroSysMar 2007.

D. G. Feitelson, Experimental analysis of the root causes

[28

of performance evaluation results: a backfilling case 33

study’. |EEE Trans. on Parallel & Distributed Syst.
(TPDS)16(2), pp. 175-182, Feb 2005.

D. G. Feitelson, Metric and workload effects on com-
puter systems evaluatibn Computer36(9), pp. 18-25,
Sep 2003.

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(29]

(30]

(31]

(32]

[20] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Sil-

berschatz, The pebble component-based operating sys-
tem’. In USENIX Annual Technical Conferencéune
1999.

S. Govindavajhala and A. W. AppellJsing memory er-
rors to attack a virtual machihe In IEEE Symp. on Se-
curity and Privacy (SP)pp. 154-165, May 2003.

“Global storage architecture (GSA): FAQs URL
http://pokgsa.ibm.com/projects/c/ccgsa/docs/igegs.shtml.
IBM internal document.

M. Guirguis, A. Bestavros, and |. MattaExploiting the
transients of adaptation for RoQ attacks on internet re-
sources. In 12th IEEE Int’l Conf. on Network Protocols
(ICNP), pp. 184-195, Oct 2004.

Z. Gutterman and D. Malkhi, Hold your sessions: an
attack on java servlet session-id generdtidn Topics in
Cryptology — CT-RSA 200%\. Menezes (ed.), pp. 44—
57, Springer-Verlag, Feb 2005. Lect. Notes Comput. Sci.
vol. 3376.

G. Hoglund and J. ButleRootkits: Subverting the Win-
dows Kernel Addison-Wesley, 2005.

P. Jeremy et al., CPU-timer raté. Dec 2005.
Thread from the “freebsd-stable — Production
branch of FreeBSD source code” mailing list. URL
http://lists.freebsd.org/pipermail/freebsd-statd&2-
December/020386.html.

S. T. King, P. M. Chen, C. V. Yi-Min Wang, H. J. Wang,
and J. R. Lorch, SubVirt: implementing malware with
virtual machine In IEEE Symp. on Security and Pri-
vacy (SP)p. 14, May 2006.

A. Kuzmanovic and E. W. Knightly, Eow-rate TCP-
targeted denial of service attacks (the shrew vs. the mice
and elephants) In ACM SIGCOMM Conf. on Appli.
Technologies Archit. & Protocols for Comput. Commun.
pp. 75-86, Aug 2003.

I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. HyderHe design and
implementation of an operating system to support dis-
tributed multimedia applicatiofis IEEE J. Select Areas

in Communl14(7), pp. 1280-1297, Sep 1996.

J. Liedtke, ‘A short note on cheap fine-grained time mea-
suremerit ACM Operating Syst. Review (OSB)(2),
pp. 92-94, Apr 1996.

U. Lindgvist and E. JonssonHow to systematically clas-
sify computer security intrusiohsin |IEEE Symp. on Se-
curity and Privacy (SP)pp. 154-163, May 1997.

R. Love, Linux Kernel DevelopmentNovell Press, 2nd
ed., 2005.

C-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentatidn In ACM Int'l Conf. on Pro-
gramming Lang. Design & Impl. (PLDl)pp. 190-200,
Jun 2005. Site: rogue.colorado.edu/Pin.

[34] J. Markoff, “Attack of the zombie computers is growing [51] D. Tsafrir, Y. Etsion, and D. G. FeitelsonBackfilling us-

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

threat. New York TimesJan 2007.

J. Mauro and R. McDougalKolaris Internals Prentice
Hall, 2001.

S. Maxwell, Linux Core Kernel CommentaryCoriolis
Group Books, 2nd ed., 2001.

M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quar- (53]

terman, The Design and Implementation of the 4.4BSD
Operating SystemAddison Wesley, 1996.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stani-
ford, and N. Weaver, lhside the slammer worin IEEE
Security & Privacy (S&P)L(4), pp. 33-38, Jul/Aug 2003.

A. W. Mu'alem and D. G. Feitelson,Utilization, pre-

dictability, workloads, and user runtime estimates in [55]

scheduling the IBM SP2 with backfillirig IEEE Trans.
Parallel & Distributed Syst.12(6) pp. 529-543, Jun
2001.

