
Cache Insertion Policies to Reduce Bus Traffic and
Cache Conflicts

Yoav Etsion Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

The distribution of the number of references to different memory words is highly skewed,
with most addresses being referenced only a very small number of times, while others are ref-
erenced often. This motivates the definition ofcache insertion policies, which will identify
cache lines that are likely to be reused, by examining a smallwindow of the most recent mem-
ory accesses. Such a framework can filter out those accesses that only pollute the cache. We
show that a 64-entry fully associative filter can be very effective for both DL1 and IL1 caches,
and leads to substantial reductions in the miss rate, the average memory access time, and the
traffic between the L1 and L2 caches. Specifically, when usingthe SPEC 2000 benchmarks,
we reduce the DL1 misses by a maximum of 57%, and 9% when averaging on all the bench-
marks. Furthermore, we reduce the traffic between the L1 and L2 cache by a maximum of 30%
and 7% on average. This is especially important in emerging multi-core processors in which
the cores share the L2 cache.

1 Introduction

The notion of a memory hierarchy is one of the oldest and most ubiquitous in computer design,
dating back to the work of von Neumann and his associates in the 1940’s. The idea is that a
small and fast memory will cache the most useful items at any given time, with a larger but slower
memory serving as a backing store. This structure appears incountless contexts, from computer
architecture, to operating systems, to the world wide web. Perhaps the most basic example of
caching occurs between the CPU and the main memory [17], where it alleviates the increasing gap
between CPU and memory speeds.

The basic framework for caching that has materialized over the years includes several compo-
nents. In general caching is done by demand, with the possible use of prefetching in anticipation of
future requests. The main parameters of the basic design arethe block sizes and the associativity of
the cache, and possibly some auxiliary structures such as a victim cache [9]. The main algorithmic
issue is the eviction policy. The design then rests on an evaluation of the tradeoffs involved in

1

using various combinations of design options, in terms of the achieved performance and the cost
as reflected by space and energy consumption.

The success of caching is based on the principle of locality [4]. However, there are different
types of locality, such as the well-known distinction between spatial and temporal locality. In
particular, recent work has focused on streaming data and its possible interaction with the memory
hierarchy (e.g. [11]). We extend this analysis to the level of the processor cache, and propose a
distinction between the conventional working set of a computation and itscore working set, defined
to be those memory items that are really used many times (Section 3). Based on this distinction,
we suggest that only the core data be cached, whereas the moretransient data be filtered out and
prevented from entering the cache and polluting it. Our maincontribution is the formalization of
the idea of aninsertion policy, and identifying it as a new major component in the design space of
caching systems.

An insertion policy based on filtering has two main components. First is the filtering algorithm,
i.e. how to decide on-line whether a data item should be cached or not. Obviously the data needs to
be stored in some interim location until a decision can be reached. This leads to the partitioning of
the cache into two: the filter and the cache proper. The secondpart of the design is the parameters
of the filter, e.g. its block size and associativity, which need not be the same as for the cache itself.
These issues are elaborated in Section 4, and the different options are evaluated in Section 5.

The idea of a filter cache is not completely new. Previous related work is surveyed in Section
2. However, these efforts were mainly ad-hoc in nature, and sometimes led to overly complicated
designs. Our contribution is to identify the insertion policy as a separate topic worthy of detailed
study, based on an analysis of common workloads, and leadingto efficient designs and better
results. However, this is obviously not the final word on the matter. Issues that are left for future
work are listed in Section 7, together with our conclusions.

2 Related Work

The observation that memory access patterns may display different types of locality, and that these
may warrant different types of caching policies, has been made before. Tyson et al. show that
a small fraction of memory access instructions have a disproportionally large effect on the miss
rate, as they generate the majority of misses [20]. They therefore suggest that these instructions
be identified and marked so that they will not be cached at all.Their conclusions are that this can
significantly reduce the memory bus traffic.

González at al. suggest that the cache be partitioned into two parts, one each for handling data
that exhibit spatial and temporal locality [8]. This is managed by a locality prediction table, which
stores data about the history of the most recently executed load/store instructions. The predictions
attempt to classify accesses as scalar or as belonging to a vector, in which case they also attempt
to identify the stride and vector size. Scalars are cached inthe temporal sub-cache. Vectors with
small stride are cached in the spatial sub-cache, which has alarger line size. In some cases, a
datum may be cached in both sub-caches, wasting precious cache resources. Our filter design is
much simpler, as it just looks at repeated accesses to the same block, and does not attempt to adjust
dynamically.

2

The work of Sahuquillo and Pont is even closer to ours in theirdesign, which involves a filter
used to optimize the hit ratio of the cache [14]. However, their main motivation is to reduce the
bus utilization in multiprocessor systems. Their design therefore focuses on identifying the most
heavily used items, and the filter is used to store those itemsthat have been accessed the most
times. This comes at a price of having to maintain an access counter for each item. A similar
mechanism is proposed by Rivers and Davidson, who also base the caching on an access count
[13]. In our scheme this is implicit in the promotion algorithm that moves data items from the
filter to the main cache.

