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ABSTRACTIt is 
ommonly agreed that s
heduling me
hanisms in gen-eral purpose operating systems do not provide adequate sup-port for modern intera
tive appli
ations, notably multime-dia appli
ations. The 
ommon solution to this problem is todevise spe
ialized s
heduling me
hanisms that take the spe-
i�
 needs of su
h appli
ations into a

ount. A mu
h simpleralternative is to better tune existing systems. In parti
u-lar, we show that 
onventional s
heduling algorithms typ-i
ally only have little and possibly misleading informationregarding the CPU usage of pro
esses, be
ause in
reasingCPU rates have 
aused the 
ommon 100 Hz 
lo
k interruptrate to be 
oarser than most appli
ation time quanta. Wetherefore 
ondu
t an experimental analysis of what happensif this rate is signi�
antly in
reased. Results indi
ate thatmu
h higher 
lo
k interrupt rates are possible with a

ept-able overheads, and lead to mu
h better information. Inaddition we show that in
reasing the 
lo
k rate 
an providea measure of support for soft real-time requirements, evenwhen using a general-purpose operating system. For ex-ample, we a
hieve a sub-millise
ond laten
y under heavilyloaded 
onditions.
Categories and Subject DescriptorsD.4.1 [Pro
ess Management℄: S
heduling; D.4.8 [Perfor-man
e℄: Measurements; C.4 [Performan
e of Systems℄:Design studies
General TermsMeasurement, Performan
e
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1. INTRODUCTIONContemporary 
omputer workloads, espe
ially on the desk-top, 
ontain a signi�
ant multimedia 
omponent: playingof musi
 and sound e�e
ts, displaying video 
lips and an-imations, et
. These workloads are not well supported by
onventional operating system s
hedulers, whi
h prioritizepro
esses a

ording to re
ent CPU usage [18℄. This de�-
ien
y is often attributed to the la
k of spe
i�
 support forreal-time features, and to the fa
t that multimedia appli
a-tions 
onsume signi�
ant CPU resour
es themselves.The 
ommon solution to this problem has been to designspe
ialized programming APIs that enable appli
ations torequest spe
ial treatment, and s
hedulers that respe
t theserequests [19, 8, 22℄. For example, appli
ations may be re-quired to spe
ify timing 
onstraints su
h as deadlines. Tosupport su
h deadlines, the 
onventional operating systems
heduler has to be modi�ed, or a real-time system 
an beused.While this approa
h solves the problem, it su�ers fromtwo drawba
ks. One is pri
e. Real-time operating systemsare mu
h more expensive than 
ommodity desktop oper-ating systems like Linux or Windows. The pri
e re
e
tsthe diÆ
ulty of implementing industrial strength real-times
heduling. This diÆ
ulty, and the requirement for 
are-ful testing of all important s
enarios, are the reasons thatmany interesting proposals made in a
ademia do not makeit into produ
tion systems. The other drawba
k is the needfor spe
ialized interfa
es, that may redu
e the portability ofappli
ations, and require a larger learning and 
oding e�ort.An alternative is to sti
k with 
ommodity desktop op-erating systems, and tune them to better support modernworkloads. While this may lead to sub-optimal results, ithas the important bene�t of being immediately appli
ableto the vast majority of systems installed around the world.It is therefore worth while to perform a detailed analysisof this approa
h, in
luding what 
an be done, what resultsmay be expe
ted, and what are its inherent limitations.
1.1 Commodity Scheduling AlgorithmsPrevalent 
ommodity systems (as opposed to resear
h sys-tems) use a simple s
heduler that has not 
hanged mu
h in30 years. The basi
 idea is that pro
esses are run in pri-ority order. Priority has a stati
 
omponent (e.g. operatingsystem pro
esses have a higher initial priority than user pro-
esses) and a dynami
 part. The dynami
 part depends onCPU usage: the more CPU 
y
les used by a pro
ess, thelower its priority be
omes. This negative feedba
k (runningredu
es your priority to run more) ensures that all pro
esses



get a fair share of the resour
es. CPU usage is forgotten af-ter some time, in order to fo
us on re
ent a
tivity and noton distant history.While the basi
 ideas are the same, spe
i�
 systems em-ploy di�erent variations. For example, in Solaris prioritiesof pro
esses that wake up after waiting for an event are seta

ording to a table, and the allo
ated quantum durationis longer if the priority is lower [17℄. In Linux the relation-ship goes the other way, with the same number serving asboth the allo
ation and the priority [5, 4℄. In Windows NTand 2000, the priority and quanta allo
ated to threads aredetermined by a set of rules rather than a formula, but thee�e
t is the same [24℄. For example, threads that seem tobe starved get a double quantum at the highest possible pri-ority, and threads waiting for I/O or user input also get apriority boost.In all 
ases, pro
esses that do not use the CPU very mu
h| su
h as I/O-bound pro
esses | enjoy a higher priority forthose short bursts in whi
h they want it. This was suÆ
ientfor the intera
tive appli
ations of twenty years ago. It is nolonger suÆ
ient for modern multimedia appli
ations (a 
lassof appli
ations that did not exist when these s
hedulers weredesigned), be
ause their CPU usage is relatively high.
1.2 The Resolution of Clock InterruptsComputer systems have two 
lo
ks: a hardware 
lo
k thatgoverns the instru
tion 
y
le, and an operating system 
lo
kthat governs system a
tivity. Unlike the hardware 
lo
k, thefrequen
y of the system 
lo
k is not prede�ned: rather, itis set by the operating system on startup. Thus the system
an de
ide for itself what frequen
y it wants to use. It isthis tunability that is the fo
us of the present paper.The importan
e of the system 
lo
k (also 
alled the timerinterrupt rate) lies in the fa
t that 
ommodity systems mea-sure time using this 
lo
k, in
luding CPU usage and whentimers should go o�. The reason that timers are aligned with
lo
k ti
ks is to simplify their implementation and bound theoverhead. The alternative of setting a spe
ial interrupt forea
h timer event requires more bookkeeping and risks highoverhead if many timers are set with very short intervals.The most 
ommon frequen
y used today is 100 Hz: it isused in Linux, the BSD family, Solaris, the Windows family,and Ma
 OS X. This hasn't 
hanged mu
h in the last 30years. For example, ba
k in 1976 Unix version 6 running ona PDP11 used a 
lo
k interrupt rate of 60 Hz [16℄. Sin
ethat time the hardware 
lo
k rate has in
reased by about 3orders of magnitude, from several megahertz to over 3 giga-hertz [23℄. As a 
onsequen
e, the size of an operating systemti
k has in
reased a lot, and is now on the order of 10 mil-lion 
y
les or instru
tions. Simple intera
tive appli
ationssu
h as text editors don't require that many 
y
les per quan-tum1, making the ti
k rate obsolete | it is too 
oarse formeasuring the running time of an intera
tive pro
ess. Forexample, the operating system 
annot distinguish betweenpro
esses that run for a thousand 
y
les and those that runfor a million 
y
les, be
ause using 100 Hz ti
ks on a 1 GHzpro
essor both look like 0 time.A spe
ial 
ase of time measurement is setting the time1Interestingly, this same 
onsideration has also motivatedthe approa
h of making the hardware 
lo
k slower, ratherthan making the operating system 
lo
k faster as we pro-pose. This has the bene�t of redu
ing power 
onsumption[10℄.
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Figure 1: Desired and a
hieved frame rate for the XineMPEG viewer, on systems with 100 Hz and 1000 Hz 
lo
kinterrupt rates.that a pro
ess may run before it is preempted. This du-ration, 
alled the allo
ation quantum, is also measured in
lo
k ti
ks. Changing the 
lo
k resolution therefore impli
-itly e�e
ts the quantum size. However in reality these twoparameters need not be 
orrelated, and they 
an be set in-dependently of ea
h other. The question is how to set ea
hone.A related issue is providing support for soft real-time ap-pli
ations su
h as games with realisti
 video rendering, thatrequire a

