
The Forgotten Fa
tor: Fa
tson Performan
e Evaluation and its Dependen
eon WorkloadsDror G. FeitelsonS
hool of Computer S
ien
e and EngineeringThe Hebrew University, 91904 Jerusalem, Israelfeit�
s.huji.a
.ilhttp://www.
s.huji.a
.il/~feitAbstra
t. The performan
e of a
omputer system depends not only onits design and implementation, but also on the workloads it has to handle.Indeed, in some
ases the workload
an sway performan
e evaluationresults. It is therefore
ru
ially important that representative workloadsbe used for performan
e evaluation. This
an be done by analyzing andmodeling existing workloads. However, as more sophisti
ated workloadmodels be
ome ne
essary, there is an in
reasing need for the
olle
tionof more detailed data about workloads. This has to be done with an eyefor those features that are really important.1 Introdu
tionThe s
ienti�
 method is based on the ability to reprodu
e and verify resear
h re-sults. But in pra
ti
e, the resear
h literature
ontains many
on
i
ting a

ountsand
ontradi
tions | espe
ially multiple
on
i
ting
laims to be better than the
ompetition. This
an often be tra
ed to di�eren
es in the methodology or the
onditions used in the evaluation. In this paper we fo
us on one important aspe
tof su
h di�eren
es, namely di�eren
es in the workloads being used. In parti
ular,we will look into the
hara
terization and modeling of workloads used for theevaluation of parallel systems.The goal of performan
e evaluation is typi
ally not to obtain absolute num-bers, but rather to di�erentiate between alternatives. This
an be done in the
ontext of system design, where the better design is sought, or as part of a pro-
urement de
ision, where the goal is to �nd the option that provides the bestvalue for a given investment. In any
ase, an impli
it assumption is that dif-feren
es in the evaluation results re
e
t real di�eren
es in the systems understudy. But this is not always the
ase. Evaluation results depend not only on thesystems, but also on the metri
s being used and on the workloads to whi
h thesystems are subje
ted.To
ompli
ate matters further, there may be various intera
tions betweenthe system, workload, and metri
. Some of these intera
tions lead to problems,as des
ribed below. But some are perfe
tly benign. For example, an intera
tion

2between the system and a metri
 may a
tually be a good thing. If systems aredesigned with di�erent obje
tives in mind, metri
s that measure these obje
tivesshould indeed rank them di�erently. In fa
t, su
h metri
s are exa
tly what weneed if we know whi
h obje
tive fun
tion we wish to emphasize. An intera
tionbetween the workload and the metri
 is also possible, and may be meaningless.For example, if one workload
ontains longer jobs than another, its averageresponse time will also be higher. On the other hand, intera
tions between asystem and a workload may be very important, as they may help identify systemvulnerabilities.But when the e�e
ts leading to performan
e evaluation results are unknownand not understood, this is a problem. Con
i
ting results
ast a shadow ofdoubt on our
on�den
e in all the results. A solid s
ienti�
 and experimentalmethodology is required in order to prevent su
h situations.2 Examples of the Importan
e of WorkloadsTo support the
laim that workloads make a di�eren
e, this se
tion presentsthree spe
i�

ases in some detail. These are all related to the s
heduling ofparallel jobs.A simple model of parallel jobs
onsiders them as re
tangles in pro
essors�timespa
e: ea
h job needs a
ertain number of pro
essors for a
ertain interval of time.S
heduling is then the pa
king of these job-re
tangles into a larger re
tangle thatrepresents the available resour
es. In an on-line setting, the time dimension maynot be known in advan
e. Dealing with this using preemption means that thejob re
tangle is
ut into several sli
es, representing the work done during ea
htime sli
e.2.1 E�e
t of Job-Size DistributionThe pa
king of jobs obviously depends on the distribution of job sizes. A goodexample is provided by the DHC s
heme [12℄, in whi
h a buddy system is usedfor pro
essor allo
ation: ea
h request is extended to the next power of two, andallo
ations are always done is power-of-two blo
ks of pro
essors. This s
heme wasevaluated with three di�erent distributions: a uniform distribution in whi
h allsizes are equally likely, a harmoni
 distribution in whi
h the probability of size sis proportional to 1=s, and a uniform distribution on powers of two. Both anal-ysis and simulations showed signi�
ant di�eren
es between the utilizations that
ould be obtained for the three distributions [12℄. This
orresponds to di�erentdegrees of fragmentation that are inherent to pa
king with these distributions.For example, with a uniform distribution, rounding ea
h request size up to thenext power of two leads to 25% loss to fragmentation | the average between noloss (if the request is an exa
t power of two) to nearly 50% loss (if the request isjust above a power of two, and we round up to the next one). The DHC s
hemere
overs part of this lost spa
e, so the �gure is a
tually only 20% loss, as shownin Figure 1.

