On-Line Fair Allocations Based on Bottlenecks
and Global Priorities

Yoel Zeldes
Department of Computer Science
The Hebrew University
91904 Jerusalem, Israel
yhotdog@gmail.com

ABSTRACT

System bottlenecks, namely those resources which arecsethje
to high contention, constrain system performance. Herfeetafe

Dror G. Feitelson
Department of Computer Science
The Hebrew University
91904 Jerusalem, Israel
feit@cs.huji.ac.il

1. INTRODUCTION

Fairness is a basic issue in scheduling and resource manage-
ment, and there are many different definitions of what “feast

resource management should be done by focusing on the-bottle means. We use the definition that a fair system is one which all

neck resources and allocating them to the most deserviegtsli
It has been shown that for any combination of entitiementsran
quests a fair allocation of bottleneck resources can bedfausing
an off-line algorithm that is given full information in advee re-
garding the needs of each client. We extend this result tortHae
case with no prior information. To this end we introduce apen
greedy algorithm. In essence, when a scheduling decisiedsi®
be made, this algorithm selects the client that has the darga-
imal gap between its entitlement and its current allocatiorong
all the bottleneck resources. Importantly, this algorittakes a
global view of the system, and assigns each clesihgle priority
based on his usage afl the resources; this single priority is then
used to make coordinated scheduling decisions on all tiheiress.
Extensive simulations show that this algorithm achievésaio-
cations according to the desired entitlements for a widgeaof
conditions, without using any prior information regardirggource
requirements. It also follows shifting usage patternduidiog sit-
uations where the bottlenecks change with time.

Categories and Subject Descriptors

C.2.3[COMPUTER-COMMUNICATION NETWORKS]: Net-
work Operations—Network management; D.4.1 [OPERATING
SYSTEMS)]: Process ManagementSeheduling; K.6.2 [MANA-
GEMENT OF COMPUTING AND INFORMATION SYST-
EM §]: Installation Management¥icing and resource allocation

General Terms
Design, Management, Performance

Keywords

Fairness; Bottlenecks; Resource allocation; Entitlesie®nline
algorithm; Priority inversion

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICPE’ 13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$10.00.

cates resources according to each client’s entitlemertemat that

is entitled to 30% of the system should get 30% of the resatirce
However, this definition is problematic, because clienty tmave
uneven requirements. For example, if a client is entitle80% of
the system, and he would like to use 70% of the network barttiwid
but only 10% of the CPU cycles, what would be a fair alloca®ion

A system in which clients alternate between using multigte r
sources, e.g. the CPU, network, and disk, can be modeled as a
gueueing system. In queueing systems one finds that clipatgls
the majority of their time waiting in queue for a specific sefbs
of the resources, namely thettleneck resources. The degree to
which clients make progress is constrained by the servieg it
ceive on these bottlenecks [14]. It has therefore been stegjéhat
bottleneck resources are the most important resourcesns tef
scheduling and resource allocation [7, 5]. By controllitipca-
tions of the bottlenecks, one controls allocations acrbesathole
system.

Given the insight about focusing on bottlenecks, one camelefi
a fair allocation as followseach client should be given his enti-
tlement of the system bottleneck [7, 5]. Thus if the network is the
bottleneck, our example client will be cut beck and givery@d%
of the bandwidth. But if the CPU turns out to be the bottleneck
and the network is not, then he can get all he wants, becasse hi
requirements on the bottleneck are lower than his entittéme

This definition can be extend to the case where the systeersuff
from multiple bottlenecks by guaranteeing that each cliecgives
his entitlement orat least one bottleneck. It has been shown that,
for any combination of entitlements and requests, a faicalion
according to this definition exists [4]. However, the altjom to
find this allocation works off-line and assumes full infotioa is
available.

Our main contribution is to extend this result with an orelin
algorithm, thatachieves a fair allocation without knowing each
client’s reguirements in advance. In fact, it doesn’t even have to
know which clients are going to be active and when. All it retxd
know is their relative entitlements. It then serves the estmithey
make in an order that is based on their entitlements and liheaal
tions they have received so far. Essentially, this is a smpéedy
algorithm.

In the next section we provide more details about previoukwo
and the required background. Section 3 then explains tladslef
the on-line algorithm. An evaluation using extensive setiohs to

Thus entitlements are similar to capacity or throughputaniges
in SLAs.

show that this algorithm indeed achieves the desired dllmtzais
presented in Section 4. We conclude in Section 5.

2. BACKGROUND AND RELATED WORK

The two main considerations for scheduling algorithms aie f
ness and quality of service. In the context of interactive ezal-
time applications, quality of service (as reflected in resgotimes
and meeting deadlines) is paramount [8, 21]. We focus onr fair
ness, which is more relevant to servers, especially in tmego
of clouds and virtualization where several servers arealaaed
onto a common physical platform.

The notion of fairness is somewhat tricky to nail down. At its
core lies a conflict between accounting, where we just coant h
much each client receives, and utilitarianism, where wesiclam
the benefit derived from the allocated resources [20]. Irctmgext
of computing systems we typically do not know the benefitsyso
are left with different forms of accounting. In particulattiving to
satisfy given entitlements is known as “fair-share” sciedu In
this context, a major aspect of fairness is isolation betweem-
peting clients: guaranteeing a certain share of the ressumone
client implies that this share will be received irrespext¥ the ac-
tions of other clients. For example, this may be importarrea-
time settings and to prevent certain denial-of-servicach [15].

An example of a large-scale system based on such fairness co
siderations is the Intel NetBatch platform [23]. This isegfally a
global enterprise grid system with hundreds of clusterstand of
thousands of machines in dozens of locations around thelwiokl
tel business and engineering groups purchase computiogroes
according to their needs and make them available to othepgras
part of the grid. However, each group retains ownership @if tie-
sources. This means that each group’s jobs receive priorityin-
ning on their own machines: if no alternative resources aad-a
able, whatever is running on these machines will be susjpksade
the owner’s jobs will run instead. Thus allocations refleane
ership, and by implication allocations reflect the entitets as
represented by the relative fraction of the resources tinat been
purchased by each group.

