
Using Non-Verbal Expressions
as a Tool in Naming Research

Omer Regev∗ Michael Soloveitchik∗ Dror G. Feitelson
Department of Computer Science

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—Variable and function names are ex-
tremely important for program comprehension. It is
therefore also important to study how developers select
names. But controlled experiments on naming are hin-
dered by the need to describe to experimental subjects
what it is they need to name. Words appearing in these
descriptions may then find their way into the names,
leading to a bias in the results. We suggest that this
problem can be alleviated by using emojis or other
small graphics in lieu of key words in the descriptions.
A replication of previous work on naming, this time
including such emojis and graphics, indeed led to a
more diverse and less biased choice of words in the
names than when using English descriptions.

Index Terms—Variable and function naming, exper-
imental methodology, accessibility bias

There are only two hard things in Computer Science:
cache invalidation and naming things.

– Phil Karlton

I. Introduction

It is well-known that names of variables and functions
play a major role in programs’ source code. In large open
source projects about a third of the tokens are identifiers,
and they account for about two thirds of the characters
in the source code [15]. However, the importance of names
is not based only on their volume. Their main importance
is that they serve as implicit documentation, and convey
the code’s intended functionality [30]. In fact, sometimes
names are the only documentation. This is even advocated
as part of the “clean code” approach, which states that “if
a name requires a comment, then the name does not reveal
its intent” [27].

The importance of variable and function names for
comprehension has stimulated a considerable amount of
research on this topic. One favorite topic of research has
been how the length of variable names affects comprehen-
sion, and especially the difference between using full words
and abbreviations [28], [20], [23], [31], [32], [33]. Research
on actual usage has shown that names are getting longer
[21], and that longer names are especially characteristic
of “engineered” code [24], but that single-letter names are
also being used [6]. The strain that longer names place

This research was supported by the ISRAEL SCIENCE FOUN-
DATION (grant no. 832/18).

∗ Authors contributed equally.

on memory has also been studied [11]. Another topic has
been naming style [7], for example using camelCase or
under_score [8] and the effect of naming conventions [12].

Attention has also been given to the quality of names,
and to how naming relates to the cognitive processes in-
volved in program comprehension [29], [25]. Several studies
have dealt with bad names and their ill-effects on compre-
hension [3], [5], [26], including due to cognitive load [17].
Bad names have also been linked with low code quality
in general [13], [2]. When developers encounter bad names
they may change them (a form of refactoring), so it is
interesting to see what replacements they choose [4]. There
has also been work on suggesting names automatically, e.g.
based on machine learning of code [1], [29].

Finally, several studies have suggested how practitioners
may create better names. This is usually based on either
(or both) of two methods. One is controlling the vocab-
ulary used, so as to avoid synonyms and homonyms and
reduce ambiguity [15], [10], [14], [16], [22]. The other is
to formulate rules for structuring names in a consistent
manner [9], [14].

The majority of all these studies have used one of two
empirical methods: either controlled experiments where
subjects need to deal with code containing different vari-
able names, or repository mining to see what names were
used in real code. But there have been very few studies
based on experiments in which developers are presented
with a situation and are actually required to select names.
This is unfortunate, as naming is acknowledged to be hard,
so it deserves to be studied directly.

A major problem in studying spontaneous naming is
that the context needs to be explained to the experimental
subjects. But the description of the context, and the
question regarding the naming of variables in this context,
necessarily use words. Being exposed to these words makes
them more accessible, so subjects will tend to use words
from the description and question in the names they
create. Therefore, providing the description undermines
the spontaneity we are trying to characterize.

This accessibility bias was demonstrated in a recent
study about naming by Feitelson et al. [19]. In this study
several programming scenarios were drawn up, and pro-
grammers were required to name variables and functions
that were expected to be used in them. As expected, the
selected names were strongly influenced by the words used

in the scenario descriptions and the naming questions.
The suggested solution was to use bilingual experimental
subjects, and present the naming context and questions in
a language other then English — in this case, in Hebrew.
As English is typically the language used in programming,
this creates a separation between the experimental mate-
rials and the names. The results were that indeed the bias
was much reduced when the descriptions and the questions
were given in Hebrew, and experimental subjects used a
much wider variety of words in the names they suggested.

However, This approach did not solve the problem
completely, and suffered from several drawbacks. First,
even the Hebrew descriptions caused some bias on the
chosen names, which was manifested in the appearance
of transcribed Hebrew words or their direct translations
into English. Second, this research method can be applied
only with developers that are bilingual, something that
is not true for many developers and in particular is not
true to most developers who live in English speaking
countries. It therefore has limited applicability. Third,
this approach is restricted only to subjects who speak
the second language (e.g. Hebrew) fluently. This implies a
reduced representativeness: the subjects represent second-
language-speaking (e.g. Hebrew-speaking) developers only.

As an alternative we suggest using a graphical notation
rather than a foreign language. Specifically, we suggest
that key words in the scenario description and questions be
replace by emojis or other small graphics. This could help
reduce the accessibility bias by providing a more direct
indication of the concept, without using any specific word
as an intermediary. And emojis are universally known and
understood, making the methodology applicable anywhere
including with developers who only speak English.

To check this idea we performed a replication of the
Feitelson et al. study. We used the same scenarios and
questions as in the original study, but expressed them with
the aid of emojis and small graphics.

II. Research Questions

The general context of our work is the experimental
methodology used is naming studies, where subjects are
required to choose names for variables in certain pro-
gramming scenarios. In such studies the description of the
scenario might bias the name choice. Our hypothesis is
that by using emojis in the description, instead of explicit
words, the bias can be much reduced. The goal of our work
is therefore to assess whether non-verbal expressions such
as emojis can serve as a tool that improves research on
choosing names. This goal will be achieved by answering
the following concrete research questions:
RQ1) Are emojis expressive enough to describe program-

ming scenarios at a level comparable to that of
verbal descriptions? Are the concepts represented
by the emojis understood?

