The Elusive Goal of Workload Characterization

Allen B. Downey
Computer Science Department
Colby College, Waterville, ME 04901

http://www.sdsc.edu/ downey

Abstract

The study and design of computer systems requires good models
of the workload to which these systems are subjected. Until re-
cently, the data necessary to build these models—observations
from production installations—were not available, especially
for parallel computers. Instead, most models were based on as-
sumptions and mathematical attributes that facilitate analysts.
Recently a number of supercomputer sites have made account-
ing data available that make it possible to build realistic work-

load models. It is not clear, however, how to generalize from

specific observations to an abstract model of the workload. This
paper presents observations of workloads from several parallel
supercomputers and discusses modeling issues that have caused
problems for researchers in this area.

1 Introduction

We like to think of building computer systems
as a systematic process of engineering—we define re-
quirements, draw designs, analyze their properties,
evaluate options, and finally construct a working
system. But in many cases the resulting products
are sufficiently complex that it makes sense to study
them as opaque artifacts, using scientific methodol-
ogy of observation and measurement. In particular,
such observations are necessary to validate (or re-
fute) the assumptions used in the analysis and eval-
uation. Thus observations made using one genera-
tion of systems can be used as a basis for the design
and evaluation of the next generation.

A memorable example of such a cycle occurred
recently in the field of data communications. Such
communications had traditionally been analyzed us-
ing Poisson-related models of traffic, which indicated
that the variance should smooth out over time and
when multiple data sources are combined. But in
1994 Leland and co-workers showed, based on exten-
sive observations and measurements, that this does
not happen in practice [27]. Instead, they proposed
a fractal traffic model that captures the burstiness
of network traffic and leads to more realistic evalua-
tions of required buffer space and other parameters.

Analyzing network traffic was easy, in some
sense, because all packets are of equal size and the
only characteristic that required measurement and
modeling was the arrival process. But if we consider

Dror G. Feitelson

Institute of Computer Science

The Hebrew University, 91904 Jerusalem, Israel

http://www.cs.huji.ac.il/ "feit

a complete computer system, the problem becomes
more complex. For example, a computer program
may require a certain amount of memory, CPU time,
and I/0, and these resource requirements may be
interleaved in various ways during its execution. In
addition there are several levels at which we might
model the system: we can study the functional units
used by a stream of instructions, the subsystems
used by a job during its execution, or the require-
ments of jobs submitted to the system over time.
Each of these scales is relevant for the design and
evaluation of different parts of the system: the CPU,
the hardware configuration, or the operating system.

In this paper we focus on characterization of the
workload on a parallel system, from an operating
system perspective (as was done in [12, 38]). Thus
we investigate means to characterize the stream
of parallel jobs submitted to the system, their re-
source requirements, and their behavior. We show
that such characterization must contend with var-
ious problems; some can be addressed easily, but
others seem to be hard to avoid.

1.1 Definitions

We use size to refer to the number of proces-
sors used by a parallel program (as shorthand for
“cluster size”, “partition size”, or “degree of par-
allelism”). We use duration to refer to the span
of time starting when a job commences execution
and ending when it terminates (otherwise known as

49

“lifetime”; 1t 1s also the same as “re-

“runtime” or ;

sponse time” if the job did not have to wait). The
product of these two sizes, which represents the to-
tal resources (in CPU-seconds) used by the job, is
called its area.

2 Modeling

There are two common ways to use a measured
workload to analyze or evaluate a system design: (1)
use the traced workload directly to drive a simula-
tion, or (2) create a model from the trace and use
the model for either analysis or simulation. For ex-

ample, trace-driven simulations based on large ad-
dress traces are often used to evaluate cache designs
[23, 22]. But models of how applications traverse
their address space have also been proposed, and
provide interesting insights into program behavior
[36, 37].

The advantage of using a trace directly is that
it is the most “real” test of the system; the workload
reflects a real workload precisely, with all 1ts com-
plexities, even if they are not known to the person
performing the analysis.

The drawback is that the trace reflects a spe-
cific workload, and there is always the question of
whether the results generalize to other systems. In
particular, there are cases where the workload de-
pends on the system configuration, and therefore
a given workload is not necessarily representative
of workloads on systems with other configurations.
Obviously, this makes the comparison of different
configurations problematic. In addition, traces are
often misleading if we have incomplete information
about the circumstances when they were collected.
For example, workload traces often contain intervals
when the machine was down or part of it was dedi-
cated to a specific project, but this information may
not be available.

Workload models have a number of advantages
over traces.

e The modeler has full knowledge of workload char-

acteristics. For example, it i1s easy to know
which workload parameters are correlated with
each other because this information 1s part of the

model.

e It is possible to change model parameters one
at a time, in order to investigate the influence
of each one, while keeping other parameters con-
stant. This allows for direct measurement of sys-
tem sensitivity to the different parameters. It 1s
also possible to select model parameters that are
expected to match the specific workload at a given
site.

In general it 1s not possible to manipulate traces
in this way, and even when it is possible, it can
be problematic. For example, it is common prac-
tice to increase the modeled load on a system
But
this practice has the undesirable consequence of
With a

workload model, we can control the load indepen-

by reducing the average interarrival time.
shrinking the daily load cycle as well.

dent of the daily cycle.

e A model is not affected by policies and constraints
that are particular to the site where a trace was
recorded. For example, if a site configures its NQS
queues with a maximum allowed duration of 4
hours, it forces users to break long jobs into mul-
tiple short jobs. Thus, the observed distribution
of durations will be different from the “natural”
distribution users would have generated under a
different policy.

e Logs may be polluted by bogus data. For ex-
ample, a trace may include records of jobs that
were killed because they exceeded their resource
bounds. Such jobs impose a transient load on the
system, and influence the arrival process. How-
ever, they may be replicated a number of times
before completing successfully, and only the suc-
cessful run represents “real” work. In a model,
such jobs can be avoided (but they can also be

modeled explicitly if so desired).

e Finally, modeling increases our understanding,
and can lead to new designs based on this under-
standing. For example, identifying the repetitive
nature of job submittal can be used for learning
about job requirements from history. One can de-
sign a resource management policy that is param-
eterized by a workload model, and use measured
values for the local workload to tune the policy.

The main problem with models, as with traces,
is that of representativeness. That is, to what de-
gree does the model represent the workload that the
system will encounter in practice?

Once we decide to construct a model, the chief
concern is what degree of detail to include. As noted
above, each job 1s composed of procedures that are
built of instructions, and these interact with the
computer at different levels. One option is to model
these levels explicitly, creating a hierarchy of inter-
locked models for the different levels [5, 2]. This
has the obvious advantage of conveying a full and
detailed picture of the structure of the workload.
In fact, it is possible to create a whole spectrum
of models spanning the range from condensed rudi-
mentary models to direct use of a detailed trace.

