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Abstract

The distribution of the number of references to differentmey words is highly skewed,
with most addresses being referenced only a very small nuailienes, while others are ref-
erenced often. This motivates the definitioncathe insertion policies, which will identify
cache lines that are likely to be reused, by examining a smatlow of the most recent mem-
ory accesses. Such a framework can filter out those accdsgemnty pollute the cache. We
show that a 64-entry fully associative filter can be veryaiie for both DL1 and IL1 caches,
and leads to substantial reductions in the miss rate, thmg@enemory access time, and the
traffic between the L1 and L2 caches. Specifically, when ugiegSPEC 2000 benchmarks,
we reduce the DL1 misses by a maximum of 57%, and 9% when augrag all the bench-
marks. Furthermore, we reduce the traffic between the L1 @whthe by a maximum of 30%
and 7% on average. This is especially important in emerginlji+tore processors in which
the cores share the L2 cache.

1 Introduction

The notion of a memory hierarchy is one of the oldest and mbsfuitous in computer design,
dating back to the work of von Neumann and his associateseirl@40’s. The idea is that a
small and fast memory will cache the most useful items at argngime, with a larger but slower
memory serving as a backing store. This structure appeamsuntless contexts, from computer
architecture, to operating systems, to the world wide webrh&ps the most basic example of
caching occurs between the CPU and the main memory [17],entalleviates the increasing gap
between CPU and memory speeds.

The basic framework for caching that has materialized dveyears includes several compo-
nents. In general caching is done by demand, with the pessgid of prefetching in anticipation of
future requests. The main parameters of the basic desighebdock sizes and the associativity of
the cache, and possibly some auxiliary structures such @sigcache [9]. The main algorithmic
issue is the eviction policy. The design then rests on aruatiah of the tradeoffs involved in
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using various combinations of design options, in terms efabhieved performance and the cost
as reflected by space and energy consumption.

The success of caching is based on the principle of locality However, there are different
types of locality, such as the well-known distinction betwespatial and temporal locality. In
particular, recent work has focused on streaming data ambgsible interaction with the memory
hierarchy (e.g. [11]). We extend this analysis to the ledaghe processor cache, and propose a
distinction between the conventional working set of a cotapon and itore working set, defined
to be those memory items that are really used many timesi¢8e®t. Based on this distinction,
we suggest that only the core data be cached, whereas thanmawent data be filtered out and
prevented from entering the cache and polluting it. Our neamtribution is the formalization of
the idea of annsertion policy, and identifying it as a new major component in the desigcspph
caching systems.

An insertion policy based on filtering has two main composehirst is the filtering algorithm,
i.e. how to decide on-line whether a data item should be e¢hcheot. Obviously the data needs to
be stored in some interim location until a decision can befred. This leads to the partitioning of
the cache into two: the filter and the cache proper. The segaridf the design is the parameters
of the filter, e.qg. its block size and associativity, whicledeot be the same as for the cache itself.
These issues are elaborated in Section 4, and the diffepéinhs are evaluated in Section 5.

The idea of a filter cache is not completely new. Previoudedlavork is surveyed in Section
2. However, these efforts were mainly ad-hoc in nature, anaesimes led to overly complicated
designs. Our contribution is to identify the insertion pglas a separate topic worthy of detailed
study, based on an analysis of common workloads, and ledadimgficient designs and better
results. However, this is obviously not the final word on thetter. Issues that are left for future
work are listed in Section 7, together with our conclusions.

2 Related Work

The observation that memory access patterns may displeyetit types of locality, and that these
may warrant different types of caching policies, has beedartzefore. Tyson et al. show that
a small fraction of memory access instructions have a dmptmnally large effect on the miss
rate, as they generate the majority of misses [20]. Theyetbsr suggest that these instructions
be identified and marked so that they will not be cached affakkir conclusions are that this can
significantly reduce the memory bus traffic.