3

0

5

10

15

20

0.4 0.5 0.6 0.7 0.8 0.9 1

m
ed

ia
n

sl
ow

do
w

n

generated load

uniform
harmonic

powers of 2

Fig. 1. Simulation results showing normalized response time (slowdown) as a fun
tionof load for pro
essor allo
ation using DHC, from [12℄. The three
urves are for exa
tlythe same system | the only di�eren
e is in the statisti
s of the workload. The dashedlines are proven bounds on the a
hievable utilization for the three workloads.Note that this analysis tells us what to expe
t in terms of performan
e,provided we know the distribution of job sizes. But what is a typi
al distributionen
ountered in real systems in produ
tion use? Without su
h knowledge, theevaluation
annot provide a de�nitive answer.2.2 E�e
t of Job S
aling PatternIt is well-known that average response time is redu
ed by s
heduling short jobs�rst. The problem is that the runtime is typi
ally not known in advan
e. But inparallel systems s
heduling a

ording to job size may unintentionally also leadto s
heduling by duration, if there is some statisti
al
orrelation between thesetwo job attributes.As it turns out, the question of whether su
h a
orrelation exists is not easyto settle. Three appli
ation s
aling models have been proposed in the literature[30, 23℄:{ Fixed work. This assumes that the work done by a job is �xed, and parallelismis used to solve the same problems faster. Therefore the runtime is assumed tobe inversely proportional to the degree of parallelism (negative
orrelation).This model is the basis for Amdahl's law.{ Fixed time. Here it is assumed that parallelism is used to solve in
reasinglylarger problems, under the
onstraint that the total runtime stays �xed. Inthis
ase, the runtime distribution is independent of the degree of parallelism(no
orrelation).{ Memory bound. If the problem size is in
reased to �ll the available memoryon the larger ma
hine, the amount of produ
tive work typi
ally grows at

4 ina

urate estimates a

urate estimates
0

20

40

60

80

100

0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

load

EASY
conservative

0

20

40

60

80

100

0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

load

EASY
conservative

Fig. 2. Comparison of EASY and
onservative ba
k�lling using the CTC workload,with ina

urate and a

urate user runtime estimates.least linearly with the parallelism. The overheads asso
iated with parallelismalways grow superlinearly. Thus the total exe
ution time a
tually in
reaseswith added parallelism (a positive
orrelation).Evaluating job s
heduling s
hemes with workloads that
onform to the di�er-ent models leads to drasti
ally di�erent results. Consider a workload that is
omposed of jobs the use power-of-two pro
essors. In this
ase a reasonables
heduling algorithm is to
y
le through the di�erent sizes, be
ause the jobs ofea
h size pa
k well together [16℄. This works well for negatively
orrelated andeven un
orrelated workloads, but is bad for positively
orrelated workloads [16,17℄. The reason is that under a positive
orrelation the largest jobs dominatethe ma
hine for a long time, blo
king out all others. As a result, the averageresponse time of all other jobs grows
onsiderably.But whi
h model a
tually re
e
ts reality? Again, evaluation results dependon the sele
ted model of s
aling; without knowing whi
h model is more realisti
,we
annot use the performan
e evaluation results.2.3 E�e
t of User Runtime EstimatesReturning to the 2D pa
king metaphor, a simple optimization is to allow theinsertion of small jobs into holes left in the s
hedule. This is
alled ba
k�lling,be
ause new jobs from the ba
k of the queue are used to �ll
urrent idle resour
es.The two
ommon variants of ba
k�lling are
onservative ba
k�lling, whi
h makesstri
t reservations for all queued jobs, and EASY ba
k�lling, whi
h only makes areservation for the �rst queued job [19℄. Both rely on users to provide estimatesof how long ea
h job will run | otherwise it is impossible to know whethera ba
k�ll job may
on
i
t with an earlier reservation. Users are expe
ted tobe highly motivated to provide a

urate estimates, as low estimates improve the
han
e for ba
k�lling and signi�
antly redu
ed waiting time, but underestimateswill
ause the job to be killed by the system.