For example, the sizes of a sequence of jobs need
not be modeled independently. Rather, they can be
derived from a lower-level model of the jobs’ struc-
tures [14]. Hence the combined model will be use-
ful both for evaluating systems in which jobs are
executed on predefined partitions, and for evaluat-
ing systems in which the partition size is defined at

runtime to reflect the current load and the specific
requirements of jobs.

The drawback of this approach is that as more
detailed levels are added, the complexity of the
model increases. This is detrimental for two rea-
sons. First, more detailed traces are needed in order
to create the lower levels of the model. Second, it
is commonly the case that there is wider diversity
at lower levels. For example, there may be many
jobs that use 32 nodes, but at a finer detail, some of
them are coded as data parallel with serial and par-
allel phases, whereas others are written with MPI
in an SPMD style. Creating a representative model
that captures this diversity is hard, and possibly ar-
bitrary decisions regarding the relative weight of the
various options have to be made.

In this paper we concentrate on single-level
models, which may be viewed as the top level in
a hierarchical set of models [14]. Even with this re-
striction, difficulties abound.

3 Statistics

The whole point of a model is to create a concise
representation of the observed workload. Thus it
is desirable to derive a small set of numbers or a
simple function that characterizes each aspect of the
workload. If we cannot do this, we are left with the
original data as the best representation.

Any time we reduce a set of observations to a
small set of numbers, the result is called a summary
statistic. These fall into three families (See Jain’s
treatise for more details [19, chap. 12]):

Moment-based: The kth moment of a sequence
X1, T3, ...T, of observations is defined by my =
%Z z¥. Tmportant statistics derived from mo-
ments include

e The mean, which represents the “center of grav-
1ty” of a set of observations: z = % Sw.

e The standard deviation, which gives an indi-
cation regarding the degree to which the ob-
servations are spread out around the mean:
5= MﬁZ(l‘i —Z)%.

e The coefficient of variation, which i1s a normal-
ized version of standard deviation: cv = s/z.

Percentile-based: Percentiles are the values that
appear in certain positions in the sorted se-
quence of observations, where the position is
specified as a percentage of the total sequence
length. Important statistics derived from per-
centiles include

e The median, which represents the center of the
sequence: it is the 50th percentile, which means
that half of the observations are smaller and
half are larger.

e Quartiles (the 25, 50, and 75 percentiles) and
deciles (percentiles that are multiples of 10).
These give an indication of the shape of the
distribution.

e The semi-interquartile range (SIQR), which
gives an indication of the spread around the
median. It is defined as the average of the dis-
tances from the median to the 25 percentile and
to the 75 percentile.

Mode-based. The mode of a sequence of observa-
tions is the most common value observed. This
statistic is obviously necessary when the values
are not numerical, for example when they are
user names. It is also useful for distributions

that have strong discrete components, as may

indeed happen in practice (e.g. see Figs. 2 and

4 below).

The use of moments (mean, variance, etc.) as
summary statistics is common because they are easy
to calculate and most people have some intuition
about their meaning (although this intuition starts
to wane somewhere between skew, the third mo-
ment, and kurtosis, the fourth).

Unfortunately, many researchers are in the
habit of reporting these statistics for non-symmetric
distributions. At best, this practice is misleading,
since the reader’s intuition about the distributions
will be wrong. At worst, calculated moments are
meaningless values.

There are two reasons moments may fail to
summarize a distribution:

e Nonconvergence: For some distributions, the mo-
ments of a sample do not converge on the mo-
ments of the population, regardless of sample size.
An example that is common in computer science
is the Pareto distribution® [21]. For Pareto distri-
butions with shape parameter a less than 1, the
mean and other moments are infinite. Of course,
any finite sample will have finite moments, so con-
vergence is not possible. A warning sign of non-
convergence is the failure to achieve sample invari-
ance as sample size increases.

1The CDF of the Pareto distribution is F(z) = 1 — 2~ % and the
pdfis f(z) = a.r_(a+1), where the shape parameter satisfies a > 0.

e Noise: Even for symmetric distributions, moment
statistics are not robust in the presence of noise.
A small number of outliers can have a large effect
on mean and variance. Higher moments are even

less reliable [34].

This effect 1s particularly problematic for long-
tailed distributions, where it may be impossible to
distinguish erroneous data from correct but out-
lying values. In this case even the mean should be
used with caution, and variance should probably
be avoided altogether.

3.1 The moments problem: an example

The following example is taken from a real data
set, the durations of jobs submitted to the IBM SP2
at the Cornell Theory Center [18]. The data set
contains the start and end time for each job that
was submitted from June 6 to December 2, 1995
(in seconds since the beginning of the epoch). We
calculated the (wall-clock) duration of each job by
subtracting the start time from the end time. Of
the 50866 records, two were corrupted such that the
duration could not be calculated.

There are a few jobs that appear to have very
long durations (one job appears to have run for
over a month). Tt is possible that these outliers are
caused by corruption of the data set, but it is also
possible that these jobs experienced an unusual con-
dition during their execution that caused them to be
swapped out or held for a long time. The accounting
data do not provide this information.

So how should we deal with these outliers? It
might be tempting to remove possible errors by
omitting some fraction of the longest jobs from the
data.
range of omitted data. The coefficient of variation
(CV) is the ratio of the standard deviation to the

mearn.

The following table shows the result, for a

Rec’s omitted statistic (% change)

(% of total) mean [sec] | CcVv | median [sec]
0 (0%) 9371 3.1 552

5 (0.01%) 9177 (-2.1%) | 2.2 (-29%) | 551 (-0.2%)
10 (0.02%) 9094 (-3.0%) | 2.0 (-35%) | 551 (-0.2%)
20 (0.04%) 9023 (-3.7%) | 1.9 (-39%) | 551 (-0.2%)
40 (0.08%) 8941 (-4.6%) | 1.9 (-39%) | 550 (-0.4%)
80 (0.16%) 8834 (-5.7%) | 1.8 (-42%) | 549 (-0.5%)
160 (0.31%) 8704 (-7.1%) | 1.8 (-42%) | 546 (-1.1%)

As we discard suspect values from the data set, the
values of the moments change considerably. Since
it 1s impossible to say where to draw the line—that
i1s, which data are legitimate and which bogus—it
is impossible to say meaningfully what the mean

and variance of this distribution are. The median
and other order statistics are not as sensitive to the
presence of outliers.

A second example makes the same point more
emphatically. From the same data set, we calculated
the area of each job (the product of its wall clock
duration and the number of processors it allocated).
Again, there are a few large values that dominate
the calculation of the moments. The following ta-
ble shows what happens as we try to eliminate the
outlying data.

