
Coscheduling Based on Run-Time Identi�cationof Activity Working SetsDror G. FeitelsonIBM T. J. Watson Research CenterP. O. Box 218Yorktown Heights, NY 10598feit@watson.ibm.com Larry RudolphInstitute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelrudolph@cs.huji.ac.ilAbstractThis paper introduces a method for runtime identi�cation of sets of interacting ac-tivities (\working sets") with the purpose of coscheduling them, i.e. scheduling themso that all the activities in the set execute simultaneously on distinct processors. Theidenti�cation is done by monitoring access rates to shared communication objects: ac-tivities that access the same objects at a high rate thereby interact frequently, andtherefore would bene�t from coscheduling. Simulation results show that coschedulingwith our runtime identi�cation scheme can give better performance than uncoordinatedscheduling based on a single global activity queue. The �ner-grained the interactionsamong the activities in a working set, the better the performance di�erential. More-over, coscheduling based on automatic runtime identi�cation achieves about the sameperformance as coscheduling based on manual identi�cation of working sets by theprogrammer.Keywords: coscheduling, gang scheduling, on-line algorithms, activity working set.1 IntroductionThe performance of multiprogrammed multiprocessors can be improved without additionalburden on the programmer if the sets of closely interacting, �ne-grained activities can be iden-ti�ed and scheduled to always execute simultaneously. Some twelve years ago John Ouster-hout noticed an analogy between memory management in multiprogrammed uniprocessoroperating systems and processor management in multiprogrammed multiprocessor systems[27]. The analogy was based on the observation that parallel applications require a \work-ing set" of processes to execute simultaneously, just like uniprocessor applications require aworking set of pages to be memory resident simultaneously. If a parallel application doesnot receive enough processors, It might thrash due to synchronization constraints among its1

Activity Working Sets Last Edit: Dec 9, 1994 2processes. Executing processes become blocked waiting for responses from those that arecurrently not executing. The machine could spend most of its time context switching if anadditional process is scheduled to execute when its interacting counterpart is descheduledfrom execution.We use the term activity working set to refer to a set of activities that should be scheduledtogether. We use the term activity rather than process, as in Ousterhout's \process workingset", to stress the fact that it is one of many components in a parallel processing application,and to avoid overloaded terms such as task or thread. The context of our discussion is parallelsystems where programming is based on control parallelism, and activities can be createddynamically during execution.The term coscheduling is used to describe scheduling algorithms that schedule on thebasis of activity working sets, i.e. all the threads of an activity working set are scheduledto execute simultaneously. We shall be comparing our work to uncoordinated scheduling inwhich a single global activity queue (or workpile) is maintained, and each processor removesthe next activity from the workpile, executes it for a whole time quantum, and returns it tothe end of the workpile | the scheduling of one activity is uncoordinated with the schedulingof any other activity [6, 17].The subject of this paper is how to identify the activities that constitute a working set.The analogy with uniprocessor memory management is not so helpful here. The memoryworking set is approximated by using the least recently used (LRU) paradigm [20]. Basically,this assumes that the past is indicative of the future and hence it may be expected that thenext pages that the application will need are exactly those that it used most recently. Thesepages are therefore maintained in the primary memory, and only the least recently usedpages are evicted when additional space is needed. This approach does not easily transfer toour case, because activities are active entities; there is no such thing as an \unused" activitythat can be \evicted", and because in general there can be a number of (disjoint) activityworking sets within an application that each need to be scheduled simultaneously.Activity working sets should be de�ned by the pattern of interactions among the activi-ties. But it has usually been assumed that the working sets are de�ned by the user [27]. Forexample, the syntactic structure of the language may be used, by de�ning the set of activitiesthat are spawned together by a single parallel construct to be a working set (Fig. 1) [9].We suggest an automatic system that can identify the activity working set by using ac-cess rates to shared communication objects to gather information about interaction patternsat runtime. The communication objects can be named channels as in Occam [18], namedbarrier synchronization points, or named multiparty interactions such as scripts [13] or com-municators [7]. Their role is to help expose the patterns in which activities interact and toidentify the activity working set; activities which use or access the same objects are knownto interact, so it is safe to conjecture that they are in the same activity working set. Havingidenti�ed an activity working set there is positive and negative feedback: coscheduling all theactivities in a correctly identi�ed working set improves their performance and increases thelikelihood that they will complete even more interactions thereby increasing the con�dence inthe working set composition; coscheduling activities that do not form a real activity working

Activity Working Sets Last Edit: Dec 9, 1994 3PARPARproc.1proc.2proc.3proc.4PARPARproc.5proc.6proc.7proc.8
m����m m4 QQQQQ m

m1 m2 JJJ m3

m JJJ m8

m5 m6 JJJ m7Figure 1: A code segment (using Occam notation) and its activity tree. Sets of leafactivities with a common parent may be assumed to interact strongly with each other, andcan therefore be used to de�ne working sets. In this case there are two such sets: f1; 2; 3gand f5; 6; 7g.set will likely reduce performance, since the activities that are required for interaction willnot be simultaneously executing, leading to a decrease in the identi�cation con�dence. Ourexperimental results are encouraging, showing that using interaction patterns to dynamicallydetermine activity working sets can improve overall performance. In many cases, it is justas e�cient as manual identi�cation of the working sets.The rest of this section gives a short overview of directly related and super�cially relatedwork. Section 2 presents the coscheduling algorithm that identi�es activity working setsbased on the use of communication objects. Experimental results that support this approachare presented in Section 3. Section 4 concludes the paper.Related Research ResultsThe terms coscheduling and gang scheduling refer to scheduling strategies that are quitesimilar. The salient feature of both is that a set of activities are scheduled to executesimultaneously on a set of processors, with a one-to-one mapping of activities to processors.This is done to ensure that the activities can interact e�ciently. Gang scheduling schemesschedule only whole activity working sets | that is, all the activities in the working set(or gang) must be scheduled together (which obviously requires the working sets to bede�ned in advance). Coscheduling schemes are more
exible, in that a large fraction of theactivity working set is scheduled for simultaneous execution if it is impossible to scheduleall the activities in the working set. In both cases, activities (or rather, working sets) arepreemptable, thus supporting a multiprogrammed interactive environment. The di�erence