Gonzalez at al. suggest that the cache be partitionedwa@arts, one each for handling data
that exhibit spatial and temporal locality [8]. This is mged by a locality prediction table, which
stores data about the history of the most recently execotatidtore instructions. The predictions
attempt to classify accesses as scalar or as belonging tct@r vie which case they also attempt
to identify the stride and vector size. Scalars are cachédeemporal sub-cache. Vectors with
small stride are cached in the spatial sub-cache, which hager line size. In some cases, a
datum may be cached in both sub-caches, wasting preciobe casources. Our filter design is
much simpler, as it just looks at repeated accesses to thelslack, and does not attempt to adjust
dynamically.



The work of Sahuquillo and Pont is even closer to ours in ttlesign, which involves a filter
used to optimize the hit ratio of the cache [14]. Howeverirth®in motivation is to reduce the
bus utilization in multiprocessor systems. Their desigrefore focuses on identifying the most
heavily used items, and the filter is used to store those ithiaishave been accessed the most
times. This comes at a price of having to maintain an accessteofor each item. A similar
mechanism is proposed by Rivers and Davidson, who also baseaching on an access count
[13]. In our scheme this is implicit in the promotion algbrt that moves data items from the
filter to the main cache.

Kin et al. also use filtering before the L1 cache [10]. Howevkeir motivation is not to
improve performance but rather to reduce energy consumpfibe idea is that the filter should
catch most of the memory references, allowing the L1 cachert@in in a low-power standby
mode. However, this power saving comes at the cost of a ngréaformance degradation, because
the L1 cache is only accessed after the filter fails, rathem th parallel to accessing the filter. In a
followup work by Memik and Mangione-Smith, the filter is pétin front of the L2 cache [12].

In all the above studies, the filter is a small auxiliary stawe, typically fully associative,
designed to assist the larger and more expensive cache cAghgy are similar to the victim cache
and stream buffers suggested earlier by Jouppi [9]. A sirstlacture has even been included in
a commercial microprocessor: the assist cache of the HP R@ TPU [2]. The function of
this assist cache is to compensate for the fact that the raalmeds direct mapped, thus making it
vulnerable to address conflicts. Its size (64 lines of 324ytdly associative) serves as a guideline
for what can be implemented in practice.

3 Filtering the Reference Stream

Locality of reference is one of the best-known phenomenawofauter workloads. This is usually
divided into two types: spatial locality, in which we see egges to addresses that are near an
address that was just referenced, and temporal localityhioh we see repeated references to the
same address. Temporal locality is often assumed to impyralation in time: that accesses to the
same address are bunched together in a certain part of tbhetexe rather than being distributed
uniformly throughout the execution. But another imporgainénomenon is the skewed popularity
of different addresses: some are referenced a lot of timieie wthers are only referenced once or
a few times.

3.1 Motivation

The skewed popularity can be demonstrated using mass-dpdrity plots. These plots su-
perimpose two distributions. The first, which we call t@nt distribution, is a distribution on
addresses, and specifies how many times each address énoefer Thug'.(z) will represent the
probability that an address is referencetimes or less. The second, called thass distribution,

is a distribution on references; it specifies the popularitihe address to which the reference per-
tains. ThusE),(x) will represent the probability that a reference is direcédn address that is
referenced: times or less.
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Figure 1:Mass-count disparity plot for memory accesses in the gcaamdp SPEC benchmarks.

Mass-count disparity refers to the fact that the two graphsgaite distinct. An example is
shown in Fig. 1, using the gcc and ammp SPEC 2000 benchmatikghei train input. The joint
ratio is the unique point in the graphs where the sum of the@@é&s is 1. In the case of the gcc
graph the joint ratio is 8/92. This means that 8% of the menadigresses, and more specifically
those addresses that are highly referenced, get a full 92keséferences, whereas the remaining
92% of the addresses get only 8% of the references. Thus eatyguidress is only referenced
a rather small number of times (up to about 500), whereas iadlypeference is directed at a
highly-accessed address (one that is accessed from 10@Q0@0]1000 times). More importantly
for our work is thelV; , metric, which assesses the combined weight of the half ohtlieesses
that receive less references. For gcc, these 50% of the ssddréogether get only 0.76% of the
references. Thus these addresses are hardly used, and sbbbk allowed to pollute the cache.
Rather, the caches should be used preferentially to sterelp@sed data items.