Rec’s omitted statistic (% change)

(% of total) mean [sec] | CcVv | median [sec]
0 (0%) 88,586 29.9 2672

5 (0.01%) | 72,736 (-18%) | 7.1 (-76%) | 2672 (-.00%)
10 (0.02%) | 69,638 (-21%) | 5.8 (-81%) | 2670 (-.00%)
20 (0.04%) | 66,632 (-25%) | 5.1 (-83%) | 2666 (-.00%)
40 (0.08%) | 62,265 (-30%) | 4.5 (-85%) | 2656 (-.00%)
80 (0.16%) | 58,515 (-34%) | 4.0 (-87%) | 2654 (-.00%)
160 (0.31%) | 53,563 (-40%) | 3.8 (-87%) | 2633 (-.01%)

Depending on how many data are discarded, the val-
ues of the mean and CV vary wildly. If only 5 values
(of 50864) are discarded, the CV drops by a factor
of four! Thus a few errors (or the presence of a few
unusually big jobs) can have an enormous effect on
the estimated moments of the distribution. The me-
dian, on the other hand, is almost unaffected until
a large fraction of the data is omitted.

As mentioned above, one of the warning signs
of non-convergence is the failure to achieve sample
invariance. A simple test of sample invariance is to
partition the data set into even- and odd-numbered
records and compare the summary statistics of the
two partitions. The following table shows the results
for the duration data set:

Partition | mean [sec] | Y | median [sec] |
even records 9450 3.6 543
odd records 9292 2.5 560

The mean and median are reasonably sample invari-
ant (the means differ by only 2%; the medians by
3%). But the CV’s differ by 44%, and the higher
moments are probably even worse. The results are
even more pronounced for the area:

| Partition | mean [p-s] | Y | median [p-s] |
even records 97383 37.5 2688
odd records 79789 10.1 2656

Because the moments are sensitive to the pres-
ence of outliers, they should not be used to sum-
marize long-tailed distributions. If they are, they

should be tested for sample invariance and reported
with appropriate confidence intervals, keeping in
mind that the usual method of calculating confi-
dence intervals (using a ¢-distribution and calculated
standard errors) is based on the assumption of sym-
metric distributions, and is not appropriate for long-
tailed distributions.

3.2 Robust estimation

A summary statistic that is not excessively per-
turbed by the presence of a small number of outliers
is said to be robust. In general, order statistics (me-
dian and other percentiles) are more robust than
moments [28]. The most common order statistic is
the median (50th percentile), but other percentiles
are also used. For example, Jain recommends the
use of percentiles and the SIQR to summarize the
variability of distributions that are unbounded and
either multimodal or asymmetric [19, Figure 12.4].

The

statistics rather than moment-based statistics in

importance of wusing percentile-based

workload modeling cannot be over-emphasized.
Most real-life distributions encountered in this do-
main are asymmetric and long-tailed. For exam-
ple, it is well known that the distribution of process
durations has a CV that is larger than 1 (in some
cases, much larger). More than 20 years ago, La-
zowska showed that models based on a hyperexpo-
nential distribution with matching moments lead to
incorrect results [25]. Instead, percentiles should be
used.

The question 1s then how to build a model based
on percentiles. One possibility is to find a simple
curve that fits the observed cumulative distribution
function (CDF) and then use the parameters of the
The CDF is

the inverse of the percentile function; we can find

fitted curve as summary statistics.

the nth percentile of a distribution by inverting the
CDF. Thus, we can think of the CDF itself as a
robust summary statistic.

3.3 Log-uniform distributions

Figure 1 shows the CDFs of the two distribu-
tions from Section 3.1 (the durations and areas of
jobs on the CTC SP2). In both cases, the CDF is
approximately linear in log space, implying a uni-
form distribution. Thus, we can use a log-uniform
The two
parameters of this model are the lower and upper
bounds ¢, (where the CDF is 0) and 45 (Where

model to summarize these distributions.

it reaches 1). The probability density function (pdf)
for this distribution is

1
pAdfL(t) = Pr(t < L <thdt) = — lyin ST tmas
K
(1)
where L is a random variable representing the dura-
tion of a job, and k = Int,, 4 —Int,;n:, 18 a constant.
The mean of the distribution is

L) = ~(fnas

P - tmzn)

(2)

To derive the median of the model, we use an
alternate form for the distribution, based on the two
parameters Gy and (1, which are the intercept and
slope of the cumulative distribution function:

CDFp(t) = Pr(L<t) = Bo+ BiInt, tmin <t <tmas

(3)
The upper and lower bounds in terms of the alter-
nate parameters are i, = e=PolB1 and trmar =
e(1.0=00)/F1 Now we can find the median by setting
the CDF to 0.5 and solving for ¢, which gives

(0.5-P0)/B1 _

(4)

The alternate form of the model is also useful for

tneq = € tintmae

estimating the parameters of an observed distribu-
tion by a least-squares fit. The following table shows
the estimated parameters for the two distributions
in the example:

Distribution | Bo (intercept) | 51 (slope) | R? |
-0.240 0.111 .993
-0.304 0.102 979

duration

area

For the duration distribution, the model is a
very good fit (the gray line in Figure 1(a) shows the
fitted line). The model deviates from the observed
distribution for a small number of very long and very
short jobs. But this deviation affects very few jobs
(roughly 0.3% of jobs fall below the lower bound of
the model, and 0.4% exceed the upper bound).

The straight-line model does not fit the area
distribution as well, as is reflected in the lower R?
value. In this case, a better model is a multi-stage
log-uniform model, which is piecewise linear in log
space. The gray line in Figure 1(b) shows a two-
stage model we fitted by hand. This model fits the
observed distribution well, except for a few short
jobs. That deviation is probably not important; the
only effect is that some jobs that were expected to
run for 30 seconds run only 10 seconds instead.

Based on the fitted distributions, the summary
statistics are:

Distribution of lifetimes
(fraction of jobs with L <t)

1.0

Distribution of total allocated time

(fraction of jobs with T <t)
1.0

SP2atCTC SP2atCTC
50864 jobs 50864 jobs
0.8 4 0.8 q
0.6
Figure 1: (a) The distribution of 04l
durations, and (b) the distribu-
tion of areas (the product of du- 02 1
ration and size). The gray lines
0 0
show the models used to sum- s 10s 100s 1h 10h 100h s 10s 100s 1n 10h 100n

marize each distribution.

| Distribution | mean | CcvV | median |
duration (observed) 9371 | 3.1 552
duration (model) 7884 | 1.9 786
area (observed) 88586 | 29.9 2672
area (two-stage model) | 64306 | 3.6 2361

In each case, the summary statistics of the model
are significantly different from those of the observed
distribution. Nevertheless, because the model is a
good fit for the distribution, we believe it describes
the behavior of the observed system reasonably well.
Thus, if we were asked to report the CV of the dis-
tribution of areas, we would rather say 3.6 (the CV
of the fitted model) than, “Something less than 29.9,
depending on how many of the data turn out to be
bogus.”

In prior work, Downey used these techniques
to summarize the log-uniform distributions that are
common on batch systems [8], and Harchol-Balter
and Downey used a similar technique to summarize
the Pareto distributions that are common on sequen-
tial interactive systems [17].

3.4 Goodness of fit

The above description is based on the eyeball
method: we transformed the CDF into log space,
observed that the result looked like a straight line,
and decided to use this as our model. We think this
is a reasonable model, that captures the essence of
the workload. But does it really?