RQ2) Does using emojis to describe programming scenar-
ios reduce or eliminate the accessibility bias in nam-
ing which exists when using verbal descriptions?

III. Methodology
We propose to alleviate the problem of accessibility bias

caused by using verbal descriptions by using emojis. To
evaluate this solution, we replicate the study of Feitelson
et al.: we translate the descriptions that were given in that
study into emoji-based descriptions, use (almost) exactly
the same experimental procedure, and analyze the results
in comparison to the previous results.

A. Sources for Emojis
It is not widely known that emojis constitute a font, and

are part of the Unicode character set. Defining new ones is
controlled by the Unicode Consortium. Interestingly, one
of the criteria for new emoji is “does the emoji add to
what can be said using emoji”. At the time of writing,
3521 emojis are defined. Many of these are encoded as a
sequence of more than one Unicode characters, some of
which are modifiers of the basic form (e.g. to change skin
color). The full list of emojis version 13.1, specifically not
including skin tone variations, contains 1816 symbols.

Given that emojis are a font, the actual graphical image
used for each one may vary by platform. For example, the
image for “nerd face” (code 1F9D0) can be any of

and more. In particular, this means that
the recipient of a message may see a variation on what
the sender intended. We therefore used actual embedded
images rather than coded emojis in the experiments.

An obvious source for images of emojis is the
full table of Unicode emojis (https://unicode.org/emoji/
charts/full-emoji-list.html). Another good site is https:
//emojipedia.org/. And of course one can simply look for
various icons on Google if there is no suitable emoji. Some
of the images we used are indeed not formally emojis, but
we call all of them “emoji” for short.

B. Translating Scenario Descriptions to Emojis
The translation of the descriptions using emojis was

done according to the following procedure. The description
here is slightly refined based on what we learned from the
experiment.

1) Given a scenario and questions regarding the naming
of variables and functions that are expected to be
used, make a list of these target identifiers. The target
identifiers are the focus of the study, and we want
to ensure that the description and questions do not
suggest specific words for naming them.

2) Identify the key words in the description and ques-
tions (which can be nouns, verbs, adjectives, etc.) that
describe the target identifiers. These are words for
which one of the followings holds:

a) They appear as a direct description of a target
identifier in the description of the scenario or in

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://emojipedia.org/
https://emojipedia.org/

a question about a variable. Example: the words
“X coordinate” in the question “name the variable
holding the X coordinate of a location on the grid”.

b) They might reflect on a target identifier in some
way:
i) A synonym of a word that describes a target

variable. Example: “horizontal displacement”
instead of “X coordinate”.

ii) The word is often used in conjunction with a
target word, and might identify it. Exampe: if
we want to ask about the time that the bus
will arrive at the bus stop, using “ stop” is
too explicit, and will direct subjects to interpret

specifically as “bus” as opposed to any
other possible form of transport. So we need to
avoid using “stop” here.

iii) The word is often used in the same context
as the target word, and might cause a bias.
Example: in the context of mines in the well-
known minesweeper game, we need to avoid not
only “mine” but also “bomb”, “explode”, etc. In
particular, if suspicious locations on the game
board are marked by a , any of these words
may bias subjects towards a specific interpre-
tation as the location of a mine as opposed to
just marking a location or perhaps some level of
danger.

These are all words we will want to replace by emojis.
3) Expand each word with its synonyms. For each word

in the list write its general meaning and related words.
For instance, if the word in the description is “salary”,
we can add “wages”, “payment”, “money”, etc. This
step helps us in two ways:

a) Generalizing the notion of the word, which will
help us look for an emoji that reflects the general
meaning, so the experimental subjects will have to
think of a specific word by themselves. For example,
when we expand “salary” with “wages”, “payment”,
“money”, etc., we deduce that the general idea
we need to represent is “money transfer”. Then
an emoji which conveys this notion, e.g. , is
general enough to allow the subjects to think of
“salary”, “wages”, “payment”, etc.

b) Helping us beware of emojis that will remove bias
of the original word, but cause a bias to a different
specific word. For instance, in our experiment, we
wished to replace the word “benefits” in a credit-
card scenario with a more general indication, and
used . But then there was a new bias for the
word “diamonds”.

4) Map words to emojis: for each word in the expanded
list (original key words + synonyms), find 2–3 emojis
which reflect its general meaning or a close one (as
explained above). We look for generality — emojis

that explain the essence but not too much. At the
same time we need to be aware of words that will
cause bias (e.g. the “benefits”-“diamonds” case).

5) Rewrite each sentence by replacing key words with
emojis from the emojis list. An interesting issue is
whether to stick to a fixed translation for each key
word. We preferred to alternate between different
emojis that represent the same word. Iterating can
ensure the semantics are diverse enough, which makes
the text less verbal and more abstract. In places where
a suggested emoji might have a too specific meaning,
one can use a combination of 2 or 3 emojis as a whole
word.

6) Make adaptations to the original descriptions wher-
ever no reasonable emoji exists, or the meaning will
not be clear with emojis. Example: in one of the
scenarios there was a variable representing the hourly
wage of workers in a candy factory. We represented
this by - . However, using may cause confu-
sion, as it appears more often as representing “time”
or “clock” rather than “hours”. A possible alternative
to consider is to replace hourly wage with daily wage,
as represented by - .

An example of a scenario description followed by two
questions from the experiment, after translation to emojis,
is shown in Fig. 1. Note that several changes were made
to better fit the emoji vocabulary. First, bubble-gum was
replaced by . Second, the reference to the company
manager was removed as we did not find a suitable emoji
for “company manager”. Likewise, referring to a 45-hour
week explicitly as a “full-time position” was also removed.
Finally, the explicit term “work overtime” was replaced by
the more general “to do more”.

The fact that we managed to present all the ques-
tions using emojis provides part of the answer to RQ1:
apparently emojis are expressive enough, provided some
adjustments are made. But we still need to see if they are
understood correctly. This is done in Section IV-A.