5It has been shown that in some
ases performan
e evaluation results dependin non-trivial ways on the a

ura
y of the runtime estimates. An example isgiven in Figure 2, where EASY ba
k�lling is found to have lower slowdownwith ina

urate estimates, whereas
onservative ba
k�lling is better at least forsome loads when the estimates are a

urate. This
ontradi
tion is the result ofthe following [8℄. When using a

urate estimates, the s
hedule does not
ontainlarge holes. The EASY s
heduler is not a�e
ted too mu
h, as it only heedsthe reservation for the �rst queued job; other jobs do not �gure in ba
k�llingde
isions. The
onservative s
heduler, on the other hand, a
hieves less ba
k�llingof long jobs that use few pro
essors, be
ause it takes all queued jobs into a

ount.This is obviously detrimental to the performan
e of these long jobs, but turnsout to be bene�
ial for short jobs that don't get delayed by these long jobs.As the slowdown metri
 is dominated by short jobs, it shows the
onservativeba
k�ller to be better when a

urate estimates are used, but not when ina

urateestimates are used.On
e again, performan
e evaluation has
hara
terized the situation but notprovided an answer to the basi
 question: whi
h is better, EASY or
onservativeba
k�lling? This depends on the workload, and spe
i�
ally, on whether userruntime estimates are indeed a

urate as we expe
t them to be.3 Workload Analysis and ModelingAs shown above, workloads
an have a big impa
t on performan
e evaluationresults. And the me
hanisms leading to su
h e�e
ts
an be intri
ate and hardto understand. Thus it is
ru
ially important that representative workloads beused, whi
h are as
lose as possible to the real workloads that may be expe
tedwhen the system is a
tually deployed. In parti
ular, unbased assumptions aboutthe workload are very dangerous, and should be avoided.3.1 Data-Less ModelingBut how does one know what workload to expe
t? In some
ases, when truly in-novative systems are designed, it is indeed impossible to predi
t what workloadswill evolve. The only re
ourse is then to try and predi
t the spa
e of possibleworkloads, and thoroughly sample this spa
e. In making su
h predi
tions, oneshould employ re
urring patterns from known workloads as guidelines. For ex-ample, workloads are often bursty and self-similar, pro
ess or task runtimes areoften heavy tailed, and obje
t popularity is often
aptured by a Zipf distribution[4℄.3.2 Data-Based ModelingThe more
ommon
ase, however, is that new systems are an improvement orevolution of existing ones. In su
h
ases, studying the workload on existing sys-tems
an provide signi�
ant data regarding what may be expe
ted in the future.

6 The
ase of job s
heduling on parallel systems is espe
ially fortunate, be
ausedata is available in the form of a

ounting logs [22℄. Su
h logs
ontain the detailsof all jobs run on the system, in
luding their arrival, start, and end times, thenumber of pro
essors they used, the amount of memory used, the user who ranthe job, the exe
utable �le name, et
. By analyzing this data, a statisti
al modelof the workload
an be
reated [7, 9℄. This should fo
us on re
urrent features thatappear in logs derived from di�erent installations. At the same time, featuresthat are in
onsistent at di�erent installations should also be identi�ed, so thattheir importan
e
an be veri�ed.A good example is the �rst su
h analysis, published in 1995, based on a logof three months of a
tivity on the 128-node NASA Ames iPSC/860 hyper
ubesuper
omputer. This analysis provided the following data [11℄:{ The distribution of job sizes (in number of nodes) for system jobs, and foruser jobs
lassi�ed a

ording to when they ran: during the day, at night, oron the weekend.{ The distribution of total resour
e
onsumption (node se
onds), for the samejob
lassi�
ations.{ The same two distributions, but
lassifying jobs a