The main advantage of the log-uniform model
1s 1ts simplicity: only two parameters are needed.
But we might opt for a more complex model that
1s more accurate. For example, in the case of the
distribution of area, we chose to use a two-stage
model, which requires four parameters. Hyper-
exponential distributions, using three parameters,
have also been popular for modeling distributions

t (secs) t (sec-PEs)

(b)

with high variability. In addition they have the ad-
vantage that it is easy to tailor such distributions
with a given CV. Alternatively, we might choose
the sum of two Gamma distributions, as has been
proposed by Lublin [31]. This model uses five pa-
rameters and seems to provide an even better fit to
the measurements.

There are more formal techniques for evaluat-
ing the goodness of fit of these models [24, chap. 15],
including the chi-square test and the Kolmogorov-
Smirnov test. In the chi-square test, the range of
sample values is divided into intervals such that each
has at least 5 samples. Then the expected number of
samples in each interval is computed, based on the
hypothesized distribution function. If the deviation
of the actual number of samples from the expected
number is sufficiently small, the hypothesis is ac-
cepted.

The Kolmogorov-Smirnov test is even simpler
— 1t bases the decision on the maximal difference
between the CDF of the hypothesized distribution
and the CDF of the actual sample values. However,
this test is only valid for continuous distributions.

The problem with applying these methods to
workload characterization is that they typically fail.
Most parametric statistical methods are based on
the assumption that samples are drawn from a pop-
ulation with a known distribution, and that as the
sample size increases, the sample distribution con-
Since the
sample sizes in the traces are so large, they are ex-
pected to match the model distribution with high
accuracy. In practice they do not, because the un-

verges on the population distribution.

derlying assumption—that the population distribu-
tion is known—is false. There is no reason to be-
lieve that the distribution of durations really is log-

uniform, or the sum of two Gammas, or any other

SDSC Paragon
25

20
o
2
= 154
S
(]
I3
]
5
S 10
5
g
5
oMl | |
11632 64 128 256 400
cTCsP2
55
50
0
2
o,
S
(]
I3
o]
5
S 10
5
g
5
0 bl s H i
1 16 32 64 128 256

Figure 2: The observed distribution of sizes typi-
cally has many small jobs, and strong discrete com-
ponents at powers of two.

simple functional form. Rather, we use these mod-
els because they describe the real data concisely, and
with sufficient accuracy.

Of course, the question remains, “How much
accuracy 1s sufficient?” Ultimately, the only an-
swer 18 to see whether the results from the model
match results in the real world. Barring that, a use-
ful intermediate step is to compare results from the
Lo et al.

have done this recently for parallel job scheduling

model with results from workload traces.

strategies, and found encouraging results—at least
for some strategies, the results of trace-driven sim-
ulations are consistent with most workload models,
even very simple ones [30]. Thus it seems likely that
these results will apply to real systems.

3.5 Distributions with discrete components

As noted above, a concise way to describe a
distribution is with a mathematical model. But in
some cases the trace data indicate that the distri-
bution has discrete components, and may not be
amenable to a concise description. One must then
decide whether to ignore such discrete components,
and if not, whether their exact locations and sizes

are random or an inherent characteristic of the work-
load.

A good example is the distribution of the sizes
of parallel jobs. Numerous traces show that this dis-
tribution has two salient characteristics: most of the
weight i1s at low values, and strong discrete compo-
nents appear at powers of two (two examples are
given in Figure 2). This result is significant because
Jjobs using power-of-two partitions are easier to pack,
and small jobs may be used to fill in holes between
larger jobs [6, 13]. Thus including or omitting these
features has a significant impact on the performance
of the modeled system.

4 Weights

In the previous section we espoused the value
of characterizing workloads by using distributions
rather than just moments. However, care must be
taken in collecting the data used to characterize the
distributions. In particular, it is important to give
appropriate weights to the different jobs in the work-
load. Many prior studies have sinned by giving all
Jjobs equal weights; and produced misleading results.

We motivate this section with an example from
the airline industry. Airlines often report statistics
about the number of empty seats on their planes,
and passengers are often surprised by the numbers.
For example, the airline might report (truthfully)
that 60% of their flights are less than half full, and
only 5% are full. At the same time, passengers might
observe that most flights are full and very few are
less than half full. This discrepancy is sometimes
called the “observer’s paradox,” because it is a result
of the fact that more passengers (observers) travel
on the full planes than on the empty ones. To de-
termine the probability that a passenger sees a full
flight, it 1s necessary to weight the airline’s statistics
by the number of passengers on each flight.

Applying this insight to parallel workloads,
there are three ways we might weight the distribu-
tion of a job attribute, each of which is useful in a
different context:

e jobs with equal weights

e jobs weighed by duration

e jobs weighed by area (i.e. by duration and size)
Distributions in which jobs have equal weights

are useful when studying certain characteristics of

the workload as a whole. For example: what per-
centage of jobs are interactive (meaning that they

25

. batch

20 — direct
15 —

10 —

percentage of jobs

seq 2 4 8 16 32 64 128 256 other

job size
35 —
. batch
-g direct
2 25 —
2
@
3 20
=4
s
° 15 -
o0
©
10
<
a 5

8 16 32 64

job size

seq 2 4 128 256 other

Figure 3: When duration is used as a weighting
factor, rather than giving jobs equal weights, the
distribution changes considerably (data from SDSC
Paragon).

complete within a few seconds and a human is prob-
ably waiting for them)? To answer this question we
can use the distribution of job durations, where jobs
have equal weights.

Distributions in which jobs are weighted by du-
ration are useful for investigating per-job resource
usage. For example, if you want to know the distri-
bution of job sizes at the time of a new arrival, you
should weight each job by its duration, since long-
running jobs are more likely to be observed than
short-running ones.

The difference between the raw distribution and
the weighted distribution may be dramatic, as illus-
trated in Figure 3. The top distribution, with equal
weights, shows that most arriving jobs are small:
50% use 4 nodes or less, and many of them are di-
rect, meaning that they are submitted directly in
In the bottom distribution
jobs are weighted by their duration. This distribu-

an interactive manner.

tion implies that an arriving job expects to see a
few large jobs, since more than 50% of node-seconds
are for 64 and 128-node batch jobs. Based on this
insight, we conclude that it may be desirable to con-

figure a machine with a large (256-512 node) batch
partition, and a small (maybe 32-node) interactive
partition, in order to provide responsiveness for in-
teractive users and good throughput for batch.

It should be noted, however, that this recom-
mendation is based on this particular workload, in
which hardly any direct jobs use more than 32 nodes.
It is not clear, though, whether this limit reflects the
desires of users, in which case it makes sense to ac-
commodate it, or whether it is due to the policies in
force at SDSC when the trace was collected.