Many schemes have been devised to achieve fair-share $chedu
ing. These include simple accounting where allocationsiangly
not made to clients who have achieved their entitlement, [[b3]
tery scheduling where lottery tickets are distributed adicry to
entittements and the actual allocations are randomizel] [h8-
nipulation of a process’s priority so as to nudge it towarclsiev-
ing the desired allocation [6], and using the min-max ppleito
prioritize those clients who are lagging behind [17].

A whole class of fair allocation schemes is based on the notio
of virtual time [22, 16]. This essentially means that timeasinted
at different rates for different clients, thereby leadingdifferent
but controlled allocations. A more sophisticated appraach de-
fine fairness according to the divergence between what iat ¢laes
received and what he was entitled to receive up to now [18]s Th
can also be used directly to prioritize scheduling decsi@n 3].

All the above schemes are oblivious to the system state.eTher
has been very little work considering scheduling decisibias are
driven by resource contention. Unlike bottleneck-basé@daling
(to be defined more fully below), this work is usually conaan
more with preventing bottlenecks than with focusing on th&ime
idea is to prefer clients that make little use of contendedueces,
so as to reduce the danger of congestion [1, 11].

The schemes described above were typically applied to aze sp
cific resource, most commonly the CPU or the network. Thigdea
the question of how to control the joint allocation of muléipe-
sources. The simplest approach is asset fairness. Thissntiegn

=

we sum up the usage of the different resources, and enstthitha
sum is proportional to the entitlement. However, this idfinent
in the sense that someone who is the sole client of an unpomula
source will be held back due to contention by others for aueso
in which he is not interested.

Another approach is dominant-resource fairness [10, 9thik
scheme each client is represented by the resource he wam®#t
of, which is called his dominant resource. The allocatiohthe
dominant resources are then made proportional to the@ngihts.

A simple algorithm that achieves this has been shown, wtsch i
also “strategy proof”. This means that a client cannot iasechis
allocation and his throughput by increasing his demandsveser,
note that as long as fairness (however one may decide to dgfine
is maintained, there is no way that the system can distihgogs
tween a client that genuinely requires more resources aadha

is trying to game the system. In particular, if a client cansmthe
system to give him a larger allocation, but this larger atam is
still considered fair, this is not necessarily a problenis therefore
not clear that the property of strategy proofness as defibedesais
indeed appropriate.

Asset fairness and dominant-resource fairness are obivio
the system state. The alternative is to monitor the systeideto
tify the current bottlenecks, which may change from timeinoet
[7, 5]. In bottleneck-based fairness an allocation is abergd fair
if all clients do not have justified grounds for complaininghis
means that either theyeceive all they want, or else theyreceive
their entitlement on at least one bottleneck. The claim that they
cannot complain about this is based on the fact that bottlenare
by definition contended resources, so giving more would have
come at the expense of other clients who also have theileentit
mentg. It has been shown that an allocation based on this principle
is guaranteed to exist [4, 12]. Note that asset fairness aminént
resource fairness do not possess the “no justified comglagnbp-
erty: in those schemes, a client may be prevented from riegeiv
resources that could have been allocated without hurtiygren
else.

In order to sharpen the differences between the above agiprsa
we suggest the fruit salad metaphor. Assume a fruit salaitouf
with a bow! of diced apples, a bowl of diced oranges, a bowl of
cherries, etc. Each diner is invited to create his or her ovisn m
Asset fairness then means that each diner gets a small bahé of
same size and can fill it in whatever way he chooses. Thisus int
itively fair but inefficient: if ten people like cherries, banly one
each like apples, oranges, and bananas, why not let thesettke
everything that is there? Dominant resource fairness meacis
diner gets the same amount of his favorite fruit. This ssff@m-
ilar inefficiency as asset fairness. The bottleneck-baggdoach
means that each diner gets the same amount frmof the fruits
that ran out, thus emphasizing the importance of those fruit which
are in high demand, while explicitly allowing you more ofifrthat
nobody else wants. This analogy also shows the problem imfind
a fair solution according to this definition: when you are mgk
the allocations, how do you know which fruit are going to rut

Given a scheduling scheme, the remaining question is how to
apply it. The simplest approach is to schedule each resanuce
vidually. However, this may lead to undesirable results. éx@am-
ple, a client may use less than his entitlement of one respard
more than his entitlement of another. Assume the first resoisr
a bottleneck, while the second is not. This client shouldefoze
be prioritized in order to provide it with its due entitlentef the

2Note that a resource may become a bottleneck even if it is used
by only one client. But in that case this client is fully utilg the
resource, so there is no more to allocate.

bottleneck resource. But when it is waiting for the secormh-n
bottleneck resource, it will receive a low priority. Thisligause
delays that affect the fairness as reflected by using théehettk
resource. The solution to such mixed priorities is to usechall
priority across the whole system. This global prioritycisnputed
based on the bottleneck resources, but ipplied to all the re-
sources.

A building block that can be used to implement the idea ofibott
neck-based fairness is the RSVT scheduler, which is a modula
scheduler that can be “glued” to different resources toigeovirtual-
time-based prioritization [2]. This needs to be combinethvei
centralized monitoring facility that identifies bottleke®sources,
and sets the global priorities. In this paper we fill in theoaiighmic
details and simulate how such an implementation may be &xghec
to operate when faced with various scenarios of contendiagts
with different requirements. The actual implementationd @an
evaluation of the overheads and performance charactsristre
left for future work.

A basic assumption of all the above works dealing with the al-
location of multiple resources is that clients have corstsource
usage profiles. For example, a client may always use twicaugh m
disk as CPU, so if we allocate 30% of the CPU he will also use 60%
of the disk bandwidth, and if we limit his disk usage to 20% we a
effectively also limiting his CPU usage to 10%. This assuompt
is reasonable in cases where clients are performing eabgtie
same actions all the time, for example serving incoming estgi
that all have the same nature. However, our on-line algorifbes
not rely on such persistence. Rather, it just tracks the tative
usage of different resources by each client, regardle$eqirecise
patterns in which requests are made. In particular, cliargsfree
to change their behavior, and the algorithm will follow themmd
even identify changes in the set of bottlenecks.