ording to their type:those that were submitted dire
tly, bat
h jobs, and Unix utilities.{ The
hanges in system utilization throughout the day, for weekdays andweekends.{ The distribution of multiprogramming level seen during the day, at night,and on weekends. This also in
luded the measured down time (a spe
ial
aseof 0 multiprogramming).{ The distribution of runtimes for system jobs, sequential jobs, and paralleljobs, and for jobs with di�erent degrees of parallelism. This in
ludes a
on-ne
tion between
ommon runtimes and the queue time limits of the bat
hs
heduling system.{ The
orrelation between resour
e usage and job size, for jobs that ran duringthe day, at night, and over the weekend.{ The arrival pattern of jobs during the day, on weekdays and weekends, andthe distribution of interarrival times.{ The
orrelation between the time a job is submitted and its resour
e
on-sumption.{ The a
tivity of di�erent users, in terms of number of jobs submitted, andhow many of them were di�erent.{ Pro�les of appli
ation usage, in
luding repeated runs by the same user andby di�erent users, on the same or on di�erent numbers of nodes.{ The dispersion of runtimes when the same appli
ation is exe
uted manytimes.Pra
ti
ally all of this empiri
al data was unpre
edented at the time. Sin
e then,several other datasets have been studied, typi
ally emphasizing job sizes andruntimes [27, 14, 15, 6, 2, 1, 18℄. However, some new attributes have also been
onsidered, su
h as speedup
hara
teristi
s, memory usage, user estimates ofruntime, and the probability that a job be
an
elled [20, 10, 19, 2℄.

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

cu
m

m
ul

at
iv

e
pr

ob
ab

ili
ty

runtime [s]

1-2 nodes
2-4 nodes

4-16 nodes
16-400 nodes

all jobs

Fig. 3. The
umulative distribution fun
tions of runtimes of jobs with di�erent sizes,from the SDSC Paragon.3.3 Some Answers and More QuestionsBased on su
h analyses, we
an give answers to the questions raised in theprevious se
tion. All three are rather surprising.The distribution of job sizes has often been assumed to be bimodal: smalljobs that are used for debugging, and large jobs that use the full power of theparallel ma
hine for produ
tion runs. In fa
t, there are very many small jobsand rather few large jobs, and large systems often do not have any jobs that usethe full ma
hine. espe
ially surprising is the high fra
tion of serial jobs, whi
his typi
ally in the range of 20{30%. Another prominent feature is the emphasison power-of-two job sizes, whi
h typi
ally a

ount for over 80% of the jobs.This has been
laimed to be an artifa
t of the use of su
h size limits in thequeues of bat
h s
heduling system, or the result of inertia in system where su
hlimits were removed; the
laim is supported by dire
t user data [3℄. Nevertheless,the fa
t remains that users
ontinue to prefer powers of two. The question forworkload modeling is then whether to use the \real" distribution or the empiri
aldistribution in models.It is hard to obtain dire
t eviden
e regarding appli
ation s
aling from a
-
ounting logs, be
ause they typi
ally do not
ontain runs of the same appli
a-tions using di�erent numbers of nodes, and even if they did, we do not knowwhether these runs were aimed at solving the same problem. However, we
an
ompare the runtime statisti
s of jobs that use di�erent numbers of nodes. theresult is that there is little if any
orrelation in the statisti
al sense. However, thedistributions of runtimes for small and large jobs do tend to be di�erent, withlarge jobs often having longer runtimes [7℄ (Figure 3). This favors the memorybound or �xed time s
aling models, and
ontradi
ts the �xed work model. Thereis also some eviden
e that larger jobs use more memory [10℄. Thus, within a sin-

8gle ma
hine, parallelism is in general not used for speedup but for solving largerproblems.Dire
t eviden
e regarding user runtime estimates is available in the logs ofma
hines that use ba
k�lling. This data reveals that users typi
ally overestimatejob runtime by a large fa
tor [19℄. This indi
ates that the expe
tations abouthow users behave are wrong: users are more worried about preventing the systemfrom killing their job than about giving the system reliable data to work with.This leads to the question of how to model user runtime estimates. In addition,the e�e
t of the overestimating is not yet fully understood. One of the surprisingresults is that overestimating seems to lead to better overall performan
e thanusing a

urate estimates [19℄.4 A Workloads RFI1There is only so mu
h data that
an be obtained from a

ounting logs thatare
olle
ted anyway. To get a more detailed pi
ture, a
tive data
olle
tion isrequired. When studying the performan
e of parallel systems, we need high-resolution data about the behavior of appli
ations, as this a�e
ts the way theyintera
t with ea
h other and with the system, and in
uen
es the eventual per-forman
e measures.4.1 Internal Stru
ture of Appli
ationsWorkload models based on job a