The results are even more extreme for ammp: the joint ra¢98, meaning that only 2% of
the addresses are the targets of a full 98% of the refereandsjice versa. Moreover, a whopping
77% of the addresses are only referenced once, and toghtheatcount for only 0.3% of the
total references. Looking at other SPEC benchmarks, wedfgoint ratios in the range from
1/99 to 8/92, andV; , metrics from 0.03% to 3.42%. An especially extreme exanmgptbe apsi
benchmark, where 99.5% of the addresses are accessed ogly on

3.2 Core Working Sets

In terms of classical locality theory, these findings imigttthe notion of a working set is deficient
in the sense that it does not distinguish between the heasédy items and the lightly used ones.
The definition of a working set by Denning is the set of all idist addresses that were accessed
within a window of 7" instructions [5]. We will denote this set d3(¢), to mean “the Denning
working set at time using a window size of”. As an alternative, we define tfoere working set

to be those addresses that appear in the working set andugera significant number of times.

10f course, being accessed only once does not make sensenis @éistoring and using data. It could be that
these addresses are actually accessed again, beyond thenZifstruction window we used. However, this does not
change the claim that they should not be cached.



This will be denoted’r (), where the extra parametBrreflects a predicate used to identify core
members.

The predicateP is meant to capture reuse of memory addresses. This can bessgd in
a number of ways. Recall that caches are typically organizddiocks (or cache lines) that are
bigger than a single word, in order to exploit spatial loigaWe therefore need to decide whether
to accept any type of repetitions within a block, or requapstitions in accessing the same word.
To express this, we introduce the following notation. Betepresent a block of words. Letw;,
i=1,...,k bethewords in bloclB. Letr(w) be the number of references to wardvithin the
window of interest. Using this, we define several types ofijmates:

n X B — words in blockB are referenced times or more. Formally this is written

k
nxB=> r(w)>n
=1
For example, the predicatex B identifies those blocks that were referenced a total of 3
times or more. This is meant to identify a combination of sband/or temporal locality,
without requiring either type explicitlyz will typically be smaller than the block siZe so
as to be able to capture strided accesses.

The space overhead for implementing this predicaleg® bits per cache block, in order to
count the accesses. Note that this is only added to the fibetp the cache proper.

n x W — some wordw in block B was referenced times or more. Formally this is written
nxW=3weB st r(w)>n

For example, the predica?ex IV identifies those blocks that include some word that was ref-
erenced 2 times or more. This predicate is designed to fgdstticks that display temporal
locality.

The space overhead for implementing this predicatdadg n bits, because we need to count
the accesses to each word individually.

n x AW — allwords in blockB were referenced, and at least one of them was referentpates
or more. Formally this is written

nx AW = NMw e B:r(w)>1)A(Fwe B st r(w)>n)

This predicate is designed to identify memory scans (eaak wocessed in sequence) that
should nevertheless be cached because there is some rawisktion to the scan. However,
experience indicates that this is very rare, and even maaryssdo not access all the words
in each block but rather use some stride. This type of préslisaherefore not used in the
sequel.

n x ST — a non-uniform strided reference pattern with reuse wasatied. This is done by
tabulating the last few accesses, as illustrated by thevimllg pseudocode (where addr is
the address accessed last):



if (prev_addr == addr)repeat++}
else{prev.stride = stride; stride = addr - preaddr; repeat = G;
prev.addr = addr;

using this data, a block is considered in the core if it wagssed with inconsistent strides,
or if a single word was referenced more thatimes in a row. Formally, this is written as

n x ST = (repeat > n) V (stride # prev_stride)

This predicate is designed to filter out memory scans thastraded access, even if they
include up ton accesses to the same memory location within the scan.