Kin et al. also use filtering before the L1 cache [10]. However, their motivation is not to
improve performance but rather to reduce energy consumption. The idea is that the filter should
catch most of the memory references, allowing the L1 cache toremain in a low-power standby
mode. However, this power saving comes at the cost of a certain performance degradation, because
the L1 cache is only accessed after the filter fails, rather than in parallel to accessing the filter. In a
followup work by Memik and Mangione-Smith, the filter is placed in front of the L2 cache [12].

In all the above studies, the filter is a small auxiliary structure, typically fully associative,
designed to assist the larger and more expensive cache. As such they are similar to the victim cache
and stream buffers suggested earlier by Jouppi [9]. A similar structure has even been included in
a commercial microprocessor: the assist cache of the HP PA 7220 CPU [2]. The function of
this assist cache is to compensate for the fact that the main cache is direct mapped, thus making it
vulnerable to address conflicts. Its size (64 lines of 32 bytes, fully associative) serves as a guideline
for what can be implemented in practice.

3 Filtering the Reference Stream

Locality of reference is one of the best-known phenomena of computer workloads. This is usually
divided into two types: spatial locality, in which we see accesses to addresses that are near an
address that was just referenced, and temporal locality, inwhich we see repeated references to the
same address. Temporal locality is often assumed to imply a correlation in time: that accesses to the
same address are bunched together in a certain part of the execution, rather than being distributed
uniformly throughout the execution. But another importantphenomenon is the skewed popularity
of different addresses: some are referenced a lot of times, while others are only referenced once or
a few times.

3.1 Motivation

The skewed popularity can be demonstrated using mass-countdisparity plots. These plots su-
perimpose two distributions. The first, which we call thecount distribution, is a distribution on
addresses, and specifies how many times each address is referenced. ThusFc(x) will represent the
probability that an address is referencedx times or less. The second, called themass distribution,
is a distribution on references; it specifies the popularityof the address to which the reference per-
tains. ThusFm(x) will represent the probability that a reference is directedat an address that is
referencedx times or less.

3

gcc

accesses per address
1 8 64 512 8K 128K 2M 16M

cu
m

m
ul

at
iv

e
pr

ob
ab

ili
ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

memory
addr.

references

joint
ratio
8/92

W1/2=0.7

ammp

accesses per address
1 8 128 2K 32K 512K 8M 128M

cu
m

m
ul

at
iv

e
pr

ob
ab

ili
ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

memory
addr.

references

joint
ratio
2/98

W1/2=0.3

Figure 1:Mass-count disparity plot for memory accesses in the gcc andammp SPEC benchmarks.

Mass-count disparity refers to the fact that the two graphs are quite distinct. An example is
shown in Fig. 1, using the gcc and ammp SPEC 2000 benchmarks with the train input. The joint
ratio is the unique point in the graphs where the sum of the twoCDFs is 1. In the case of the gcc
graph the joint ratio is 8/92. This means that 8% of the memoryaddresses, and more specifically
those addresses that are highly referenced, get a full 92% ofthe references, whereas the remaining
92% of the addresses get only 8% of the references. Thus a typical address is only referenced
a rather small number of times (up to about 500), whereas a typical reference is directed at a
highly-accessed address (one that is accessed from 1000 to 10,000,000 times). More importantly
for our work is theW1/2 metric, which assesses the combined weight of the half of theaddresses
that receive less references. For gcc, these 50% of the addresses together get only 0.76% of the
references. Thus these addresses are hardly used, and should not be allowed to pollute the cache.
Rather, the caches should be used preferentially to store heavily used data items.

The results are even more extreme for ammp: the joint ratio is2/98, meaning that only 2% of
the addresses are the targets of a full 98% of the references,and vice versa. Moreover, a whopping
77% of the addresses are only referenced once, and together they account for only 0.3% of the
total references. Looking at other SPEC benchmarks, we found joint ratios in the range from
1/99 to 8/92, andW1/2 metrics from 0.03% to 3.42%. An especially extreme example is the apsi
benchmark, where 99.5% of the addresses are accessed only once1!

3.2 Core Working Sets

In terms of classical locality theory, these findings imply that the notion of a working set is deficient
in the sense that it does not distinguish between the heavilyused items and the lightly used ones.
The definition of a working set by Denning is the set of all distinct addresses that were accessed
within a window ofT instructions [5]. We will denote this set asDT (t), to mean “the Denning
working set at timet using a window size ofT ”. As an alternative, we define thecore working set
to be those addresses that appear in the working set and are reused a significant number of times.

1Of course, being accessed only once does not make sense in terms of storing and using data. It could be that
these addresses are actually accessed again, beyond the 2 billion instruction window we used. However, this does not
change the claim that they should not be cached.

4

This will be denotedCT,P (t), where the extra parameterP reflects a predicate used to identify core
members.

