
From Code Complexity Metrics to Program Comprehension
Dror G. Feitelson
feit@cs.huji.ac.il

The Hebrew University
Jerusalem, Israel

ABSTRACT
Developers need to read and understand a lot of existing code dur-
ing the course of their work. But understanding code written by
others is hard. It is common to blame this on the code’s “complex-
ity”, possibly as measured by metrics like McCabe’s Cyclomatic
Complexity (MCC). However, commonly used metrics are often
simplistic and based on intuition rather than on empirical evidence.
This can be much improved by using experiments to identify and
quantify the effect of coding constructs on code comprehension.
However, the way individual human developers perceive the code
may actually be more important than the characteristics of the
code itself: for example, one developer may misunderstand variable
names chosen by another. The diversity of humans implies that a
comprehensive code complexity metric may therefore be impos-
sible to achieve. But experimental studies of code comprehension
can nevertheless shed light on the limitations of code complexity
metrics, and lead to better understanding of the cognitive processes
involved in program comprehension.

CCS CONCEPTS
• General and reference→ Experimentation;Metrics; • Soft-
ware and its engineering → Software organization and prop-
erties.

KEYWORDS
Experiment, Code complexity, Code comprehension

ACM Reference Format:
Dror G. Feitelson. 2023. From Code Complexity Metrics to Program Com-
prehension. In Comm. ACM 66(5), pp. 48–57, May 2023. ACM, New York, NY,
USA, 8 pages.

1 INTRODUCTION
Code is hardly ever developed from scratch. Rather, new code typi-
cally needs to integrate with existing code, and depends on using
existing libraries. Two recent studies have found that developers
spend 58% and 70% of their time on average comprehending code,
and only some 5% actually editing [31, 51]. This implies that reading
and understanding code is very important, both as an enabler of
development, and as a major cost factor during development.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Comm. ACM 66(5), pp. 48–57, May 2023,
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

But as anyone who tries to read code can attest, it is hard to
understand code written by others. This is commonly attributed,
at least in part, to the code’s “complexity”: the more complex the
code, the harder it is to understand, and by implication, to work
with. Identifying and dealing with complexity is considered im-
portant because the code’s complexity may slow developers down,
and may even cause them to misunderstand it, possibly leading
to programming errors. Conversely, simplicity is often extolled as
vital for code quality.

To gain a sound understanding of code complexity and its con-
sequences, we need to operationalize this concept. This means we
need to come up with ways to characterize it, ideally in a quanti-
tative manner. And indeed many metrics have been suggested for
code complexity. Such metrics can then be used for either of two
purposes. In industry, metrics are used to make predictions regard-
ing code quality and development effort. This can then feed into
decision-support systems that help managers steer the project [15].
In academia, metrics can be used to characterize the code and better
understand how developers interact with the code on which they
work. This can then contribute to modeling the cognitive processes
involved in software development.

While the concept of code complexity has intuitive appeal, and
literally hundreds of metrics have been proposed, it has been diffi-
cult to find agreed metrics that quantify code complexity effectively.
One reason may be that proposed metrics typically focus on a single
narrow attribute of complexity, and they are often not validated
by empirical evidence showing an effect on code comprehension.
As a result it is not very surprising that they do not enable good
predictions. An alternative approach can be to use an incremental
process, guided by empirical evaluations, to try and create more
comprehensive metrics. However, as we show below, this approach
too faces many difficulties: partly due to the complexity of the con-
cept of code complexity itself, and partly due to its interactions
with the humans involved in code comprehension. The conclusion
is that code complexity is only one of many factors affecting code
comprehension, and perhaps not the major one.

2 METRICS FOR CODE COMPLEXITY
Various code attributes have been suggested as contributing to code
complexity. For example, the use of wild goto statements creates
spaghetti code which is hard to follow [10, 36]. The use of pointers
and recursion are also thought to cause difficulties [47]. Various
code smells also reflect excessive complexity, ranging from long
parameter lists to placing all the code in a single god-class with no
modular design [43]. Finally, just having a large volume of code also
adds to the difficulty of understanding it all [18]. Note, however,
that understanding code is different from understanding a system as
a whole, where the main concern is understanding the architecture

https://orcid.org/0000-0002-2733-7709

Comm. ACM 66(5), pp. 48–57, May 2023, Dror G. Feitelson

[27]. Our focus is on understanding the code as a text conveying
instructions.

Given code attributes that are hypothesized to contribute to
complexity, one can define code complexity metrics to measure
them. Such metrics use static analysis to identify and count the
problematic code features. Over the years extensive research has
been conducted on code complexity metrics. Much of this research
concerned the direct utility of such metrics, for example as pre-
dictors of defects [9, 16, 30]. While such correlations have indeed
been found (e.g. [40]), it also appears that no single metric is uni-
versally applicable, and in fact all metrics have a poor record of
success [11, 13, 33, 34, 39]. Another result is that process metrics
are actually better at predicting defects than code metrics, because
problematic code tends to stay so [37].

Indeed, a perplexing observation concerns the apparent lack
of progress in defining software metrics. In their 1993 book on
software metrics, Shepperd and Ince discuss the three most influ-
ential software metrics of the time [44]. These were Halstead’s
“software science” metrics [19], McCabe’s cyclomatic complexity
[28], and Henry and Kafura’s information flow metric [21], which
were 12–19 years old at the time. Were they to write the book today,
a full 30 years later, they would probably have chosen the same
three metrics as the most influential (perhaps adding Chidamber
and Kemerer’s metric suite [8], which is specifically targeted at
object-oriented designs). This is surprising and disillusioning given
the considerable criticism leveled at these metrics over the years,
including in Shepperd and Ince’s book.