3. THEON-LINE ALGORITHM

Consider a set of clients with different entitlements, eaith his
unique resource usage profile. We know that a bottlenecketfasr
allocation exists for any combination of entitlements aequire-
ments. But the proofs given in [4, 12] are non-trivial, usenptete
information about the requirements in order to find the sofut
and require the resource usage profile to be constant. Tfie dif
culty stems from the fact that we do not know in advance which
resources will turn out to be bottlenecks. Moreover, it suout
that there may be multiple solutions, and even differenitsmhs in
which different resources become the bottlenecks.

An interesting question is therefore whether the principdé
bottleneck-based fairness can be distilled into an ondlgerithm
that will maintain a fair allocation despite not knowing whhe
requests are in advance. Obviously such an algorithm alse do
not know the bottlenecks in advance, but we assume it canwiisc
them when they materialize, by monitoring the utilizatidreach
resource. Thus it can also adjust if the bottlenecks charitie w
time.

Our algorithm is based on the following two principles:

1. The “no justified complaints” condition requires thaedlis

receive their entittlement on at least one bottleneck resour
This leads to the idea that a client’s priority should be pro-
portional to the divergence between his entitlement and his
actual consumption, on the bottleneck resource where this
divergence isninimal. The reason is that as we allocate more
resources and enable him to run, this is where the gap will be
closed first. A process that suffers from a larger minimal gap
should be given priority in order to enable it to catch up and
achieve its entitlement.

2. Given that there may be several bottlenecks and any one of
them may be used to satisfy a client, a global viewpoint is
required. Thus each client will be assigned a global, system
wide priority value, and scheduling decisions on all the dif
ferent resources will be made based on these system-wide
priorities.

While the algorithm based on these principles is simplel{as/a
below), it is not self evident. In particular, basing pri@$ on the
minimal gap contradicts the commonly used max-min approach,
which bases priorities on the minimansumption, which is equiv-
alent to using thenaximal gap. But in the multi-resource scenario
with fixed usage profiles this is problematic, because bogstie
usage of the least-used resource also increases the usdge of
heavily used resources, which may be impossible (or at laast
desirable) if they too are bottlenecks.

Importantly, using global prioritization implies that scheduling
on the different resources will be coordinated. This is in stark con-
trast with the prevailing methodology used today, wheréneae
source has its own scheduler, and the scheduling is dond base
a myopic view of each individual resource. As a result, we pre
vent situations in which a scheduler responsible for sorseuree
that is not contended decides to run cliehtind let clientB wait
in the queue, due to some local efficiency consideration,nwhe
is actually receiving all he wants whilB is not receiving his due
allocation on the system bottlenecks.

To formalize these ideas we need some notation. Let there be
N clients andM resources. Client has entitlement;, where
>, ei = 1. ldeally, the fraction of the system that clientvas
entitled to receive up to timeis simply a;(t) = e;t. For each
resourcej, his consumption of resourgeup to timet will be de-
notede; (j,t). Both allocation and consumption are expressed in
the same units, namely time using the resource, and thete uni
apply equally to all resources (as opposed to units like Wadttl
which are specific to a certain resource). U¢t) denote the set of
resources that are bottlenecks at timBased on the above consid-
erations, we calculate the global priority of cligras the minimal
difference between the ideal allocation and the consumpéioross
bottleneck resources:

pri;(t) = min {a;(t) — (4, t)}
JEJI(t)

The queue of each resource will be sorted according to tHebealg
priorities, and the highest priority client will be seledtdf several
clients have the same global priority, the local scheduley ose its
local considerations to break the tie. In either case, theten is
always for a limited time: a quantum of CPU time, the sendihg o
packet, the reading of a disk block, etc. This causés t) to grow
for the selected client, while at the same tim&t) grows for all
clients (but by less). As a result another client will mosthably
be selected the next time around, and if all the clients hbee t
same entitlements our algorithm will produce simple rouoioin
scheduling.

But what happens if there are no bottlenecks? In this case we
prioritize the different processes according to the diffee be-
tween their allocation and their total consumption on abrgces,
namely we revert to asset fairness:

prii(t) = ai(t) — Z ci(j,t)

Note, however, that this only affects the scheduling orderdoes
not affect the allocations. When there are no bottleneck®tis no
real contention and therefore all requests will be granted.

The above formalization cannot be used as described beitause
assumes that all clients arrived at the system at time 0 arelde®n
active continuously ever since. In general, of course, ithisot
the case. Clients may come and leave at different times, ayd m
suspend waiting on some external event. Therefore thewwitp
adjustments must be made.

First, at each time only active clients are considered: clients
who have terminated or have not arrived yet (or are suspégnded
will be excluded. Thus the entitlements need to be renoredli
Denoting the set of active clients by, the entitlements used to
calculate the priorities will be; =e;/ >, , e:.

Second, if a new client enters the system at tigehis entitle-
ment will be computed ag;(t) = e;(t — to). As e; may change
with time, this is actually computed piecemeal by summingrov
intervals where; is constant.

Third, handling clients who become suspended or do not use
their full allocation is done similarly to RSVT [2]. The prigim
is that clients may divide their time across the resourcegeiy
different ways. Thus we may encounter situations whereemtli
predominantly uses a resource that nobody else is intergstés
a result, his consumption may outstrip his entitlement (dosite
is no reason to prevent this, as otherwise the resource vetayd
idle). But if later some other client starts using this reseyand
the resource becomes a bottleneck, then the first clienthaile
a hugely negative priority and will be locked out for a longéi.
This should be prevented.