The predicateP is meant to capture reuse of memory addresses. This can be expressed in
a number of ways. Recall that caches are typically organizedin blocks (or cache lines) that are
bigger than a single word, in order to exploit spatial locality. We therefore need to decide whether
to accept any type of repetitions within a block, or require repetitions in accessing the same word.
To express this, we introduce the following notation. LetB represent a block ofk words. Letwi,
i = 1, . . . , k be the words in blockB. Let r(w) be the number of references to wordw within the
window of interest. Using this, we define several types of predicates:

n × B — words in blockB are referencedn times or more. Formally this is written

n × B ≡
k∑

i=1

r(wi) ≥ n

For example, the predicate3 × B identifies those blocks that were referenced a total of 3
times or more. This is meant to identify a combination of spatial and/or temporal locality,
without requiring either type explicitly.n will typically be smaller than the block sizek, so
as to be able to capture strided accesses.

The space overhead for implementing this predicate islog n bits per cache block, in order to
count the accesses. Note that this is only added to the filter,not to the cache proper.

n × W — some wordw in blockB was referencedn times or more. Formally this is written

n × W ≡ ∃w ∈ B s.t. r(w) ≥ n

For example, the predicate2×W identifies those blocks that include some word that was ref-
erenced 2 times or more. This predicate is designed to identify blocks that display temporal
locality.

The space overhead for implementing this predicate isk log n bits, because we need to count
the accesses to each word individually.

n × AW — all words in blockB were referenced, and at least one of them was referencedn times
or more. Formally this is written

n × AW ≡ (∀w ∈ B : r(w) ≥ 1) ∧ (∃w ∈ B s.t. r(w) ≥ n)

This predicate is designed to identify memory scans (each word accessed in sequence) that
should nevertheless be cached because there is some reuse inaddition to the scan. However,
experience indicates that this is very rare, and even many scans do not access all the words
in each block but rather use some stride. This type of predicate is therefore not used in the
sequel.

n × ST — a non-uniform strided reference pattern with reuse was detected. This is done by
tabulating the last few accesses, as illustrated by the following pseudocode (where addr is
the address accessed last):

5

if (prev addr == addr){repeat++;}
else{prev stride = stride; stride = addr - prevaddr; repeat = 0;}
prev addr = addr;

using this data, a block is considered in the core if it was accessed with inconsistent strides,
or if a single word was referenced more thann times in a row. Formally, this is written as

n × ST ≡ (repeat > n) ∨ (stride 6= prev stride)

This predicate is designed to filter out memory scans that usestrided access, even if they
include up ton accesses to the same memory location within the scan.

The space overhead for implementing this predicate islog n bits for the repeat counter, and
2 log k bits to identify the two previous addresses accessed; thesethen enable the strides to
be calculated.

The above definitions are illustrated in Fig. 2. Using the SPEC gcc benchmark as an example,
the top graphs simply show the access patterns to data and instructions. Below them we show
the Denning working setD1000(t) (i.e. for a window of 1000 instructions) and the core working
setC1000,2×W (t). As we can easily see, the core working set is indeed much smaller, and in par-
ticular, it eliminates much of the sharp peaks that appear inthe Denning working set and reflect
memory scans. In the next section we will use this to design a filter cache that only caches the
core, and filters out the rest. Additional examples are shownin Fig. 3. In some cases, such as the
gzip benchmark, the reduction in working set size is very large. However, there were other bench-
marks in which the difference was smaller, or even negligible. This is reflected in the performance
evaluation results reported in Section 5.

3.3 Parameter Values

An important parameter of the filtering is the window size that needs to be considered. The bigger
the window, the larger the filter has to be. We therefore need to base our design on a size that is as
small as possible, but large enough to capture enough reuse so as to enable the core to be identified.
Such data is shown in fig. 4. This shows the distribution of observed reuse of 8-word blocks and
of single words as a function of the window size. According tothis data, a window size of about
64 blocks suffices to identify about 75–90% of the total reuseof blocks for all the benchmarks but
two. For word-level reuse, the corresponding range is around 50–70%. Note however that the plots
become rather flat beyond this point, so a noticeable increase in the captured reuse would require
a significantly larger window size. We therefore feel that a window size of 64 is a suitable design
point, as it is implementable and somewhat after the knees inthe curves.

An example of how filtering interacts with the access patternis shown in Fig. 5. The top plot
is a subset of the access patterns for gcc formerly shown in Fig. 2. Here, these scatter plots are
color coded to show the parts that are filtered out using the 2xW filter. The bottom is from the gzip
benchmark, and clearly shows how some memory scans are filtered out.