The space overhead for implementing this predicategs bits for the repeat counter, and
2log k bits to identify the two previous addresses accessed; theseenable the strides to
be calculated.

The above definitions are illustrated in Fig. 2. Using the SRBEc benchmark as an example,
the top graphs simply show the access patterns to data atndcitmsns. Below them we show
the Denning working seb;oy(t) (i.e. for a window of 1000 instructions) and the core working
setCiopo2xw (t). As we can easily see, the core working set is indeed muchemmanhd in par-
ticular, it eliminates much of the sharp peaks that appe#inerDenning working set and reflect
memory scans. In the next section we will use this to desigtiea iache that only caches the
core, and filters out the rest. Additional examples are shoviAig. 3. In some cases, such as the
gzip benchmark, the reduction in working set size is vergdaHowever, there were other bench-
marks in which the difference was smaller, or even neglaibhis is reflected in the performance
evaluation results reported in Section 5.

3.3 Parameter Values

An important parameter of the filtering is the window sizet theds to be considered. The bigger
the window, the larger the filter has to be. We therefore nedxhse our design on a size that is as
small as possible, but large enough to capture enough rewsete enable the core to be identified.
Such data is shown in fig. 4. This shows the distribution oleobsd reuse of 8-word blocks and
of single words as a function of the window size. Accordinghis data, a window size of about
64 blocks suffices to identify about 75-90% of the total reafdglocks for all the benchmarks but
two. For word-level reuse, the corresponding range is at@@r-70%. Note however that the plots
become rather flat beyond this point, so a noticeable inergathe captured reuse would require
a significantly larger window size. We therefore feel thatindew size of 64 is a suitable design
point, as it is implementable and somewhat after the knett®einurves.

An example of how filtering interacts with the access patteigshown in Fig. 5. The top plot
is a subset of the access patterns for gcc formerly showngnZi Here, these scatter plots are
color coded to show the parts that are filtered out using the fiter. The bottom is from the gzip
benchmark, and clearly shows how some memory scans aredilber.
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Figure 2:Examples of memory access patterns and the resulting Dganighcore working sets.

4 Design of a Filter Cache

The working set cache management policy attempts to maititai program’s working set in the
cache [6]. Our policy is to try and focus on only there working set. This can be done by a
filtering mechanism that implements the predicates owudtladeove.

The flow of data between the different levels of the memorydnahy is as shown in Fig. 6.
In a conventional caching system, requests that cannottisfiesa at one level are forwarded to
the next level, and when the data finally arrives it is cacHadur scheme, in contradistinction,
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Figure 4:Distribution of observed repeated accesses to memoryedtltick level (left) and word
level (right). It is important that the filter size used be bweg the knee in these graphs.

newly arrived data is not immediately admitted into the eadimstead, it is placed in a filter that
implements the desired predicate.

The filter is fully associative and managed in an LRU manngopkrates according to the
following rules. When an address is referenced, the CPWBearfor it in the cache and filter in
parallel. If it is in the cache it is retrieved as in convenabsystems. If it is found in the filter,
this new reference is tabulated, and the filter predicatppdied. If the cache line containing the
referenced address now satisfies the predicate, it is peaimoto the cache proper. If not, it is
served from the filter and moved to the MRU position. If theerehced address is not found in
neither the cache not the filter, it is retrieved from the riegher level, and inserted into the MRU
position of the filter. To make space for it, the cache linenim ILRU position needs to be evicted.
If this cache line has been modified while in the filter, it istien back to the next higher level in
the hierarchy. If not, it is simply discarded.

The main algorithmic aspect of the workings of a filter cach#né promotion algorithm. This
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implements the chosen predicate, that is supposed to igeméimbers of the core working set.
The specific predicates that we evaluated are listed in@ebti Note that our cache lines contain
8 words by default, which implies that we may consider therhganembers of the core even if
most of the words were not referenced. This reflects expagiasith trying out various alternatives,
which showed that strided accesses often cause many wobesstapped altogether, and that this
should not be taken to imply that other words in the cacheMilenot benefit from caching.