Conversely, consider a resource that nobody uses to a great d
gree. This resource is mostly idle, and for all clients tkeimsump-
tion will lag way below their allocation. Then, if the clientith
the highest entitlement starts to use this resource extnsand
turns it into a bottleneck, and assuming this is the onlylbogck,
he will lock out all others, because his allocation had cgr his
consumption more than for all others. This too should begmtad.

The above scenarios can be summarized as follows. Idealy, w
want to make allocations based on entitlements, and haveotie
sumption follow these allocations. But if the consumptiaesl not
follow the allocation, and becomes either too big or too $med
ative to the allocation, we need to bound this differencg.[Zhe
way to do this is simple: instead of accumulating allocagiand
consumptions since the client arrived, we only considerraedaiv
of the lastT' seconds. In such a limited window allocations and
consumptions reflect the most recent entitlements and lacsea
but they cannot diverge by more th@n

An important concern for online algorithms is their overthea
Our algorithm is centralized in the sense that it utilizesbgl infor-
mation for its prioritization. Hence it faces the danger af scaling
for large systems. However, we note that only the accoumtaegls
to be performed on each and every dispatch decision, andahis
be incorporated into the mechanism performing the dispatdbr
example, the CPU scheduler or the mechanisms controlliogegpa
sending and disk 1/0. The prioritization which uses thioinia-
tion can be limited to a desired granularity, e.g. once egemany
seconds, as we indeed do in the simulations.

4, SIMULATION RESULTS

In this section we describe some of our simulation resudty$-
ing on those that best illustrate various features of thedaling
algorithm.

41 TheSimulator

To assess the behavior of the algorithm presented above ote wr
an event-based simulator. This simulates the evolutionsystem
supporting several processes (or a server with severalabinha-

Priority:

34

Requests:

loop 1

CPU_CS 2 0 NORM

| oop 40

DI SK_CS 0.1 0.05 NORM
CPU_CS 0.1 0.05 NORM

Figure 1. Example process program in the simulation.

chines). The processes represent the clients. Each pracess
“program”, which specifies its resource usage. The programs
composed of multiple iterative phases, where each iteratam-
sists of using different resources in the system one afteother.
Use of a resource is described by a tuple of the foras, mean,
width, dist). res is the resource being used. The other three
parameters describe the distribution of service times wherre-
source is useddfst can be UNIForm, EXPonential, or NORMal;
mean is obviously the mean, andidth is half the range for UNIF
or the standard deviation for NORM). As each use of each resou
is simulated, the service time for this instance is seleatedndom
from the specified distribution. We typically use the normiskri-
bution, because the service times are expected to be infélddnc
many independent factors.

An example program is shown in Fig. 1. This process has a
relative priority (entitlement) of 34. Its program consisif using
the CPU for precisely 2 seconds, and then performing 4Qtiters
of using the disk for 0.1 seconds and then the CPU for an aditi
0.1 seconds, both with a standard deviation of 0.05 seconds.

Each process that wishes to use a certain resource is passed o
to that resource’s scheduler. Each scheduler keeps tragkeoy
process’s usage of its resource in the last 3 seconds (Tthie B
mentioned above). A global prioritization agent colledts pri-
oritization data from the schedulers of bottleneck resesiso as
to create the global priorities. Bottleneck resources laosd that
have been active for more than 90% of the time in the last 3®&kco
(these are all configurable parameters). Thus the ideridicaf a
bottleneck will lag 3 seconds behind the time it actuallydme a
bottleneck.

Allocations can either be continuous, or, if the resourcenaa
ends with _CS (allows context switching), they are done ianga
of 0.1 seconds. This may represent a scheduling quantursetite
ing of a packet, or the reading of a disk block. Note, howetet
the resource names and the service times should not be t@ben t
literally. Obviously in many real systems CPU quanta are muc
shorter than disk access times. We use “CPU", “disk”, and-“ne
work” to easily refer to the resources, but they could justvati
be abstracted as “R1”, “R2”, etc. Our goal in the simulaticn®
probe the behavior of the algorithm under diverse conditiorot
to approximate specific benchmarks.

The simulator as described has the limitation that eachegssoc
uses one resource at a time. This is not completely realetia
process may spawn multiple parallel threads on a multipsme
system, and asynchronous I/O can be done in parallel to campu
tion. Note, however, that this is a limitation of only the silator
and not of the algorithm itself.

4.2 Simple Experiments

The first experiments are meant to demonstrate that theationul
works as expected on simple scenarios with a single resoancke
to explain the way we present the simulation results.

scheduling, bottleneck

cpu_cst

IDLER

0 2 4 6 8 10 12 14 16
wallclock time

10 accumulated usage: CPU_CS

consumed time

I ——
0 2 4 6 8 10 12 14 16
wallclock time

Figure 2. An example of two processes with different priorities
contending for a resource. Service times are deterministic

accumulated usage: CPU_CS

12

101

consumed time
o

0 5 10 15 20 25 30 35 40 45
wallclock time

Figure 3: An example of four processes with different priorities
contending for a resource. Service times are deterministic

shares become governed by their priorities. This is acHidye
giving the blue process two quanta each time, while the ree pr
cess only receives one. As the blue process has a higheityiior
terminates first, again leaving the CPU exclusively to thkpeo-
cess. A generalization to four processes that start togethb
priorities of 10%, 20%, 30%, and 40% is shown in Fig. 3. As they
all want to run for 10 seconds, the one with the highest aliona
terminates first, and then the others in decreasing ordereagh
one terminates, the CPU is divided among the remaining psase
according to their designated shares.