6

 4.8305e+09
 4.831e+09

 4.8315e+09
 4.832e+09

 4.8325e+09

A
dd

re
ss

 5.3685e+09
 5.369e+09

 5.3695e+09
 5.37e+09

 5.3705e+09
 5.371e+09

 5.3715e+09
 5.372e+09

 5.3725e+09
 5.373e+09

 5.3735e+09
 5.374e+09

 5.3745e+09
 5.375e+09

 5.3755e+09
 5.376e+09

 5.3765e+09
 5.377e+09

 5.3775e+09
 5.378e+09

A
dd

re
ss

gcc - data

 4.832e+09
 4.8325e+09
 4.833e+09

 4.8335e+09
 4.834e+09

 0 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

A
dd

re
ss

Access number

gcc - instructions

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

W
or

ki
ng

 s
et

 s
iz

e

Access number

gcc

Denning
2xW core

Figure 2:Examples of memory access patterns and the resulting Denning and core working sets.

4 Design of a Filter Cache

The working set cache management policy attempts to maintain the program’s working set in the
cache [6]. Our policy is to try and focus on only thecore working set. This can be done by a
filtering mechanism that implements the predicates outlined above.

The flow of data between the different levels of the memory hierarchy is as shown in Fig. 6.
In a conventional caching system, requests that cannot be satisfied at one level are forwarded to
the next level, and when the data finally arrives it is cached.In our scheme, in contradistinction,

7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

W
or

ki
ng

 s
et

 s
iz

e

Access number

gzip

Denning
2xW core

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

W
or

ki
ng

 s
et

 s
iz

e

Access number

swim

Denning
2xW core

Figure 3:Additional examples of Denning and core working sets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 16 32 48 64 80 96 112 128

cu
m

ul
at

iv
e

%

window size

164.gzip
168.wupwise
172.mgrid
175.vpr
176.gcc
177.mesa
178.galgel
179.art
181.mcf

186.crafty
187.facerec
188.ammp
197.parser
253.perlbmk
255.vortex
256.bzip2
300.twolf
301.apsi

 0

 20

 40

 60

 80

 100

 0 16 32 48 64 80 96 112 128

cu
m

ul
at

iv
e

%

window size

164.gzip
175.vpr
176.gcc
177.mesa
178.galgel
179.art
181.mcf
186.crafty
187.facerec
188.ammp
253.perlbmk
255.vortex
300.twolf

Figure 4:Distribution of observed repeated accesses to memory, at the block level (left) and word
level (right). It is important that the filter size used be beyond the knee in these graphs.

newly arrived data is not immediately admitted into the cache. Instead, it is placed in a filter that
implements the desired predicate.

The filter is fully associative and managed in an LRU manner. It operates according to the
following rules. When an address is referenced, the CPU searches for it in the cache and filter in
parallel. If it is in the cache it is retrieved as in conventional systems. If it is found in the filter,
this new reference is tabulated, and the filter predicate is applied. If the cache line containing the
referenced address now satisfies the predicate, it is promoted into the cache proper. If not, it is
served from the filter and moved to the MRU position. If the referenced address is not found in
neither the cache not the filter, it is retrieved from the nexthigher level, and inserted into the MRU
position of the filter. To make space for it, the cache line in the LRU position needs to be evicted.
If this cache line has been modified while in the filter, it is written back to the next higher level in
the hierarchy. If not, it is simply discarded.

The main algorithmic aspect of the workings of a filter cache is the promotion algorithm. This

8

 4.8306e+09
 4.8308e+09
 4.831e+09

 4.8312e+09
 4.8314e+09
 4.8316e+09
 4.8318e+09

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

A
dd

re
ss

Access number

 5.3728e+09
 5.373e+09

 5.3732e+09
 5.3734e+09
 5.3736e+09
 5.3738e+09
 5.374e+09

 5.3742e+09
 5.3744e+09
 5.3746e+09
 5.3748e+09
 5.375e+09

 5.3752e+09
 5.3754e+09
 5.3756e+09
 5.3758e+09
 5.376e+09

 5.3762e+09
 5.3764e+09
 5.3766e+09
 5.3768e+09
 5.377e+09

 5.3772e+09
 5.3774e+09
 5.3776e+09
 5.3778e+09
 5.378e+09

A
dd

re
ss

gcc - data

Filter
Cache

 5.37e+09
 5.375e+09
 5.38e+09

 5.385e+09
 5.39e+09

 5.395e+09
 5.4e+09

 5.405e+09
 5.41e+09

 5.415e+09
 5.42e+09

 5.425e+09
 5.43e+09

 0 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

A
dd

re
ss

Access number

gzip - data

Filter
Cache

Figure 5:Examples of memory access filtering. Top: gcc benchmark (a subset of the data shown
in Fig. 2). Bottom: gzip benchmark.

9

memory

L2 cache

D1 I1

CPU

memory

L2 cache

CPU

D1 I1

F F $$

$
F filter

cache

load on demand
write back
if modified

legend

optional promote

Figure 6:Basic design and data flows of a system with filtered D1 and I1 caches (right) compared
with the conventional design (left).

implements the chosen predicate, that is supposed to identify members of the core working set.
The specific predicates that we evaluated are listed in Section 5. Note that our cache lines contain
8 words by default, which implies that we may consider them tobe members of the core even if
most of the words were not referenced. This reflects experience with trying out various alternatives,
which showed that strided accesses often cause many words tobe skipped altogether, and that this
should not be taken to imply that other words in the cache linewill not benefit from caching.