C. Execution of the Experiment
The execution of the experiment comprised of the fol-

lowing steps:
1) Taking the same descriptions used in the research con-

ducted by Feitelson et al. [19], and translating them
into emoji syntax according to the steps described
above in Section III-B. We made sure that all key
words were translated into emojis.

2) Creating a questionnaire using the Google Forms plat-
form. While the original study included 11 scenarios,
we only used six. Three were excluded because they
did not include naming, but only the interpretation
of given names. Two more were excluded because we
wanted to limit the length of the experiment, and
not squander precious experimental subjects. In the
original study, each subject was also presented with

In a large company, earn per . Every has a fixed - value.
Purim is right around the corner and causes an increased demand for . To overcome this the company
encourages to do more:

• A usually does 45 per
• After 45 , the - for the increases by $10.

To implement this some variables were added:
1) A constant containing the value 45
2) A variable for the - after 45 pass

Name these variables.
1) Name variable: A constant containing the value 45.
2) Name variable: A variable for the - after (1) passes.

In a large chewing gum company, workers earn hourly (NIS). Every employee has a fixed hourly wage value.
Purim is right around the corner and the Mishlochei Manot cause an increased demand for chewing gum.
To overcome this the factory manager encourages employees to work overtime as follows:

• A full-time position requires 45 weekly work hours.
• After 45 weekly work hours, the hourly wage for the employee increases by 10 ILS.

To implement this some variables were added:
• A constant containing the value 45
• A variable for the hourly wage during overtime pay

1) Name the constant containing the value 45.
2) Name the variable for the hourly wage during overtime pay.

Fig. 1. Example scenario and questions from the experiment, and the original version from which it was derived. Note changes in wording
where there was no suitable emoji, e.g. “to do more” instead of “work overtime”.

six scenarios, which were randomly chosen from the
set of 11 scenarios. In our version, all subjects saw the
same six scenarios in the same order.
In the original experiment, scenarios contained both
questions that ask subjects to give names to variables
and functions, and questions that ask them to in-
terpret given names. Interpretation questions are not
relevant for our research agenda. However, we decided
not to remove them, so that our experiment will be
as close as possible to the original experiment.

3) Sending out invitations to participate in the experi-
ment. The target audience was similar to that of the
original study, and included professional developers
and CS students. Potential participants were incen-
tivized by a lottery for a gift card of 300 NIS (about
$85).

4) Presenting the scenarios to subjects on the Google
Forms platform, and collection of the results.

5) Downloading the results, and tabulating the distri-
bution of the names given for each variable and
function. This was then compared with the results
obtained in the original study. Specifically we checked
if there is a difference in the main results in terms of
bias reduction, as reflected by the focus on the most
popular answers.

46 people responded to our questionnaire, of which 39
were students: 10 were studying for a BSc degree, 21 for an
MSc, and 8 and for a PhD. Nearly all were between 20–35
years of age, with nearly half between 25–30. 15 had no
industrial programming experience, while 10 had 7 or more
years of such experience. This indicates, as is well-known,
that many students work in parallel with their studies, and
the division of experimental subjects into “students” and
“professionals” is overly simplistic [18].

D. Results Normalization
The last step of the execution of the experiment included

a manual cleaning up of the results. Specifically, the
following changes where made to the raw results before
they were analyzed:

• Indications that the participant did not understand
what to do were removed and treated as if no answer
had been given.

• Indications of a namespace, such as self., were
removed, leaving only the bare name.

• In questions where a function signature was re-
quested, the return type was removed, leaving only
the function name. In the analysis reported here we
also ignored any parameters that were given, as differ-
ent participants used different numbers of parameters
with different semantics.

TABLE I
Results of explicit interpretation questions.

Emojis Interpretation n percent

-
hourly wage 33 77%
salary 3 7%
other 7 16%
calculate 37 90%
count 2 5%
other 2 5%
wrapper 30 75%
paper 3 8%
other 5 18%
ice-cream sandwich 30 73%
biscuit/cake 7 17%
ice-cream 4 10%

• In the elevator scenario we exchanged those cases
where participants confused the variable referring
to the current floor with the one referring to the
destination floor, so as to avoid confusing mistakes
in semantics with variations in naming (see below).

IV. Experimental results
A. Understanding Emojis

A premise of our work is that the experimental subjects
understand the scenarios and questions presented to them
using emojis. Checking this completes the answer to RQ1.

Two of the scenarios included questions that inadver-
tently check this directly. These are questions about the
interpretation of given names (a concept, a function name,
and two parameters), where these names happen to be
represented by emojis. However, note that such questions
were retained from the original experiment, and were not
designed specifically to test the understanding of emojis.
The results of these questions are shown in Table I. In one
case 90% were completely right and another 5% were close.
In the other three cases about 3/4 were completely right,
and a few more were close. These results indicate that at
least 80% of the participants and in some cases perhaps
up to 100% understood the emojis.

But it is more important to see whether the subjects
understood the scenarios and questions, not individual
emojis. Looking at the questions where subjects were
required to give names to variable or functions, in the vast
majority of cases the names they gave indicated that they
had understood the emojis correctly. However, there was
one case in which a sizeable fraction did not understand
our intent. The scenario was the well-known minesweeper
game (which we referred to as a “pastime” in order to avoid
the word “game”). One of the questions in this scenario
was:

Write a function signature for a function which

receives ..., and

and returns the of the pastime

The icon was supposed to reflect the difficulty of
the game, and indeed 44% of the subjects who answered
this question understood this intent, giving names such as
get_difficulty and calculate_challenge_level. But
15% thought that we meant the construction or setup of
a new game, giving names such as createBoard, and an-
other 21% thought we meant playing or solving the game,
giving names such as play_mines or get_user_moves. In
addition, 10% explicitly indicated they did not understand
what we meant.