Let us useMcCabe’s cyclomatic complexity (MCC) as an example.
This is perhaps the most widely cited complexity metric in the lit-
erature1. It is the default go-to whenever “complexity” is discussed.
For example, one of the metrics in Chidamber and Kemerer’s met-
ric suite is “weighted methods per class” [8]. In its definition the
weighting function was left unspecified, but in practice it is usually
implemented as the methods’ MCC.

The essence of MCC is simply the number of branching instruc-
tions in the code plus 1, counted at the function level. This reflects
the number of independent paths in the code, and McCabe sug-
gested that functions with MCC above 10 may need to be simplified,
lest they be hard to test [28]. Over the years, many have questioned
the definition of MCC. For starters, does it really provide any new
information? Several studies have shown a very strong correlation
between MCC and LOC (lines of code), implying that MCC is more
of a size metric than a complexity metric [18, 23, 45]. But others
have claimed that MCC is indeed useful, and explained the corre-
lation with LOC as reflecting an average when large amounts of
code are aggregated. If a finer resolution of individual methods is
observed, there is a wide variation of MCC for functions of similar
length [26].

Other common objections concern the actual counting of branch-
ing instructions. One issue is exactly which constructs to count.
McCabe originally counted the basic elements of structured pro-
gramming in Fortran, for example if-then-else, while, and until. He
also noted that in compound predicates the individual conditions
should be counted, and that a case statement with 𝑁 branches
1McCabe’s 1976 paper which introduced MCC [28] had 8806 citations on Google
Scholar as of 22 March 2023 (304 in 2022, probably not the final count, 352 in 2021, 393
in 2020, 457 in 2019, 433 in 2018, and so on).

should be counted as having 𝑁 − 1 predicates. Soon after it was
suggested that nesting should also be taken into consideration
[20, 35]. Vinju and Godfrey suggest to add elements like exit points
(break, continue) and exception handling (try, throw) to the calcula-
tion of complexity [49]. Campbell went even farther, and created a
much more comprehensive catalog of constructs, including nesting,
try-catch blocks, and recursion, which should all be counted [7].

Given the zoo of constructs that may affect code complexity,
another issue is the weights one gives to different constructs. Intu-
itively, it doesn’t seem right to give the same level of importance
to a while loop and a case statement. There has been surprisingly
little discussion of this issue. Campbell, for example, does not count
individual cases at all, and gives added weight to each level of nest-
ing [7]. Shao and Wang suggest that if a sequence has weight 1,
an if should have weight 2, a loop weight 3, and parallel execu-
tion weight 4 [42]. But this assignment of weights is based only on
intuition, which is not a scientifically valid way to devise a code
complexity metric [29].

The common methodology to assess the utility of complexity
metrics is based on correlations with factors of interest [41]. In an
extensive recent study, Scalabrino et al. show that no individual
metric of the 121 they checked captures code understandability
[39]. But more positive results are sometimes obtained when met-
rics are combined [39, 48]. For example, Muñoz Barón et al. have
shown that Campbell’s metric has a positive correlation with the
time needed to understand code snippets [32]. Buse and Weimer
created a “readability” model (which actually reflects perceived
understandability, as this is what was asked of evaluators) based on
19 code features, including line and identifier length, indentation,
and numbers of keywords, parentheses, assignments, and operators
[6].

It therefore seems that at least part of the problem with code
complexity metrics may be their fragmentation and rigidity. Maybe
we can achieve better results by combining individual metrics in
a systematic manner. In software development the iterative and
incremental approach – with feedback from actual users – is widely
accepted as the way to make progress when we cannot define
everything correctly in advance. Why not use the same approach
to derive meaningful metrics for software?

3 EXPERIMENTAL EVALUATIONS
If we want to understand the difficulties in comprehending code,
and to parameterize code complexity metrics in a meaningful way,
we need to study how developers think about code [22]. A common
approach for research on people’s cognitive processes is controlled
experiments. In the natural sciences experiments are akin to pos-
ing a question to nature: we set up the conditions, and see what
nature does. In empirical software engineering, and specifically
when studying code comprehension, we perform the experiments
on developers. The developers are assigned tasks which require
some code to be understood. Example tasks include figuring out the
output of a code snippet on some specific input, finding and fixing
a bug in the code, and so on. By measuring the time to complete the
task, and the correctness of the solution, we get some indication of
how hard it was [14]. And if the difference between the experimen-
tal conditions was limited to some specific attribute of the code, we

From Code Complexity Metrics to Program Comprehension Comm. ACM 66(5), pp. 48–57, May 2023,

Table 1: Characteristics of study 1 [1].

Number of subjects 220
Subjects status professional developers
Experimental task output printed by code
Total code snippets 40
Code snippets source written for experiment
Snippets for each subject 11–14
Snippets selection random by group
Snippets order random
Setting custom-built Internet site
Performance comparison within subject

can gain information on the effect of this attribute — namely on its
contribution to the code’s complexity.