The default parameters for our filters are:

• 64 entries

• 8 words per entry

• fully associative

These parameters were selected as a compromise between the expected performance gains and
the implementation cost. A larger fully associative filter could be too costly in three ways. First,
the latency of the search logic depends on the number of entries that need to be searched. We
want to keep the filter latency similar to that of the L1 cache,so we must limit its size. Second,
because a fully associative search is done in parallel on allentries, the energy consumption is
also proportional to the size. Finally, a larger filter takesup more die area. In fact, our selected
parameter values are quite modest, as witnessed by the HP assist cache implementation from 1997.
We study their effect and the various cost-performance tradeoffs in the next section.

5 Evaluation of Benefits

To evaluate the implementation of cache insertion policiesbased on a filter cache, we ran ex-
tensive simulations using SimpleScalar [1] and the SPEC 2000 benchmarks [18]. All the SPEC
benchmarks were used except for six: eon and equake, in whichthe miss rate was extremely low
to begin with (under 0.1%), gap, sixtrack, and fma3d, who failed to run in our environment, and

10

cache micro-architecture
L1 design split fetch/issue/decode width 8
D1/I1 size 16 KB functional units 8
D1/I1 line size 64 B window size 128
D1/I1 set assoc. 4 branch prediction perfect
D1/I1 sets 64 memory
D1/I1 latency 2 cy. memory latency 100 cy.
L2 design unified filter
L2 size 256 KB filter size 4 KB
L2 line size 128 B filter line size 64 B
L2 set assoc. 8 filter entries 64
L2 sets 256 filter assoc. full
L2 latency 10 cy. filter latency 3 cy.

Table 1:Basic configuration used in the simulations.

DL1 IL1 UL2
benchmark avg lat missrate missesavg lat missrate misses avg lat accesses missrate
mgrid 4.5586 0.0344 25e6 2.0006 0 30226 47.8032 32e6 0.3793
facerec 9.6268 0.0335 24e6 2.0002 0 5647 59.4110 36e6 0.5089
lucas 17.9727 0.0789 33e6 2 0 808 57.2598 51e6 0.4365
vpr 7.7267 0.0532 37e6 2 0 360 48.2863 50e6 0.3889
mesa 2.5473 0.0051 3e6 2.0123 0.0014 3e6 20.1625 9e6 0.0916
parser 4.2167 0.0322 22e6 2.0017 0.0001 212578 29.8848 28e6 0.1833
crafty 2.4003 0.0246 18e6 2.1505 0.0185 49e6 11.6491 69e6 0.0169
mcf 27.5424 0.2078 186e62.0007 0.0001 292070 58.5592 265e6 0.4362
ammp 27.9668 0.1823 128e62.0001 0 7567 97.1783 133e6 0.8227
gzip 2.4609 0.0221 14e6 2 0 190 12.4497 20e6 0.0229
perlbmk 2.3888 0.0203 18e6 2.1144 0.0138 39e6 11.9269 61e6 0.0197
swim 7.9702 0.0868 57e6 2.0003 0 36133 38.7305 77e6 0.2959
galgel 6.3150 0.1813 161e6 2 0 384 15.5151 162e6 0.0568
art 34.1540 0.3421 254e6 2 0 125 79.4809 308e6 0.5670
twolf 8.8613 0.0647 42e6 2.0234 0.0026 6e6 43.2337 64e6 0.3425
wupwise 3.7475 0.0128 7e6 2 0 291 50.8031 9e6 0.3701
apsi 4.5482 0.0389 29e6 2.0945 0.0117 25e6 28.0604 66e6 0.1839
bzip2 3.3189 0.0267 19e6 2 0 758 36.4921 24e6 0.2659
vortex 2.7585 0.0178 15e6 2.1461 0.0156 43e6 14.4925 63e6 0.0438
gcc 21.3845 0.0546 76e6 2.0847 0.0049 11e6 49.2831 131e6 0.3015

Table 2:results for SPEC 2000 benchmarks using the base configuration, with no filtering.

11

DL1 filter IL1 filter description
2 × W none cache data blocks that include any single word that is ref-

erenced for the second time, and all instruction blocks

3 × B none cache data blocks to which three references are made, and
all instruction blocks

3 × ST none cache data blocks that exhibit non-uniform strides or more
than 3 consecutive accesses to the same word, and all in-
struction blocks

2 × W 2 × W cache data or instruction blocks that include any single
word that is referenced for the second time

3 × B 2 × W cache data blocks to which three references are made, and
instruction blocks with a word referenced for the second
time

3 × ST 2 × W cache data blocks that exhibit non-uniform strides or more
than 3 consecutive accesses to the same word, and instruc-
tion blocks with a word referenced for the second time

Table 3:Filter configurations compared in the simulations.

applu, which had a truncated binary2. We simulated the benchmarks as compiled by the DEC com-
piler for the Alpha architecture [16]. We also checked compilation with gcc, for both the Alpha
and x86 architectures; in most cases checked the results were essentially the same, and they are
not reported here. When multiple input datasets exist for a benchmark, input 0 was used.