Note, however, that not all mistakes or misunderstand-
ings were due to emojis. The most obvious example oc-
curred in the elevator scenario. One of the questions in
this scenario included the following code:

if (var1 > var2)
direction = "Up"
var3 = var1 - var2

(var3)

if (var1 < var2)
direction = "Down"
var3 = var2 - var1

(var3)

(where the icons replace the function names goUp and
goDown from the original version, and the subjects knew
that they represent function names but of course not the
names themselves). The question then was to give better
names to var1, var2, and var3. The answers revealed that
66% of those who answered this question understood that
var1 represents the destination floor and var2 represents
the current floor, but 26% got confused and mistakenly
thought it was the other way around. Consequently, just
counting mistakes is not a good way to assess the under-
standing of emojis.

B. Name Choice
The goal of our work was to investigate whether using

emojis in lieu of key words in scenarios and questions can
reduce the accessibility bias caused by using such words.
One aspect of this issue is whether participants tended to
use the same names — presumably due to being influenced
by the scenario description and the question, or perhaps
they tended to come up with totally different names.

Feitelson et al. defined two related metrics for the
distribution of names [19]:

• The degree of focus on using a particular name. This
was quantified as the fraction of times that the most
popular name was used.

• The diversity of names used. This was quantified as
the quotient of the number of different names given
divided by the total number of responses received.

TABLE II
Results of name reuse in all versions of questions concerned with giving names. Note that these results are for the complete names, not for

concepts; using an abbreviation or a different word order is counted as a different name. N : number of answers to this question; dif:
number of different names given; div=dif/N : diversity of names; max: maximal answers giving the same name; Pmax=max/N : probability

of most popular name (focus); P2hit: probability of two participants using the same name.

Scenario Question N dif div max Pmax P2hit
Candy constant specifying work hours per week 44 40 0.909 2 0.045 0.0268
factory variable holding hourly wage during overtime 42 37 0.880 4 0.095 0.0328
Elevator variable with requested floor 40 27 0.675 9 0.225 0.0775

variable with current elevator location 40 17 0.425 17 0.425 0.2124
variable with number of floors to move 39 26 0.666 5 0.128 0.0571
variable with state of elevator doors 40 16 0.400 15 0.375 0.1787

File field in file object describing file size 46 9 0.195 30 0.652 0.4669
system function checking if there is enough disk space to extend a file 46 39 0.847 3 0.065 0.0302
Mine- function calculating game’s difficulty level 35 27 0.771 4 0.114 0.0497
sweeper variable with game’s time 43 25 0.581 6 0.139 0.0665

data structure indicating mine or number of adjacent mines 39 32 0.820 6 0.153 0.0479
Benefits constant with value 4 (max benefits per month) 41 26 0.634 8 0.195 0.0719
card constant with value 2000 (shekels per benefits point) 41 37 0.902 5 0.121 0.0362

variable with entitled benefits this month 41 41 1.000 1 0.024 0.0243
function checking if balance of benefits is positive 41 41 1.000 1 0.024 0.0243

Ice cream function calculating how many sandwiches can be produced 41 40 0.975 2 0.048 0.0255

fraction of responses

0 0.2 0.4 0.6 0.8 1

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

focus

diversity

Fig. 2. Cumulative distribution of focus and diversity of names given
in the experiment questions.

The results for the 16 questions concerned with naming
variables and functions in the 6 scenarios we used are
tabulated in Table II. This includes both the raw results
and the quotients as defined above. In addition, the last
column presents an estimate of the probability that two
different developers would use the same name. Following
Feitelson et al. this is calculated as [19]

P2hit =

k∑
i=1

p2i (1)

where we observe k distinct names, and pi denotes the
probability of choosing name i (as estimated by its relative
popularity).

Fig. 2 shows the distribution of the focus and diversity
across the 16 questions. The median focus was 0.13, and in
75% of the cases the focus was less than 0.2. The maximal
focus was 0.65, which occurred when size was used to
name a field containing the size of a file in a data structure
representing the file. This was also the instance with the
highest focus in the original study.

The median diversity was 0.8, and in 75% of the cases
the diversity was higher than 0.6. In two cases the diversity
was 1: all the names were different from each other. The
lowest diversity, 0.2, occurred in the same case as the high-
est focus, and indeed there is a strong negative correlation
between the focus and the diversity with ρ = −0.93.

The median estimated probability for choosing the same
name was 0.049, lower than the 0.069 found in the original
study. In 75% of the cases the estimate was lower than
0.072. The highest estimate, 0.47, occurred again in the
case of the size field. The next highest estimate was less
than half this value.

C. Accessibility Bias

Our main goal is to see whether using emojis can reduce
the accessibility bias, as reflected in RQ2. We therefore
conducted an in-depth investigation of the concepts and
words used by the experiment participants when answer-
ing each question. Feitelson et al. [19] present a tool used
to manually identify the concepts embedded in each name
and the words representing each concept. We used this
tool to do the same for our data, and compare with the
results of Feitelson et al. [19] (which were not presented
in detail in their paper).

Table III shows the identified concepts used by partic-
ipants in our experiment (based on emoji descriptions)
compared with the concepts used by participants in the
original experiment (based on descriptions in English and
Hebrew). We define concept importance levels as follows:

• Dominant = appears in at least 90% of the names
• Major = appears in at least 70% of the names
• Important = appears in at least 30% of the names
• unimportant = appears in less than 30% of the names

Unimportant concepts are shown only if they are impor-
tant in another experimental setting. For each concept, we

TABLE III
Concept usage in the different questions of the experiment. Resuls based on emojis (Emj) are ours. Results about English and Hebrew

versions are from the experimental materials of Feitelson et al. [19].