Experimental evaluations like this are not very common [46],
possibly in part due to their human element. When we design such
experiments we must think and reflect about who the participants
will be, and whether the results may depend on their experience. For
example, “born Python” developers are accustomed to implicit loops
in constructs like list comprehension, which are problematic for
developers used to more explicit languages. Another common issue
to consider is whether students may be used [3, 12]. Comprehensive
results require the use of all relevant classes of developers, even if
not necessarily in the same study.

The following sections present three recent case studies of such
research, and what we can learn from them about the relationship
between code complexity and code comprehension. This is by no
means a comprehensive survey. These studies are just isolated
examples of what can be done, mainly illustrating how much we
still need to learn. At the same time, they also indicate that maybe
the quest for a comprehensive complexity metric is hopeless, both
because there are so many conflicting factors that affect complexity,
and because the code itself may not be the most important factor
affecting comprehension.

4 STUDY 1: CONTROLLED EXPERIMENTS ON
LOOPS

The first example is a study motivated by the questions about MCC
alluded to above, which asks whether loops and if statements should
be given the same weight. As we noted Shao andWang have already
suggested that different weights be given to different constructs
[42]. But while intuitively appealing, this proposal was not backed
by any evidence that these are indeed the correct weights.

To place such proposals on an empirical footing we designed
an experiment where subjects needed to understand short code
snippets [1]. These code snippets were written specifically for the
experiment, and different snippets used different control structures.
Technical attributes of the experiment are listed in Table 1.

To ensure that comparisons are meaningful all the code snippets
had exactly the same functionality: to determine whether or not
an input number x was in any of a set of number ranges. This can
be expressed using nested if statements that compare x with the
endpoints of all the ranges. Alternatively it is possible to create
one large compound conditional which contains a disjunction of
conjunctions for the endpoints of each range. One can also use a

s t r i n g r e s u l t = " no . . . " ;
i f (x >= 1 0) {

i f (x <= 2 0) {
r e s u l t = " yes ! " ;

}
e l s e {

i f (x >= 3 0) {
i f (x <= 4 0) {

r e s u l t = " yes ! " ;
}

}
}

}

s t r i n g r e s u l t = " no . . . " ;
i f (((x >= 1 0) && (x <= 2 0)) | |

((x >= 3 0) && (x <= 40))) {
r e s u l t = " yes ! " ;

}

s t r i n g r e s u l t = " no . . . " ;
i n t ends [] [] = { { 1 0 , 2 0 } , { 3 0 , 4 0 } } ;
f o r (i n t i = 0 ; i < 2 ; i ++) {

i f ((x >= ends [i] [0]) &&
(x <= ends [i] [1])) {
r e s u l t = " yes ! " ;

}
}

s t r i n g r e s u l t = " no . . . " ;
f o r (i n t i = 0 ; i < 2 ; i ++) {

i f ((x >= (2 ∗ i +1) ∗ 1 0) &&
(x <= (2 ∗ i +2) ∗ 1 0))) {
r e s u l t = " yes ! " ;

}
}

Figure 1: Example code snippets which use different constructs to
express the same functionality. From the top: nested ifs, compound
conditional, loop on array, loop with arithmetic on loop index.

loop on the ranges, and compare with the endpoints of one range
in each iteration. The endpoints can be stored in an array, or, if
they are multiples of a common value, they can be derived by
arithmetic expressions on the loop index. Examples of code snippets
implementing these four approaches are shown in Figure 1.

The results obtained in the experiment for these four options are
shown in Table 2 (in the full experiment additional structures were
also studied, e.g. using negations, which are not shown here). One
can see that finding the outcome when the code contained loops
took significantly more time, and led to significantly more errors
— roughly by a factor of 2. This indicates that the methodology
works: we can design experiments which uncover differences in the

Comm. ACM 66(5), pp. 48–57, May 2023, Dror G. Feitelson

Table 2: Results of comparison of loops with ifs.

Code snippet Time [s] Err. rate
Nested ifs 16.7±9.9 0.175
Compound if 23.5±10.4 0.082
Loop on array 35.0±14.7 0.450
Loop with arith. 46.6±19.0 0.325

Table 3: Variations between code snippets that compare for loops

Version Init Comp End Step
lp0 0 < n ++
lp1 0 <= n-1 ++
lp2 0 < n-1 ++
lp3 1 < n ++
lp4 1 < n-1 ++
lp5 n-1 >= 0 - -
lp6 n-1 > 0 - -

performance of developers dealing with different code constructs.
And if we want to create a better version of MCC, giving loops
double the weight of ifs is a reasonable initial estimate, more so than
giving them equal weights. However this cannot be considered the
final say on the matter. Many additional experiments with different
loop structures and ifs are needed.

In addition to comparing different constructs, the experiment
also included 7 code snippets that compared variations on for loops.
The canonical for loop is for (i=0; i<n; i++). But the intialization, the
end condition, and the step may be varied. In the experiment we
looked at 6 such variations, as described in Table 3. The task for
the experimental subjects was to list the loop index as it would be
printed in each iteration. The results are shown in Figure 2. This is
a scatter plot showing how experiment participants performed on
the seven versions of the loop. The horizontal dimension represents
the error rate, namely the fraction of wrong answers we received.
The vertical dimension represents the average time taken to provide
correct answers. The time of incorrect answers is not used.