The simulation was carried out with conventional default architectural parameters, as outlined
in Table 1. The latency of accessing the filter is conservatively assumed to be 3 cycles, as opposed
to only 2 cycles for the cache, based on a timing analysis using the CACTI 3.2 model [15]. When
the train workloads were used, the full execution was simulated. For the reference workloads, we
first skipped one billion instructions, and then tabulated the performance of the next two billion.
Most of the results reported here are for the reference workload. The results for the base configu-
ration, with no filtering, are listed in Table 2. The effect ofdifferent types of filtering are shown in
subsequent figures as animprovement relative to these results (so positive values are better).

The main goal of the simulations is to evaluate the effectiveness of cache insertion policies, as
embodied in different filtering configurations. Most simulations compared the base configuration
described above with six optional filters as described in Table 3. For the IL1 cache we define the
word size to be 4 bytes, so as to match the instruction size in the Alpha architecture [16] (in the
DL1 cache a word is defined to be 8 bytes).

Results pertaining to the DL1 cache are shown in Fig. 7. As thenumber of accesses is constant,
there is a strong correlation between the miss rate and the number of misses, so we show only one
of them. Most of the benchmarks show an improvement in the average latency and/or the cache

2Dec OSF-compiled binaries were downloaded from the SimpleScalar web site.

12

-10

 0

 10

 20

 30

 40

 50

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

DL1 average latency

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

-10
 0

 10
 20
 30
 40
 50
 60

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

DL1 miss rate

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

Figure 7:Effect of filtering on the performance of the DL1 cache.

misses; a few show minor degradation in performance for somefilters. The 3xB filter is especially
effective in reducing the average latency (relative to the base case), and leads to a reduction of
12.2% on average. The 2xW and 3xST filters reduce the average latency by about 4% and 4.2% on
average. For the miss rates and number of misses there is little difference between the performance
of the different filters. The 2xW filter reduces the miss rate by about 8% on average, while the other
two reduce it by about 9% and 9.3%. In general, adding filtering to the IL1 cache does not affect

 0

 2

 4

 6

 8

 10

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

IL1 miss rate

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

Figure 8:Effect of filtering on the performance of the IL1 cache.

13

-35
-30
-25
-20
-15
-10

-5
 0
 5

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

UL2 average latency

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

-50

-40

-30

-20

-10

 0

 10

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

UL2 miss rate

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

-5
 0
 5

 10
 15
 20
 25
 30
 35

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

UL2 accesses

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

Figure 9:Effect of filtering on the performance of the UL2 cache.

the performance seen for the DL1 cache.
The effects of filtering on the IL1 cache were minimal, as shown in Fig. 8. Some benchmarks

show a marginal degradation in access latency, but this is limited to less than 0.5% (not shown). In
most benchmarks the miss rate is essentially zero, because the cache is large enough to include all
working sets. In those that do exhibit misses, filtering reduces the miss rate by up to 9.2%, but the
average is only 1.9% due to the many benchmarks with negligible misses. Naturally, these effects
are largely confined to filter configurations that include filtering of the IL1 cache.

Simulation results for the UL2 cache are shown in Fig. 9. for most benchmarks, the average
latency to the L2 cache is degraded. The maximal degradationis just over 31%, but the average
is around 3.6–4%. This is true for all filter configurations, with only minor variations. The results

14

-10

 0

 10

 20

 30

 40

 50

avg
gcc

vortex

wupwise

bzip2
apsi

twolf
art

galgel

swim
perlbm

k

gzip
am

m
p

m
cf

crafty
parser

m
esa

vpr
m

grid
facerec

lucas

%
 im

pr
ov

em
en

t

DL1 average latency (CAM filter)

D1 2xW
D1 3xB

D1 3xST
D1 2xW I1 2xW
D1 3xB I1 2xW

D1 3xST I1 2xW

Figure 10:DL1 performance with an improved filter implementation.

base config with filters
8KB 16KB 32KB 8+4KB 16+4KB 32+8KB

avg latency [cy.] 10.48 10.28 10.11 10.20 10.12 9.96
miss rate [%] 9.47 7.92 6.53 8.21 7.60 6.37

Table 4:Comparison of adding a filter to the DL1 cache with enlarging the DL1 cache.

are similar for the miss rate, with the average degradation in the range 7.2–8.8%. However, these
results are actually misleading. The miss rate is the fraction of misses out of the total accesses
(misses + hits). An increased miss rate can therefore reflectmore misses, or less hits. In our
case it is mainly the latter, as witnessed by the chart showing the number of accesses to the UL2
cache, which is reduced by 5.3–6.7% on average (in all the charts, including this one, a positive
“improvement” means reduction). Note also the strong correlation between reduced accesses and
degraded miss rate. Thus it is the improved performance of the L1 caches, and specifically the
reduction in L1 misses, that make the L2 cache look slightly worse.