ounting logs tend to regard parallel jobs asrigid: they require a
ertain number of pro
essors for a given time. But run-time may depend on the system. For example, runs of the ESP system-levelben
hmark revealed that exe
utions of the same set of jobs on two di�erentar
hite
tures led to
ompletely di�erent job durations [28℄. The reason is thatdi�erent appli
ations make di�erent use of the system in terms of memory,
om-muni
ation, and I/O. Thus an appli
ation that requires a lot of �ne-grain
om-muni
ation may be relatively slow on a system that does not provide adequatesupport, but relatively fast on a system with an overpowered
ommuni
ationnetwork.In order to evaluate advan
ed s
hedulers that take multiple resour
es intoa

ount we therefore need more detailed workload models. It is not enough tomodel a job as a re
tangle in pro
essors�time spa
e. We need to know aboutits internal stru
ture, and model that as well. Su
h a model
an then form thebasis for an estimation of the speedup a job will display on a given system, whenprovided with a
ertain set of resour
es.A simple proposal was given in [13℄. The idea is to model a parallel appli-
ation as a set of tasks, whi
h are either independent of ea
h other, or needto syn
hronize repeatedly using barriers. The number of tasks, number of bar-riers, and granularity are all parameters of the model. While this is a step in1 Request for Information

9the right dire
tion, the modeling of
ommuni
ation is minimal, and intera
tionswith other system resour
es are still missing. Moreover, representative values forthe model parameters are unknown.There has been some work on
hara
terizing the
ommuni
ation behavior ofparallel appli
ations [5, 25℄. This has
on�rmed the use of barrier-like
olle
tive
ommuni
ations, but also identi�ed the use of syn
hronization-avoiding non-blo
king
ommuni
ation. The granularity issue has remained open: both verysmall and very big intervals between
ommuni
ation events have been measured,but the small ones are probably due to multiple messages being sent one after theother in the same
ommuni
ation phase. The granularity of
omputation phasesthat
ome between
ommuni
ation phases is un
lear. Moreover, the analysis wasdone for a small set of appli
ations in isolation; what we really want to know isthe distribution of granularities in a
omplete workload.More detailed work was done on I/O behavior [21, 24℄. Like
ommuni
ation,I/O is repetitive and bursty. But again, the granularity at whi
h it o

urs (orrather, the distribution of granularities in a workload) is unknown. An interestingpoint is that interleaved a

ess from multiple pro
esses to the same �le may leadto syn
hronization that is required in order to use the disks eÆ
iently, even ifthe appli
ation semanti
s do not di
tate any stri
t syn
hronization.Very little work has been done on the memory behavior of parallel appli
a-tions. The
onventional wisdom is that large-s
ale s
ienti�
 appli
ations requirea lot of memory, and use all of it all the time without any signi�
ant lo
ality.Still, it would be ni
e to root this in a
tually observations, espe
ially sin
e it isat odds with reports of the di�erent working set sizes of SPLASH appli
ations[29℄. Somewhat disturbing also is a single paper that investigated the pagingpatterns of di�erent pro
esses in the same job, and unexpe
tedly found them tobe very dissimilar [26℄. More work is required to verify or refute the generalityof this result.4.2 User BehaviorWorkload models typi
ally treat job arrivals as
oming from some independentexternal sour
e. Their statisti
s are therefore independent of the system behav-ior. While this makes the evaluation easier, it is unrealisti
. In reality, the userpopulation is �nite and often quite small; when the users per
eive the system asnot responsive, they tend to redu
e their use (Figure 4). This form of negativefeedba
k a
tually fosters system stability and may prevent overload
onditions.Another important aspe
t of user behavior is that users tend to submit thesame job over and over again. Thus the workload a system has to handle may berather homogeneous and predi
table. This is very di�erent from a random sam-pling from a statisti
al distribution. In fa
t, it
an be
alled \lo
alized sampling":while over large stret
hes of time, e.g. a whole year, the whole distribution issampled, in any given week only a small part of it is sampled.In terms of performan
e evaluation, two important resear
h issues may beidenti�ed in this regard. One is how to perform su
h lo
alized sampling, or inother words, how to
hara
terize, model, and mimi
 the short-range lo
ality