The canonical for loop, represented by lp0, is the leftmost point.
Its coordinates indicate that it takes about 17 seconds to understand,
and around 10% of respondents get it wrong. The next 3 versions
each have one simple variations. Loop lp1 is actually equivalent to
the canonical loop, but expressed differently: the end condition is
<=n-1 instead of <n. Loops lp2 and lp3 have a difference of one at
either end. All these loop take about the same time as the canonical
loop, but suffer from about 20% more errors. Loop lp4 has two
variations from the canonical loop: it both starts at 1 and ends at
<n-1. It again takes approximately the same time, but now more
than half of the respondents make mistakes. The conclusion from
all this is that many experimental subjects apparently didn’t notice
the changes: seeing a for they expected to see a canonical for loop,
and answered as if it was, thereby making a mistake. In other words,
the metric of error rate is not equivalent to the metric of time to
correct answer. Error rate may indeed reflect difficulty, but this is
confounded with a “surprise factor”, where the error reflects a clash
between expectations and reality. So the important implication is
that difficulties in understanding are not just a property of the code.

Figure 2: Results of experiment comparing the understanding of
variations on the canonical for loop.

They may also depend on the interaction between the code and the
person reading it.

The last two loops, lp5 and lp6, are different in that they count
down instead of counting up. This increases the time to correct
answer by about 4 seconds, or 25%, which can be interpreted as
reflecting extra cognitive effort to figure out exactly what is going
on. It also increases the error rate by around 10 percentage points
relative to the equivalent up-counting loops. These results provide
yet another example of the failings of metrics like MCC: in terms of
MCC, loops counting up and loops counting down are equivalent.
But for human beings they are not.

5 STUDY 2: USING EYE TRACKING TO STUDY
CODE REGULARITY

An additional problemwithmany common code complexity metrics
is that they ignore repetitions in the code. More than 30 years ago
Weyuker noted that conjugating two copies of a program is expected
to be easier to understand than twice the effort of understanding
one copy [50]. More recently, Vinju and Godfrey made a similar
empirical observation: they saw that repeated code is easier than
implied by its MCC [49]. But how much easier? And how can we
account for such effects in code complexity metrics?

Our second example is a study which addresses these issues
using eye tracking. The participants in the study are again given
code that they need to understand, but as they read it, we observed
how they divide their attention across repetitions in the code [25].
Technical attributes of the experiment are listed in Table 4.

The study was based on two functions, each with two versions: a
regular version with repeated structures and a non-regular version
without such repeated structures. For example, one of the functions
performed an image processing task of replacing each pixel with
the median of its 3×3 neighborhood. The problem is that boundary
pixels do not have all 8 neighbors. The regular version solves this
by checking for the existence of each neighbor, one after the other,
thereby leading to a repeated structure. The non-regular version,
in contradistinction, first copies the image into a larger matrix

From Code Complexity Metrics to Program Comprehension Comm. ACM 66(5), pp. 48–57, May 2023,

Figure 3: Heatmap of visual attention on regular code (left, with
repeated structures marked) and non-regular code (above). Reprinted
with permission from Springer [25] ©2017

Table 4: Characteristics of study 2 [25].

Number of subjects 20
Subjects status students
Experimental task understand code
Total functions used 2
Functions source written for experiment
Versions of each function 2
Assigning functions/versions random one each
Setting 1:1 sessions with eye tracker
Performance comparison between subjects

leaving a boundary of 0 pixels around it. It can then traverse the
image without worrying about missing neighbors. Importantly,
both approaches are reasonable and used in practice. Thus the code
was realistic despite being written for the experiment.

Because of the repetitions, regular code tends to be longer and
have a higher MCC. For example, in the image processing task cited
above, the regular version was 49 lines long and had an MCC of 18,
while the non-regular one had only 33 lines of code and an MCC of
13. But the experiments showed that the regular version was easier
to understand [24]. This was verified both by metrics like time
to correct answer and by subjective ratings. Using a 5-point scale

from “very easy” to “very hard”, subjects rated the regular version
as “easy”, “moderate”, or “hard”, at the same time rating the non-
regular one as “moderate”, “hard”, or “very hard”. The implication
is that MCC indeed fails to correctly reflect the complexity of this
code.

Our hypothesis in the experiment was that the regular version is
easier because once you understand the initial repeated structure,
you can leverage this understanding for the additional instances.
This led to the prediction that less and less attention would be
devoted to successive repetitions. But when we read, the eyes do
not move continuously. Rather, they fixate on certain points for
sub-second intervals, and jump from one fixation point to the next.
Cognitive processes like understanding occur during these fixations.
So we can check our prediction by using an eye tracker to measure
the number of fixations in different parts of the code and their total
duration. A heatmap of where subjects were found to spend their
time is shown in Figure 3. Obviously in the regular version they
indeed spend much more time on the initial repetitions, the hardly
any on the later ones. Then they return to pay attention to the final
loops that calculates the median. In the non-regular versions most
attention is focused on the nested loops that scan the image and
collect data from the neighboring pixels.

Comm. ACM 66(5), pp. 48–57, May 2023, Dror G. Feitelson

Figure 4: Measurements and model of attention given to structural
repetitions in regular code.