The default parameters for our filters are:

e 64 entries
e 8 words per entry
¢ fully associative

These parameters were selected as a compromise betweexpdwteel performance gains and
the implementation cost. A larger fully associative filteutd be too costly in three ways. First,
the latency of the search logic depends on the number ofesnitnat need to be searched. We
want to keep the filter latency similar to that of the L1 cactewe must limit its size. Second,
because a fully associative search is done in parallel oeraities, the energy consumption is
also proportional to the size. Finally, a larger filter takgsmore die area. In fact, our selected
parameter values are quite modest, as withessed by the BPcashe implementation from 1997.
We study their effect and the various cost-performancestyeigl in the next section.

5 Evaluation of Benefits

To evaluate the implementation of cache insertion polibiased on a filter cache, we ran ex-
tensive simulations using SimpleScalar [1] and the SPE® 2@hchmarks [18]. All the SPEC
benchmarks were used except for six: eon and equake, in \ithécimiss rate was extremely low
to begin with (under 0.1%), gap, sixtrack, and fma3d, whteéhto run in our environment, and
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micro-architecture

L1 design
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D1/I1 sets
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L2 design

L2 size

L2 line size
L2 set assoc.
L2 sets
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split
16 KB
64 B

4
64

2 cy.

unified
256 KB
128 B

8
256

10 cy.

fetch/issue/decode width 8
functional units 8
window size 128
branch prediction perfec
memory
memory latency 100 cy,
filter
filter size 4 KB
filter line size 64 B
filter entries 64
filter assoc. full
filter latency 3cy.

Table 1:Basic configuration used in the simulations.

DL1 IL1 uL2
benchmark| avglat missrate missgsavglat missrate misses avglat accesses missrate
mgrid 45586  0.0344 25e6 2.0006 0 30226 47.8032 32e6  0.3798
facerec 9.6268  0.0335 24e6 2.0002 0 5647 59.4110 36e6  0.5089
lucas 17.9727  0.0789 33eb 2 0 808| 57.2598 5le6  0.4365
vpr 7.7267 0.0532  37eb 2 0 360| 48.2863 50e6  0.3889
mesa 2.5473  0.0051 3e 2.0123  0.0014 3e6 20.1625 9e6  0.0916
parser 4.2167  0.0322 22e62.0017 0.0001 21257829.8848 28e6  0.1838B
crafty 2.4003 0.0246 18e62.1505 0.0185 49e6 11.6491 69e6  0.0169
mcf 27.5424  0.2078 186e62.0007  0.0001 292070 58.5592 265e6  0.436p
ammp 27.9668 0.1823 128e£2.0001 0 7567 97.1783 133e6  0.822)
gzip 2.4609 0.0221 14e6 2 0 190| 12.4497 20e6  0.0229
perlbmk 2.3888  0.0203 18e62.1144  0.0138 39e6 11.9269 6le6  0.0197
swim 7.9702 0.0868 57e6 2.0003 0 36133 38.7305 77e6  0.2959
galgel 6.3150 0.1813 161eb 2 0 384| 15.5151 162e6  0.0568
art 34.1540 0.3421 254eb6 2 0 125| 79.4809 308e6  0.567D
twolf 8.8613 0.0647  42e62.0234  0.0026 6e6 43.2337 64e6  0.3425
wupwise 3.7475  0.0128 7e6 2 0 291| 50.8031 9e6 0.3701
apsi 45482  0.0389 29e62.0945  0.0117 25e6 28.0604 66e6  0.1839
bzip2 3.3189  0.0267 19e6 2 0 758 36.4921 24e6  0.2659
vortex 2.7585 0.0178 15e62.1461  0.0156 43e6 14.4925 63e6  0.0438
gcc 21.3845  0.0546 76e62.0847  0.0049 11e6 49.2831 131e6  0.301p

Table 2:results for SPEC 2000 benchmarks using the base configaratith no filtering.