Concept Importance Focus Div. Dominant words
Candy: constant specifying work hours per week
Eng hours 0.78 M 0.90 0.09 hours (90%)

full 0.36 I 1 0.06 full_time (100%)
threshold 0.34 I 0.21 0.50 capacity (21%), min (21%), threshold (21%)
week 0.34 I 0.85 0.21 weekly (85%)
job 0.21 - 0.44 0.44 work (44%)
normal 0.19 - 0.37 0.62 base (37%)

Heb hours 0.72 M 0.96 0.06 hours (96%)
full 0.51 I 0.50 0.13 full_time (50%), full (45%)
job 0.46 I 0.40 0.30 job (40%), work (30%), overtime (15%)
week 0.32 I 0.42 0.35 per_week (42%), week (21%), weekly (21%)
threshold 0.20 - 0.44 0.44 max (44%), threshold (33%)
normal 0.16 - 0.42 0.42 base (42%)

Emj hours 0.78 M 0.62 0.06 hours (62%), time (37%)
weekly 0.54 I 0.40 0.15 week (40%), weekly (40%), per_week (20%)
regular 0.48 I 0.22 0.72 base (22%)
work 0.45 I 0.88 0.17 work (88%)

Candy: variable holding hourly wage during overtime
Eng pay_rate 1 D 0.39 0.14 wage (39%), rate (34%), pay (12%), salary (7%)

overtime 0.82 M 0.85 0.14 overtime (85%)
add 0.12 - 0.40 0.80

Heb overtime 0.83 M 0.27 0.25 extra_hours (27%), overtime (27%), extra (11%), extra_time (11%)
pay_rate 0.74 M 0.65 0.25 rate (65%), payment (9%)
add 0.39 I 0.41 0.29 addition (41%), bonus (41%)

Emj salary 0.85 M 0.35 0.26 salary (35%), rate (20%), wage (11%), money (8%), payment (8%)
overtime 0.70 M 0.60 0.28 overtime (60%), extra_hours (17%)
extra 0.25 - 0.30 0.60 bonus (30%), increase (30%)

Elevator: variable with requested floor
Eng destination 1 D 0.33 0.43 destination (33%), requested (10%), target (10%)

floor 0.87 M 0.91 0.08 floor (91%)
Heb destination 1 D 0.35 0.30 destination (35%), target (22%), requested (10%), desired (7%)

floor 0.90 D 0.88 0.11 floor (88%)
Emj destination 0.97 D 0.30 0.35 target (30%), destination (23%), requested (7%)

floor 0.80 M 0.90 0.09 floor (90%)
Elevator: variable with current elevator location
Eng current 1 D 0.91 0.11 current (91%)

floor 0.97 D 0.90 0.12 floor (90%)
Heb current 0.95 D 0.87 0.12 current (87%)

floor 0.92 D 0.84 0.10 floor (84%), level (7%)
Emj current 0.97 D 0.81 0.15 current (81%)

floor 0.87 M 0.88 0.11 floor (88%)
Elevator: variable with number of floors to move
Eng floor 0.87 M 0.91 0.11 floor (91%)

difference 0.58 I 0.47 0.26 difference (47%), delta (21%), distance (17%)
move 0.28 - 0.72 0.27 move (72%)

Heb floor 0.76 M 0.91 0.08 floor (91%)
difference 0.46 I 0.36 0.31 difference (36%), delta (27%), gap (13%)
move 0.38 I 0.61 0.16 move (61%), to_go (22%), travel (16%)

Emj floors 0.79 M 0.96 0.06 floors (96%)
move 0.48 I 0.57 0.21 move (57%), travel (26%)
difference 0.48 I 0.52 0.31 difference (52%), distance (15%), delta (15%)

Elevator: variable with state of elevator doors
Eng door 0.67 I 1 0.03 door (100%)

state 0.50 I 1 0.05 state (100%)
open 0.47 I 0.89 0.10 open (89%)
current 0.47 I 0.84 0.10 is (84%), current (15%)

Heb door 0.79 M 1 0.02 door (100%)
current 0.55 I 0.96 0.07 is (96%)
open 0.53 I 0.84 0.07 open (84%), close (15%)
state 0.40 I 0.65 0.10 state (65%), status (35%)

Emj open 0.72 M 0.86 0.06 open (86%), closed (13%)
door 0.60 I 1 0.04 door (100%)
current 0.55 I 1 0.04 is (100%)
state 0.27 - 0.63 0.27 state (63%), status (27%)

TABLE III
Concept usage in the different questions of the experiment (continued).

Concept Importance Focus Div. Dominant words
Files: field in file object describing file size
Eng size 1 D 0.97 0.04 size (97%)

file 0.45 I 1 0.05 file (100%)
Heb size 1 D 1 0.01 size (100%)

file 0.52 I 1 0.03 file (100%)
Emj size 0.93 D 1 0.02 size (100%)

file 0.28 - 0.92 0.15 file (92%)
Minesweeper: variable with game’s time
Eng time 0.93 D 0.81 0.06 time (81%), timer (13%)

game 0.51 I 0.91 0.12 game (91%)
length 0.21 - 0.40 0.50 elapsed (40%), duration (30%)

Heb time 0.86 M 0.67 0.13 time (67%), timer (18%)
length 0.40 I 0.3 0.45 elapsed (30%), duration (25%)
game 0.38 I 0.89 0.10 game (89%)

Emj time 0.97 D 0.61 0.14 time (61%), timer (11%), seconds (11%), clock (9%)
length 0.34 I 0.40 0.40 elapsed (40%), passed (33%)
game 0.09 - 0.50 0.75

Minesweeper: data structure indicating mine or number of adjacent mines
Eng board 0.59 I 0.34 0.26 board (34%), grid (30%), map (15%)

mines 0.40 I 1 0.05 mines (100%)
cell 0.22 - 0.50 0.40 cell (50%), square (30%)
state 0.20 - 0.33 0.55 data (33%), value (33%)
number 0.04 - 1 0.50

Heb board 0.53 I 0.50 0.28 board (50%), field (10%), map (10%), matrix (10%)
mines 0.46 I 0.83 0.12 mines (83%), bomb (12%)
state 0.30 I 0.18 0.62 values (18%), info (18%)
cell 0.28 - 0.60 0.26 cell (60%), square (26%)
number 0.07 - 0.75 0.50 number (75%)