The figure also indicates the “areas of interest” we defined com-
prising the 8 repetitions of the regular structure. Once defined, we
can sum the total time spent in each such area. The results are
shown in Figure 4. Fitting a model to these measurements indi-
cates that an exponentially decreasing function provides a good fit.
Specifically, the model indicates that the time invested is reduced
by 40% with each additional instance. This suggests that when
computing complexity metrics the weight given to each successive
instance should be reduced by 40% relative to the previous one. For
example, the complexity of 𝑘 repetitions of a block of code with
complexity 𝐶 would not be 𝑘𝐶 but

𝑐𝑜𝑚𝑝 =

𝑘∑︁
𝑖=1

0.6𝑖−1𝐶

Again, we cannot claim that this is the final word on this issue. How-
ever, it does show how code complexity metrics can be improved
and better aligned with developer behavior.

Themore important conclusion, however, is that code complexity
is not an absolute concept. The effective complexity of a block of code
may depend on code that appeared earlier. In other words, complexity
depends on context. It is not simply additive, as assumed by MCC
and other complexity metrics.

6 STUDY 3: THE EFFECT OF VARIABLE NAMES
A basic problem in understanding code is to identify the domain.
For example, are the strings manipulated by this function the names
of people? Or maybe addresses? Or the contents of email messages?
The code itself seldom makes this explicit. But the names of classes,
functions, and variables do. This is what we mean when we de-
mand that developers “use meaningful names”. Names are therefore
extremely important for code comprehension [4, 17, 38]. It is the
names that enable us to form an understanding of what the code is
about, and subsequently, what it does.

Our third example is a study that set out to quantify the impor-
tance of names. To do so, participants in the study were given code
in either of two versions: one with full variable names, or another
with meaningless names [2]. In both cases they were required to fig-
ure out what the code does. Technical attributes of the experiment
are listed in Table 5.

For this study it was important the the names reflect real practice.
We therefore scanned around 200 classes from 30 popular (with at
least 10,000 stars) Java utility packages on GitHub. Utility packages

Table 5: Characteristics of study 3 [2].

Number of subjects 9
Subjects status professional developers
Experimental task understand code
Total functions used 6
Functions source popular GitHub projects
Versions of each function 2 (4 incl. partial names)
Assigning versions random
Setting 1:1 sessions think aloud
Performance comparison between subjects

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

indexOfAny

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time for comprehension [minutes]

abbreviateMiddle

exp.
control
wrong

Figure 5: Examples of results from the variable names study. Reprinted
with permission from IEEE [2] ©2017

were used to avoid domain knowledge issues; it was assumed that
any developer has the knowledge to understand functions that
perform things like string manipulation. From this vast pool a total
of 12 functions were selected, based on considerations of length and
perceived difficulty. A pilot study was then conducted to ensure the
functions were suitable for use in the experiment. This narrowed
the field down to 6 final functions.

To study the importance of the names in the functions we re-
placed them with consecutive letters of the alphabet: a, b, c, and
so on, as many as were needed, in order of appearance. Half of
the experimental subjects received this treatment. The other half
received the functions with their original variable names as a con-
trol. The study was conducted with professional developers using
1:1 sessions in which they explained their thoughts about what
they are trying to do. If they did not reach a conclusion within 10
minutes, some of the names (either the function parameters or its
local variables) were revealed. We expected that seeing the vari-
able names to begin with, or getting them in the process, will aid
comprehension.

Two examples of the results are shown in Figure 5. These are
cumulative distribution functions (CDFs) of the time till an answer
was given. The horizontal axis represents time in minutes. The
vertical axis is the cumulative probability to receive an answer
within a certain time. The left-hand graph, showing the results for
the function indexOfAny, matches our expectations. As we can
see, the subjects in the control group, who received the function
with the original variable names, took between 2 and 7 minutes to
give an answer. Those in the treatment group, where the variables
were renamed to a, b, c, etc., took 12–22 minutes. Much longer,
because the additional information provided by the variable names

From Code Complexity Metrics to Program Comprehension Comm. ACM 66(5), pp. 48–57, May 2023,

is missing and needs to be reconstructed from the functionality of
the code. Similar results, with somewhat smaller gaps between the
times, were observed in two other functions of the 6 used in the
experiment.

But the results of the second example function, abbreviateMiddle,
are different. In this case the distributions of times to answers
are overlapping — it took approximately the same time whether
or not the names were provided. Moreover, two of the subjects
misunderstood the code and claimed it does something different
from what it really does. And both those who made mistakes had
received the original code with the names. Similar results were
obtained for another two functions. In both, the distributions of
times were overlapping, and in one there were another 2 mistakes,
again both by subjects who had received the full-names version.

The conclusion from this experiment is that names do not nec-
essarily help comprehension. Moreover, it appears that there are
situations where names are misleading, to the degree that they are
worse than having meaningless names such as consecutive letters
of the alphabet. How can this be? In the few examples we saw,
one problem was using general non-specific names. For example a
function signature contained two string parameters, one called str,
and an integer called length. But length of what? It turns out that it
specified the target length of the output, but this was not apparent
from the names. Another problem was the use of synonyms. For
example, in a function involving two strings, the length of one was
called length and the length of the other was called size. It is easy
to get confused which is which, because the names do not contain
any distinguishing information.

Interestingly, type names can also cause problems. One of the ex-
amples was a function which replaced characters from one set with
characters from another. But the sets were passed to the function
as strings instead of as arrays of characters. From the computer’s
point of view there is no difference, and it works. But for human
readers the “string” signal was so strong they thought the function
replaces one string for the other, instead of individual characters.