urate timing down to several millise
onds. Theseappli
ations require signi�
ant CPU resour
es, but in a frag-mented manner, and are barely served by a 100 Hz ti
k rate.In some 
ases, the limited 
lo
k interrupt rate may a
tuallyprevent the operating system from providing required ser-vi
es.An example is given in Figure 1. This shows the desiredand a
hieved frame rates of the Xine MPEG viewer showing500 frames of a short 
lip that is already loaded into memory,when running on a Linux system with 
lo
k interrupt rates of100 Hz and 1000 Hz. For this ben
hmark the disk and CPUpower are not bottlene
ks, and the desired frame rates 
anall be a
hieved. However, when using a 100 Hz system, theviewer repeatedly dis
ards frames be
ause the system doesnot wake it up in time to display them if the desired framerate is 60 frames per se
ond. This is an important de�
ien
y,as 60 frames/se
 is mandated by the MPEG standard.Even �ner timing servi
es are required in other, non-desktopappli
ations. Video rates of up to 1000 frames per se
ond areused for re
ording high-speed events, su
h as vehi
le 
rashexperiments [26℄. Similar high rates 
an also be expe
tedfor sampling sensors in various situations. Even higher ratesare ne
essary in networking, for the implementation of rate-based transmission [25, 2℄. Full utilization of a 100 Mb/sFast Ethernet with 1500-byte pa
kets requires a pa
ket tobe transmitted every 120 �s, i.e. 8333 times a se
ond. On agigabit link, the interval drops to 12 �s, and the rate jumpsup to 83,333 times a se
ond.In
reasing the 
lo
k interrupt rate may be expe
ted toprovide mu
h better timing support than that available to-day with 100 Hz. However, this 
omes at the possible ex-pense of additional overhead, and has therefore been dis-




ouraged by Linux developers (this will probably 
hange asthe 2.5 development kernel has swit
hed to 1000 Hz for theprevalent Intel ar
hite
ture; in the past, su
h a rate wasre
ommended only for the Alpha pro
essor, whi
h a

ord-ing to the kernel mailing list was \strong enough to handleit") and by Sun do
umentation (\exer
ise great 
are if youare 
onsidering setting high-resolution ti
ks2 ... this settingshould never, ever be made on a produ
tion system withoutextensive testing �rst" [17, p. 56℄). Our goal is to investigatethis tradeo� more thoroughly.
1.3 Related WorkOther approa
hes to improving the soft real-time servi
eprovided by 
ommodity systems in
lude RT-Linux, one-shottimers, soft timers, �rm timers, and priority adjustments.The RT-Linux proje
t uses virtual ma
hine te
hnology torun a real-time exe
utive under Linux, only allowing Linuxto run when there are no urgent real-time tasks that need thepro
essor [3℄. Thus Linux does not run on the native hard-ware, but on a virtual ma
hine. The result is a juxtapositionof a hard real-time system and a Linux system. In parti
-ular, the real-time servi
es are not available for the Linuxpro
esses, so real time appli
ations must be partitioned intotwo independent parts. However, 
ommuni
ation betweenthe two parts is supported.One-shot timers do not have a pre-de�ned periodi
ity. In-stead, they are set a

ording to need. The system storestimer requests sorted by time. Whenever a timer event is�red, the system sets a timer interrupt for the next event.Variants of one-shot timers have been used in several sys-tems, in
luding the Pebble operating system, the Nemesisoperating system for multimedia [15℄, and the KURT real-time system [25℄. The problem is that this may lead tohigh overhead if many timing events are requested with �neresolution.In soft timers the timing of system events is also not tiedto periodi
 
lo
k interrupts [2℄. Instead, the system oppor-tunisti
ally makes use of 
onvenient 
ir
umstan
es in orderto provide higher-resolution servi
es. For example, on ea
hreturn from a system 
all the system may 
he
k whetherany timer has be
ome ready, and �re the respe
tive events.As su
h opportunities o

ur at a mu
h higher rate than thetimer interrupts, the average resolution is mu
h improved(in other words, soft timers are su
h a good idea spe
i�
allybe
ause the resolution of 
lo
k interrupts is so outdated).However, the timing of a spe
i�
 event 
annot be guaran-teed, and the original low-resolution timer interrupts serveas a fallba
k. Using a higher 
lo
k rate, as we suggest, 
anguarantee a mu
h smaller maximal deviation from the de-sired time.Firm timers 
ombine soft timers with one-shot timers [13℄.This 
ombination redu
es the need for timer interrupts, alle-viating the risk of ex
essive overheads. Firm timers togetherwith a preemptible kernel and suitable s
heduling have beenshown to be e�e
tive in supporting time-sensitive appli
a-tions on a 
ommodity operating system.Priority adjustments allow a measure of 
ontrol over whenpro
esses will run, enabling the emulation of real-time ser-vi
es [1℄. This is essentially similar to the implementationof hard real-time support in the kernel, ex
ept for the fa
tthat it is done by an external pro
ess, and 
an only use theprimitives provided by the underlying 
ommodity system.2This spe
i�
ally means 1000 Hz.