The third weighting scheme, where jobs are
weighted by their area, 1s useful when studying per-
processor resource usage. For example, one might
want to know the available memory expected on a
node that is running one job. Looking at the top
distribution in Figure 4, we see that many jobs use
a small amount of memory, but that does not an-
swer the question, because many of the jobs that
use large amounts of memory are also large, long-
running jobs. Because the probability of being ob-
served on a given node depends on duration and
size, the correct answer comes from the bottom plot
in Figure 4, where jobs are weighted by area (the
product of duration and size). Using either of the
top two plots, where jobs have equal weights or are
weighed only by their duration, leads to overly op-
timistic predictions.

5 Correlations

Having addressed the issue of how to represent
each attribute of the workload in 1solation, we now
turn to the question of whether these attributes are
independent. In fact, we find that they are not, and
that there are potentially meaningful correlations
between the different attributes of a job. Such cor-
relations should be included in the workload model.

5.1 Are Large Jobs Longer?

We illustrate this point by looking into the cor-
relation between the size and the duration of parallel
jobs. Two common assumptions that have appeared
in the literature are that size and duration are inde-
pendent of each other or inversely correlated (that is,
larger jobs run for less time on average) [32, 29]. As
these assumptions affect the results of evaluations
of scheduling policies, it is useful to check whether
they are born out by measurements.

The most common way to measure such corre-
lations is with the Pearson product moment correla-

0.05

0.14
0.04 + 1
[%2]
=)
K=X 0.03 + i
G
c
o
g 0.02 + 9
0.01 1
0 Uﬁ“}uﬂhmhl lll.n J.mt.|n J AT R - 1 | ‘ Ly ‘ [. - |
0 5000 10000 15000 20000 25000 30000
0.05 T T T T T
0.073 0.073
0.079
0.04 1
[}
£ oo03f 1
XS]
c
c
g 0.02 q
0.01 ‘ 1
oL il|\”*“||..l(|mk .HA.‘w ‘1.[\.Hl‘.‘ln|m n»\.““ O R 1 IR Ll\lt “ | . | ‘
0 5000 10000 15000 20000 25000 30000
0.05 T T T T T
0.062
2 004f 1
=
o
(5]
&
& 0.03 q
°
o
=
S 002t g
c
o
g
&= 0.01 q
o | I 11 T ‘Ll‘n ‘ N
0 5000 10000 15000 20000 25000 30000

memory usage per processor [KB]

Figure 4: The distribution of per-processor memory usage on the LANL CM-5 (from [9]), using buckets

of 10 KB. In the top plot, all jobs have equal weight. In the middle, jobs are weighted according to

their duration. The bottom plot shows the distribution for individual processors, which is equivalent to

weighting the jobs according to their area (the product of duration and size).

tion coefficient, r, which is defined as the covariance
divided by both standard deviations:

_ 2@ -8y —y)
V(@i =2y — 9)?

r

The range of absolute values is from 0, indicating
no correlation, to 1, indicating perfect correlation
[24, chap. 18]). Negative values indicate inverse cor-
relations. For the SDSC data, Pearson’s r is 0.24,
indicating a weak correlation.

Of course, one problem with this computation is
that it suffers from the lack of robustness discussed
in Section 3. A good solution i1s to compute the
correlation of ! and ¢}, where 2 = log(z;), and ¥} =
log(y;). By compressing the long tail of the duration

distribution, the logarithmic transformation makes
the moments more meaningful.

Another problem with Pearson’s r is that it is
based on the assumption that the relationship be-
tween the variables is linear. This assumption does
not apply to the workloads we have observed. Fig-
ure b5(a) shows average durations for jobs with dif-
ferent sizes. There is no clear relationship; some job
sizes have very high average durations, and others
Moreover, the differ-
ent data points represent different numbers of jobs

have low average durations.

(recall the distribution of sizes shown in Figure 2).
Thus an outlier with a unique size shows up much
more than the same value in a popular size, where
it 1s averaged with many other jobs.

Figure 5(b) shows the relationship more clearly.

SDSC Paragon
45000

40000

35000

30000

25000

20000

average runtime

15000

10000

5000 A

2 L
11632 64 128 256 400
job size
SDSC Paragon

16000

2 buckets —<—

4 buckets -#---
14000+ 8 buckets =
16 buckets -
12000
s
2 10000+
2 :
3
g 8000 o
o X
% 6000 -
4000
20001
0 L2 ‘ ‘ . .
2 4 8 16 32 64 128

job size

Figure 5: (a) There is no clear direct relation be-
tween average duration and size. (b) By distributing
all jobs into equal sized buckets according to size, a
correlation between size and duration is observed.

We grouped the jobs into buckets according to their
size. The first bucket contains the smallest jobs,
the second contains the next smallest, etc. For each
bucket we plotted a single point, drawn at the av-
erage size and average duration for the jobs in that
bucket. The figure shows graphs using 2, 4, 8 and
16 buckets. Using fewer buckets yields fewer data,
but shows the trend most clearly; using more buck-
ets yields a more detailed but noisier line. Overall
there is a definite trend from lower-left to upper-
right, indicating that larger jobs tend to run longer.
This contradicts the assumptions commonly made
in the literature.

Additional evidence is obtained by plotting the
distributions of durations for jobs in the different
buckets. Figure 6 shows CDFs for 4 buckets, using
the SDSC and CTC data. Clearly jobs with different
sizes have different distributions of durations. For
small jobs (with few nodes), the weight of the dis-
tribution is at short durations. For large jobs (with
many nodes), the weight is at long durations. But
in all cases the distributions span the whole range
from seconds to hours.

SDSC Paragon

1stq —
2ndq -
0.9 ardq
4thq
0.8
z 07
8
£ 06
=4
g 0.54
s
2 0.4
15
3 0.3
0.2+
0.14
0 == T T T T T
1 10 100 1000 10000 100000 1le+06
runtime
CTC sP2
1
0.8
2
Z
£ 06
=4
o
>
s
2 0.4
15
3
0.2+
0 o ; ; T ;
1 10 100 1000 10000 100000 1le+06

runtime

Figure 6: CDFs of distribution of durations for jobs
in four buckets according to size.

This analysis suggests several ways we might
generate a random workload with realistic correla-
tions between job attributes:

e We can calculate Pearson’s r for an observed
workload and then generate a random workload
with the same coefficient of correlation.

e We can divide a workload trace into buckets ac-
cording to size, user name, and other attributes,
and find the distribution of durations for each
bucket. Then for a given size and user name we
can choose a random duration from the appropri-
ate distribution.

The advantage of the first approach is that it in-
volves a minimal number of parameters, and that it
smooths out unpredictable variations that are likely
to be site-specific, as in Figure 5(a). The disadvan-
tage is that Pearson’s r may understate the degree
of correlation.

The advantage of the second approach is that
it allows for a tradeoff between accuracy and com-
plexity. We can choose to use more attributes and
smaller buckets, and create more detailed models, at
the cost of more parameters; for example, Jann et al.
did so in their work, and essentially produced a sep-

arate model of the distribution of durations for each
bucket of sizes [20]. On the other hand, we can cre-
ate a simple parameterized model, with a parameter
that depends on the bucket; For example, Feitelson
used this approach to create a model of duration
that correlates with size, by using a hyperexponen-
tial distribution where the probability of choosing
each branch depends on the size [10].