An important point is that we do not think that misleading
names were used on purpose. Recall that the code comes from
highly popular open source projects, and it is safe to assume that
the developers who wrote it were trying to use meaningful names.
But apparently it is not so easy to find meaningful names, partly
because names that aremeaningful to one developer can bemisleading
to another. This implies that understanding code can be impaired by
a mismatch between the developer who wrote it and the developer
who is trying to understand it, through no fault of the code itself.

7 UNDERSTANDING CODE COMPREHENSION
AND COMPLEXITY

Selecting code metrics is often driven by inertia — we continue to
use what has been used before. But such metrics are oftentimes very
simplistic and based on intuition, and rigorous evaluations to see if
they work usually find that they do not perform well (e.g. [34, 39]).
Despite this, literally hundreds of papers each year continue to
use MCC as it was defined more than 45 years ago. At the same
time there have been only a handful of attempts to find empirical
support for more comprehensive metrics.

The quest for better complexity metrics is driven by an agenda
to explain the difficulties of interacting with code using the code’s
properties. Computer scientists are trained to solve big problems by
dividing them into more solvable sub-problems. So a natural place
to start with the riddle of how code is comprehended is with the
most static and well-defined parts, namely individual programming
constructs and their composition in functions. This can be followed
by models of module comprehension and even full projects.

The problem is that analyzing the code has its limitations. As Fred
Brooks wrote, “The programmer, like the poet, works only slightly
removed from pure thought-stuff” [5]. And indeed, programming
is the art of ideas, abstractions, and logic. But the code itself is
written at a lower level, of concrete instructions to be carried out
by a computer. The difficulty in comprehending code is thus the
difficulty to reconstruct the ideas and abstractions — the art and the
“thought stuff” — when all you have available are the instructions.
Moreover, this has to be done subject to human differences. The
expectations of the developer reading and trying to understand
the code may be incompatible with the practices of the developer
who wrote it. Such discrepancies are by definition beyond the reach
of code complexity metrics, and place a limit on the aspiration to
analyze code and deduce its objective comprehensibility.

An alternative framing is therefore not to seek a comprehensive
complexity metric that will allow us to predict the difficulty of inter-
acting with a given body of code, but to seek a deeper understanding
of the limitations of code complexity metrics. The methodology is
the same: to work diligently on experiments to isolate and estimate
the influence of different constructs; to conduct further experiments
that can also elucidate the interactions between them; to acknowl-
edge and study other factors, such as how the code is presented
and the effect of the experience and background of developers; and
to replicate all this work multiple times to increase our confidence
in the validity of the results.

The three studies described above provide examples of such
work. Study 1 shows how individual structures can be studied in
a quantitative manner. Study 2 concerns how to combine such
results, and undermines the idea of just summing the counts of
constructs as is commonly done. Study 3 is a small step toward
showing that the code may not be the main factor at all. There are
many additional factors that need to be studied and evaluated, for
example the dependencies on rapidly evolving third-party libraries.
Additional experiments will also need to take into account all the
different classes of developers: experienced professionals, novices,
even end-users. Observational studies “in the wild” can be used to
verify the relevance of experimental results in reality.

The results will be messy, in the sense that myriad conflicting
effects can be expected. But this is what makes the code-developer
interaction more interesting, challenging, and important to un-
derstand. And it also suggests interesting opportunities for col-
laborations between computer scientists and cognitive scientists.
Understanding code does not depend only on the code — it also
depends on the brain. As computer scientists we do not have all
the necessary background and accumulated knowledge about cog-
nitive processes. But psychologists and cognitive scientists have
been studying such phenomena for decades. If we really want to
understand code comprehension, we need to collaborate with them.

Comm. ACM 66(5), pp. 48–57, May 2023, Dror G. Feitelson

ACKNOWLEDGMENTS
The actual work of designing and running the experiments de-
scribed above was done by Shulamyt Ajami (loops study), Ahmad
Jbara (code regularity study), and Eran Avidan (naming study).
Funding was provided by the ISRAEL SCIENCE FOUNDATION
(grants 407/13 and 832/18).

REFERENCES
[1] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates, idioms — what

really affects code complexity?” Empirical Softw. Eng. 24(1), pp. 287–328, Feb 2019,
DOI: 10.1007/s10664-018-9628-3.

[2] E. Avidan and D. G. Feitelson, “Effects of variable names on comprehension: An
empirical study”. In 25th Intl. Conf. Program Comprehension, pp. 55–65, May 2017,
DOI: 10.1109/ICPC.2017.27.

[3] V. R. Basili and M. V. Zelkowitz, “Empirical studies to build a science of computer
science”. Comm. ACM 50(11), pp. 33–37, Nov 2007, DOI: 10.1145/1297797.1297819.

[4] S. Blinman and A. Cockburn, “Program comprehension: Investigating the effects
of naming style and documentation”. In 6th Australasian User Interface Conf., pp.
73–78, Jan 2005.

[5] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, 1975.

[6] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability”. IEEE
Trans. Softw. Eng. 36(4), pp. 546–558, Jul/Aug 2010, DOI: 10.1109/TSE.2009.70.

[7] A. Campbell, “Cognitive complexity: A new way of measuring understandability”.
URL https://www.sonarsource.com/docs/CognitiveComplexity.pdf, 2016.