Finally, there are also various programming proje
ts toimprove the responsiveness and performan
e of the Linuxkernel. One is the preemptible kernel pat
h, whi
h has beenadopted as part of the 2.5 development kernel. It redu
esinterrupt pro
essing laten
y by allowing long kernel opera-tions to be preempted.A major di�eren
e between the above approa
hes and oursis that they either require spe
ial APIs, make non-trivialmodi�
ations to the system, or both. Su
h modi�
ations
annot be made by any user, and require a substantial re-view pro
ess before they are in
orporated in standard soft-ware releases (if at all). For example, one-shot timers andsoft timers have been known sin
e the mid '90s, but are yetto be in
orporated in a major system. By 
ontradistin
-tion, we fo
us on a single simple tuning knob | the 
lo
kinterrupt rate, and investigate the bene�ts and the 
osts ofturning it to mu
h higher values than 
ommonly done. Pre-vious work on multimedia s
heduling, with the ex
eption of[19℄, has made no mention of the underlying system 
lo
k,and fo
used on designs for meeting deadline and laten
y
onstraints.
1.4 Preview of ResultsOur goal is to show that in
reasing the 
lo
k interrupt rateis both possible and desirable. Measurements of the over-heads involved in interrupt handling and 
ontext swit
hingindi
ate that 
urrent CPUs 
an tolerate mu
h higher 
lo
kinterrupt rates than those 
ommon today (Se
tion 3). Wethen go on to demonstrate the following:� Using a higher ti
k rate allows the system to performmu
h more a

urate billing, thus giving a better dis-
rimination among pro
esses with di�erent CPU usagelevels (Se
tion 4).� Using a higher ti
k rate also allows the system to pro-vide a 
ertain \best e�ort" style of real-time pro
ess-ing, in whi
h appli
ations 
an obtain high-resolutiontiming measurements and alarms (as exempli�ed inFigure 1, and expanded in Se
tion 5). For appli
a-tions that use time s
ales that are related to humanper
eption, a modest in
rease in ti
k rate to 1000 Hzmay suÆ
e. Appli
ations that operate at smaller times
ales, e.g. to monitor 
ertain sensors, may requiremu
h higher rates and shortening of s
heduling quan-tum lengths (Se
tion 7).We 
on
lude that improved 
lo
k resolution | and the shorterquanta that it makes possible | should be a part of any solu-tion to the problem of s
heduling soft real-time appli
ations,and should be taken into a

ount expli
itly.
2. METHODOLOGY AND APPLICATIONSBefore presenting detailed measurement results, we �rstdes
ribe the experimental platform and introdu
e the appli-
ations used in the measurements.
2.1 The Test PlatformMost measurements were done on a 664 MHz Pentium-III ma
hine, equipped with 256 MB RAM, and a 3DFXVoodoo3 graphi
s a

elerator with 16 MB RAM that sup-ports OpenGL in hardware. In addition, we performed
ross-platform 
omparisons using ma
hines ranging from Pen-tium 90 to Pentium-IV 2.4 GHz. The operating system is



a 2.4.8 Linux kernel (RedHat 7.0), with the XFree86 4.1 Xserver. The same kernel was 
ompiled for all the di�erentar
hite
tures, whi
h may result in minor di�eren
es in thegenerated 
ode due to ar
hite
ture-spe
i�
 ifdefs. The de-fault 
lo
k interrupt rate is 100 Hz. We modi�ed the kernelto run at up to 20,000 Hz. The modi�
ations were essen-tially straightforward, and involved extending kernel ifdefsto this range and 
orre
ting the 
al
ulation of bogomips3.The measurements were 
ondu
ted using klogger, a kernellogger we developed that supports �ne-grain events. Whilethe 
ode is integrated into the kernel, its a
tivation at run-time is 
ontrolled by applying a spe
ial sys
tl 
all using the/pro
 �le system. In order to redu
e interferen
e and over-head, logged events are stored in a sizeable bu�er in memory(we typi
ally use 4 MB), and only exported at large inter-vals. This export is performed by a daemon that wakes upevery few se
onds (the interval is redu
ed for higher 
lo
krates to ensure that events are not lost). The implemen-tation is based on inlined 
ode to a

ess the CPU's 
y
le
ounter and store the logged data. Ea
h event has a 20-byte header in
luding a serial number and timestamp with
y
le resolution, followed by event-spe
i�
 data. The over-head of ea
h event is only a few hundred 
y
les (we estimatethat at 100 Hz the overhead for logging is 0.63%, at 1000Hz it is 0.95%, and at 20,000 Hz 1.18%). In our use, welog all s
heduling-related events: 
ontext swit
hing, re
al-
ulation of priorities, forks, exe
s, and 
hanging the state ofpro
esses.
2.2 The WorkloadThe system's behavior was measured with di�erent 
lo
krates and di�erent workloads. The workloads were 
om-posed of the following appli
ations:� A 
lassi
 intera
tive appli
ation | the Ema
s text ed-itor. During the test the editor was used for standardtyping at a rate of about 8 
hara
ters per se
onds.� The Xine MPEG viewer, whi
h was used to show ashort video 
lip in a loop. Xine's implementation ismultithreaded, making it a suitable representative ofthis growing 
lass of appli
ations [11℄. Spe
i�
ally,Xine uses 6 distin
t pro
esses. The two most impor-tant ones are the de
oder, whi
h reads the data streamfrom the disk and generates frames for display, and thedisplayer, whi
h displays the frames at the appropriaterate. The displayer keeps tra
k of time using alarmswith a resolution of 4 ms. On ea
h alarm it 
he
kswhether the next frame should be displayed, and if so,sends the frame to the X server. If it is too late, theframe is dis
arded. If it is very late, the displayer 
analso notify the de
oder to skip 
ertain frames.In the experiments, audio output was sent to /dev/nullrather than to the sound 
ard, to allow fo
us on inter-a
tions with the X server.� Quake 3, whi
h represents a modern intera
tive appli-
ation (role playing game). Quake uses the X server'sDire
t Rendering Infrastru
ture (DRI) [21℄ feature whi
henables the OpenGL graphi
s library to a

ess thehardware dire
tly, without proxying all the requests3Bogomips are an estimate of the 
lo
k rate 
omputed bythe Linux kernel upon booting. The 
orre
tion preventsdivision by zero in this 
al
ulation.

through the X server. This results in some of thegraphi
s pro
essing being done by the Graphi
al Pro-
essor Unit (GPU) on the a

elerator.Another interesting feature of Quake is that it is adap-tive: it 
an 
hange its frame rate based on how mu
hCPU time it gets. Thus when Quake 
ompetes withother pro
esses, its frame rate will drop. In our exper-iments, when running alone it is always ready to runand 
an use all available CPU time.� CPU-bound pro
esses that serve as a ba
kground loadthat 
an absorb any number of available CPU 
y
les,and 
ompete with the intera
tive and real-time pro-
esses.In addition, the system ran a host of default pro
esses,mostly various daemons. Of these, the most important withregard to intera
tive pro
esses is obviously the X server.
3. CLOCK RESOLUTION AND