5.2 Correlation as a Source of Information

Another advantage of the second approach is
that it captures variations that might be significant
for evaluating scheduling policies. At most sites
there is significant local uniformity within the gener-
ally high variability of the workload. That is, while
it may be impossible to predict job durations in gen-
eral, it may be significantly easier if other informa-
tion about the job (size, user name, etc.) is known.

To measure the usefulness of this information,
we can use the coefficient of determination, CD,
which measures the amount of variation in a depen-
dent variable that can be accounted for using an
independent variable as a predictor.

As an example, we divided the data from SDSC
and CTC into categories according to size, p, and
calculated the mean in each category, u,, and the
variance around that mean. The weighted average
of the variances, &2, indicates the width of the dis-

tribution of durations, taking size into account.

7 = e Y=) o)

where p; is the size of the ith job, and N is the total
number of jobs.

The ratio of this variance to the original vari-
ance indicates what fraction of the variation re-
The

mains, given that we know the cluster size.
resulting coefficient of determination is

~2
2 o

where ¢2 is the conventional variance. The value of

(6)

CD? is comparable to the R? value used to evaluate
the goodness-of-fit of a linear regression. It has the
same range as Pearson’s 7, with 0 indicating no rela-
tionship between the variables and 1 indicating that
it is possible to predict one of the variables perfectly,
given the value of the other.

As an example, for the CTC data Pearson’s r
(calculated with the log transform) is 0.0038, which
would seem to indicate no significant correlation.

The value of CD is 0.21, indicating that the size
does contribute some information about expected
durations. For the SDSC data, Pearson’s r is 0.25
and CD is 0.38.

These calculations, and other evidence of local
predictability [16, 35], suggest that simple measure-
ments of correlation, and models based on them,
omit important workload characteristics. Although
we have suggested some techniques for measuring
these characteristics and incorporating them into a
model, it is still not clear how to distinguish sig-
nificant, general characteristics that should be in-
cluded from site-specific peculiarities that should be
ignored.

6 Time Scale

So far we have treated workload traces as if
they we monolithic; however, it is often the case
that workloads change over time, due to

e Evolution as users learn to use a new system and
exploit its capabilities [18],

e Adaptation as schedulers and allocation policies
are changed by a system’s administrators [11], and

e Random fluctuations caused by people’s work
schedules, deadlines, etc.

Thus the created model depends on the length of
the trace and the exact period during which 1t was
recorded. Should we average over a whole year or

only over a week? And if we use only one week,
which week should it be?

6.1 Uniformity in short time scales

If we were to measure the degree of variability
in the workload as a function of the time interval
under study, this would be a monotonically increas-
ing function?. When we look at relatively short time
intervals, say a week, we find that the variability is
rather low: few users are active, few distinct appli-
cations are executed, etc. But as the weeks accumu-
late, we see that each one is significantly different
from the others. As an example, Figure 7 shows a
set of histograms of job sizes in 25 consecutive weeks
at the beginning of 1996, taken from the LANL CM-
5. Both the absolute numbers of jobs and the dis-
tribution of sizes change considerably from week to
week.

2This is not meant as a precise statistical claim, e.g. that the vari-
ance of the durations of all jobs is monotonically increasing. Instead,
it refers to the richness or cardinality of the sets of possible parameter
values, such as the set of users, the set of applications, and the set of

durations.

50 200
40 1 g
%) = 150
Q =
[
3 30t i 3
S 5 100 [
é 20 5
Figure 9: Number of active 5 2 5l
. 10}
users and number of distinct ap- 2
. . . . 0 L L L L L o L L L L L
plications executed in successive T s 10 15 20 = T e 10 1. 0 .
weeks week week
A
—’_’1—‘ 20 20 % 20 20 -
- . -
_ L -
an0] an0 o
— 19)
”ﬂ_ﬁ”"* [‘"h‘" rerrrrrrrrrrrrrrrrrrer T rTT
B L N R L LR —h_ﬂ week

Figure 7: Histograms of job sizes in 25 consecutive
weeks on the LANL CM-5. The five bars in each
histogram represent jobs using 32, 64, 128, 256, and
512 processors. The scale is up to 600 jobs, but in
some cases, higher values were recorded.

One source of variability over time is that differ-
ent users are active during different intervals. Fig-
ure 8 is a Gantt chart of user activity in the same
25 weeks shown in Figure 7. Each user is repre-
sented by a horizontal line, and the gray shading
indicates that user’s level of activity (measured in
number of jobs submitted). The users are divided
into two groups: at the bottom are those that were
active for more than 80% of the time; there were
13 such users. Above them are the more sporadic
users, ordered according to the center of the period
of their activity. Obviously, the community of users
shifts with time.

Figure 8: Gantt chart of user activity in successive
weeks. Gray level indicates number of jobs run.

Since the behavior of different users varies
widely, and the community of active users changes
over time, we expect that the overall workload is
more predictable during a short interval (a week)
than during a long interval (a year). The reason
is that the number of active users in a given week,
and the number of different programs they run, is a
subset of the population that appears in the course
of the year. To quantify this claim, we plotted the
number of active users and the number of distinct
applications or utilities submitted during each week
(Figure 9). The number of active users varies from
26 to 43, out of a total of 88 users that were active
during the whole period. The number of distinct
applications varies from 56 to 180, out of a total of
1192 distinct applications executed during the whole

cTCsP2

NASA Ames iPSC/860

Figure 10: Runlengths give an

10000

indication of the relative influ-

1000

ence a single application may
have on a workload. While most

number of occurences

applications are only executed

10000

1000

100

number of occurences

JUI

once or a small number of times, 1

some are repeated hundreds of . MM ‘
times. ! P engn
period.

Another reason to expect this kind of local pre-
dictability is that a single active user can make up a
significant part of a workload over short periods of
time. In general, many forms of human activity fol-
low Zipf-like distributions: the most active person
performs a certain amount of activity, the second
most active performs half as much, the third most
active a third, and so forth [39]. Thus comparing the
workload when the most active user is on vacation
with the workload when he is working on an impor-
tant deadline might produce significantly different
results.

An amazing example appears in the bottom row
of Figure 7, where two weeks had a very large num-
ber of 128-node jobs (3662 and 1346). These obser-
vations are not a mistake; they represent 10 days
of activity by a single user. These same jobs also
caused the 14% peak in the top plot of Figure 4.
While this is an extreme case, similar events are not
uncommon, and the scheduler has to deal with them.
Most of the other discrete peaks in Figure 4 can also
be attributed to the activities of single (albeit less
voracious) users [9].

The most active users typically achieve their
mark by repeated execution of the same applica-
tion on the same number of nodes, leading to lo-
cal predictability and uniformity in the workload.
Figure 10 shows histograms of the number of times
various applications were run repeatedly (the run
length) on two systems. While most applications
are only run once or a small number of times, there
are applications that are run hundreds of times in a
row. As the resource requirements of the repeated
runs tend to be similar, such long run lengths may
create modes in the distributions.