11



DL1 filter IL1 filter description
2x W none cache data blocks that include any single word thaf4s re
erenced for the second time, and all instruction blocks

3x B none cache data blocks to which three references are matie, an
all instruction blocks

3x ST none cache data blocks that exhibit non-uniform strides aem
than 3 consecutive accesses to the same word, and all in-
struction blocks

2x W 2 x W  cache data or instruction blocks that include any single
word that is referenced for the second time

3x B 2x W cache data blocks to which three references are made, and
instruction blocks with a word referenced for the second
time

3x ST 2x W cache data blocks that exhibit non-uniform strides or more
than 3 consecutive accesses to the same word, and instruc-
tion blocks with a word referenced for the second time

Table 3:Filter configurations compared in the simulations.

applu, which had a truncated binaryVe simulated the benchmarks as compiled by the DEC com-
piler for the Alpha architecture [16]. We also checked cdatmn with gcc, for both the Alpha
and x86 architectures; in most cases checked the resulesegsentially the same, and they are
not reported here. When multiple input datasets exist farecbmark, input 0 was used.

The simulation was carried out with conventional defauthéectural parameters, as outlined
in Table 1. The latency of accessing the filter is consergftisssumed to be 3 cycles, as opposed
to only 2 cycles for the cache, based on a timing analysigubie CACTI 3.2 model [15]. When
the train workloads were used, the full execution was sitedlaFor the reference workloads, we
first skipped one billion instructions, and then tabulatesl performance of the next two billion.
Most of the results reported here are for the reference watkl The results for the base configu-
ration, with no filtering, are listed in Table 2. The effectdifferent types of filtering are shown in
subsequent figures as amprovement relative to these results (so positive values are better).

The main goal of the simulations is to evaluate the effeotgs of cache insertion policies, as
embodied in different filtering configurations. Most simtidas compared the base configuration
described above with six optional filters as described inerdb For the IL1 cache we define the
word size to be 4 bytes, so as to match the instruction sizeartpha architecture [16] (in the
DL1 cache a word is defined to be 8 bytes).

Results pertaining to the DL1 cache are shown in Fig. 7. Asitimber of accesses is constant,
there is a strong correlation between the miss rate and tind@uof misses, so we show only one
of them. Most of the benchmarks show an improvement in theageelatency and/or the cache

2Dec OSF-compiled binaries were downloaded from the Singake® web site.
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Figure 7:Effect of filtering on the performance of the DL1 cache.

misses; a few show minor degradation in performance for dotees. The 3xB filter is especially
effective in reducing the average latency (relative to thsebcase), and leads to a reduction of
12.2% on average. The 2xW and 3xST filters reduce the aveatgyecl by about 4% and 4.2% on
average. For the miss rates and number of misses therégslifference between the performance
of the different filters. The 2xW filter reduces the miss ratabout 8% on average, while the other
two reduce it by about 9% and 9.3%. In general, adding filtetinthe IL1 cache does not affect
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Figure 8:Effect of filtering on the performance of the IL1 cache.
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UL2 average latency

e D12xW mm : T T T
= 0 EME .EE |E§ W gy ey I'E IE@ LI LLLR Y 3 | i
g -5 ST 4 {f u
g 10 IR A oW
i X
e 15 o251 S
= -20
S 25
S 30 :
_35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4, %5 L, Oy C Ry el L
(7NN s D0 @ . U Y > 9, &3
RN % %y, %‘,Q@ S /)7% % %, % %, 0% s %%,070_,_ ®
¢ % S
UL2 miss rate
T T T T T T T T T T T T T T
- . U | LR 1 .
e e R T ——o -
; [ |-
[¢)
>
e
Q.
E
N
1 1 1 1 1 1 1 1 1 1 1 1 1 1
%, % U, % %, Y, %, Ve Yy B G Y, o, %
f@,&/ %{o 77 %9@/ O ’09/0%&’?“9‘{—0
®
UL2 accesses
<
()
IS
(0] i
> ki
o i
‘g i , é g
= o . L — 3] 0 .
s B P
] IR lEE
1 1 1 1 1 1 1 1 1 1 1