OVERHEADSA major 
on
ern regarding in
reasing the 
lo
k interruptrate is the resulting in
rease in overheads: with more 
lo
kinterrupts more time will be wasted on pro
essing them,and there may also be more 
ontext swit
hes (as will beexplained below in Se
tion 6), whi
h in turn lead to redu
ed
a
he and TLB eÆ
ien
y. This is the reason why today onlythe Alpha version of Linux employs a rate of 1024 Hz bydefault. This is 
ompounded by the 
on
ern that operatingsystems in general be
ome less eÆ
ient on ma
hines withhigher hardware 
lo
k rates [20℄. We will show that these
on
erns are unfounded, and a 
lo
k interrupt rate of 1000Hz or more is perfe
tly possible.The overhead 
aused by 
lo
k interrupts may be dividedinto two parts: dire
t overhead for running the interrupthandling routine, and indire
t overhead due to redu
ed 
a
heand TLB eÆ
ien
y. The dire
t overhead 
an easily be mea-sured using klogger. We have performed su
h measurementson a range of Pentium pro
essors with 
lo
k rates from 90MHz to 2.4 GHz, and on an Athlon XP1700+ at 1.467 GHzwith DDR-SDRAM memory.The results are shown in Table 1. We �nd that the over-head for interrupt pro
essing is dropping at a mu
h slowerrate than expe
ted a

ording to the CPU 
lo
k rate | infa
t, it is relatively stable in terms of absolute time. This isdue to an optimization in the Linux implementation of get-timeofday(), whereby overhead is redu
ed by a

essing the8253 timer 
hip on ea
h 
lo
k interrupt | rather than whengettimeofday() itself is 
alled | and extrapolating using the
y
le 
ounter register. This takes a 
onstant amount of timeand therefore adds overhead to the interrupt handling thatis not related to the CPU 
lo
k rate. Even so, the overheadis still short enough to allow many more interrupts thanare used today, up to an order of 10,000 Hz. Alternatively,by removing this optimization, the overhead of 
lo
k inter-rupt pro
essing 
an be redu
ed 
onsiderably, to allow mu
hhigher rates. A good 
ompromize might be to in
rease the
lo
k interrupt rate but leave the rate at whi
h the 8253 isa

essed at 100 Hz. This will amortize the overhead of theo�-
hip a

ess, thus redu
ing the overhead per 
lo
k inter-rupt.A related issue is the overhead for running the s
heduler.More 
lo
k interrupts imply more 
alls to the s
heduler.



Default Without 8253Pro
essor Cy
les �s Cy
les �sP-90 814�180 9.02 498�466 5.53PP-200 1654�553 8.31 462�762 2.32PII-350 2342�303 6.71 306�311 0.88PIII-664 3972�462 5.98 327�487 0.49PIII-1.133 6377�602 5.64 426�914 0.38PIV-2.4 14603�436 6.11 445�550 0.19A1.467 10494�396 7.15 202�461 0.14Table 1: Interrupt pro
essing overheads on di�erent pro-
essor generations (average�standard deviation).Context swit
h Ca
he BW TrapPro
essor Cy
les �s MB/s Cy
les �sP-90 1871�656 20.75 28�1 153�24 1.70PP-200 1530�389 7.69 705�26 379�75 1.91PII-350 1327�331 3.80 1314�29 343�68 0.98PIII-664 1317�424 1.98 2512�32 348�163 0.52PIII-1.133 1330�441 1.18 4286�82 364�278 0.32PIV-2.4 3792�857 1.59 3016�47 1712�32 0.72A1.467 1436�477 0.98 3962�63 274�20 0.19Table 2: Other overheads on di�erent pro
essor generations(average�standard deviation).More serious is the fa
t that in Linux the s
heduler over-head is proportional to the number of pro
esses in the readyqueue. However, this only be
omes an important fa
tor forvery large numbers of pro
esses. It is also partly o�set bythe fa
t that with more ready pro
esses it takes longer to
omplete a s
heduling epo
h, and therefore priority re
al
u-lations are done less frequently.As a side note, it is interesting to 
ompare 
lo
k interruptpro
essing overhead to other types of overhead. Ouster-hout has 
laimed that in general operating systems do notbe
ome faster as fast as hardware [20℄. We have repeatedsome of his measurements on the platforms listed above.The results (Table 2) show that the overhead for 
ontextswit
hing (measured using two pro
esses that ex
hange abyte via a pipe) takes roughly the same number of 
y
les,regardless of CPU 
lo
k speed (ex
ept on the P-IV, whi
h isusing DDR-SDRAMmemory at 266 MHz and not the newerRDRAM). It therefore does be
ome faster as fast as thehardware. We also found that the trap overhead (measuredby the repeated invo
ation of getpid) and 
a
he bandwidth(measured using mem
py) behave similarly. This is moreoptimisti
 than Ousterhout's results. The di�eren
e may bedue to the fa
t that Ousterhout 
ompared RISC vs. CISCar
hite
tures, and there is also a di�eren
e in methodology:we measure time and 
y
les dire
tly, whereas Ousterhoutbased his results on performan
e relative to a Mi
rovaxIIand on estimated MIPS ratings.The indire
t overhead of 
lo
k interrupt pro
essing 
anonly be assessed by measuring the total overhead in the 
on-text of a spe
i�
 appli
ation (as was done, for example, in[2℄). The appli
ation we used is sorting of a large array thato

upies about half of the L2 
a
he (the L2 
a
he was 256KB on all platforms ex
ept for the P-II 350 whi
h had anL2 
a
he of 512 KB). The sorting algorithm was introsort,whi
h is used by STL that ships with g

. The sorting wasdone repeatedly, where ea
h iteration �rst initializes the ar-
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Figure 2: In
rease in overhead due to in
reasing the 
lo
kinterrupt rate from a base 
ase of 100 Hz. The basi
 quan-tum is 50 ms.ray randomly and then sorts it (but the same random se-quen
es were used to 
ompare the di�erent platforms). Bymeasuring the time per iteration under di�erent 
onditions,we 
an fa
tor out the added total overhead due to addi-tional 
lo
k interrupts (as is shown below). To also 
he
kthe overhead 
aused by additional 
ontext swit
hing amongpro
esses, we used di�erent multiprogramming levels, run-ning 1, 2, 4, or 8 
opies of the test appli
ation at the sametime. All this was repeated for di�erent CPU generationswith di�erent (hardware) 
lo
k rates.Assuming that the amount of work to sort the array on
eis essentially �xed, measuring this time as a fun
tion of the
lo
k interrupt rate will show how mu
h time was addeddue to overhead. Figure 2 shows this added overhead as aper
entage of the total time required at 100 Hz. From thiswe see that the added overhead at 1000 Hz is negligible, andeven at 5000 Hz it is quite low. Note, however, that this isafter removing the gettimeofday() optimization, i.e. withouta

essing the 8253 
hip on ea
h interrupt. For higher 
lo
krates, the overhead in
reases linearly, with a slope that be-
omes 
atter with ea
h new pro
essor generation (ex
ept forthe P-IV). Essentially the same results are obtained with amultiporgramming level of 8. Thus we 
an expe
t higher
lo
k interrupt rates to be in
reasingly a