Another way to describe these findings i1s that
we are again faced with a long-tailed distribution
— the distribution of user activity. Some users
are much much more active than others, and bias
the overall workload statistics towards their private

. Ly
100 1000 1 10 100 1000

run length

workloads (which are often modal). The question
is again whether to consider such outliers (like the
user who ran some 5000 one-second 128-node jobs
in 10 days) significant workload characteristics, or
to ignore them.

6.2 Implications for workload modeling

Workloads have a certain structure: the pool
of users varies over time; among the active users, a
few tend to dominate the workload; these dominant
users often run a few applications repeatedly. Thus
while the overall variability of the workload may be
high, the workload at any instant may be much more
predictable. If we create a model that uniformly se-
lects jobs with characteristics drawn from the proper
global distributions, we will get the correct statis-
tics, but will lose this structure.

This structure is relevant for two reasons. First,
historical information about this structure may
make 1t possible to predict the behavior of users and
applications, allowing the scheduler to make better
decisions. On the other hand, it may be more dif-
ficult to design schedulers to deal with this sort of
workload, because strategies that do well on general
workloads may be vulnerable to pathological behav-
ior when the workload is less “random”.

One way to capture the structure of a work-
load 1s to model the arrival process along with
other workload characteristics, perhaps by model-
ing the behavior of individual users. For example,
Markov models have been proposed, whereby each
user moves within a state space (representing the ex-
ecution of different applications), and may remain in
the same state for some time (representing the re-
peated execution of the same job) [4]. An alternative
1s to use a fractal model, such as those used to model
network traffic or memory access patterns [27, 36].

6.3 The problem of sample size

For batch systems at supercomputer centers,
even a year-long trace is rather small—it typically

includes only tens of thousands of jobs, generated
by a few tens of users. These traces are too small
to yield “smooth” distributions, especially since
the distributions typically have very large variabil-
ity. Samples from short time spans are even more
choppy.

Although ten thousand jobs may not sound like
a small sample, it was recently shown that for cer-
tain non-preemptive schedulers the mean response
time does not stabilize even after simulations of
300,000 jobs, due to short jobs that get delayed by
very long jobs from the tail of the duration distribu-
tion [14]. Thus it may not be possible to produce a
statistically valid evaluation of such strategies, even
with a year-long trace.

This problem emphasizes the usefulness of
workload models for generating synthetic traces,
since synthetic traces can be arbitrarily long. Also,
by using different random seeds, it is possible to gen-
erate a number of traces with identical statistical
properties. Comparison of the performance of these
traces is one way to check the statistical significance
of a result.

Another way to check for errors due to sample
size limitations is to run simulations over a range
of time scales, and look for a relationship between
the length of the simulation and the result. If there
is such a relationship, 1t suggests that the result is
an arbitrary artifact of the simulation rather than a
meaningful statement about the system being eval-
uated.

7 Related and Future Work

The suggestion that workload modeling should
be based on measurements is not new [15, 1]. How-
ever, relatively little work has been done on this sub-
ject. Examples include work on characterizing the
distribution of durations [26, 17] and on the arrival
process [3], both in the context of Unix workstations.
In the area of parallel systems, descriptive studies
of workloads have only started to appear in recent
years [12, 38, 33, 9]. There are also some attempts
at modeling [2, 7, 20] and on-line characterization
[16].

Practically every section of this paper identifies
topics that require additional research. One issue
that was not addressed, however, is the relative im-
portance of these topics. Is it really important to
characterize the correlations between different at-
tributes of workloads? Is it as important to capture
the structure of the workload at different timescales?

The answer is that importance depends on the effect
each attribute has on the outcome of evaluations.
This too requires additional research. Preliminary
results indicate that in some cases simple models
can get the qualitative results correctly, but more
detailed models may be needed in order to obtain
more quantitative results [30].

A chief concern in workload modeling is the
need to distinguish between “real” workload char-
acteristics and those that result from local policies.
The problem is that users are humans with great
adaptability, and the traces only record the final
outcome—not the actual needs that drove the pro-
cess. Indeed, one can’t ignore the human aspect of
workload generation, and including human behavior
in the models is an intriguing possibility.

A recurring problem is the quality of trace logs.
Low-quality traces may have internal inconsistencies
or missing data for the same job (e.g. a start record
and no end record, or vice versa). Moreover, traces
typically contain no information on downtime and
other special local circumstances. Thus it is nec-
essary to choose traces carefully for modeling. For
the future, one should encourage the maintenance
of good logs, as they are the basis for all modeling
work.

8 Conclusions

Constructing a model always involves tradeoffs
between realism and complexity. The goal is to cap-
ture all relevant aspects of a real system while keep-
ing the model as simple as possible. Until recently,
workload models for parallel computers erred on the
side of simplicity, yielding results that may not be
applicable to real systems.

In this paper, we have surveyed recent efforts to
construct more realistic workload models and dis-
cussed some of the issues that researchers in this
area have addressed. We have enumerated the as-
pects of real workloads that we think are relevant
to the evaluation of scheduling strategies and other
system services for parallel computers.

Of course, not all of these aspects will be rele-
vant to all models. For example, the performance of
a scheduling strategy may depend strongly on daily
variations in system load, but not on weekly vari-
ations. For some strategies, the frequency of jobs
with power-of-two cluster sizes has a strong effect;
for others it is irrelevant.

We hope that this paper will help researchers
choose workload models that are appropriately sim-

ple, but realistic enough to yield applicable results.
In addition, we hope it will spur additional research
on models per se, on modeling methodology, and on
the effect of models on evaluation results.

Appendix: Trace Data

The data used in this paper come from the fol-
lowing traces:

o A trace of all jobs executed during 1995 on the
416-node Intel Paragon installed at the San-Diego
Supercomputing Center (SDSC). Many thanks to
Reagan Moore and others at SDSC for making
this data available.

e A trace of all jobs executed from January through
September 1996 on the 1024-node Thinking Ma-
chine CM-5 installed at Los-Alamos National Lab
(LANL). Many thanks to Curt Canada of LANL

for making this data available.

e A trace of all batch jobs executed from Septem-
ber through November 1995, and January through
April 1996, on the 512-node IBM SP2 installed at
Cornell Theory Center (CTC). Many thanks to
Steve Hotovy and others at CTC for making this
data available.

e A trace of all jobs executed during the fourth
quarter of 1993 on the 128-node Intel iPSC/860
hypercube installed at NASA Ames Research
Center. Many thanks to Bill Nitzberg for mak-
ing this data available.

These and other logs are available on-line from
the parallel workloads archive web page, located at
http://www.cs.huji.ac.il/labs/parallel /workload/.

References

[1] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, “An ap-
proach to the workload characterization problem”. Computer
9(6), pp. 18-32, Jun 1976.