Note the smooth transition as the blue process starts rgrimin
Fig. 2. This reflects two features of the scheduling algaritFirst,
when the red process runs alone, its effective relativeripyids
100% because there is no other process in the system. A®#dnd
receives full use of the CPU, it does not accumulate any lag be
tween its entitlement and its consumption. Second, whetbltre
process starts, it is initialized with zero entitlement aedsump-
tion. As a result both processes start from an equal footing,

Each experiment involves one or more processes, using one orimmediately receive allocations according to their re@agéntitle-

more resources. In the graphs, the horizontal axis repiesel-
clock time. The first graph for each experiment is actuallyrai®
chart, with a lane for each resource. This lane is color-dae
cording to which process is using the resource at each instan
coloring indicates that the resource is idle. A black lingraent
above the lane identifies those intervals in which the resois
considered to be a bottleneck. The second graph shows the cum
lative resource usage by each process. Each process isepime
by a line, with the same color as in the Gnatt chart. If a preces
is continuously active, on whatever resource, this will lstraight
line with slope 1. When a process waits for a resource, thegpise-
sented by a horizontal line segment. When two or more presess
share a resource the effect is to produce a slope smalledthan
this is actually a sequence of small steps. We occasionkty a
look at the cumulative usage of a select resource, ratherdha
resources together.

A simple example is shown in Fig. 2, involving two processes.
The red process has a relative priority of 33% and wants tdhese

ments.

4.3 Properties of the Scheduling Algorithm

Fig. 4 shows how the algorithm adjusts when different preess
use different resources. Here we have 3 processes, thateefe
(5 times) use the CPU for 0.1 second and then some other pesour
for 10 seconds. The blue process has an entitlement of 7086, an
uses the network. The green and red processes have entitteofie
20% and 10%, respectively, and use the disk. As we see, tiee blu
process actually receives nearly 100% of the network, teebpiv-
ing an entitilement of only 70%, because no other procesests|u
it. Green and red receive approximately 67% and 33% of tHe dis
which are also much higher than their entittements, but taain
the correct ratio. The CPU is hardly used, and therefore does
affect these allocations.

Note that due to the randomization used in the simulatioas th
total time in any specific run does not necessarily sum totgxac
50 seconds of resource use. However, as shown in the bottm pl

CPU for 10 seconds, while the blue one has 67% and wants 5 sec-the average of multiple runs does come out right. The errms ba

onds. Initially only the red process runs, and gets full usthe
CPU (note that we use the “idle” resource to delay the blue pro
cess). 5 seconds later, when the blue process starts, ¢fegive

show the distribution of values observed in the individwals. Im-
portantly, in the initial part of the simulation, when allogesses
are active, there are no such variations. In the sequel, Weypir

scheduling, bottleneck

JLLULEVEEUIUELEL LD BRSNS | VLV |
- .I-

CPU_CS
0 10 20 30 40 50 60 70 80 90
wallclock time
60 accumulated usage: NET_CS, CPU_CS, DISK_CS
50
40
3
£
=
°
& 301
2
i=
o
S
20
10f
GO 10 20 30 40 50 60 70 80 90
wallclock time
60 accumulated usage: NET_CS, CPU_CS, DISK_CS
L
40t
d)
£
o
g 301
3
@
=
o
S
20
10f
o
0 20 40 60 80 100 120

wallclock time

Figure4: An example of three processes using different resources,
and thus enjoying a higher effective entitlement. Senvites are
randomized, with the top two graphs showing a specific rurevhi
the bottom one shows an average of many runs.

scheduling, bottleneck

DISK_CS}
CPU_CS}
[T——————————————————
0 5 10 15 20 25
wallclock time
14 accumulated usage: CPU_CS, DISK_CS
121
101
g
S 8f
o
9]
£
3
2 6
o
3
4l
ok
0 n n n
0 5 10 15 20 25

wallclock time

Figure5: Example where the grace period increases the ideal allo-
cation also when a resource is not used. Service times allemran
ized.

cally use averages and error bars to show the results of mindd
experiments.

An important feature of the algorithm is the way it handles-pr
cesses that skip from one resource to another, or becomersiesh
On one hand, we want continuity: if a process does not use a re-
source for a short time, its allocation should neverthetesginue
to grow, so as to be available once it requests to use thisimaso
again. On the other hand, we do not want the allocation to grow
excessively relative to the consumption, so as to avoicsdns
that give the process an unbeatable priority that will alitoiw lock
out all other processes.

Following the RSVT scheduler [2] we define a grace period of 1
second during which the allocation continues to grow. Tlecef
of this grace period is demonstrated in the following two exip
ments. In both experiments, the red process representsénaind
has an entitlement of 70%, and the blue process represemnts so
background activity with an entitlement of only 30%. In thesffi
experiment (Fig. 5) the red process alternates betweerny tise
CPU for 2 seconds and then accessing the disk for 0.5 sectigl. T
is shorter than the grace period, so the allocation of the €&tJ
tinues to rise, and when he returns he gets exclusive acoess f
short while in order to make up for the deficit in consumptiém.
the other experiment (Fig. 6) the red process uses the CPP for

scheduling, bottleneck

cpu_cst

IDLER

0 5 10 15 20 25 30 35 40
wallclock time

25 accumulated usage: CPU_CS

201

—
v
T

consumed time

-
=)
T

0 5 10 15 20 25 30 35 40
wallclock time

scheduling, bottleneck

8 10 12
wallclock time

12 accumulated usage: CPU_CS, DISK_CS

101

consumed time
o

0 2 4 6 8 10 12 14 16 18
wallclock time

Figure 6. Example where the grace period is not long enough to in- Figure 7. An example of three processes with different priorities

crease the ideal allocation also when a resource is not @egdice
times are randomized.

seconds and then suspends waiting for user input for 4 secand
average. This is longer than the grace period, so when hmsetu

contending for two resources. Service times are detertianis

tlements of 67% on their resources, and green receives|hit/ee
entitlement of 33% on each of the resources, for a total of.67%

he has to share the CPU with the blue process. To enable this to Fig. 8 shows what happens when the priorities are changed. In

be seen clearly, we do not average multiple random runs themra
show a single run.