Activity Working Sets Last Edit: Dec 9, 1994 4from simple preemptive scheduling on each processor is that preemption and scheduling arecoordinated across all those processors that are executing the working set. If any processorsare left over when some working sets are scheduled, they are used to schedule any activitythat happens to be ready, with no regard to working sets. This is called alternative scheduling[27, 28]. In the sequel, we shall sometimes use \gang" as a synonym for \working set".Coscheduling was introduced by Ousterhout [27], who also implemented it in the Medusasystem on CM�. Since then, gang scheduling was implemented in a number of additionalexperimental systems [15, 29, 3, 10, 4]. Gang scheduling is also provided by at least �vecommercial systems: the Alliant FX/8 [31], the Connection Machine CM-5 [21], the MeikoCS-2 [8], the Intel Paragon [8], and the Silicon Graphics Challenge. In these systems, gangsare typically de�ned to include all the activities (or processes in their terminology) in theapplication. O�-line algorithms to �nd an optimal gang schedule were presented by B la_zewiczet al. [2]. Feitelson and Rudolph proposed a scalable implementation of gang schedulingbased on buddy systems [9, 11, 12]. In these works gangs are also prede�ned, even thoughthey are not necessarily identical to jobs (i.e., a job can have multiple independent gangs).This paper is the �rst to consider the possibility of automatically grouping the activities ina job into gangs at run time.There are many scheduling strategies that are super�cially similar to gang and cosched-uling in that parts of parallel jobs are scheduled to execute simultaneously on several proces-sors. One basic strategy is to physically partition the parallel machine and statically assigna parallel application job to a partition. Many partitioned systems do not support preemp-tion, e�ectively limiting the number of jobs that can execute simultaneously [30, 34, 33].Other systems take this partitioning a step further, and perform dynamic re-partitioningof the processors to re
ect changes in the system load. Note that if the number of proces-sors allocated to a job is less than the number of activities in it, then they cannot executesimultaneously. Therefore a two-level scheduling scheme is used: the operating system isresponsible for the allocation of processors, while the application itself schedules activitieson them [32, 23]. Two-level scheduling with dynamic partitioning has been shown to bean e�ective scheduling scheme for small-scale uniform memory access (UMA) multiproces-sors, provided applications are coded in a style that can tolerate dynamic changes in thenumber of processors at runtime. Under certain circumstances, its use can be extended tolarge distributed-memory machines as well [26, 24]. A number of papers have evaluatedthe performance implications of coscheduling and gang scheduling, and compared them withdynamic partitioning and other scheduling policies for multiprogrammed multiprocessors[10, 28, 22, 16, 35].The Mach scheduler also allows processors to be allocated to jobs dynamically, but per-forms the scheduling of activities on these processors in the kernel rather than leaving itto the application [1]. Like the other dynamic partitioning schemes, it does not require aone-to-one relation between activities and processors, thereby violating the original conceptsas introduced by Ousterhout for coscheduling. The term \gang scheduling" has neverthelessbeen applied to this system as well. Despite the identical nomenclature, we shall reserve theterms gang scheduling and coscheduling for policies where the number of processors used is

Activity Working Sets Last Edit: Dec 9, 1994 5equal to the number of activities. Finally, we note that although Ghosal et al. [14] suggestsmultiprocessor scheduling algorithms based on a concept they call the \processor workingset", their work is totally unrelated to Ousterhout's coscheduling de�nitions.2 Runtime Identi�cation of Activity Working SetsThis section describes how our system identi�es activity working sets and how they are sched-uled. The particular scheduling algorithm clearly e�ects our experimental results, however,there are many scheduling schemes that can be used for co- and gang scheduling and arecompatible with our run-time identi�cation algorithm.2.1 PreliminariesThere are several technical terms and basic assumptions that need to be de�ned and speci�ed.Multi-context-switching. Coscheduling requires the system to support multi-context-switching,i.e. simultaneous context-switches on multiple processors. This can be coordinated by a cen-tralized controller that instructs all the processors to switch at the same time, or else it canbe done by a distributed coordination algorithm. The choice is independent of our resultsand to simplify matters, we therefore assume that the scheduling is coordinated by a centralcontroller.Scheduling Slots and Rounds. The time between consecutive multi-context-switches is calleda scheduling slot. The duration of a scheduling slot is a priori assumed to be the standardscheduling time quantum, but it can be shorter if all the scheduled activities block or termi-nate. A scheduling round is the time period in which all the ready activities are scheduled;it is a sequence of scheduling slots.Communication Objects. Activities can interact in many ways and various mechanisms canbe used to implement interactions between activities. We assume that the interactions aremediated by communication objects (CO) that are known to the system, and do not change1.In some environments, this assumption is directly valid. For example, the named channelsused for message passing in Occam [18], and practically all proposed notations for multipartyinteractions, e.g. scripts [13] and communicators [7], are objects known to the system. Insystems that provide group communication primitives such as broadcast, multicast, andbarrier synchronization, the system calls used to implement these services may be used toidentify the interactions (but note that operations in distinct groups must be distinguished)[25]. In systems that only provide basic point-to-point message passing, each sender-receiverpair identi�es an interaction.The identi�cation of working sets is not based directly on a single interaction, e.g. aspeci�c instance of a collective communication operation. Rather, it is based on interactionschemata with the COs. An interaction schemata is simply the set of participating activities.1Clearly, a generalization of our work would be to also automatically identify the communication objects,or rather, to identify those that should be used to drive the coscheduling.