eptable.The overhead also depends on the length of the quanta,i.e. on how mu
h time is allo
ated to a pro
ess ea
h time itruns. In Linux, the default allo
ation is 50 ms, whi
h trans-
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Figure 3: In
rease in overhead due to in
reasing the 
lo
kinterrupt rate from a base 
ase of 100 Hz. Quanta are 6
lo
k ti
ks, so they be
ome shorter for high 
lo
k rates.lates to 5 ti
ks4. When raising the 
lo
k interrupt rate, thequestion is whether to sti
k with the allo
ation of 50 ms, orto redu
e it by de�ning the allo
ation in terms of ti
ks, soas to improve responsiveness. The results shown in Figure 2were for 50 ms. Figure 3 shows the same experiments whenusing 5 ti
ks, meaning that the quanta are 10 or 100 timesshorter when using 1000 Hz or 10,000 Hz interrupt rates,respe
tively. As shown in the graphs this leads to mu
hhigher overheads, espe
ially under higher loads, probablybe
ause there are many more 
ontext swit
hes. This maylimit the realisti
 
lo
k interrupt rate to 1000 Hz or a bitmore, but probably not as high as 5000 Hz (in this 
ase theP-IV is substantially better than the other platforms, butthis is due to using performan
e relative to 100 Hz, whi
hwas worse than for other platforms for an unknown reason).Note, however, that 1000 Hz is an order of magnitude abovewhat is 
ommon today, and already leads to signi�
ant ben-e�ts, as shown in subsequent se
tions; the added overheadin this 
ase is just a few per
entage points, mu
h less thanthe 10{30% whi
h were the norm a mere de
ade ago [7℄.Our measurements also allow for an assessment of the rel-ative 
osts of dire
t and indire
t overhead. For example,when swit
hing from 100 Hz to 10,000 Hz, the extra time4The a
tual allo
ation is 5 ti
ks plus one, to ensure that theallo
ation is stri
tly positive, as the 5 is derived from theintegral quotient of two 
onstants.

Billing ratio Missed quantaAppli
ation �100Hz �1000Hz �100Hz �1000HzEma
s 1.0746 0.9468 95.96% 73.42%Xine 1.2750 1.0249 89.46% 74.81%Quake 1.0310 1.0337 54.17% 23.23%X ServerÆ 0.0202 0.9319 99.43% 64.05%CPU-bound 1.0071 1.0043 7.86% 7.83%CPU+Quake 1.0333 1.0390 26.71% 2.36%Æ When running XineTable 3: S
heduler billing su

ess rate.
an be attributed to 9900 additional 
lo
k interrupts ea
hse
ond. By subtra
ting the 
ost of 9900 
alls to the interruptpro
essing routine (from Table 1), we 
an �nd how mu
h ofthis extra time should be attributed to indire
t overhead,that is mainly to 
a
he e�e
ts.For example, 
onsider the 
ase of a P-III 664 MHz ma-
hine running a single sorting pro
ess with 50 ms quanta.The average time to sort an array on
e is 12.675 ms onthe 100 Hz system, and 13.397 ms on the 10,000 Hz sys-tem. During this time the 10,000 Hz system su�ered anadditional 9900 � 0:013397 = 133 interrupts. A

ording toTable 1 the overhead for ea
h one (without a

essing the8253 
hip) is 0.49 �s, so the total additional overhead was133� 0:49 = 65�s. But the di�eren
e in the time to sort anarray is 13397� 12675 = 722�s! Thus 722� 65 = 657�s areuna

ounted for, and should be attributed to 
a
he e�e
tsand s
heduler overhead. In other words, 657=722 = 91% ofthe overhead is indire
t, and only 9% is dire
t. This numberis typi
al of many of the 
on�gurations 
he
ked. The indi-re
t overhead on the P-IV and Athlon ma
hines, and whenusing shorter quanta on all ma
hines, are higher, and mayeven rea
h 99%. This means that the �gures given in Table1 should be multiplied by at least 10 (and in some extreme
ases by as mu
h as 100) to derive the real 
ost of in
reasingthe 
lo
k interrupt rate.
4. CLOCK RESOLUTION AND BILLINGPra
ti
ally all 
ommodity operating systems use priority-based s
hedulers, and fa
tor CPU usage into their priority
al
ulations. CPU usage is measured in ti
ks, and is basedon sampling: the pro
ess running when a 
lo
k interrupto

urs is billed for this ti
k. But the 
oarse granularityof ti
ks implies that billing may be ina

urate, leading toina

urate information used by the s
heduler.The relationship between a
tual CPU 
onsumption andbilling on a 100 Hz system is shown at the top of Figure 4.The X axis in these graphs is the e�e
tive quantum length:the exa
t time from when the pro
ess is s
heduled to rununtil when it is preempted or blo
ked. While the e�e
tivequantum tends to be widely distributed, billing is done inan integral numbers of ti
ks. In parti
ular, for Ema
s and Xthe typi
al quantum is very short, and they are pra
ti
allynever billed!Using klogger, we 
an tabulate all the times ea
h appli
a-tion is s
heduled, for how mu
h time, and whether or not thiswas billed. The data is summarized in Table 3. The billingratio is the time for whi
h an appli
ation was billed by thes
heduler, divided by the total time a
tually 
onsumed byit during the test. The miss per
entage is the per
entage
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Figure 4: The relationship between e�e
tive quanta durations and how mu
h the pro
ess is billed, for di�erent appli
ations,using a kernel running at 100 Hz and at 1000 Hz. Con
entrations of data points are rendered as larger disks; otherwise thegraphs would have a 
lean steps shape, be
ause the billing (Y axis) is in whole ti
ks. Note also that the optimal would be adiagonal line with slope 1.of the appli
ation's quanta that were totally missed by thes
heduler and not billed for at all.The table shows that even though very many quanta aretotally missed by the s
heduler, espe
ially for intera
tive ap-pli
ations, most appli
ations are a
tually billed with reason-able a

ura
y in the long run. This is a result of the proba-bilisti
 nature of the sampling. Sin
e most of the quanta areshorter than one 
lo
k ti
k, and the s
heduler 
an only 
ountin 
omplete ti
k units, many of the quanta are not billed atall. But when a short quantum does happen to in
lude a
lo
k interrupt, it is over billed and 
harged a full ti
k. Onaverage, these two e�e
ts tend to 
an
el out, be
ause theprobability that a quantum in
ludes a ti
k is proportionalto its duration. The same averaging happens also for quantathat are longer than a ti
k: some are rounded up to the nextwhole ti
k, while others are rounded down.A notable ex
eption is the X server when running withXine (we used Xine be
ause it intensively uses the X server,as opposed to Quake whi
h uses DRI). As shown belowin Se
tion 6, when running at 100 Hz this appli
ation hasquanta that are either extremely short (around 68% of thequanta), or 0.8{0.9 of a ti
k (the remaining 32%). Given thedistribution of quanta, we should expe
t over 30% of themto in
lude a ti
k and be 
ounted. But the s
heduler missesover 99% of them, and only bills about 2% of the 
onsumedtime! This turns out to be the result of syn
hronization withthe operating system ti
ks. Spe
i�
ally, the long quanta al-ways o