4.4 Further Examples of Controlled
Allocations
A slightly more involved example is shown in Fig. 7. Here we
have 3 processes with different priorities contending leruse of
two resources:
e Red, with priority 40%, wants 10 seconds on the CPU

e Blue, with priority 40%, wants 10 seconds on the disk

e Green, with priority 20%, wants 2 seconds on the CPU and

then 8 seconds on the CPU and disk alternately

The results of the run are as follows. Initially blue uses disk
with no contention, while red and green share the CPU aaogrdi
to their relative priorities. Then green starts using tledAs a re-
sult we find that now all three processes make progress aathe s
overall rate. However, on each resource, green gets half thba
other process gets. Thus red and blue receive their relatfitie

the first plot, all three processes have equal priorities3863As a
result the green process receives the same allocation ashibies
on each resource. But due to the fact that it uses both resglits
total rate of progress becomes double that of the others. High-
lights the difference between asset fairness and bottiebased
fairness: In bottleneck-based fairness, we are not badheyehe
total allocations, but only by the allocations on each kogkck.

The second plot shows what happens when the green process has

a priority of 50, and the other two 25. We would then expect the
green process to make progress at twice the rate on eachigesou
and at four times the rate in total because it uses both ressur
However, this does not happen. The explanation is that wresmng
alternates between the two resources, it leaves each of ithem
half of the time. The other processes pick up the slack rattear
leaving them idle. This illustrates the increased efficjeratative

to dominant resource fairness.

Interestingly, these effects are observed only when theécger
times are all deterministic and equal, i.e. when the stahdavia-
tions in the distributions are 0 (and indeed this is the com&tion
shown in the graphs). When this is the case, the processesguto

10 accumulated usage: CPU_CS, DISK_CS

8t 1 scheduling, bottleneck

DISK_CSE
o i

% > 4 6 8 10 1z 12 16 18
wallclock time CPU_CSt
accumulated usage: CPU_CS, DISK_CS

10 T T T T ——— = 30
waIIcIock time

consumed time

8t 1 12 accumulated usage: NET_CS, CPU_CS, DISK_CS

consumed time
o

-

o

I

consumed time

6 f/
7 A
al
|
% 2 4 6 8 1o 12 14 16 18
wallclock time 2 /
s
p 7 — ‘_‘ m —) [
Figure 8: The same scenario as in Fig. 7 but with different relative % 5 10 15 20 25 30

wallclock time

priorities. Service times are deterministic.

12 accumulated usage: NET_CS, CPU_CS, DISK_CS

in lockstep and the different allocations match perfe@lyt if ran-

|
domization is introduced, the synchronization is brokeime green 1o | | | | AT
is then not always available at the right instant to receigeshare A
of each resource, but blue and red, which only use one resourc 8- /
each, are always there waiting. As a result green is cut ek, § k
makes progress at about the same rate as the other two. 8 /
We now turn to a couple of more complex scenarios. A rather ex- § %/
treme example is shown in Fig. 9. Here four processes ex#ueite S Y
same type of iterations 3 times each. The iterations are osetp 4 /
of 0.5 second network, 1 second CPU, and 2 seconds disk (as may /
happen when serving requests). The differences are ingtieir 2r A .
ities: purple has a priority of 97%, and the other three 1%heac g
Obviously purple’s priority is much higher than the othensd in- o ‘ ‘ ‘ ‘ ‘
deed we find that it never has to wait for a resource (excepatb w 0 > Y ke 2@

for the end of the current quantum) and makes the most pragres
As a result it manages to finish its 3 iterations way ahead ®f th
others. They are then left to contend with each other, andyenj
similar performance on average. However, each run may lactua
be somewhat different. Specifically, the in run depictechim top
two graphs of Fig. 9, blue was lucky and required slightlysIE®U
than green and red in the first iteration. As a result it madagget

to the disk first, and continued to run out-of-phase with ttieeo
two and to make better progress. Nevertheless, each prstikss

Figure 9: An example of four processes with widely different pri-
orities. Service times are randomized, with the top two bsap
showing a specific run while the bottom one shows an average of
many runs.

12 accumulated usage: NET_CS, CPU_CS, DISK_CS

I g7
10) /},
p

consumed time
o

0 5 10 15 20 25 30 35
wallclock time

12 accumulated usage: NET_CS, CPU_CS, DISK_CS

i

[
£
s A
g6
5
2
2
o
S

4 / 7

ra
2 A
,//
,//
0 = L L L L L L
0 5 10 15 20 25 30 35

wallclock time

scheduling, bottleneck
R R I

0 1 2 3 4 5 6 7
wallclock time

accumulated usage: NET_CS, CPU_CS, DISK_CS, DISK2_CS

3.5

3.0f

N N
=) %)
T T

=
%)
T

consumed time

/:?%
1of (/‘
0.5} %//

0400

AN

1 2 3 4 5 6 7 8
wallclock time

Figure 10: Variations on the experiment shown in Fig. 9. Service Figurell: An example where several different solutions are possi-

times are randomized.

receives at least his entitlement on the bottleneck, inadhse the
disk.

Fig. 10 shows two variations on this experiment. In the finst t
priorities are not so extreme: purple is only 40%, and theroth
three are 20% each. In the second variation the prioritiesrar

verted: purple is down to 10%, and the other three are 30% each

In these variations individual runs may be even more noiay th
the original experiment, but on average they are prettyrcleahe
second variation purple appears to achieve more ghahthe oth-
ers, because they sometimes need to wait for each otheetseel
some resource, and thus leave another resource idle. Tiiseca
seen more clearly in longer runs, where the noise becomdtesma
in relative terms, and therefore individual runs are veogelto the
average of many runs.

As mentioned in Section 3, there exist configurations in Wwhic
several off-line solutions are in principle possible. Mwrer, dif-
ferent solutions may involve different sets of bottlenee&aurces.
One example of such a situation is the following. We have 8 pro
cesses and 4 resources. All the processes have equalreatitie
and they are arranged in pairs. Each pair uses 3 resourcas ite
tively, for 0.1 seconds each time. The pattern is completgiy-
metric: if we arrange the resources in a circle, then eachysais
a different set of 3 consecutive resources on this circlessibte

ble, and the algorithm gravitates towards the symmetriiat®n.
Service times are randomized.

solutions that abide by the no justified complaints critergoe as
follows:
e All resources become bottlenecks, and all processes eontin
uously use their 3 resources fgrof the time each.

e Two of the pairs run for 25% of the time on each of their re-
sources, while the other two run for 37.5% of the time (this
is why we need pairs: a single process cannot utilize 3 re-
sources at 37.5% each). As a result two resources become
bottlenecks, while the other two are only utilized 87.5% of
the time. There are six such solutions with different sets of
bottleneck resources.