1 1
Oy Sy po) L
@%f %%\9% %% Y, %9, % Y, %&/ %% %, %, % :9%9

% 9 %, 7% ©
/)%/)7 Yo ” < T S

Figure 9:Effect of filtering on the performance of the UL2 cache.

the performance seen for the DL1 cache.

The effects of filtering on the IL1 cache were minimal, as shawFig. 8. Some benchmarks
show a marginal degradation in access latency, but thisiigad to less than 0.5% (not shown). In
most benchmarks the miss rate is essentially zero, bedaesacthe is large enough to include all
working sets. In those that do exhibit misses, filtering medthe miss rate by up to 9.2%, but the
average is only 1.9% due to the many benchmarks with netgigiisses. Naturally, these effects
are largely confined to filter configurations that includefilig of the IL1 cache.

Simulation results for the UL2 cache are shown in Fig. 9. fastrbenchmarks, the average
latency to the L2 cache is degraded. The maximal degradegtimst over 31%, but the average
is around 3.6—4%. This is true for all filter configurationgthaonly minor variations. The results
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DL1 average latency (CAM filter)
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Figure 10:DL1 performance with an improved filter implementation.

base config with filters
8KB 16KB 32KB| 8+4KB 16+4KB 32+8KB
avg latency [cy.]] 10.48 10.28 10.11 10.20 10.12 9.96
miss rate [%0] 947 792 653 821 7.60 6.37

Table 4:Comparison of adding a filter to the DL1 cache with enlarghgyDL 1 cache.

are similar for the miss rate, with the average degradatiadhe range 7.2—8.8%. However, these
results are actually misleading. The miss rate is the fsaabf misses out of the total accesses
(misses + hits). An increased miss rate can therefore raflece misses, or less hits. In our
case it is mainly the latter, as witnessed by the chart shptia number of accesses to the UL2
cache, which is reduced by 5.3-6.7% on average (in all thes;hacluding this one, a positive
“improvement” means reduction). Note also the strong datien between reduced accesses and
degraded miss rate. Thus it is the improved performanceet thcaches, and specifically the
reduction in L1 misses, that make the L2 cache look slightlyss.

The reduced accesses to the L2 cache are actually an imploetaefit. In forthcoming multi-
core microprocessors the L2 cache is shared by the diffeaes. Thus contention for the L2
cache and its ports may become a serious performance isstegs Bn the L1 caches may help
alleviate this concern by reducing the number of requesisaie forwarded to the L2 cache.

All the simulations reported so far were conservative ingiese that they assumed that access
to the filter costs 3 cycles, whereas access to the DL1 and diches only costs 2 cycles. It
is possible, however, to reduce the access time to the fjtemblementing it using a content-
addressable memory (CAM) [3, 21]. This is a realistic optias withessed by the use of such
memories in the core of modern microprocessor architegtfioe example in the implementation
of instruction issue lookup [7].

Re-running the simulations with filters that are assumecetuire only 2 cycles per access
leads to the results shown in Fig. 10. These are only sligigtier than the results shown above in
Fig. 7 for filters that require 3 cycles. The average improeenin average latency is now about
4.7% and 5.3% for the 2xW and 3xST filter configurations, an@%for the 3xB filters.