C. M. Olsen and C. NarayanaswamBdwerNap: An ef-
ficient power management scheme for mobile devices
IEEE Trans. on Mobile Computirg(7), pp. 816-828, Jul
2006.

P. Padala, Playing with ptrace,
Linux J. 2002(104) p. 4, Dec 2002.
http://www.linuxjournal.com/article/6210.

part 1l
URL

J. Roberson, ULE: a modern scheduler for FreeBSD
In USENIX BSDCoppp. 17-28, Sep 2003.

E. Rotenberg, S. Bennett, and J. E. Smiffrdce cache: a
low latency approach to high bandwidth instruction fetch-
ing”. In 29th IEEE Int'l Symp. on Microarchit. (MICRQ)
pp. 24-35, 1996.

M. E. Russinovich and D. A. SolomomJicrosoft Win-
dows Internals Microsoft Press, 4th ed., Dec 2004.

B. Shoop, D. M. Jaffee, and R. LairdRbbotic guards
protect munitions Army AL&T, p. 62, Oct-Dec 2006.

S. Sparks and J. ButlerShadow walker: raising the bar
for windows rootkit detectioh Phrack11(63) p. 8, Jul
2005. URL http://www.phrack.org/archives/63.

B. Srinivasan, S. Pather, R. Hill, F. Ansari, and
D. Niehaus, A firm real-time system implementation
using commercial off-the-shelf hardware and free soft-
war€'. In 4th IEEE Real-Time Technology & App. Symp.
pp. 112-119, Jun 1998.

A. Srivastava and A. EustaceATOM: a system for build-
ing customized program analysis tdblsSIGPLAN No-
tices (Best of PLDI 1979-19989(4), pp. 528-539, Apr
2004.

S. Staniford, V. Paxson, and N. Weavdtdw to own the
internet in your spare tinie In 11th USENIX Security
Symp, pp. 149-167, Aug 2002.

H. Sun, J. C. S. Lui, and D. K. Y. YauDistributed mech-
anism in detecting and defending against the low-rate
TCP attack. Comput. Network50(13) p. Sep, 2006.

[52]

ing system-generated predictions rather than user runtime
estimated |EEE Trans. on Parallel & Distributed Syst.
(TPDS) 2007. To apper.

D. Tsafrir, Y. Etsion, and D. G. FeitelsorGeneral-
Purpose Timing: The Failure of Periodic TimefBechni-
cal Report 2005-6, Hebrew University, Feb 2005.

D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpakj
“System noise, OS clock ticks, and fine-grained parallel
applications. In 19th ACM Int'l Conf. on Supercomput.
(ICS), pp. 303312, Jun 2005.

[54] W. Z. Venema, D. L. Schales, and T. Shimomur@hé

novelty and origin of the cheat attdcklan 2007. Private
email communication.

K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac,
D. L. Shermann, and K. A. Oostendorpz6nfining root
programs with domain and type enforcement (DTH)
6th USENIX Security Symplul 1996.

[56] T-Y. Yeh and Y. N. Patt, Branch history table indexing

to prevent pipeline bubbles in wide-issue superscalar pro-
cessors In 26th IEEE Int'l Symp. on Microarchit. (MI-
CRO) pp. 164-175, May 1993.

	Introduction
	Operating System Ticks
	The Concealment Component
	The Hostile Component
	The Interactivity Component and the Spectrum of Vulnerability to Cheating
	Roadmap

	Potential Exploits and Related Work
	The Privileges-Conflict Axis
	Denying or Using the Hijacked Cycles
	The Novelty of Cheating

	Implementation and Evaluation
	Using the CPU Without Being Billed
	Experimental Results

	Running Unmodified Applications
	Cheat Server
	Binary Instrumentation

	General-Purpose Schedulers
	Multilevel Feedback Queues
	Prioritization For Interactivity
	Partial Quantum Decay
	Dual Clocks

	Protecting Against the Cheat Attack
	Degrees of Accuracy
	Patching the Kernel
	Other Potential Solutions
	A Note About Sampling

	Conclusions