[2] M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and
D. Tessera, “A hierarchical approach to workload characteriza-
tion for parallel systems”. In High-Performance Computing
and Networking, pp. 102-109, Springer-Verlag, May 1995.
Lect. Notes Comput. Sci. vol. 919.

[3] M. Calzarossa and G. Serazzi, “A characterization of the vari-
ation in time of workload arrival patterns”. IEEE Trans. Com-
put. C-34(2), pp. 156-162, Feb 1985.

[4] M. Calzarossa and G. Serazzi, “Construction and use of mul-
ticlass workload models”. Performance Evaluation 19(4),
pp. 341-352,1994.

[5] M. Calzarossa and G. Serazzi, “Workload characterization: a
survey”. Proc. IEEE 81(8), pp. 1136-1150, Aug 1993.

(6]

[10]

[11]

[13]

[14]

[16]

(18]

[19]

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Bin
packing with divisible item sizes”. J. Complex. 3(4), pp. 406—
428, Dec 1987.

A. B. Downey, “A parallel workload model and its implications
for processor allocation”. In 6th Intl. Symp. High Perfor-
mance Distributed Comput., Aug 1997.

A. B. Downey, “Using queue time predictions for processor al-
location”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 35-57,
Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

D. G. Feitelson, “Memory usage in the LANL CM-5 work-
load”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 78-94, Springer
Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

D. G. Feitelson, “Packing schemes for gang scheduling” . In Job
Scheduling Strategies for Parallel Processing, D. G. Feit-
elson and L. Rudolph (eds.), pp. 89-110, Springer-Verlag,
1996. Lect. Notes Comput. Sci. vol. 1162.

D. G. Feitelson and M. A. Jette, “Improved utilization and re-
sponsiveness with gang scheduling”. In Job Scheduling Strate-
gies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 238261, Springer Verlag, 1997. Lect. Notes Com-
put. Sci. vol. 1291.

D. G. Feitelson and B. Nitzberg, “Job characteristics of
a production parallel scientific workload on the NASA Ames
iPSC/860”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 337-360,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

D. G. Feitelson and L. Rudolph, “Evaluation of design choices
for gang scheduling using distributed hierarchical control”. J.
Parallel & Distributed Comput. 35(1), pp. 18-34, May
1996.

D. G. Feitelson and L. Rudolph, “Metrics and benchmarking
for parallel job scheduling” . In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 1-24, Springer-Verlag, 1998. Lect. Notes Comput. Sci.
vol. 1459.

D. Ferrari, “Workload characterization and selection in com-
puter performance measurement” . Computer 5(4), pp. 18-24,
Jul/Aug 1972.

R. Gibbons, “A historical application profiler for use by parallel
schedulers”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 5877,
Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

M. Harchol-Balter and A. B. Downey, “Exploiting process life-
time distributions for dynamic load balancing”. In SIGMET-
RICS Conf. Measurement & Modeling of Comput. Syst.,
pp. 13-24, May 1996.

S. Hotovy, “Workload evolution on the Cornell Theory Center
IBM SP2”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 27-40,
Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

R. Jain, The Art of Computer Systems Performance Anal-
ysts. John Wiley & Sons, 1991.

[20]

[21]

[22]

[24]

[25]

[26]

(27]

(28]

(30]

(31]

(32]

(33]

J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and
J. Riodan, “Modeling of workload in MPPs”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 95-116, Springer Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291.

N. L. Johnson and S. Kotz, Continuous Univariate Distri-
butions. John Wiley & Sons, Inc., New York, 1970.

R. E. Kessler, M. D. Hill, and D. A. Wood, “A comparison
of trace-sampling techniques for multi-megabyte caches”. IEEE
Trans. Comput. 43(6), pp. 664-675, Jun 1994.

E. J. Koldinger, S. J. Eggers, and H. M. Levy, “On the valid-
ity of trace-driven simulation for multiprocessors” . In 18th Ann.
Intl. Symp. Computer Architecture Conf. Proc., pp. 244~
253, May 1991.

E. Kreyszig, Introductory Mathematical Statistics: Princi-
ples and Methods. John Wiley & Sons, Inc., 1970.

E. D. Lazowska, “The use of percentiles in modeling CPU
service time distributions”. In Computer Performance,
K. M. Chandy and M. Reiser (eds.), pp. 53-66, North-
Holland, 1977.

W. E. Leland and T. J. Ott, “Load-balancing heuristics and
process behavior” . In SIGMETRICS Conf. Measurement €
Modeling of Comput. Syst., pp. 54-69, 1986.

W. E. Leland, M. S. Tagqu, W. Willinger, and D. V. Wilson,
“On the self-similar nature of Ethernet traffic’. IEEE/ACM
Trans. Networking 2(1), pp. 1-15, Feb 1994.

R. J. Lersen and M. L. Marx, An Introduction to Mathe-
matical Statistics and its Applications. Prentice-Hall, En-
glewood Cliffs, NJ, 2nd ed., 1986.

S. T. Leutenegger and M. K. Vernon, “The performance of
multiprogrammed multiprocessor scheduling policies”. In SIG-
METRICS Conf. Measurement & Modeling of Comput.
Syst., pp. 226-236, May 1990.

V. Lo, J. Mache, and K. Windisch, “A comparative study of
real workload traces and synthetic workload models for paral-
lel job scheduling”. In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 25—46, Springer Verlag, 1998. Lect. Notes Comput. Sci.
vol. 1459.

U. Lublin.

preperation.

Master’s thesis, Hebrew University, 1999. In

S. Majumdar, D. L. Eager, and R. B. Bunt, “Scheduling in
multiprogrammed parallel systems”. In SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 104-113,
May 1988.

T. D. Nguyen, R. Vaswani, and J. Zahorjan, “Parallel ap-
plication characterization for multiprocessor scheduling policy
design”. In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (eds.), pp. 175-199,
Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling, Numerical Recipes in C. Cambridge University
Press, 1988.

(35]

(37]

(38]

(39]

W. Smith, I. Foster, and V. Taylor, “Predicting applica-
tion run times using historical information”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 122-142, Springer Verlag, 1998. Lect.
Notes Comput. Sci. vol. 1459.

D. Thiébaut, “On the fractal dimension of computer programs
and its application to the prediction of the cache miss ratio” .
IEEE Trans. Comput. 38(7), pp. 1012-1026, Jul 1989.

D. Thiébaut, J. L. Wolf, and H. S. Stone, “Synthetic traces
for trace-driven simulation of cache memories”. IEEE Trans.
Comput. 41(4), pp. 388-410, Apr 1992. (Corrected in I[EEE
Trans. Comput. 42(5) p. 635, May 1993).

K. Windisch, V. Lo, R. Moore, D. Feitelson, and
B. Nitzberg, “A comparison of workload traces from two pro-
duction parallel machines” . In 6th Symp. Frontiers Massively

Parallel Comput., pp. 319-326, Oct 1996.

G. K. Zipf, Human Behavior and the Principle of Least
Effort. Addison-Wesley, 1949.