Activity Working Sets Last Edit: Dec 9, 1994 6Thus di�erent interactions in the same set, e.g. a broadcast and a barrier, are united andrepresented by a single schemata. In the sequel, \interactions" and COs should be understoodas referring to such schemata.In shared memory systems, activities interact typically through a side e�ect of access toshared data structures. Such data structures can therefore be identi�ed as COs and usedto identify interactions. However, this requires the compiler to generate additional code tomonitor the access rates to the di�erent memory objects. It also requires more complexalgorithms for identifying working sets, because the set of activities that access the shareddata can change dynamically.2.2 How Interactions De�ne Working SetsThe COs and the pattern of their use by the activities (the interactions of the activities) willbe the major indicator to de�ne activity working sets. Interactions between activities implysynchronization constraints. This is obvious in the case where the interaction itself is a syn-chronization point, e.g. a barrier synchronization. It is also true in seemingly asynchronousone-way interactions, such as the transfer of data between a producer and a consumer, dueto the necessarily bounded size of bu�ers used to mediate the transfer.Synchronization constraints imply that in some situations one activity will have to wait foranother. Waiting obviously wastes processor cycles. However, the alternative, i.e. blocking,must deschedule the waiting activity and schedule another in its place, a process that mightbe even more costly: it su�ers the context switch overhead, forfeits the activity's cache state,and might cause additional synchronization problems down the road as other activities areobliged to wait for this one. The choice between busy waiting and blocking depends onthe granularity of interactions: if the time between interactions is small, so is the expectedwaiting time, and waiting is better than blocking. Coscheduling is speci�cally targeted tosupport such �ne-grain interactions [27, 10].An immediate consequence is that coarse-grain interactions do not require coscheduling.For example, if the interval between successive interactions is longer than the scheduling timequantum, the price for blocking is paid anyway. We therefore start by de�ning a thresholdvalue, �, for the interaction rate. � is expressed in interactions per time quantum; the higherit is, the more �ne-grained the interactions, with � = 1 denoting a rate of once per schedulingquantum. We shall use � = 2 in the experiments below. Interactions that are performed ata rate lower than � do not suggest that the associated activities interact in a signi�cant way.Interactions that are performed at a high rate de�ne an \interacts with" relation onactivities. The interpretation of \a high rate" deserves some elaboration as it has severalpossible de�nitions. One is that the interaction rate can be taken as the number of timesthe interaction is performed, divided by the \wallclock time" since execution began. Butwallclock time does not re
ect the importance of this interaction to making progress bythe participating activities. The activities could be held up while other unrelated activitiesexecute for arbitrary periods of time. It is therefore better to use the time accountable touseful computation between interactions. Unfortunately, di�erent participating activities

Activity Working Sets Last Edit: Dec 9, 1994 7might do di�erent amounts of useful computation. In our algorithm, we use the slowestactivity to set the rate for the whole set.Denote the \interacts with" relation by $. Obviously, $ is symmetric. It is importantto note that $ is also transitive: if A1 $ A2 and also A1 $ A3, than activity A1 e�ectivelymediates between A2 and A3, even if no data is actually forwarded. Coscheduling the setfA1; A2g is not enough, because A1 will soon after block trying to interact with A3, andsubsequently A2 will block trying to interact with A1. Thus the working set is de�ned bythe transitive closure of the \interacts with" relation. In this example, the working set isfA1; A2; A3g. In general, of course, the activity working set need not include all the activitiesin an application.We note in passing that once sets of activities are considered, it might be appropriate tochange the de�nition of interaction rates. Consider the following example. The activities inthe set fAigi2I interact with each other at a high rate. So do the activities in the set fBigi2I.Between the two sets, for each i the activities Ai and Bi interact at a low rate. Dependingon the pattern in which the interactions are performed, the e�ective rate of interactionsbetween the sets fAig and fBig can be as low as that between any single pair Ai and Bi,or it can be as high as the sum of the rates among all such pairs. We leave such issues forfuture research.2.3 The Algorithm for Activity Working Set Identi�cationThe main data structure used by the algorithm is the matrix of usage rates. Columns in thismatrix correspond to activities, and rows to COs. The entry in row i and column j, denotedUij, gives an approximation of the rate in which activity Aj takes part in the interactionassociated with COi. A zero entry indicates that the activity does not participate in theinteraction via COi. For a group collective communication CO, all the entries of the activitiesin the group will be non-zero, although the entries need not be identical since they are ratesand not counts.The data in the usage rate matrix is derived from two other data structures: the usagecount vector and the runtimes vector (Fig. 2). Entries in the usage count vector countthe number of times each interaction has been performed. The runtimes vector containsthe cumulative e�ective runtime of each activity (i.e. excluding busy waiting time). If anactivity participates in an interaction, the usage rate is obtained by dividing the usage countby the activity's runtime; otherwise it is zero. To prevent over
ow and adjust to changinginteraction patterns, both the counters and the elapsed time are periodically divided by two(i.e. use \exponential aging").While these three data structures may appear to be centralized and cause much con-tention, this is in fact not so. For each activity, the corresponding runtime entry and matrixcolumn are only updated by the processor on which the activity executes. Therefore no twoelements in either data structure are ever write-shared in the same scheduling slot, and nolocks are needed. Each entry in the usage count vector, similarly, is updated by only a single

Activity Working Sets Last Edit: Dec 9, 1994 8
RuntimesCommunicationobjects Activities Usagecounts

Figure 2: The main data structures. The row i, column j entry in the matrix approximatesthe rate at which activity j participates in interactions using COi. The Usage Count columnvector records the number of times each CO is used for an interaction and the row vectorRuntimes records the accumulated compute time of each activity.designated activity each time the interaction is performed. Thus these data structures canbe implemented in a highly distributed fashion.The algorithm is based on the de�nition of a preliminary working set of activities for eachCO. These preliminary working sets are then combined when taking the transitive closureof interactions through this and other COs. For a given COi, the preliminary working set isde�ned to be the set of all the activities that participate in the interaction, quali�ed by therequirement that they all interact at a su�ciently high rate. This is veri�ed by making surethat the rate of slowest of the participating activities is at least �. Formally, this is expressedas WSi = (; if 9j : 0 < Uij < �fAj j Uij � �g otherwiseThe algorithm is presented in Fig. 3. In each scheduling round, it loops on all COsand creates working sets around them by �nding the transitive closure of the interactingactivities. This is the loop with index i, where n is the number of COs. The working set isgenerated in the variable WS. Note that the step of �nding the transitive closure is expressedas an inner loop that repeats an operation until convergence. It is not su�cient to loop onceon all COs from i+1 to n. The working sets are combined using next-�t bin packing subjectto the available number of processors. This is done in the variable S. As each slot is �lledthe activities in it are coscheduled. Alternative scheduling is used for activities that werenot assigned to any working set.Careful bookkeeping is required to ensure that all activities are scheduled correctly ineach round. This is done in two levels. First, activities are identi�ed as belonging tosome preliminary working set, or not belonging to any working set. Those that belongto some preliminary working set will be coscheduled as part of the transitive closure of