Simulating this configuration with deterministic servicaes leads
to the symmetric solution, with all resources utilized 10684he
time. The result of a randomized simulation is shown in Fij. 1
This is slightly less clear-cut than the deterministic i@rs and
none of the resources maintain their bottleneck statusowitbome
gaps and idle periods. However, when observing the prognese
by the 8 processes, they are found to achieve largely the sstme

45 Allocations Based on Bottleneck Usage

In the previous examples the bottlenecks did not play a dantin
role in the scheduling. However, there are situations whieee

scheduling, bottleneck scheduling, bottleneck

T
UL T T D T T e ey [ETER T T TR T AT W AT e Ry

IDLE[

NET_CS

DISK_CS ||

CPU_CS

10 15 20 25 30 0 5 10 15 20
wallclock time wallclock time

accumulated usage: NET_CS, CPU_CS, DISK_CS accumulated usage: NET_CS, CPU_CS, DISK_CS

14

141 1 12F

101

consumed time
00

T T T

consumed time

0 5 10 15 20 25 30 0 5 10 15 20
wallclock time wallclock time

16 accumulated usage: CPUCS Figure 13: An example where the focus shifts from one bottleneck
to another. Service times are randomized.

2 1 contention, the entitlement do not influence the allocatioifter
5 seconds a third process (blue) becomes active. This Eroess
entitlement 100, and only uses the CPU. The CPU then becomes a
bottleneck. As a result we allocate 50% of the CPU (on av@rage
to the blue process, 17% to the red process, and 33% to the gree
6 1 process. For the red process this is half what he got befoteas
a result the usage of the disk also drops to half what it wastteo
green process it happens to be exactly what he receivedetiior
blue process arrived, so nothing much changes.

Another example shows how the algorithm manages to track a
. £ = = = = 5 shift from one bottleneck to another (Fig. 13). There ared pr

wallclock time cesses, with entitlements of 50, 25, 12.5, and 12.5. Theufsess$

the CPU 80% of its time, and the disk and network 10% each. The
other three initially iterate between the CPU and disk, bahtadd
the network too, for 70% of each iteration. As a result the G®U
the bottleneck in the first part of the simulation, but thenwek be-
comes the bottleneck in the later part, leading to a changdative

—
o
T

consumed time
00

Figure 12: An example where allocations change once a resource
becomes a bottleneck. Service times are randomized.

allocations.
bottleneck resource actually has a decisive effect. An ekauis Our last example is derived from the recent paper by Ghodsi et
shown in Fig. 12. We start with 2 processes, with entitlem&3 al. about using dominant resource fairness in networkrggto].

and 67. The red process uses 1 second of CPU per 2 seconds ofn that paper they suggest a test case where two processegreac
disk. The green process uses 1 second of CPU per 2 seconds oflominantly uses a different resource, and speculate tlié¢beck-
network. These requirements to not stress the system, bo@es based scheduling would lead to strong oscillations as thtesy
continuously, and all 3 resources are 67% utilized. As tier® tries to satisfy them in turn. They further conjecture thitied pro-

12 accumulated usage: CPU_CS

101

consumed time
o

e

—

_—
_—

10 15 20 25
wallclock time

0 5 30

12 accumulated usage: NET_CS

101

consumed time
o

10 15 20 25
wallclock time

30

20 accumulated usage: NET_CS, CPU_CS

151

101

consumed time

. . . .
10 15 20 25
wallclock time

30

Figure 14: Results for processes with complementary require-
ments. Service times are randomized.

cess that wants both resources would not receive its dueasibbm
at all. We implemented this scenario, with one process =qmge

The simulation results show that the concerns were unfalinde
(Fig. 14). As expected, both the CPU and network becomeshottl
necks, and retain this status until one of the processesnates.
While some oscillations do occur, they are small. Morectr@se
oscillations involve the third process, which tends to detaal of
the other two rather then not receiving its due entitlemehie
scheduler responds by occasionally stopping it momentarial-
low the other two to catch up. The erroneous prediction seems
follow from a mindset where at each instant only one of thd firs
two processes is active. But in reality their usage profitesaa-
tually complementary, and the system quickly falls into &epa
where this is exploited.

5. CONCLUSIONS

We define fair allocations of resources based on bottlenecks
specifically, require that each process receive at leashitdement
on at least one bottleneck resource. Previous work showegd th
for any combination of entitlements and requirements ibissible
to find a fair allocation according to this definition. Howevihe
proof was based on an off-line procedure that assumed follvkn
edge and a static configuration. We now augment this with a dy-
namic on-line algorithm that achieves a fair allocatiorhwitt prior
knowledge, and adjusts to changing conditions.

The algorithm itself is essentially a greedy algorithm. Inua-
shell it can be described as follows:

1. Define a global (system-wide) priority order, and schedul

processes according to this order on all resources.

2. The priority of a process is the minimum of its prioritias o
the different bottleneck resources.

3. The priority on each bottleneck resource is calculates:tha
on the lag between what the process is entitled to receive and
what it had actually received so far.

The main innovations in this algorithm are that it uses a allob
view, and that it focuses on the system bottlenecks. Theiprio
zation of processes is system-wide: each process Basgla pri-
ority, which is calculated based afl the bottlenecks, and is valid
for all the resources. This produces coordinated scheduling deci-
sions, thus preventing resource-specific schedulers fraumter-
acting each other and causing priority inversions.