ur after a very short quantum of a Xine pro
essthat was a
tivated by a timer alarm. This is the displayer,

whi
h 
he
ks whether to display the next frame. When itde
ides that the time is right, it passes the frame to X. TheX server then awakes and takes a relatively long time to a
-tually display the frame, but just less than a full ti
k. Asthe timer alarm is 
arried out on a ti
k, these long quantaalways start very soon after one ti
k, and 
omplete just be-fore the next ti
k. Thus, despite being nearly a ti
k long,they are hardly ever 
ounted.When running the kernel at 1000 Hz we 
an see that thesituation improves dramati
ally | the e�e
tive quantumlength, even for intera
tive appli
ations, is typi
ally severalti
ks long, so the s
heduler bills the pro
ess an amount thatre
e
ts the a
tual 
onsumed time mu
h more a

urately. Inparti
ular, on a 1000 Hz system X is billed for over 93% ofthe time it 
onsumed, with the missed quanta per
entagedropping to 64% | the fra
tion of quanta that are indeedvery short.An alternative to this whole dis
ussion is of 
ourse theoption to measure runtime a

urately, rather than samplingon 
lo
k interrupts. This 
an be done easily by a

essingthe CPU 
y
le 
ounter [6℄. However, this involves modifyingthe operating system, whereas we are only interested in thee�e
ts obtainable by simple tuning of the 
lo
k interruptrate.
5. CLOCK RESOLUTION AND TIMINGIn
reasing the kernel's 
lo
k resolution also yields a majorbene�t in terms of the system's ability to provide a

uratetiming servi
es. Spe
i�
ally, with a high-resolution 
lo
k it
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Figure 5: Relationship of 
lo
k interrupts to frame displaytimes that 
auses frames to be skipped. In this example therelative shift is 5 56 ms, and frame 2 is skipped.is possible to deliver high-resolution timer interrupts. Thisis espe
ially signi�
ant for soft real-time appli
ations su
has multimedia players, whi
h rely on timer events to keep
orre
t time.A striking example was given in the introdu
tion, whereit was shown that the Xine MPEG player was sometimesunable to display a movie at a rate of 60 frames per se
ond(whi
h is mandated by the MPEG standard). This is some-what surprising, be
ause the underlying system 
lo
k rateis 100 Hz | higher than the desired rate.The problem stems from the relative timing of the 
lo
kinterrupts and the times at whi
h frames are to be displayed.Xine operates a

ording to two rules: it does not display aframe ahead of its time, and it skips frames that are late bymore than half a frame duration. A frame will therefore bedisplayed only if the 
lo
k interrupt that 
auses Xine's timersignal to be delivered o

urs in the �rst half of a frame'ss
heduled display time. In the 
ase of 60 frames per se
ondon a 100 Hz system, the smallest 
ommon multiple of theframe duration ( 100060 = 16 23 ms) and 
lo
k interval (10 ms)is 50 ms. Su
h an interval is shown in Figure 5. In thisexample frame 2 will be skipped, be
ause interrupt 2 is a bittoo early, whereas interrupt 3 is already too late. In general,the question of whether this will indeed happen depends onthe relative shift between the s
heduled frame times and the
lo
k interrupts. A simple inspe
tion of the �gure indi
atesthat frame 1 will be skipped if the shift (between the �rst
lo
k interrupt and the �rst frame) is in the range of 8 13{10ms, frame 2 will be skipped for shifts in the range 5{6 23 ms,and frame 3 will be skipped for shifts in the range 1 23{3 13 ms,for a total of 5 ms out of the 10 ms between ti
ks. Assumingthe initial shift is random, there is therefore a 50% 
han
e ofentering a pattern in whi
h a third of the frames are skipped,leading to the observed frame rate of about 40 frames perse
ond (in reality, though, this happens mu
h less than 50%of the time, be
ause the initial program startup tends to besyn
hronized with a 
lo
k ti
k).To 
he
k this analysis we also tried a mu
h more extreme
ase: running a movie at 50 frames per se
ond on a 50 Hzsystem. In this 
ase, either all 
lo
k interrupts fall in the �rsthalf of their respe
tive frames, and all frames are shown, orelse all interrupts fall in the se
ond half of their frames, andall are skipped. And indeed, we observed runs in whi
h all

Quanta/se
Appli
ation �100Hz �1000HzEma
s 22.36 34.60Xine (all pro
esses) 470.67 695.94Quake 187.88 273.85X Server (w/Xine) 71.35 148.21CPU-bound 28.81 38.97Table 4: Average quanta per se
ond a
hieved by ea
h ap-pli
ation when running in isolation.CPU usageAppli
ation �100Hz �1000HzXine 39.42% 40.42%X Server 20.10% 20.79%idle loop 31.46% 31.58%other 9.02% 7.21%Table 5: CPU usage distribution when running Xine.frames were skipped and the s
reen remained bla
k through-out the entire movie.The impli
ation of the above is that the timing servi
e hasto have mu
h �ner resolution than that of the requests. ForXine to display a movie at 60 Hz, the timing servi
e needsa resolution of 4 ms. This is required for the appli
ation tofun
tion 
orre
tly, not for the a
tual viewing, and thereforeapplies despite the fa
t that this 
lo
k resolution is mu
hhigher than the s
reen refresh rate.
6. CLOCK RESOLUTION AND THE

INTERLEAVING OF APPLICATIONSRe
all that we de�ne the e�e
tive quantum length to bethe interval from when a pro
ess is s
heduled until it is de-s
heduled for some reason. On our Linux system, the allo-
ation for a quantum is 50 ms plus one ti
k. However, aswe 
an see from Figures 4 and 6 (introdu
ed below), our in-tera
tive appli
ations never even approa
h this limit. Theyare always preempted or blo
ked mu
h sooner, often quitesoon in their �rst ti
k. In other words, the e�e
tive quan-tum length is very short. This enables the system to supportmore than 100 quanta per se
ond, even if the 
lo
k interruptrate is only 100 Hz, as shown in Table 4. It also explainsthe su

ess of soft timers [2℄.The distributions of the e�e
tive quantum length for thedi�erent appli
ations are shown in Figure 6, for 100 Hz and1000 Hz systems. An interesting observation is that whenrunning the kernel at 1000 Hz the e�e
tive quanta be
omeeven shorter. This happens be
ause the system has moreopportunities to intervene and preempt a pro
ess, either be-
ause it woke up another pro
ess that has higher priority, ordue to a timer alarm that has expired. However, the totalCPU usage does not 
hange signi�
antly (Table 5). Thusin
reasing the 
lo
k rate did not 
hange the amount of 
om-putation performed, but the way in whi
h it is partitionedinto quanta, and the granularity at whi
h the pro
esses areinterleaved with ea
h other.A spe
i�
 example is provided by Xine. One of the Xinepro
esses sets a 4 ms alarm, that is used to syn
hronizethe video stream. In a 100 Hz system, the alarm signal isonly delivered every 10 ms, be
ause this is the size of a ti
k.But when using a 1000 Hz 
lo
k the system 
an a
tually
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Figure 6: Cumulative distribution plots of the e�e
tive quantum durations of the di�erent appli
ations.deliver the signals on time. As a result the maximal e�e
tivequanta of X and the other Xine pro
esses are redu
ed to 4ms, be
ause they get interrupted by the Xine pro
ess withthe 4 ms timer.Likewise, the servi
e re
eived by CPU-bound appli
ationsis not independent of the intera
tive pro
esses that a