Activity Working Sets Last Edit: Dec 9, 1994 9set all COs as unmarkedset S = ;for i = 0 to nif COi is marked or WSi is empty then skip itset WS = WSirepeat until convergenceif there exists an unmarked COk such that WS \WSk 6= ; thenmark COkWS = WS [WSkif jSj+ jWSj > P thencoschedule activities in SS = ;S = S [WScoschedule activities in Sschedule activities not in any WSi by dividing them into groupsof P and scheduling each group in successive scheduling slots(this is the alternative scheduling)Figure 3: The algorithm for one round of runtime identi�cation and scheduling of activityworking sets. n is the number of COs. Indentation is used to specify the scope of for, if,and repeat constructs.the corresponding interaction, while those that do not are left for alternative scheduling.Second, COs that are used in the de�nition of a working set are marked as part of �ndingthe transitive closure. They are then skipped in subsequent iterations of the loop over allCOs, thus preventing the possibility of �nding (and scheduling) the same working set againstarting from a di�erent CO.Two simple optimizations are possible to reduce the fragmentation. First, the workingsets can be sorted in decreasing size, leading to �rst-�t-decreasing bin packing, which ismore space-e�cient [5]. Second, alternative scheduling can be overlapped with coschedulingto the degree possible by PEs that are left over in the coscheduling slots. That is, wheneverthe activities in S are to be scheduled and jSj < P , then P � jSj activities that were notassigned to any preliminary working sets are scheduled also.Note that there is an implicit assumption that the size of any given working set is notlarger than P . If it is, then the working set has to be broken up into smaller sets that canbe coscheduled. A simple approach is to forgo the step in which the transitive closure is

Activity Working Sets Last Edit: Dec 9, 1994 10computed, and just schedule preliminary working sets based on single COs. This can beoptimized by computing part of the closure based on usage rates, so as to cluster thoseactivities that interact with each other most frequently. We leave the details for futureresearch.Finally, we note that the main loop in the algorithm scans the COs, rather than theactivities. This is based on the assumption that in systems where multiparty interactionssuch as barrier synchronization and collective communication are provided, the number ofCOs can be expected to be smaller than the number of activities. In systems where onlypairwise interactions are provided, on the other hand, the number of interactions may farexceed the number of activities. It is then better to reorganize the algorithm to scan theactivities instead.3 Experimental ResultsIn order to evaluate the performance of the algorithm for runtime identi�cation of activityworking sets, the behavior of multiprogrammed multiprocessors under the proposed sched-uling discipline was simulated. This section describes the simulator, the associated experi-ments, and the results.3.1 The SimulatorThe simulator was used for several tasks. It implemented the activity working set identi-�cation algorithm described in the previous section. It also simulated several schedulingstrategies to enable a comparative evaluation of our scheme. We �rst describe the threescheduling approaches and then describe the workload and simulation parameters.3.1.1 Three Scheduling SchemesThe simulator accepts a high-level description of the workload as its input and simulates theexecution of this workload for three approaches:r coscheduling based on runtime identi�cation of activity working setsm coscheduling based on manually-identi�ed working setsu uncoordinated scheduling where all the processors share a global activity queueIn both coscheduling algorithms, gangs are grouped together using the next-�t bin pack-ing algorithm as long as the total does not exceed the number of processors, and are thenscheduled to run. This is essentially a dynamic version of Ousterhout's matrix algorithm [27],as the mapping of activities to processors may change in each round. Coscheduled activitiesthat arrive at an interaction retain their processor and busy wait. This is justi�ed becauseactivities in gangs are believed to interact frequently, so the waiting time is expected to beshort. The coscheduled activities continue to run until either the scheduling time quantumexpires or all of them are busy waiting for an interaction, at which time a multi-context

Activity Working Sets Last Edit: Dec 9, 1994 11switch is performed. After all the gangs have been coscheduled, any remaining activitiesthat have not been scheduled yet in this round are scheduled in an uncoordinated manner.When these activities arrive at an interaction, they block rather than busy waiting. This isjusti�ed because as far as the system knows, these activities do not interact frequently, andtherefore there is no ground to believe that they will only wait a short while.The uncoordinated scheduling algorithm, which is used for comparison, implementsround-robin scheduling from a shared queue of activities. Only activities that are readyto run are placed in the queue. Each activity is scheduled independently, and receives afull scheduling time quantum for execution. Competitive two-phase blocking is used for theinteractions [27, 19]. Thus when an activity waits for an interaction, it �rst busy-waits fora duration equal to the context-switch overhead, and then it suspends execution and yieldsits processor. If the activity's time quantum expires while it is busy-waiting, it is suspendedat that time. When the awaited interaction is �nally performed by another activity, thesuspended activity is resumed and immediately returned to the ready queue.For all three scheduling algorithms, the simulation is event-based. The events representstate changes of the processors. For the coscheduling algorithms, the main events are the endof the think time of a running activity and the end of a scheduling quantum; busy waitingactivities may wait inde�nitely, so they are not kept in the event queue. Activities usingalternative scheduling in the coscheduling algorithm, and all activities in the uncoordinatedscheduling algorithm, require additional event types. These include the end of a think time,the end of a busy waiting period, the end of a scheduling quantum, and the end of a contextswitch.3.1.2 The Workload Speci�cationThe workload is described by a set of activities. 100 were used in the experiments. Eachactivity has a synthetic program which lists the interactions in which it participates. It isassumed that this sequence of interactions is interleaved with periods of local work, i.e. thinktimes, and the whole interleaved sequence is repeated inde�nitely. The think times betweeninteractions are picked at random from a uniform distribution around a mean value. Boththe mean value and the range of the distribution are input parameters. Typical values usedin the experiments for the mean are 0.25, 1.0, and 4.0 time units, where the time unit is thecontext-switch overhead. These values correspond to �ne-grain, medium, and coarse-graininteractions. The range used was [0:8m; 1:2m] where m is the mean. The same randomnumber generators are used for the same activities for the three scheduling schemes thatwere compared, guaranteeing that the input for the three is indeed identical.Two basic interaction patterns were modeled in the simulations and each of these wasfurther subdivided to give a total of �ve di�erent patterns ranging from clearly identi�edindependent gangs to almost no gang structure. In the �rst the activities were actuallypartitioned into gangs, and the gang size was equal to the number of processors. Thispattern had three variations:

Activity Working Sets Last Edit: Dec 9, 1994 12gangs The activities were divided into independent gangs, each with its own CO. All inter-actions always involved all the activities in the gang.grid The activities were arranged in a grid. Each row of activities had a CO associated withit, and each column also had a CO associated with it. Each activity thus participated ininteractions using two di�erent COs, and involving distinct sets of interaction partners.The interactions within rows were executed �ve times more often than those withincolumns.rings The activities were divided into independent gangs, but within each gang, the ac-tivities were arranged in a ring. Each activity interacted directly only with its twoneighbors in the ring. Therefore the full gangs can only be identi�ed by �nding thetransitive closure of the interactions.In the second basic pattern all activities were organized in a single ring, rather than �rstdividing them into gangs. This pattern had two variations:ring same each activity alternated between interacting with its two neighbors, and allinteractions were performed equally often.ring pairs activities were arranged in pairs, i.e. the �rst two activities in the ring are a pair,the next two are another pair, and so on. Interactions within each pair were �ve timesmore common than interactions across pairs.In all patterns, the numbering of activities and interactions was randomized. For example,and �rst gang in the gangs workload included activities f59; 1; 30; 4; 94; 47; 67; 52; 85; 41g.The system was represented by the following simulation parameters: the number ofprocessors (10 in the experiments), the context switch overhead (which serves as the unitof time), and the scheduling time quantum (20 times the context switch overhead). Theruntime identi�cation algorithm used a threshold of � = 2.3.2 The ResultsEach experiment consisted of a sequence of 11 batches of 240 interaction completions foreach activity in the system. The �rst batch was then discarded to account for \warm-up"of the simulation, and the results of the other ten were averaged. The reported results arethese averages of the time for a batch; this can be regarded as the average response timefor an application that performs 240 interactions. The measurements for di�erent batchestypically di�er by less than 3%, so con�dence intervals are too small to be shown.3.2.1 E�ect of Granularity and Interaction PatternThe main support for our approach can be found in Fig. 4. The simulated time requiredfor each of the �ve interaction patterns simulated under each of the three granularities arepresented in this �gure. Moreover, the �gure also displays the three main components of thetotal run times. The �rst component is the actual computation time, which is the sum of

Activity Working Sets Last Edit: Dec 9, 1994 13the think times in 240 interactions. The second component is the busy waiting time, andthe third is the time spent context switching. The context switching time was calculated bydividing the total time by 10 (the average load), and subtracting the computation time andthe busy waiting time.The main observation from these simulations is that the performance of coschedulingbased on runtime identi�cation of activity working sets is in many cases identical to thatof coscheduling based on manual identi�cation by the programmer. In some cases it isonly marginally inferior. In addition, coscheduling | either by automatic or manual gangidenti�cation | is uniformly better than uncoordinated scheduling for all workloads thatare indeed based on gangs of interacting activities. Coscheduling is inferior to uncoordinatedscheduling only for workloads with interaction patterns that do not favor any clustering ofactivities, most notably the ring of activities with same interaction rates and medium- orcoarse-grain interactions.With coscheduling, the absolute values of the context switching and busy waiting over-heads depend on the workload and the granularity. For the workloads that have strongclustering, most notably the gangs and rings workloads, the ratio of the overhead to thethink time is �xed for all granularities. This leads to uniformly good performance for theseworkloads. In workloads where such clustering does not exist, like the ring with coarse-graininteractions, coscheduling creates false dependencies that increase the relative overhead.When activities form a ring, all interactions are among pairs. These pairs are matched ar-bitrarily by the next-�t packing to utilize all the processors, and then they are coscheduledtogether. Pairs that block sooner than others must nevertheless wait for those that manageto do more work. This can only be solved by partitioning the machine and doing gang sched-uling independently on the partitions, as suggested in the Distributed Hierarchical Controlscheme [9].With uncoordinated scheduling, the overhead is constant regardless of the granularityof the interactions. For �ne-grain interactions, the relative overhead is very large, leadingto poor performance. For coarse-grain interactions, the overhead is acceptable and overallperformance is similar to that of coscheduling. This supports our assertion that coschedulingis important for �ne-grained interaction. The graphs show that the overhead in the gangand grid workloads is double that in the ring patterns. The reason is that in the gangand grid workloads each interaction involves 10 activities. Therefore most activities onlymanage one interaction before they block. In the ring patterns, interactions involve pairsof activities, so each activity typically performs two successive interactions before blocking.Another interesting conclusion that can be derived from the graphs concerns the useof two-phase blocking with uncoordinated scheduling. All the graphs for uncoordinatedscheduling show that an equal amount of time is spent on busy waiting and on contextswitching. This implies that the busy waiting practically never paid o�, and it would havebeen better to suspend the activity immediately when it reached each interaction. Checkingmore carefully, we found that the highest score was a 6.5% success rate (for the ring of pairsworkload, with �ne- and medium-grain interactions), with all other scores at 4.1% or less.The reason for this result is that in a loaded system, there is very little chance that the

Activity Working Sets Last Edit: Dec 9, 1994 14think = 0.25(�ne grain) gangsm r u gridm r u ringsm r u ring samem r u ring pairsm r u0250500simulatedtimethink = 1.0(medium grain) gangsm r u gridm r u ringsm r u ring samem r u ring pairsm r u0250500750simulatedtimethink = 4.0(coarse grain)
gangsm r u gridm r u ringsm r u ring samem r u ring pairsm r u02505007501000125015001750

simulatedtime
legend: runningbusy waitingcontext switching m - manual coschedulingr - runtime coschedulingu - uncoordinated schedulingFigure 4: Average run times and their breakdown for the di�erent interaction patterns andgranularities. The performance of coscheduling based on runtime identi�cation of activityworking sets is in many cases identical to that of coscheduling based on manual identi�cationby the programmer, and both are superior to uncoordinated scheduling for workloads withclustering of activities.