The algorithm provides the conceptual framework for an on-
line bottleneck-based scheduling and allocation mechgnibat
accommodates shifting usage patterns and provides atosaic-
cording to pre-defined entitlements. In future work we idtéa
incorporate these ideas into a working system, by using afTRS
scheduler [2] to control each resource, in conjunction &ithon-
itoring facility that will identify the system bottleneck3he mon-
itoring will involve a recording of the periods during whicke-
sources are busy, and identifying those that are busy afiactéoon
of the time (e.g. above 90%). To reduce overheads, the edicnl
of priorities will be done at a fixed granularity, e.g. onceesaand.
These priorities will then be used by all dispatch decisionsl
new priorities are computed.

Apart from the implementation, there is also more to be done
regarding the algorithm itself. Group accounting (e.g. tipld
threads in a process that share their entitlement and &tbosaor
asynchronous /O leading to concurrent use of multiple ussss

0.014 seconds on the network for each 0.1 second quanturreon th by the same process) is a challenging and interesting idsSue.

CPU, a second requesting 0.1 seconds of the network for @D17
the CPU, the a third requesting equal use (in 0.1 second ajuaht
both. All three processes have equal entitlements.

ther on, we would also like to investigate additional resesrthat
might become bottlenecks, such as cache space, bus bahdwidt
accelerators such as GPGPUs, and memory.

6.

This research was supported by the Israel Science Foundatio

ACKNOWLEDGMENTS

(grant no. 28/09) and by an IBM faculty award.

7.
[1]

(2]

REFERENCES

Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and

A. Keren, "An opportunity cost approach for job assignment
in a scalable computing clustetEEE Trans. Parallel &
Distributed Syst. 11(7), pp. 760—-768, Jul 2000.

T. Ben-Nun, Y. Etsion, and D. G. FeitelsorDésign and
implementation of a generic resource sharing virtual time
dispatcher. In 3rd Ann. Haifa Experimental Syst. Conf.,

May 2010.

[3] A. Chandra, M. Adler, P. Goyal, and P. Sheno$utplus fair

[4]

(5]

(6]

[7]

(8]

scheduling: A proportional-share CPU scheduling algarith
for symmetric multiprocessotsin 4th Symp. Operating
Systems Design & Implementation, pp. 45-58, Oct 2000.
D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupfermangdan
N. Linial, “ No justified complaints: On fair sharing of
multiple resourcés In 3rd Innov. Theor. Comput. ci., pp.
68-75, Jan 2012.

N. Egi, A. Greenhalgh, M. Handley, G. lannaccone,

M. Manesh, L. Mathy, and S. Ratnasamiyiproved
forwarding architecture and resource management for
multi-core software routetsin 6th IFIP Intl. Conf. Network
& Parallel Comput., pp. 117-124, Oct 2009.

D. H. J. Epema, Decay-usage scheduling in
multiprocessors ACM Trans. Comput. Syst. 16(4), pp.
367-415, Nov 1998.

Y. Etsion, T. Ben-Nun, and D. G. Feitelsor ‘global
scheduling framework for virtualization environméhts
5th Intl. Workshop System Management Techniques,
Processes, and Services, May 2009.

Y. Etsion, D. Tsafrir, and D. G. FeitelsonPfocess
prioritization using output production: scheduling for
multimedid. ACM Trans. Multimedia Comput., Commun. &
App. 2(4), pp. 318-342, Nov 2006.

[9] A. Ghodsi, V. Sekar, M. Zaharia, and |. Stoica,

[10]

“Multi-resource fair queueing for packet processing

ACM S GCOMM Conf., pp. 1-12, Aug 2012.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and |. StoicaDbminant resource fairness: Fair
allocation of multiple resource typedn 8th Networked
Systems Design & Implementation, pp. 323-336, Mar 2011.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

F. Guim, I. Rodero, and J. Corbalarvtfe resource usage
aware backfilling. In Job Scheduling Strategies for Parallél
Processing, E. Frachtenberg and U. Schwiegelshohn (eds.),
pp. 59-79, Springer Verlag, 2009. Lect. Notes Comput. Sci.
vol. 5798.

A. Gutman and N. Nisan,Fair allocation without tradeIn
11th Autonomous Agents & Multiagent Syst., Jun 2012.

G. J. Henry, ‘The fair share schedulerAT& T Bell Labs

Tech. J. 63(8, part 2), pp. 1845-1857, Oct 1984.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik,Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice-Hall,
Inc., 1984.

A. Mancina, D. Faggioli, G. Lipari, J. N. Herder, B. Gras
and A. S. TanenbaumEhhancing a dependable multiserver
operating system with temporal protection via resource
reservation’s Real-Time Syst. 43(2), pp. 177-210, Oct 2009.
J. Nieh, C. Vaill, and H. Zhong,Virtual-Time Round Robin:
An O(1) proportional share scheduleim USENIX Ann.
Technical Conf., pp. 245-259, Jun 2001.

B. Radunowvt and J.-Y. Le Boudec A unified framework for
max-min and min-max fairness with applicatidbns
IEEE/ACM Trans. Networking 15(5), pp. 1073-1083, Oct
2007.

D. Raz, H. Levy, and B. Avi-ltzhak,A resource-allocation
queueing fairness measlirtn SGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 130-141,
Jun 2004.

C. A. Waldspurger and W. E. WeihlLbttery scheduling:
Flexible proportional-share resource manageméntlst
Symp. Operating Systems Design & Implementation, pp.
1-11, USENIX, Nov 1994.

M. E. Yaari and M. Bar-Hillel, ‘On dividing justly’. Social
Choice and Welfare 1(1), pp. 1-24, May 1984.

T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss, “Redline: First class support for interactivity in
commodity operating systerhdn 8th Symp. Operating
Systems Design & Implementation, pp. 73—86, Dec 2008.

L. Zhang, “Virtual clock: A new traffic control algorithm for
packet switching networksin ACM S GCOMM Conf., pp.
19-29, Sep 1990.

Z.Zhang, L. T. X. Phan, G. Tan, S. Jain, H. Duong, B. T.
Loo, and I. Lee, ©On the feasibility of dynamic rescheduling
on the Intel distributed computing platfofmn 11th Intl.
Middleware Conf. (Industrial Track), pp. 4-10, Nov 2010.