10

0 1
generated load

re
sp

on
se

 ti
m

e
user reaction:

generated load as
function of response

system efficiency:
response time as
function of load

stable
state

Fig. 4. The workload pla
ed on a system may be a�e
ted by the system performan
e,due to a feedba
k loop through the users.of real workloads. the other is to �gure out what e�e
t this has on systemperforman
e, and under what
onditions.5 The Ro
ky Road AheadBasing performan
e evaluation on fa
ts rather than on assumptions is important.But it shouldn't turn into an end in itself. As Henri Poin
ar�e said,S
ien
e is built up with fa
ts, as a house is with stones. But a
olle
tionof fa
ts is no more a s
ien
e than a heap of stones is a house.The systems we now build are
omplex enough to require s
ienti�
 methodologyto study their behavior. This must be based on observation and measurement.But knowing what to measure, and how to
onne
t the dots, is not easy.Realisti
 and detailed workload models
arry with them two dangers. Oneis
lutter and obfus
ation | with more details, more parameters, and moreoptions, there are more variations to
he
k and measure. Many of these areprobably unimportant, and serve only to hide the important ones. The otherdanger is the substitution of numbers for understanding. With more detailedmodels, it be
omes harder to really understand the fundamental e�e
ts that aretaking pla
e, as opposed to merely des
ribing them. This is important if we wantto learn anything that will be useful for other problems ex
ept the one at hand.These two dangers lead to a quest for Einstein's equilibrium:Everything should be made as simple as possible, but not simpler.

11The
hallenge is to identify the important issues, fo
us on them, and get themright. Unbased assumptions are not good, but ex
essive detail and
lutter isprobably not better.A
knowledgementThis resear
h was supported by the Israel S
ien
e Foundation (grant no. 219/99).Referen
es1. S-H. Chiang and M. K. Vernon, \Chara
teristi
s of a large shared memory produ
-tion workload". In Job S
heduling Strategies for Parallel Pro
essing, D. G. Feitelsonand L. Rudolph (eds.), pp. 159{187, Springer Verlag, 2001. Le
t. Notes Comput.S
i. vol. 2221.2. W. Cirne and F. Berman, \A
omprehensive model of the super
omputer work-load". In 4th Workshop on Workload Chara
terization, De
 2001.3. W. Cirne and F. Berman, \A model for moldable super
omputer jobs". In 15thIntl. Parallel & Distributed Pro
essing Symp., Apr 2001.4. M. E. Crovella, \Performan
e evaluation with heavy tailed distributions". In JobS
heduling Strategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.),pp. 1{10, Springer Verlag, 2001. Le
t. Notes Comput. S
i. vol. 2221.5. R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, \A quantitative study of par-allel s
ienti�
 appli
ations with expli
it
ommuni
ation". J. Super
omput. 10(1),pp. 5{24, 1996.6. A. B. Downey, \A parallel workload model and its impli
ations for pro
essor allo-
ation". In 6th Intl. Symp. High Performan
e Distributed Comput., Aug 1997.7. A. B. Downey and D. G. Feitelson, \The elusive goal of workload
hara
terization".Performan
e Evaluation Rev. 26(4), pp. 14{29, Mar 1999.8. D. G. Feitelson, Analyzing the Root Causes of Performan
e Evaluation Results.Te
hni
al Report 2002{4, S
hool of Computer S
ien
e and Engineering, HebrewUniversity, Mar 2002.9. D. G. Feitelson, \The e�e
t of workloads on performan
e evaluation". In Perfor-man
e Evaluation of Complex Systems: Te
hniques and Tools, M. Calzarossa (ed.),Springer-Verlag, Sep 2002. Le
t. Notes Comput. S
i. Tutorials.10. D. G. Feitelson, \Memory usage in the LANL CM-5 workload". In Job S
hedulingStrategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 78{94,Springer Verlag, 1997. Le
t. Notes Comput. S
i. vol. 1291.11. D. G. Feitelson and B. Nitzberg, \Job
hara
teristi
s of a produ
tion parallel s
i-enti�
 workload on the NASA Ames iPSC/860". In Job S
heduling Strategies forParallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 337{360, Springer-Verlag, 1995. Le
t. Notes Comput. S
i. vol. 949.12. D. G. Feitelson and L. Rudolph, \Evaluation of design
hoi
es for gang s
hedulingusing distributed hierar
hi
al
ontrol". J. Parallel & Distributed Comput. 35(1),pp. 18{34, May 1996.13. D. G. Feitelson and L. Rudolph, \Metri
s and ben
hmarking for parallel jobs
heduling". In Job S
heduling Strategies for Parallel Pro
essing, D. G. Feitel-son and L. Rudolph (eds.), pp. 1{24, Springer-Verlag, 1998. Le
t. Notes Comput.S
i. vol. 1459.