Activity Working Sets Last Edit: Dec 9, 1994 15activity you are waiting for will actually be running and reach the interaction within thebusy-waiting window. Thus waiting for it is a waste of time.It is not necessary to re-run the experiments to see how an implementation that blocksimmediately would perform, because all the information is already contained in the graphs ofFig. 4: simply remove the top segment from each bar representing uncoordinated scheduling.For workloads with gangs and �ne grain interactions, the di�erence in performance wouldstill be signi�cant, in favor of coscheduling. For coarse-grain interactions and the ringworkloads, coscheduling loses any bene�ts it had over uncoordinated scheduling.3.2.2 The Impact of the Value of �The threshold value, �, that determines when an interaction rate is considered signi�cant,has an a�ect on the runtime identi�cation of activity working sets. The experiments reportedabove used a threshold value of � = 2. Here we investigate the e�ect of � on the performanceof this coscheduling scheme. The workload of 10 independent gangs of 10 activities each,running on 10 processors, is used as a test case.A number of combinations of � and the mean think time were measured. The results areshown in Fig. 5, where the performance of runtime identi�cation is compared with that ofcoscheduling based on manual identi�cation of gangs. Note that the mean think time andthe simulation time in part (a) are shown with a logarithmic scale.Denote the mean think time by � and the scheduling time quantum by q (in all theexperiments, q = 20). The results indicate that the parameter space is divided into twoareas, where the dividing line is the hyperbola � = q=� (Fig. 6). In the area where q=� > �(both � and � are small) the granularity is �ne enough so that the number of interactionsthat are completed on average in a scheduling quantum is larger than �. Consequently, theruntime identi�cation algorithm succeeds in correctly recognizing the activities in each gangand the performance is identical to that of coscheduling based on manual identi�cation.If, on the other hand, q=� < �, then gangs are not recognized at runtime, and theperformance of the two schemes di�ers. With manual identi�cation, the runtime is linearlyproportional to the maximal think time (given that there is some variability among activitiesin each gang), because all the activities in the gang have to wait for the last one. Obviously,it does not depend on �. With runtime identi�cation the situation is di�erent. Since thegangs are not recognized, all the activities are scheduled independently and blocking is usedto synchronize interactions. The expected time for each interaction is therefore the meanthink time plus the context switch overhead, just like for uncoordinated scheduling. If thecontext switch overhead is larger than the variability in think times (as is typical in �ne-grainworkloads), the runtime algorithm su�ers extra overhead. This can be seen for � > 6 andthink times less than 4 in Fig. 5 (b). But if the context switch overhead is smaller thanthe variability in think times (typically in coarse-grain workloads), independent schedulingcan free processors and use them for other activities. Thus the runtime algorithm achievessuperior performance for think times greater than 4 in the �gure.For the simple case of this speci�c workload model, the maximal think time is � �1 + n�1n+1v�,

Activity Working Sets Last Edit: Dec 9, 1994 16
(a)

runtime

0.25 1 2 4 8 16 25
1

6
10

15
20
100

250

500

1000

2500

5000

mean think time

manual

�
(b)

0.25 1 2 4 8 16 25
1

6
10

15
20

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

mean think time

�Figure 5: Dependence of runtime on the combination of � and the granularity, for 10independent gangs of 10 activities. (a) absolute values, (b) ratio of runtime identi�cation tomanual identi�cation of gangs. When the think time and � are small, gangs are identi�edcorrectly at runtime. When think times are large, it is actually bene�cial not to identifygangs but rather to use uncoordinated scheduling.

Activity Working Sets Last Edit: Dec 9, 1994 17� �q=�
1

3

6

10

15

20

0.25 1 2 4 8 16 25
mean think time

context switch
overhead

larger than
think time
variability

think time
variability

larger than
context switch

overhead

gangs identified correctly gangs not identified

optimal Figure 6: Phase diagram showing the e�ect of di�erent combinations of � and the meanthink time. The optimal value of � is found by the intersection of q=� and the think timefor which the variability balances the context switch overhead.where n is the number of activities in each gang (10) and v is the variability in think times(0.2 in our experiments). The think time where the variability exactly counteracts the over-head of a context switch c is given by � n�1n+1v = c. The value of � should be chosen such thatfor smaller � gangs are identi�ed, but for larger � activities are scheduled independently.Using q=� = �, this is given by � = (n� 1)qv(n + 1)cFor the parameters used in the experiment, the optimal value is � = 3:27 (Fig. 6).Such an analysis cannot be carried out in the general case, because the workload cannot becharacterized by a small set of parameters. However, this example provides insight indicatingthat � should be a small number larger than 1, e.g. in the range of 1 to 5.3.2.3 Sensitivity to Simulation ParametersThe simulations were based on a parametric model of the workload, with parameters such asthe granularity of interaction, the variability in think times, the number of processors, andthe total number of activities. The results shown in Figs. 4 through 6 are explicit in termsof dependence on the granularity and on �. Here we shall consider the other parameters.The dependence on the number of processors is plotted in Fig. 7, for the gangs interactionpattern and medium granularity (� = 1). With uncoordinated scheduling, the runtime de-creases smoothly as processors are added. With coscheduling, we see a jump in performanceeach time a new gang �ts in fully. Adding processors that are not enough for a full gangdoes not help, and these processors are essentially idle. This holds for both coscheduling