Emj count 0.44 I 0.52 0.35 values (52%), number (17%)
board 0.39 I 0.66 0.33 board (66%)
tiles 0.36 I 0.50 0.35 cell (50%), tile (28%)
mines 0.23 - 0.55 0.33 bomb (55%), mine (33%)

Card benefits: constant with value 4 (max benefits per month)
Eng benefit 0.94 D 0.98 0.03 benefit (98%)

max 0.88 M 0.89 0.06 max (89%), limit (8%)
month 0.38 I 0.71 0.14 per_month (71%), monthly (19%)

Heb benefit 0.97 D 0.28 0.28 pinuk (28%), treat (21%), gift (14%), benefit (11%)
max 0.88 M 0.92 0.07 max (92%)
month 0.41 I 0.55 0.16 per_month (55%), monthly (27%), month (16%)

Emj points 0.92 D 0.62 0.32 diamonds (62%), points (10%)
max 0.92 D 0.91 0.08 max (91%)
per_month 0.37 I 0.66 0.20 per_month (66%), monthly (20%)

Card benefits: constant with value 2000 (shekels per benefits point)
Eng amount 0.78 M 0.27 0.39 ils (27%), value (11%), amount (9%), sum (6%), money (6%)

benefit 0.78 M 0.97 0.04 benefit (97%)
threshold 0.32 I 0.27 0.55 min (27%), threshold (22%)

Heb benefit 0.90 D 0.30 0.30 pinuk (30%), treat (23%), gift (12%), benefit (7%)
amount 0.79 M 0.20 0.41 money (20%), price (14%), cost (11%), amount (8%), spending (8%)
threshold 0.34 I 0.33 0.53 threshold (33%), min (26%)

Emj points 0.87 M 0.64 0.29 diamond (64%), point (8%)
money 0.84 M 0.24 0.36 value (24%), dollar (15%), money (15%), shekel (12%), spending (9%)
ratio 0.74 M 0.37 0.34 per (37%), rate (13%), for (13%), to (10%)

Card benefits: variable with entitled benefits this month
Eng benefit 0.94 D 0.98 0.03 benefit (98%)

number 0.49 I 0.70 0.14 number (70%), count (22%)
current 0.41 I 1 0.04 current (100%)
month 0.3 I 0.94 0.11 month (94%)
available 0.3 I 0.58 0.41 entitlement (58%)

Heb benefit 0.97 D 0.28 0.26 pinuk (28%), treat (21%), gift (16%), benefit (9%), bonus (7%)
number 0.37 I 0.81 0.25 number (81%)
current 0.34 I 1 0.06 current (100%)
available 0.30 I 0.38 0.69 available (38%)
month 0.25 - 0.72 0.27 month (72%)

Emj points 0.97 D 0.65 0.27 diamonds (65%), points (12%)
have 0.53 I 0.18 0.50 earned (18%), entitled (18%), available (13%), accumulated (13%)
time 0.39 I 0.37 0.31 current (37%), current_month (25%), monthly (18%)
number 0.36 I 0.80 0.26 number (80%)

focus

0 0.2 0.4 0.6 0.8 1

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

English

Hebrew

emoji

diversity

0 0.2 0.4 0.6 0.8 1

c
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

0

20

40

60

80

100

English

Hebrew

emoji

Fig. 3. Comparison of the cumulative distributions of focus and
diversity of important concepts, for English and Hebrew descriptions
from Feitelson et al. [19] and emoji descriptions from our experiment.

also calculate focus and diversity of its words, and show
the top words used to represent this concept.

Looking at the results, three classes of questions can
be identified. One class contains mainly questions that
have an obvious dominant answer. For example, when
asking about the field containing the file size in a file
system context, practically all participants used the word
“size” and about half also used “file”. In the question
about overtime wages in the candy factory scenario, a mix
of different words were used, but the top concepts were
“overtime” and “salary”. In these cases the presentation
style (English, Hebrew, or emojis) does not make a big
difference.

Another class of questions are those where using emojis
did make a difference. In some cases different concepts
were used:

• In the question concerning the variable for holding the
playing time of the minesweeper game, the top con-
cepts in the original experiment were “time”, “game”,
and “length”. In our emoji version, “game” was very
seldom used leaving only two important concepts.

• For the data structure that maps cells to mines, in the
original experiment “board” and “mine” were the top
concepts, the concept of “cell” was used much less,
and the concept of “number” was hardly used. In the

emoji version “number” was the top concept, followed
by “board” and “tiles” (cells).

In other cases, different words were used. For example,
Around half the participants included the concept of
“full-time” in the constant specifying the working hours
per week in the candy factory scenario. In the original
experiment this was an extremely focused concept. With
emojis it was extremely diverse.

The third and final class is where the emoji used caused
an unintended accessibility effect of its own. We had
one such example: the credit card scenario, where benefit
points accrued by charging expenses to the credit card
were represented by . This choice caused more than
half of the participants to use the word “diamond”. The
effect was not as strong as the English version of the
original experiment (where “benefits” was used by nearly
everyone), but stronger than in the Hebrew version (where
the transliteration of the Hebrew word “pinuk” was used
by about 30%).

Fig. 3 shows the cumulative distribution of the focus
and diversity of word use in all the important concepts
(importance≥0.3) from all the questions. The results when
using emojis is compared with the results from the original
experiment of Feitelson et al. [19]. It is easy to see that
when using English the focus is higher and the diversity is
lower. Emojis are similar to using Hebrew, perhaps even
leading to slightly higher diversity.

V. Threats to validity

a) Construct Validity: Our measurements may not
measure the right thing for several reasons, e.g. if the
questions we used in the experiment were too simple or the
text was not rich enough. In the industry specifications are
much longer and exhausting to read. Short descriptions
like ours may therefore guide developers to the same
variable name, even after the text was translated to emojis.