[8] S. R. Chidamber and C. F. Kemerer, “A metric suite for object oriented design”. IEEE
Trans. Softw. Eng. 20(6), pp. 476–493, Jun 1994, DOI: 10.1109/32.295895.

[9] D. Cotroneo, R. Pietrantuono, and S. Russo, “Testing techniques selection based on
ODC fault types and software metrics”. J. Syst. & Softw. 86(6), pp. 1613–1637, Jun
2013, DOI: 10.1016/j.jss.2013.02.020.

[10] E. W. Dijkstra, “Go To statement considered harmful”. Comm. ACM 11(3), pp.
147–148, Mar 1968, DOI: 10.1145/362929.362947.

[11] S. Fakhoury, D. Roy, S. A. Hassan, and V. Arnaoudova, “Improving source code
readability: Theory and practice”. In 27th Intl. Conf. Program Comprehension, pp.
2–12, May 2019, DOI: 10.1109/ICPC.2019.00014.

[12] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka, and M. Oivo,
“Empirical software engineering experts on the use of students and profession-
als in experiments”. Empirical Softw. Eng. 23(1), pp. 452–489, Feb 2018, DOI:
10.1007/s10664-017-9523-3.

[13] J. Feigenspan, S. Apel, J. Liebig, and C. Kästner, “Exploring software measures to
assess program comprehension”. In Intl. Symp. Empirical Softw. Eng. &Measurement,
pp. 127–136, Sep 2011, DOI: 10.1109/ESEM.2011.21.

[14] D. G. Feitelson, “Considerations and pitfalls for reducing threats to the validity of
controlled experiments on code comprehension”. Empirical Softw. Eng. 27(6), art.
123, Nov 2022, DOI: 10.1007/s10664-022-10160-3.

[15] N. E. Fenton and M. Neil, “Software metrics: Successes, failures and new directions”.
J. Syst. & Softw. 47(2–3), pp. 149–157, Jul 1999,DOI: 10.1016/S0164-1212(99)00035-
7.

[16] N. E. Fenton and M. Neil, “A critique of software defect prediction models”. IEEE
Trans. Softw. Eng. 25(5), pp. 675–689, Sep/Oct 1999, DOI: 10.1109/32.815326.

[17] E. M. Gellenbeck and C. R. Cook, “An investigation of procedure and variable names
as beacons during program comprehension”. In Empirical Studies of Programmers:
Fourth Workshop, J. Koenemann-Belliveau, T. G. Moher, and S. P. Robertson (eds.),
pp. 65–81, Intellect Books, 1991.

[18] Y. Gil and G. Lalouche, “On the correlation between size and metric validity”.
Empirical Softw. Eng. 22(5), pp. 2585–2611, Oct 2017, DOI: 10.1007/s10664-017-
9513-5.

[19] M. Halstead, Elements of Software Science. Elsevier Science Inc., 1977.
[20] W. Harrison, K. Magel, R. Kluczny, and A. DeKock, “Applying software complexity

metrics to program maintenance”. Computer 15(9), pp. 65–79, Sep 1982, DOI:
10.1109/MC.1982.1654138.

[21] S. Henry and D. Kafura, “Software structure metrics based on informa-
tion flow”. IEEE Trans. Softw. Eng. SE-7(5), pp. 510–518, Sep 1981, DOI:
10.1109/TSE.1981.231113.

[22] F. Hermans, The Programmer’s Brain: What Every Programmer Needs to Know
About Cognition. Manning, 2021.

[23] I. Herraiz and A. E. Hassan, “Beyond lines of code: Do we need more complexity
metrics?” InMaking Software: What Really Works, and WhyWe Believe It, A. Oram
and G. Wilson (eds.), pp. 125–141, O’Reilly Media Inc., 2011.

[24] A. Jbara and D. G. Feitelson, “On the effect of code regularity on comprehen-
sion”. In 22nd Intl. Conf. Program Comprehension, pp. 189–200, Jun 2014, DOI:
10.1145/2597008.2597140.

[25] A. Jbara and D. G. Feitelson, “How programmers read regular code: A controlled
experiment using eye tracking”. Empirical Softw. Eng. 22(3), pp. 1440–1477, Jun

2017, DOI: 10.1007/s10664-016-9477-x.
[26] D. Landman, A. Serebrenik, and J. Vinju, “Empirical analysis of the relationship

between CC and SLOC in a large corpus of Java methods”. In Intl. Conf. Softw.
Maintenance & Evolution, Sep 2014, DOI: 10.1109/ICSME.2014.44.

[27] O. Levy and D. G. Feitelson, “Understanding large-scale software systems — struc-
ture and flows”. Empirical Softw. Eng. 26(3), art. 48, May 2021,DOI: 10.1007/s10664-
021-09938-8.

[28] T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng. SE-2(4), pp. 308–320,
Dec 1976, DOI: 10.1109/TSE.1976.233837.

[29] A. Meneely, B. Smith, and L. Williams, “Validating software metrics: A spectrum
of philosophies”. ACM Trans. Softw. Eng. & Methodology 21(4), art. 24, Nov 2012,
DOI: 10.1145/2377656.2377661.

[30] T. Menzies, J. Greenwald, and A. Frank, “Data mining code attributes to learn
defect predictors”. IEEE Trans. Softw. Eng. 33(1), pp. 2–13, Jan 2007, DOI:
10.1109/TSE.2007.256941.