1214. S. Hotovy, \Workload evolution on the Cornell Theory Center IBM SP2". InJob S
heduling Strategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph(eds.), pp. 27{40, Springer-Verlag, 1996. Le
t. Notes Comput. S
i. vol. 1162.15. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, \Model-ing of workload in MPPs". In Job S
heduling Strategies for Parallel Pro
essing,D. G. Feitelson and L. Rudolph (eds.), pp. 95{116, Springer Verlag, 1997. Le
t.Notes Comput. S
i. vol. 1291.16. P. Krueger, T-H. Lai, and V. A. Dixit-Radiya, \Job s
heduling is more impor-tant than pro
essor allo
ation for hyper
ube
omputers". IEEE Trans. Parallel &Distributed Syst. 5(5), pp. 488{497, May 1994.17. V. Lo, J. Ma
he, and K. Windis
h, \A
omparative study of real workload tra
esand syntheti
 workload models for parallel job s
heduling". In Job S
hedulingStrategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 25{46, Springer Verlag, 1998. Le
t. Notes Comput. S
i. vol. 1459.18. U. Lublin and D. G. Feitelson, The Workload on Parallel Super
omputers: Modelingthe Chara
teristi
s of Rigid Jobs. Te
hni
al Report 2001-12, Hebrew University,O
t 2001.19. A. W. Mu'alem and D. G. Feitelson, \Utilization, predi
tability, workloads, anduser runtime estimates in s
heduling the IBM SP2 with ba
k�lling". IEEE Trans.Parallel & Distributed Syst. 12(6), pp. 529{543, Jun 2001.20. T. D. Nguyen, R. Vaswani, and J. Zahorjan, \Parallel appli
ation
hara
teriza-tion for multipro
essor s
heduling poli
y design". In Job S
heduling Strategies forParallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 175{199, Springer-Verlag, 1996. Le
t. Notes Comput. S
i. vol. 1162.21. N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best, \File-a

ess
hara
teristi
s of parallel s
ienti�
 workloads". IEEE Trans. Parallel & DistributedSyst. 7(10), pp. 1075{1089, O
t 1996.22. Parallel workloads ar
hive. URL http://www.
s.huji.a
.il/labs/parallel/workload/.23. J. P. Singh, J. L. Hennessy, and A. Gupta, \S
aling parallel programs for multi-pro
essors: methodology and examples". Computer 26(7), pp. 42{50, Jul 1993.24. E. Smirni and D. A. Reed, \Workload
hara
terization of input/output inten-sive parallel appli
ations". In 9th Intl. Conf. Comput. Performan
e Evaluation,pp. 169{180, Springer-Verlag, Jun 1997. Le
t. Notes Comput. S
i. vol. 1245.25. J. S. Vetter and F. Mueller, \Communi
ation
hara
teristi
s of large-s
ale s
ien-ti�
 appli
ations for
ontemporary
luster ar
hite
tures". In 16th Intl. Parallel &Distributed Pro
essing Symp., May 2002.26. K. Y. Wang and D. C. Marines
u, \Correlation of the paging a
tivity of individualnode programs in the SPMD exe
ution model". In 28th Hawaii Intl. Conf. SystemS
ien
es, vol. I, pp. 61{71, Jan 1995.27. K. Windis
h, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg, \A
omparison ofworkload tra
es from two produ
tion parallel ma
hines". In 6th Symp. FrontiersMassively Parallel Comput., pp. 319{326, O
t 1996.28. A. Wong, L. Oliker, W. Kramer, T. Kaltz, and D. Bailey, \System utilizationben
hmark on the Cray T3E and IBM SP2". In Job S
heduling Strategies forParallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 56{67, SpringerVerlag, 2000. Le
t. Notes Comput. S
i. vol. 1911.29. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, \The SPLASH-2 programs:
hara
terization and methodologi
al
onsiderations". In 22nd Ann.Intl. Symp. Computer Ar
hite
ture Conf. Pro
., pp. 24{36, Jun 1995.30. P. H. Worley, \The e�e
t of time
onstraints on s
aled speedup". SIAM J. S
i.Statist. Comput. 11(5), pp. 838{858, Sep 1990.