It may also be that different cultures or genders will
have different perceptions of specific emojis, leading to a
bias. For instance, does represent the word “king”,
“queen”, or just “crown”? Moreover, there is a danger
that emojis will be misunderstood, as the vocabulary of
emojis is rather limited.

b) Internal Validity: Our conclusions may not follow
from the experiments for several reasons. Our question-
naire response rate was somewhat lower than the response
rate of the original study, which might have an effect on
the results.

The translation to emojis may be problematic. The
vocabulary of emojis is limited and does not include may
concepts and nuances. In some cases we used somewhat
distorted language, or even modified the description and
questions, so as to avoid explicit key words that might
cause an accessibility bias. This may affect understanding,
and especially limit the comparability with the results of

the original experiment.

c) External Validity: Our research might not be gen-
eralizable. Our experimental subjects were mostly from
academia and specifically from the Hebrew University,
which might cause a bias: they mostly underwent univer-
sity education, which might be different from college edu-
cation or self-education; many had limited or no industrial
experience; they have the free time for participating in an
experiment; and they might participate because they know
us personally, further reducing their representativeness.

VI. Discussion and Conclusions
We have replicated a study on variable and function

naming by Feitelson et al. [19]. In the original study
the accessibility bias was reduced by employing bilingual
experimental subjects, and providing scenario descriptions
in Hebrew rather than in English. In our replications the
descriptions were in English, but key words were replaced
by emojis. The results indicate that this reduced the
accessibility bias to a similar degree as using a foreign
language. As a result names tended to have a more diverse
use of words.

However, in some cases not only the words but also the
concepts embedded in names when the descriptions used
emojis were somewhat different from the concepts when
the descriptions were verbal. Additional work is therefore
needed to better understand how developers select the
concepts to embed in names.

An important observation, both in the original experi-
ment of Feitelson et al. [19] and in our replication using
emojis, is the focus-diversity dichotomy. This occurs both
at the level of complete names and at the level of words
used to represent an individual concept within names.
Focus means that a single name or word dominates, and
few others are used. Diversity means that many different
names or words are used, and none of them dominates.
The results indicate that in some cases we find high focus
and low diversity, while in others the focus is low and the
diversity high.

In terms of program comprehension research, focused
situations are probably not very interesting. The focus
testifies that all participants understood the situation in
the same way and expressed themselves in the same way.
It stands to reason that the chosen names will be easily
understood.

The diverse situations, on the other hand, are those that
deserve further study. The diversity in names and words
testifies that there may be different ways to understand the
situation. And even if not, using different words implies
different semantic nuances. Thus choosing different names
and words may cause misunderstandings and confusion.

Emojis can help studying diverse naming by helping to
eliminate, or at least decrease, the accessibility bias. By
using emojis we can avoid the use of specific words, and
thereby avoid implanting specific ideas in the minds of

experimental subjects. However, emojis are not a panacea.
Problems that can occur with emojis can lead either to
high focus or to high diversity, in both cases threatening
the experimental validity.

• High focus can be a sign of a crisp, well-defined
situation as noted above. However, it can also reflect
a problematic description using emojis:
– Using too obvious emojis with a specific obvious

meaning. This is especially harmful if this meaning
is not exactly the intended one.

– Important key words were not translated, and the
description is still very verbal. In other words, an
explicit accessibility bias exists.

In these situations, the experiment does not expose
the potential diversity of names and the misunder-
standings that they may cause.

• High diversity can also be a result of problems with
the emoji representation:
– When the emoji is ambiguous, and can reasonably

be interpreted in different ways.
– When the whole descriptions becomes vague and

puzzling, due to modifications made as part of the
emoji translation.

In these situations the desired functionality of the
variable becomes less understandable, rendering ex-
periments concerning its naming invalid.

Both these cases show the importance a running a pilot
on the emojis descriptions. By conducting a pilot with an
adequate debriefing of the participants one can reduce the
danger of both over-specific emojis and ambiguous ones.

To conclude, we believe that non-verbal expressions such
as emojis should be considered as a tool that improves
research in naming. Descriptions with emojis are similarly
expressive as verbal text, and emojis are generally well
understood. In addition, emojis can reduce the acces-
sibility bias. And this approach has the advantage of
not requiring experimental subjects who are fluent in a
foreign language, making it suitable for English speaking
experimental subjects.

Experimental Materials
The experimental materials, including survey questions,

responses, analysis scripts, and results, are available using
DOI 10.5281/zenodo.4603985.

References
[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning

natural coding conventions”. In 22nd Foundations Softw. Eng.,
pp. 281–293, Nov 2014, DOI: 10.1145/2635868.2635883.

[2] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Em-
pirical analysis of change-proneness in methods having local
variables with long names and comments”. In Intl. Symp.
Empirical Softw. Eng. & Measurement, pp. 50–53, Oct 2015,
DOI: 10.1109/ESEM.2015.7321197.

[3] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic
antipatterns: What they are and how developers perceive them”.
Empirical Softw. Eng. 21(1), pp. 104–158, Feb 2016, DOI:
10.1007/s10664-014-9350-8.

https://dx.doi.org/10.5281/zenodo.4603985

[4] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto,
G. Antoniol, and Y.-G. Guéhéneuc, “REPENT: Analyzing the
nature of identifier renamings”. IEEE Trans. Softw. Eng. 40(5),
pp. 502–532, May 2014, DOI: 10.1109/TSE.2014.2312942.

[5] E. Avidan and D. G. Feitelson, “Effects of variable names
on comprehension: An empirical study”. In 25th Intl.
Conf. Program Comprehension, pp. 55–65, May 2017, DOI:
10.1109/ICPC.2017.27.

[6] G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G.
Feitelson, “Meaningful identifier names: The case of single-letter
variables”. In 25th Intl. Conf. Program Comprehension, pp.
45–54, May 2017, DOI: 10.1109/ICPC.2017.18.

[7] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell,
and B. Sharif, “The impact of identifier style on effort and
comprehension”. Empirical Softw. Eng. 18(2), pp. 219–276, Apr
2013, DOI: 10.1007/s10664-012-9201-4.