The reduced accesses to the L2 cache are actually an important benefit. In forthcoming multi-
core microprocessors the L2 cache is shared by the differentcores. Thus contention for the L2
cache and its ports may become a serious performance issue. Filters on the L1 caches may help
alleviate this concern by reducing the number of requests that are forwarded to the L2 cache.

All the simulations reported so far were conservative in thesense that they assumed that access
to the filter costs 3 cycles, whereas access to the DL1 and IL1 caches only costs 2 cycles. It
is possible, however, to reduce the access time to the filter by implementing it using a content-
addressable memory (CAM) [3, 21]. This is a realistic option, as witnessed by the use of such
memories in the core of modern microprocessor architectures, for example in the implementation
of instruction issue lookup [7].

Re-running the simulations with filters that are assumed to require only 2 cycles per access
leads to the results shown in Fig. 10. These are only slightlybetter than the results shown above in
Fig. 7 for filters that require 3 cycles. The average improvement in average latency is now about
4.7% and 5.3% for the 2xW and 3xST filter configurations, and 12.8% for the 3xB filters.

An important question when adding an auxiliary structure like a filter is whether this is good

15

technology 4-way 8-way 4-way+filter
90nm 0.38nJ 0.68nJ 0.51nJ
65nm 0.26nJ 0.48nJ 0.34nJ

Table 5: Results of power estimates using the CACTI 3.2 model, for a 16KB cache and a 4KB
(64-entry) filter.

use of the chip real-estate. By adding a filter, we are effectively enlarging the cache; maybe the
above results would also be obtained by a simple corresponding increase in cache size, without
the filtering mechanism? To check this we compared our base configuration of a 16KB DL1 cache
with 8KB and 32KB caches, both with and without an added filter. For the 16KB cache we used
a 64-entry filter, as above. The same filter size was used with the 8KB cache, because a reduced
32-entry filter is not large enough to capture reuse effectively. For the 32KB cache, we enlarged
the filter to maintain the same ratio as for 16KB, i.e. have a filter that adds 25% to the cache.

The results in terms of average latency and miss rate are shown in Table 4. They indicate that
in terms of average latency the filter is very competitive: an8KB cache with filter achieves a lower
average latency than a 16KB cache, and a 16KB cache with filterachieves a latency similar to that
of a 32KB cache, in both cases using less space and less energy(energy calculations are given
below in Section 6). In terms of miss rate the filter is equivalent to increasing the cache size. For
example, the miss rate of a 16KB cache with filter is 7.60%. Theeffective size of this combination
is 20KB. And indeed, by interpolating between the 16KB and 32KB miss rates for caches without
a filter, we find that a 20KB cache would be expected to suffer a miss rate of 7.57%.

6 Energy Considerations

An obvious concern with our filter design is energy consumption. It is well-known that the power
expenditure of a cache structure depends on its size and associativity. We used the CACTI 3.2
model to perform an initial evaluation of our design [15]. The estimated power consumption is
calculated simply as the sum of the power consumption of the filter and the cache itself, using each
one’s specific configuration.

The results of such evaluations are shown in Table 5. We compare 16KB caches with different
levels of set associativity, and with an added 64-entry fully associative filter. A notable result is
that the estimated power consumption of a 4-way associativecache with an added filter islower
than that of an 8-way associative cache without a filter.

Considering the optional use of CAM to implement the filter inorder to reduce its access time,
we note that a CAM structure of 64 lines is much more energy efficient compared to even smaller
RAM structures [21].

16

L1 avg latency L2 avg latency IPC
base case 10.68 40.68 0.712
with filter 8.86(-17.07%) 43.36(+6.58%) 0.718(+ 0.83%)
with 512KB L2 8.24(-22.89%) 30.42(-25.22%) 0.860(+20.80%)

Table 6: Measured IPC is sensitive to the L2 average latency, but not to the L1 average latency,
motivating the study of attaching a filter mechanism to the L2cache. Data for the twolf benchmark.

7 Conclusions and Future Work

Computer programs use different parts of their address space in different ways. In particular, some
memory words are accessed very many times, while others are not. This may have a big impact on
caching policies: caching memory words that will not be reused pollutes the cache and takes the
place of other words that could have been cached to benefit. Wetherefore propose that caches be
managed using an insertion policy, that tries to filter out a large part of the references. The filter
implements a predicate that tries to identify those parts ofthe address space that constitute the core
working set, and that really deserve to be cached.

We have presented an initial study of the parameters of the filter, and how they affect perfor-
mance and cost. But there is still much to be done. One possible improvement is to replace the
fully associative filter by a highly associative filter. Thiswill enable the use of a larger filter, while
limiting the access latency and power consumption. Anotheris the possible divergence of the filter
block size and the cache block size. In our simulations they were always the same, but it is possible
that some benefits can be obtained by using different sizes.