om-pany them. To investigate this e�e
t, these pro
esses weremeasured alone and running with Quake. When runningalone, their quanta are typi
ally indeed an integral numberof ti
ks long. Most of the time the number of ti
ks is lessthan the full allo
ation, due to interruptions from systemdaemons or klogger, but a sizeable fra
tion do a
hieve theallo
ated 50 ms plus one ti
k (whi
h is an additional 10 msat 100 Hz, but only 1 ms at 1000 Hz). But when Quake isadded, the quanta of the CPU-bound pro
esses are short-ened to the same range as those of Quake, and moreover,they be
ome less predi
table. This also leads to an in
reasein the number of quanta that are missed for billing (Table3), unless the higher 
lo
k rate of 1000 Hz is used.
7. TOWARDS BEST-EFFORT SUPPORT

FOR REAL-TIMEIn this se
tion we set out to explore how 
lose a generalpurpose system 
an 
ome to supporting real-time pro
essesin terms of timing delays, only by tuning the 
lo
k interruptrate and redu
ing the allo
ated quanta. The metri
 that weuse in order to perform su
h an evaluation is laten
y: thedi�eren
e between the time in whi
h an alarm requested bya pro
ess should expire, and the time in whi
h this pro
esswas a
tually assigned a CPU.

Without worrying about overhead (for the moment), ouraim is to show that under loads of up to 8 pro
esses, we 
anbound the laten
y to be less than 1 millise
ond. As thereare very many types of soft real-time appli
ations, we samplethe possible spa
e by 
onsidering three types of pro
esses:1. BLK: A pro
ess repeatedly sets alarms without per-forming any type of 
omputation. Our experimentsinvolved pro
esses that requested an alarm signal 500times, with delays that are uniformly distributed be-tween 1 and 1000 millise
onds.2. N%: Same as BLK, with the di�eren
e that a pro
ess
omputed for a 
ertain fra
tion (N%) of the time tillthe next alarm. Spe
i�
ally, we 
he
ked 
omputationof N = 1, 2, 4, and 8% out of this interval. Note forexample that a 
ombination of 8 pro
esses 
omputingfor 8% of the time leads to an average of 64% CPUutilization. To 
he
k what happens when the CPU isnot left idle, we also added CPU-bound pro
esses thatdo not set timers.3. CONT: Same as N% where N=100% i.e. the pro
ess
omputes 
ontinuously.For ea
h of the above 3 types, we 
he
ked 
ombinationsof 1, 2, 4, and 8 pro
esses. All the pro
esses that set timerswere assigned to the (POSIX) Round-Robin 
lass. Note thata 
ombination of more than one CONT-pro
ess 
onstitutesthe worst-
ase s
enario, be
ause | 
ontrary to the otherworkloads | the CPU is always busy and there are alwaysalternative pro
esses with similar priorities (in the Round-Robin queue) that are waiting to run.
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Figure 7: Distributions of laten
ies till a timer signal is delivered, for pro
esses that 
ompute 
ontinuously and also settimers for random intervals of up to one se
ond.The base system we used is the default 
on�guration ofLinux, with 100 Hz 
lo
k interrupt rate and a 60 ms (6 ti
ks)maximal quantum duration. In order to a
hieve our sub-millise
ond laten
y goal, we 
ompared this with a ratheraggressive alternative: 20,000 Hz 
lo
k interrupt rate and100 �s (2 ti
ks) quantum (note that we are 
hanging twoparameters at on
e: both the 
lo
k resolution and the num-ber of ti
ks in a quantum). Theoreti
ally, for this 
on�gura-tion the maximal laten
y would be 100�s � 7 = 700�s < 1ms, be
ause even if a pro
ess is positioned at the end of therun-queue it only needs to wait for seven other pro
esses torun for 100�s ea
h.The results shown in Figure 7 
on�rm our expe
tations.This �gure is asso
iated with the worst-
ase s
enario of aworkload 
omposed solely of CONT pro
esses. Examiningthe results for the original 100 Hz system (left of Figure 7),we see that a single pro
ess re
eives the signal within oneti
k, as may be expe
ted. When more pro
esses are present,there is also a positive probability that a pro
ess will nev-ertheless re
eive the signal within a ti
k: 12 , 14 and 18 for2, 4 and 8 pro
esses, respe
tively. The Y-axis of the �gureshows that the a
tual fra
tions were 0.53, 0.30, and 0.16 (re-spe
tively), slightly more than the asso
iated probabilities.But, a pro
ess may also be for
ed to wait for other pro
essesthat pre
ede it to exhaust their quanta. This leads to thestep-like shape of the graphs, be
ause the wait is typi
allyan integral number of ti
ks. The maximal wait is a fullquantum for ea
h of the other pro
esses. In the 
ase of 8
ompeting pro
esses, for example, the maximum is 60 msfor ea
h of the other 7, for a total of 420 ms (=420,000 �s).The situation on the 20,000 Hz system is essentially thesame, ex
ept that the time s
ale is mu
h mu
h shorter |the laten
y is almost always less than a millise
ond, as ex-pe
ted. In other words, the high 
lo
k interrupt rate andrapid 
ontext swit
hing allow the system to deliver timersignals in a timely manner, despite having to 
y
le throughall 
ompeting pro
esses.Table 6 shows that this is the 
ase for all our experiments(for brevity only sele
ted experiments are shown). Note thatusing the higher 
lo
k rate also provides signi�
antly im-proved laten
ies to the experiments where pro
esses only
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Figure 8: Throughput of the sort appli
ation, measured ashow many millions of numbers were sorted per se
ond, with8 
ompeting pro
esses.
ompute for a fra
tion of the time till the timer event. With100 Hz even this s
enario sometimes 
auses 
on
i
ts, despitethe relatively low overall CPU utilization. The relatively fewlong-laten
y events that remain in the high 
lo
k-rate 
aseare attributed to 
on
i
ts with system daemons that per-form disk I/O, su
h as the pager. Similar e�e
ts have beennoted in other systems [14℄. These problems are expe
tedto go away in the next Linux kernel, whi
h is preemptive;they should not be an issue in other kernels that are alreadypreemptive (su
h as Solaris).But what about overheads? As shown in Figure 3, whenrunning 
ontinuously 
omputing pro
esses (in that 
ase, asorting appli
ation) with a 20,000 Hz 
lo
k interrupt rateand quanta of 6 ti
ks, the additional overhead 
an rea
h35% on 
ontemporary ar
hite
tures. The overhead for theshorter 2-ti
k quanta used here may be even higher. This