Activity Working Sets Last Edit: Dec 9, 1994 18
0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100

si
m

ul
at

io
n

tim
e

number of processors

uncoord
cosched

Figure 7: Dependence of run time on the number of processors. The workload is 10 inde-pendent gangs of 10 activities each. With uncoordinated scheduling, the runtime decreasessmoothly as processors are added. With coscheduling, we see a jump in performance eachtime a new gang �ts in fully. Adding processors that are not enough for a full gang does nothelp, and these processors are essentially idle.algorithms, and the measured results are practically identical. The measurements shown arefor runtime recognition of gangs.These results are even more prominently displayed when we look at the speedup ratherthan at the run time (Fig. 8). For small numbers of processors (up to 50), uncoordinatedscheduling consistently achieves about 40% of the ideal resource utilization. When thenumber of processors is above 50, the performance of uncoordinated scheduling improvessigni�cantly. The reason is that the total number of activities is �xed at 100, so in thisrange the relative load on the system becomes very low. Uncoordinated scheduling here islike self scheduling: processors that �nish early take a new activity, and activities hardlyhave to wait because there are very many processors. In this range, two-phase blocking alsobecomes bene�cial: the busy waiting success rate is 21.1% for 50 processors, jumps up to66.2% for 60, and rises to a peak of 89.4% for 100 processors.Coscheduling achieves about 80% utilization each time another gang �ts in with noprocessors left over. This is the maximum possible given the 20% variability in think timesused in these experiments. Even when the number of processors does not divide the gangsize evenly, the performance of coscheduling is always superior to that of uncoordinatedscheduling. Similar results were also measured for coscheduling at other granularities (� =0:25 and � = 4:0). However, uncoordinated scheduling su�ered from much lower performancein the �ne-grain case (� = 0:25), whereas its performance was essentially the same as thatof coscheduling in the coarse-grain case (� = 4:0).The think times for di�erent activities in each gang come from a uniform distribution

Activity Working Sets Last Edit: Dec 9, 1994 19
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

sp
ee

du
p

number of processors

ideal
cosched
uncoord

Figure 8: Dependence of speedup on the number of processors, based on the data in Fig. 7,and an ideal execution time of 2400 time units on a single processor. With coscheduling, autilization of 80% is achieved each time enough processors are added to accommodate anotherfull gang. Uncoordinated scheduling only achieves good utilization above 60 processors,because then the e�ective load becomes very low.around the mean think time. The variability in think times, i.e. the width of this distribution,determines the expected wait times for the interactions. Thus a bigger variability implieslonger wait times. This favors uncoordinated scheduling, because it is more
exible in its useof processors: a processor running an activity that reaches an interaction early can switch tosomething else rather than waiting for the others to catch up. With coscheduling, the earlyactivities must busy wait. If the variability in think times is longer than the context switchoverhead, this ends up wasting more cycles.The above observations are quanti�ed in Fig. 9 where ten independent gangs are executedon 10 processors, with di�erent think-time distributions. Under uncoordinated scheduling,the run-time does not depend on the variability of the think time at all: it is just the sumof the average think time plus twice the context switch overhead for each interaction (thisincludes busy waiting time due to the use of two-phase blocking). Under coscheduling, therun-time of an activity set (and hence the time of all the activities in the system) is propor-tional to the maximum think time, and therefore also to the variability in think times. In thisspeci�c workload, the maximal think time is linearly proportional to the variability, and thisis evident in the measured results. For mean think times of 0.25 and 1.0, the performanceof coscheduling is nevertheless superior to that of uncoordinated scheduling for all measure-ments, because even the maximal variability is less than the context switch overhead. Fora mean think time of 4.0 there is a crossover, and uncoordinated scheduling is better forworkloads with a high variability. For a mean think time of 16.0 the runtime coschedulingalgorithm does not recognize gangs, because the interactions occur at a rate lower than �.

Activity Working Sets Last Edit: Dec 9, 1994 20
0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1

si
m

ul
at

io
n

tim
e

variability in think time

manual 16.0
cosched 16.0
uncoord 16.0
cosched 4.0
uncoord 4.0
cosched 1.0
uncoord 1.0

cosched 0.25
uncoord 0.25

Figure 9: Dependence of run time on variability in think time, for 10 independent gangsof 10 activities with various granularities of interactions. Under uncoordinated scheduling,the run-time does not depend on the variability of the think time at all: it is just the sum ofthe average think time plus twice the context switch overhead for each interaction. Undercoscheduling, the run-time of an activity set is proportional to the maximum think time,and therefore also to the variability in think times.Therefore runtime coscheduling achieves the same performance as uncoordinated scheduling,while oblivious coscheduling based on manual identi�cation of gangs su�ers from the highvariability.4 ConclusionsThe research reported in this paper is part of a growing endeavor to automate parallelprogramming tasks, by moving responsibility from the programmer to the runtime system.The idea is to try and �nd simple, e�cient, and general run-time support mechanisms, sothat the user need not do everything manually. Coscheduling was originally proposed as away to reduce the burden of implementing e�cient interactions among activities. We havenow taken another step, by showing how the interacting activities may be identi�ed. Ourexperimental results are encouraging, and indicate that in many cases on-line identi�cationcan lead to the same performance as using information supplied by the programmer. In some

Activity Working Sets Last Edit: Dec 9, 1994 21cases it can even be superior, because it can also identify situations in which the activitiesactually do not interact at a high rate.The described algorithm comprises a �rst attempt to solve a di�cult and importantproblem, related to the growing interest and belief in coscheduling. Naturally, there is stillmuch to be done. We have identi�ed a number of issues that require further research, suchas recognizing cases where interactions among sets of gangs should be summed up to obtainthe cumulative interaction rate, and how to break up gangs that are larger than the numberof processors. A long-term goal is to actually implement coscheduling based on runtimeidenti�cation of working sets in a real system, and test its e�ectiveness with a real workload.Another direction for research is investigating the degree to which activity working sets canbe identi�ed by compile-time analysis, and comparing it with runtime identi�cation.AcknowledgementsWe wish to thank the anonymous referees who made valuable suggestions that improvedboth the content and the presentation of this paper.References[1] D. L. Black, \Scheduling support for concurrency and parallelism in the Mach operatingsystem". Computer 23(5), pp. 35{43, May 1990.[2] J. B la_zewicz, M. Drabowski, and J. W�eglarz, \Scheduling multiprocessor tasks to min-imize schedule length". IEEE Trans. Comput. C-35(5), pp. 389{393, May 1986.[3] R. H. Campbell, N. Islam, and P. Madany, \Choices, frameworks and re�nement".Computing Systems 5(5), pp. 217{257, Summer 1992.[4] E. M. Chaves Filho and V. C. Barbosa, \Time sharing in hypercube multiprocessors".In 4th IEEE Symp. Parallel & Distributed Processing, pp. 354{359, Dec 1992.[5] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson, \Approximation algorithms forbin-packing | an updated survey". In Algorithm Design for Computer Systems Design,G. Ausiello, M. Lucertini, and P. Sera�ni (eds.), pp. 49{106, Springer-Verlag, 1984.[6] J. Edler, A. Gottlieb, C. P. Kruskal, K. P. McAuli�e, L. Rudolph, M. Snir, P. J. Teller,and J. Wilson, \Issues related to MIMD shared-memory computers: the NYU Ultra-computer approach". In 12th Ann. Intl. Symp. Computer Architecture Conf. Proc.,pp. 126{135, 1985.[7] D. G. Feitelson, Communicators: Object-Based Multiparty Interactions for Parallel Pro-gramming. Technical Report 91-12, Dept. Computer Science, The Hebrew Universityof Jerusalem, Nov 1991.