[8] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase
or under_score”. In 17th Intl. Conf. Program Comprehension,
pp. 158–167, May 2009, DOI: 10.1109/ICPC.2009.5090039.

[9] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier in-
formativeness using part of speech information”. In 8th Working
Conf. Mining Softw. Repositories, pp. 203–206, May 2011, DOI:
10.1145/1985441.1985471.

[10] D. Binkley and D. Lawrie, “The impact of vocabulary normal-
ization”. Software: Evolution & Process 27(4), pp. 255–273, Apr
2015, DOI: 10.1002/smr.1710.

[11] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identi-
fier length and limited programmer memory”. Sci. Com-
put. Programming 74(7), pp. 430–445, May 2009, DOI:
10.1016/j.scico.2009.02.006.

[12] S. Butler, M. Wermelinger, and Y. Yu, “Investigating nam-
ing convention adherence in Java references”. In 31st Intl.
Conf. Softw. Maint. & Evol, pp. 41–50, Sep 2015, DOI:
10.1109/ICSM.2015.7332450.

[13] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring
the influence of identifier names on code quality: An empirical
study”. In 14th European Conf. Softw. Maintenance & Reengi-
neering, pp. 156–165, Mar 2010, DOI: 10.1109/CSMR.2010.27.

[14] B. Caprile and P. Tonella, “Restructuring program identifier
names”. In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct
2000, DOI: 10.1109/ICSM.2000.883022.

[15] F. Deißenböck and M. Pizka, “Concise and consistent naming”.
In 13th IEEE Intl. Workshop Program Comprehension, pp.
97–106, May 2005, DOI: 10.1109/WPC.2005.14.

[16] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The
effect of poor source code lexicon and readability on developers’
cognitive load”. In 26th Intl. Conf. Program Comprehension, pp.
286–296, May 2018, DOI: 10.1145/3196321.3196347.

[17] S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope,
“Measuring the impact of lexical and structural inconsistencies
on developers’ cognitive load during bug localization”. Empirical
Softw. Eng. 2019, DOI: 10.1007/s10664-019-09751-4.

[18] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedl-
itschka, and M. Oivo, “Empirical software engineering experts
on the use of students and professionals in experiments”.
Empirical Softw. Eng. 23(1), pp. 452–489, Feb 2018, DOI:
10.1007/s10664-017-9523-3.

[19] D. G. Feitelson, A. Mizrahi, N. Noy, A. Ben Shabat, O. Eliyahu,
and R. Sheffer, “How developers choose names”. IEEE Trans.
Softw. Eng. 2020, DOI: 10.1109/TSE.2020.2976920.

[20] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter iden-
tifier names take longer to comprehend”. Empirical Softw. Eng.
24(1), pp. 417–443, Feb 2019, DOI: 10.1007/s10664-018-9621-x.

[21] G. J. Holzmann, “Code clarity”. IEEE Softw. 33(2), pp. 22–25,
Mar/Apr 2016, DOI: 10.1109/MS.2016.44.

[22] D. Lawrie, H. Feild, and D. Binkley, “Quantifying identifier
quality: An analysis of trends”. Empirical Softw. Eng. 12(4),
pp. 359–388, Aug 2007, DOI: 10.1007/s10664-006-9032-2.

[23] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a
name? a study of identifiers”. In 14th Intl. Conf. Program Com-
prehension, pp. 3–12, Jun 2006, DOI: 10.1109/ICPC.2006.51.

[24] O. A. L. Lemos, M. Suzuki, A. C. de Paula, and C. Le Goes,
“Comparing identifiers and comments in engineered and non-
engineered code: A large-scale empirical study”. In 35th
ACM Symp. Applied Computing, pp. 100–109, Mar 2020, DOI:
10.1145/3341105.3373972.

[25] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on
the role of naming in computer programs”. In 18th Psychology
of Programming Workshop, pp. 53–67, Sep 2006.

[26] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu,
S. Kim, and Y. Le Traon, “Learning to spot and refactor
inconsistent method names”. In 41st Intl. Conf. Softw. Eng.,
May 2019.

[27] R. C. Martin, Clean Code: A Handbook of Agile Software Craft-
manship. Prentice Hall, 2009.

[28] C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma,
D. Kaushik, and E. Hill, “An empirical study of abbrevi-
ations and expansions in software artifacts”. In Intl. Conf.
Softw. Maintenance & Evolution, pp. 269–279, Sep 2019, DOI:
10.1109/ICSME.2019.00040.

[29] V. Raychev, M. Vechev, and A. Krause, “Predicting program
properties from “big code””. In 42nd Ann. Symp. Princi-
ples of Programming Languages, pp. 111–124, Jan 2015, DOI:
10.1145/2775051.2677009.

[30] F. Salviulo and G. Scanniello, “Dealing with identifiers and
comments in source code comprehension and maintenance:
Results from an ethnographically-informed study with stu-
dents and professionals”. In 18th Intl. Conf. Evaluation &
Assessment in Softw. Eng., art. no. 48, May 2014, DOI:
10.1145/2601248.2601251.

[31] G. Scanniello and M. Risi, “Dealing with faults in source
code: Abbreviated vs. full-word names”. In 29th Intl.
Conf. Softw. Maintenance, pp. 190–199, Sep 2013, DOI:
10.1109/ICSM.2013.30.

[32] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister,
T. Riedel, and M. Beigl, “Descriptive compound identifier
names improve source code comprehension”. In 26th Intl.
Conf. Program Comprehension, pp. 31–40, May 2018, DOI:
10.1145/3196321.3196332.

[33] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility:
An experimental investigation”. J. Prog. Lang. 4, pp. 143–167,
Sep 1996.

	Introduction
	Research Questions
	Methodology
	Sources for Emojis
	Translating Scenario Descriptions to Emojis
	Execution of the Experiment
	Results Normalization

	Experimental results
	Understanding Emojis
	Name Choice
	Accessibility Bias

	Threats to validity
	Discussion and Conclusions
	References