[31] R. Minelli, A. Mocci, andM. Lanza, “I know what you did last summer: An investiga-
tion of how developers spend their time”. In 23rd Intl. Conf. Program Comprehension,
pp. 25–35, May 2015, DOI: 10.1109/ICPC.2015.12.

[32] M. Muñoz Barón, M. Wyrich, and S. Wagner, “An empirical validation of cognitive
complexity as a measure of source code understandability”. In 14th Intl. Symp. Em-
pirical Softw. Eng. & Measurement, art. 5, Oct 2020, DOI: 10.1145/3382494.3410636.

[33] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict compo-
nent failures”. In 28th Intl. Conf. Softw. Eng., pp. 452–461, May 2006, DOI:
10.1145/1134285.1134349.

[34] J. Pantiuchina, M. Lanza, and G. Bavota, “The (mis)perception of quality met-
rics”. In Intl. Conf. Softw. Maintenance & Evolution, pp. 80–91, Sep 2018, DOI:
10.1109/ICSME.2018.00017.

[35] P. Piwowarski, “A nesting level complexity measure”. SIGPLAN Notices 17(9), pp.
44–50, Sep 1982, DOI: 10.1145/947955.947960.

[36] C. Politowski, F. Khomh, S. Romano, G. Scanniello, F. Petrillo, Y.-G. Guéhéneuc,
and A. Maiga, “A large scale empirical study of the impact of Spaghetti Code and
Blob anti-patterns on program comprehension”. Inf. & Softw. Tech. 122, art. 106278,
June 2020, DOI: 10.1016/j.infsof.2020.106278.

[37] F. Rahman and P. Devanbu, “How, and why, process metrics are better”. In 35th
Intl. Conf. Softw. Eng., pp. 432–441, May 2013, DOI: 10.1109/ICSE.2013.6606589.

[38] F. Salviulo and G. Scanniello, “Dealing with identifiers and comments in source
code comprehension and maintenance: Results from an ethnographically-informed
study with students and professionals”. In 18th Intl. Conf. Evaluation & Assessment
in Softw. Eng., art. 48, May 2014, DOI: 10.1145/2601248.2601251.

[39] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vśquez, D. Poshyvanyk, and
R. Oliveto, “Automatically assessing code understandability”. IEEE Trans. Softw.
Eng. 47(3), pp. 595–613, Mar 2021, DOI: 10.1109/TSE.2019.2901468.

[40] N. Schneidewind and M. Hinchey, “A complexity reliability model”. In 20th Intl.
Symp. Software Reliability Eng., pp. 1–10, Nov 2009, DOI: 10.1109/ISSRE.2009.10.

[41] N. F. Schneidewind, “Methodology for validating software metrics”. IEEE Trans.
Softw. Eng. 18(5), pp. 410–422, May 1992, DOI: 10.1109/32.135774.

[42] J. Shao and Y. Wang, “A new measure of software complexity based on cogni-
tive weights”. Canadian J. Elect. Comput. Eng. 28(2), pp. 69–74, Apr 2003, DOI:
10.1109/CJECE.2003.1532511.

[43] T. Sharma and D. Spinellis, “A survey of code smells”. J. Syst. & Softw. 138, pp.
158–173, Apr 2018, DOI: 10.1016/j.jss.2017.12.034.

[44] M. Shepperd and D. Ince, Derivation and Validation of Software Metrics. Clarendon
Press, 1993.

[45] M. Shepperd and D. C. Ince, “A critique of three metrics”. J. Syst. & Softw. 26(3),
pp. 197–210, Sep 1994, DOI: 10.1016/0164-1212(94)90011-6.

[46] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanović,
N.-K. Liborg, and A. C. Rekdal, “A survey of controlled experiments in soft-
ware engineering”. IEEE Trans. Softw. Eng. 31(9), pp. 733–753, Sep 2005, DOI:
10.1109/TSE.2005.97.

[47] J. Spolsky, “The perils of JavaSchools”. www.joelonsoftware.com/2005/12/29/the-
perils-of-javaschools-2, 29 Dec 2005.

[48] A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Kästner, and B. Vasilescu,
““automatically assessing code understandability” reanalyzed: Combined metrics
matter”. In 15th Working Conf. Mining Softw. Repositories, pp. 314–318, May 2018,
DOI: 10.1145/3196398.3196441.

[49] J. J. Vinju and M. W. Godfrey, “What does control flow really look like? Eyeballing
the cyclomatic complexity metric”. In 12th IEEE Intl. Working Conf. Source Code
Analysis & Manipulation, Sep 2012.

[50] E. J. Weyuker, “Evaluating software complexity measures”. IEEE Trans. Softw. Eng.
14(9), pp. 1357–1365, Sep 1988, DOI: 10.1109/32.6178.

[51] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring program
comprehension: A large-scale field study with professionals”. IEEE Trans. Softw. Eng.
44(10), pp. 951–976, Oct 2018, DOI: 10.1109/TSE.2017.2734091.

	Abstract
	1 Introduction
	2 Metrics for Code Complexity
	3 Experimental Evaluations
	4 Study 1: Controlled Experiments on Loops
	5 Study 2: Using Eye Tracking to Study Code Regularity
	6 Study 3: The effect of Variable Names
	7 Understanding Code Comprehension and Complexity
	Acknowledgments
	References