Pro
esses �100Hz �20,000HzType Number 0.9 0.95 0.99 max 0.9 0.95 0.99 maxBLK 2 5 8 11 40 13 14 21 23BLK 8 5 12 22 420 7 9 13 25CONT 2 50,003 60,003 60,004 160,006 102 103 18,468 60,448CONT 8 370,014 400,014 420,015 740,025 656 706 15,096 68,1392% 2 6 9 9,193 19,153 13 15 23 8372% 8 2,910 8,419 17,940 32,944 12 52 53 1,8098% 2 9 12,431 39,512 60,003 14 19 53 3,7978% 8 40,003 60,005 130,006 294,291 53 53 54 37,3284% 1+2CPU 50,003 50,003 50,004 50,005 55 56 200 2564% 1+8CPU 50,003 50,003 170,014 280,010 56 57 59 856Table 6: Tails of distributions of laten
ies to deliver timer signals in di�erent experimental settings. Table values are laten
iesin mi
rose
onds, for various per
entiles of the distribution.seems like an expensive and una

eptable pri
e to pay. How-ever, if we examine the appli
ation throughput on di�erentplatforms the pi
ture is not so bleak. Figure 8 
ompares thea
hieved throughput, as measured by numbers sorted perse
ond, for two 
on�gurations. The base 
on�guration uses100 Hz interrupts and 60 ms quanta. The extreme 
on�gu-ration uses 20,000 Hz interrupts and 100 �s quanta. Whileperforman
e dramati
ally drops when 
omparing the two
on�gurations on the same platform, the extreme 
on�gu-ration of ea
h platform still typi
ally outperforms the base
on�guration on the previous platform. For example, PIII-664 running the base 
on�guration manages to sort about2,559,000 numbers per se
ond, while the PIII-1.133 with theextreme 
on�guration sorts about 3,136,000 numbers perse
ond (the P-IV 
onsistently performs worse than previousgenerations). This is an optimisti
 result whi
h means thatin order to get the same or even improve the performan
eof an existing platform, while a
hieving sub-millise
ond la-ten
y, all one has to do is upgrade to the next generation.This is usually mu
h 
heaper than pur
hasing the industrialhard real-time alternative.
8. CONCLUSIONS AND FUTURE WORKGeneral purpose systems, su
h as Linux and Windows,are already often used for soft real-time appli
ations su
ha viewing video, playing musi
, or burning CDs. Otherless 
ommon appli
ations in
lude various 
ontrol fun
tions,ranging from laboratory experiment 
ontrol to traÆ
-light
ontrol. Su
h appli
ations are not 
riti
al to the degree thatthey require a full-
edged real-time system. However, theymay fa
e problems on a typi
al 
ommodity system due tothe la
k of adequate support for high-resolution timing ser-vi
es. A spe
ial 
ase is \timeline gaps", where the pro
essoris totally unavailable for a relatively long time [14℄.Various solutions have been proposed for this problem,typi
ally based on expli
it support for timing fun
tions. Inparti
ular, very good results are obtained by using soft timersor one-shot timers. The idea there is to 
hange the kernel'stiming me
hanism from the 
urrent periodi
 time samplingto event-based time sampling. However, sin
e this event-based approa
h 
alls for a massive redesign of a major ker-nel subsystem, it has remained more of an a
ademi
 exer
iseand has yet to make it into the world of mainstream oper-ating systems.The goal of this paper is to 
he
k the degree to whi
hexisting systems 
an provide reasonable soft real-time ser-

vi
es, spe
i�
ally for intera
tive appli
ations, just by lever-aging the very fast hardware that is now routinely available,without any sophisti
ated modi�
ations to the system. Theme
hanism is simply to in
rease the frequen
y of the pe-riodi
 timer sampling. We show that this solution | al-though su�ering from non-negligible overhead | is a viablesolution on today's ultra-fast CPUs. We also show that im-plementing this solution in mainstream operating systems isas trivial as turning a tuning knob, possibly even at systemruntime.We started with the observation that there is a large andgrowing gap between the CPU 
lo
k rates, whi
h grow ex-ponentially, and the system 
lo
k interrupt rates, whi
h arerather stable at 100 Hz. We showed that by in
reasing the
lo
k interrupt rate by a mere order of magnitude, to 1000Hz, one a
hieves signi�
ant advantages in terms of timingand billing servi
es, while keeping the overheads a

eptablylow. The modi�
ations required to the system are rathertrivial: to in
rease the 
lo
k interrupt rate, and redu
e thedefault quantum length. As multimedia appli
ations typi-
ally operate in this range (i.e. with timers of several mil-lise
onds), su
h an in
rease may be enough to satisfy thisimportant 
lass of appli
ations. A similar observation hasbeen made by Nieh and Lam with regard to the s
hedulingof multimedia appli
ations in the SMART s
heduler [19℄. Arate of 1000 Hz is used in the experimental Linux 2.5 kernel,and also on personal systems of some kernel ha
kers [12℄.For more demanding appli
ations, we experimented withraising the 
lo
k interrupt rate up to 20,000 Hz, and foundthat by doing so appli
ations are guaranteed to re
eive timersignals within one millise
ond of the 
orre
t times with highprobability, even under loaded 
onditions.In addition to suggesting that 1000 Hz be used as theminimal default 
lo
k rate, we also propose that the HZvalue and the quantum length be settable parameters, ratherthan 
ompiled 
onstants. This will enable users of systemsthat are dedi
ated to a time-sensitive task to 
on�gure themso as to bound the laten
y, by shortening the quantum sothat when multiplied by the expe
ted number of pro
essesin the system the produ
t is less than the desired bound.Of 
ourse, this fun
tionality has to be traded o� with theoverhead it entails. Su
h detailed 
onsiderations 
an onlybe made by knowledgeable users on a 
ase-by-
ase basis.Even so, this is expe
ted to be 
ost e�e
tive relative to thealternative of pro
uring a hard real-time system.The last missing pie
e is the 
orre
t prioritization of ap-



pli
ations under heavy load 
onditions. The problem is thatmodern intera
tive appli
ations may use quite a lot of CPUpower to generate realisti
 graphi
s and video in real-time,and may therefore be hard to distinguish from low prior-ity CPU-bound appli
ations. This is espe
ially hard whenfa
ed with multi-threaded appli
ations (like Xine), or if ap-pli
ations are adaptive (as Quake is) and 
an always useadditional 
ompute power to improve their output. Our fu-ture work therefore deals with alternative me
hanisms forthe identi�
ation of intera
tive pro
esses. The me
hanismswe are 
onsidering involve tra
king the intera
tions of appli-
ations with the X server, and thus with input and outputdevi
es that represent the lo
al user [9℄.
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