As we have shown, the filter cache leads to a significant reduction in the average memory
access latency, and also to a significant reduction in the bustraffic between the L1 and L2 caches.
However, this only led to a marginal improvement in the IPC. This implies that L1 access is not
the bottleneck in our combination of processor configuration and benchmarks. However, when we
experimented with an artificially improved L2 cache we did achieve an improvement in the IPC
(Table 6). This means that the IPC is actually sensitive to the long latencies which cause the whole
pipeline to empty out. Thus an important and promising area for future research is to include a filter
mechanism in the L2 cache, so as to reduce the average latencies involved in L2 access. This is
complicated by the fact that the L2 cache does not see all memory accesses, as the lion’s share are
absorbed by the L1 caches. Thus we need to devise a mechanism to keep the L2 filter informed of
the locality properties of the reference stream, so that it can make and informed decision regarding
what to insert into the cache.

Another direction for future research is to try and incorporate criticality information with the
reuse information. The schemes proposed above are oblivious of request criticality. However, in
real applications, some requests are more critical then others, in terms of their effect on the IPC
[19]. Adding such considerations to the filter can further improve its fidelity, and allow even higher
focus on caching only those addresses that lead to improved performance.

17

References

[1] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an infrastructure for computer system
modeling”. Computer 35(2), pp. 59–67, Feb 2002.

[2] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher, , and J. Zheng,
“Design of the HP PA 7200 CPU”. Hewlett-Packard Journal 47(1), Feb 1996.

[3] L. Chisvin and R. J. Duckworth, “Content-addressable and associative memory: alternatives
to the ubiquitous RAM”. IEEE Computer 22(7), pp. 51–64, Jul 1989.

[4] P. J. Denning, “The locality principle”. Comm. ACM 48(7), pp. 19–24, Jul 2005.

[5] P. J. Denning, “The working set model for program behavior”. Comm. ACM 11(5), pp. 323–
333, May 1968.

[6] P. J. Denning, “Working sets past and present”. IEEE Trans. Softw. Eng. SE-6(1), pp. 64–84,
Jan 1980.

[7] D. Ernst and T. Austin, “Efficient dynamic scheduling through tag elimination”. In Intl.
Symp. on Computer Architecture, pp. 37–46, May 2002.

[8] A. González, C. Aliagas, and M. Valero, “A data cache with multiple caching strategies tuned
to different types of locality”. In Intl. Conf. on Supercomputing, pp. 338–347, ACM Press,
New York, NY, USA, 1995.

[9] N. P. Jouppi, “Improving direct-mapped cache performance by the additionof a small fully-
associative cache and prefetch buffers”. In Intl. Symp. on Computer Architecture, pp. 364–
373, 1990.

[10] J. Kin, M. Gupta, and W. H. Mangione-Smith, “Filtering memory references to increase
energy efficiency”. IEEE Trans. on Computers 49(1), pp. 1–15, Jan 2000.

[11] N. Megiddo and D. S. Modha, “ARC: a self-tuning, low overhead replacement cache”. In
2ndUSENIX Conf. File & Storage Tech., pp. 115–130, Mar 2003.

[12] G. Memik and W. H. Mangione-Smith, “Increasing power efficiency of multi-core network
processors through data filtering”. In Intl. Conf. on Compilers, Architecture, and Synthesis
for Embedded Systems, pp. 108–116, ACM Press, New York, NY, USA, 2002.

[13] J. A. Rivers and E. S. Davidson, “Reducing conflicts in direct-mapped caches with a
temporality-based design”. In Intl. Conf. on Parallel Processing, vol. 1, pp. 154–163, 1996.

[14] J. Sahuquillo and A. Pont, “The filter cache: a run-time cache management approach”. In
EUROMICRO, pp. 1424–1431, IEEE Computer Society, 1999.

18

[15] P. Shivakumar and N. P. Jouppi,CACTI 3.0: An Integrated Cache Timing, Power, and Area
Model. Technical Report WRL Technical Report 2001/2, Compaq Western Research Labo-
ratory, Aug 2001.

[16] R. L. Sites, “Alpha AXP architecture”. Communications of the ACM 36(2), pp. 33–44, Feb
1993.

[17] A. J. Smith, “Cache memories”. ACM Comput. Surv. 14(3), pp. 473–530, Sep 1982.

[18] Standard performance evaluation corporation. URL http://www.spec.org.

[19] S. T. Srinivasan and A. R. Lebeck, “Load latency tolerance in dynamically scheduled proces-
sors”. In 31st Intl. Symp. on Microarchitecture, pp. 148–159, IEEE Computer Society Press,
Los Alamitos, CA, USA, 1998.

[20] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A modified approach to data cache
management”. In 28th Intl. Symp. on Microarchitecture, pp. 93–103, Nov 1995.

[21] M. Zhang and K. Asanovic, “Highly-associative caches for low-power processors”. In Kool
Chips Workshop, 33rd Intl. Symp. on Microarchitecture, IEEE Computer Society, 2000.

19