Activity Working Sets Last Edit: Dec 9, 1994 22[8] D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems. ResearchReport RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.[9] D. G. Feitelson and L. Rudolph, \Distributed hierarchical control for parallel process-ing". Computer 23(5), pp. 65{77, May 1990.[10] D. G. Feitelson and L. Rudolph, \Gang scheduling performance bene�ts for �ne-grainsynchronization". J. Parallel & Distributed Comput. 16(4), pp. 306{318, Dec 1992.[11] D. G. Feitelson and L. Rudolph, \Mapping and scheduling in a shared parallel environ-ment using distributed hierarchical control". In Intl. Conf. Parallel Processing, vol. I,pp. 1{8, Aug 1990.[12] D. G. Feitelson and L. Rudolph, \Wasted resources in gang scheduling". In 5thJerusalem Conf. Information Technology, pp. 127{136, IEEE Computer Society Press,Oct 1990.[13] N. Francez, B. Hailpern, and G. Taubenfeld, \Script: a communication abstractionmechanism". Sci. Comput. Programming 6(1), pp. 35{88, Jan 1986.[14] D. Ghosal, G. Serazzi, and S. K. Tripathi, \The processor working set and its use inscheduling multiprocessor systems". IEEE Trans. Softw. Eng. 17(5), pp. 443{453, May1991.[15] B. C. Gorda and E. D. Brooks III, Gang Scheduling a Parallel Machine. TechnicalReport UCRL-JC-107020, Lawrence Livermore National Laboratory, Dec 1991.[16] A. Gupta, A. Tucker, and S. Urushibara, \The impact of operating system schedulingpolicies and synchronization methods on the performance of parallel applications". InSIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 120{132, May1991.[17] S. F. Hummel and E. Schonberg, \Low-overhead scheduling of nested parallelism". IBMJ. Res. Dev. 35(5/6), pp. 743{765, Sep/Nov 1991.[18] INMOS Ltd., Occam Programming Manual. Prentice-Hall, 1984.[19] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki, \Empirical studies of competi-tive spinning for a shared-memory multiprocessor". In 13th Symp. Operating SystemsPrinciples, pp. 41{55, Oct 1991.[20] S. Krakowiak, Principles of Operating Systems. MIT Press, 1988.[21] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong,S-W. Yang, and R. Zak, \The network architecture of the Connection Machine CM-5".In 4th Symp. Parallel Algorithms & Architectures, pp. 272{285, Jun 1992.

Activity Working Sets Last Edit: Dec 9, 1994 23[22] S. T. Leutenegger and M. K. Vernon, \The performance of multiprogrammed multi-processor scheduling policies". In SIGMETRICS Conf. Measurement & Modeling ofComput. Syst., pp. 226{236, May 1990.[23] C. McCann, R. Vaswani, and J. Zahorjan, \A dynamic processor allocation policy formultiprogrammed shared-memorymultiprocessors". ACM Trans. Comput. Syst. 11(2),pp. 146{178, May 1993.[24] C. McCann and J. Zahorjan, \Processor allocation policies for message passing paral-lel computers". In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,pp. 19{32, May 1994.[25] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard. May1994.[26] V. K. Naik, S. K. Setia, and M. S. Squillante, \Scheduling of large scienti�c applicationson distributed memorymultiprocessor systems". In 6th SIAM Conf. Parallel Processingfor Scienti�c Computing, vol. II, pp. 913{922, Mar 1993.[27] J. K. Ousterhout, \Scheduling techniques for concurrent systems". In 3rd Intl. Conf.Distributed Comput. Syst., pp. 22{30, Oct 1982.[28] M. K. Seager and J. M. Stichnoth, Simulating the Scheduling of Parallel SupercomputerApplications. Technical Report UCRL-102059, Lawrence Livermore National Labora-tory, Sep 1989.[29] P. Steiner, \Extending multiprogramming to a DMPP". Future Generation Comput.Syst. 8(1-3), pp. 93{109, Jul 1992.[30] H. Sullivan, T. R. Bashkow, and D. Klappholz, \A large scale, homogeneous, fullydistributed parallel machine, II". In 4th Ann. Intl. Symp. Computer Architecture Conf.Proc., pp. 118{124, Mar 1977.[31] J. A. Test, \Multi-processor management in the Concentrix operating system". In Proc.Winter USENIX Technical Conf., pp. 173{182, Jan 1986.[32] A. Tucker and A. Gupta, \Process control and scheduling issues for multiprogrammedshared-memorymultiprocessors". In 12th Symp. Operating Systems Principles, pp. 159{166, Dec 1989.[33] D. L. Tuomenoksa and H. J. Siegel, \Task scheduling on the PASM parallel processingsystem". IEEE Trans. Softw. Eng. SE-11(2), pp. 145{157, Feb 1985.[34] A. M. van Tilborg and L. D. Wittie, \Wave scheduling | decentralized scheduling oftask forces in multicomputers". IEEE Trans. Comput.C-33(9), pp. 835{844, Sep 1984.

Activity Working Sets Last Edit: Dec 9, 1994 24[35] J. Zahorjan, E. D. Lazowska, and D. L. Eager, \The e�ect of scheduling discipline onspin overhead in shared memory parallel systems". IEEE Trans. Parallel & DistributedSyst. 2(2), pp. 180{198, Apr 1991.