An important question when adding an auxiliary structuke k filter is whether this is good
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technology 4-way 8-way 4-way+filter
90nm 0.38nJ 0.68nJ 0.51nJ
65nm 0.26nJ 0.48nJ 0.34nJ

Table 5: Results of power estimates using the CACTI 3.2 model, for KBL6ache and a 4KB
(64-entry) filter.

use of the chip real-estate. By adding a filter, we are effelstienlarging the cache; maybe the
above results would also be obtained by a simple correspgridcrease in cache size, without
the filtering mechanism? To check this we compared our basfegcwation of a 16KB DL1 cache
with 8KB and 32KB caches, both with and without an added filk@r the 16KB cache we used
a 64-entry filter, as above. The same filter size was used hW&IBKB cache, because a reduced
32-entry filter is not large enough to capture reuse effettiviFor the 32KB cache, we enlarged
the filter to maintain the same ratio as for 16KB, i.e. havetarfthat adds 25% to the cache.

The results in terms of average latency and miss rate arersimovable 4. They indicate that
in terms of average latency the filter is very competitive8KiB cache with filter achieves a lower
average latency than a 16KB cache, and a 16KB cache withdiiteeves a latency similar to that
of a 32KB cache, in both cases using less space and less geerygy calculations are given
below in Section 6). In terms of miss rate the filter is equewalto increasing the cache size. For
example, the miss rate of a 16KB cache with filter is 7.60%. dffexctive size of this combination
is 20KB. And indeed, by interpolating between the 16KB aniB2niss rates for caches without
a filter, we find that a 20KB cache would be expected to sufferss nate of 7.57%.

6 Energy Considerations

An obvious concern with our filter design is energy consuoptit is well-known that the power
expenditure of a cache structure depends on its size andiabaty. We used the CACTI 3.2
model to perform an initial evaluation of our design [15]. eT&stimated power consumption is
calculated simply as the sum of the power consumption of kiee &ind the cache itself, using each
one’s specific configuration.

The results of such evaluations are shown in Table 5. We coenB caches with different
levels of set associativity, and with an added 64-entryyfalisociative filter. A notable result is
that the estimated power consumption of a 4-way associesiche with an added filter iswer
than that of an 8-way associative cache without a filter.

Considering the optional use of CAM to implement the filteorder to reduce its access time,
we note that a CAM structure of 64 lines is much more energgiefit compared to even smaller
RAM structures [21].
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L1 avg latency L2 avg latency IPC
base case 10.68 40.68 0.712
with filter 8.86(-17.07%) 43.36(+6.58%) 0.718(+ 0.83%)
with 512KB L2 8.24(-22.89%) 30.42(-25.22%) 0.860(+20.80%)

Table 6: Measured IPC is sensitive to the L2 average latency, butatited L1 average latency,
motivating the study of attaching a filter mechanism to the&éhe. Data for the twolf benchmark.

7 Conclusions and Future Work

Computer programs use different parts of their addressespatifferent ways. In particular, some
memory words are accessed very many times, while otheroar&inis may have a big impact on
caching policies: caching memory words that will not be eglipollutes the cache and takes the
place of other words that could have been cached to benefith&vefore propose that caches be
managed using an insertion policy, that tries to filter oudrgé part of the references. The filter
implements a predicate that tries to identify those parte@address space that constitute the core
working set, and that really deserve to be cached.

We have presented an initial study of the parameters of tiee, fdnd how they affect perfor-
mance and cost. But there is still much to be done. One pessitgrovement is to replace the
fully associative filter by a highly associative filter. Tkl enable the use of a larger filter, while
limiting the access latency and power consumption. Andghitre possible divergence of the filter
block size and the cache block size. In our simulations thengwalways the same, but it is possible
that some benefits can be obtained by using different sizes.

As we have shown, the filter cache leads to a significant remftuat the average memory
access latency, and also to a significant reduction in theérafic between the L1 and L2 caches.
However, this only led to a marginal improvement in the IP@isTimplies that L1 access is not
the bottleneck in our combination of processor configuregéind benchmarks. However, when we
experimented with an artificially improved L2 cache we dithiage an improvement in the IPC
(Table 6). This means that the IPC is actually sensitiveeddhg latencies which cause the whole
pipeline to empty out. Thus an important and promising aveéuture research is to include a filter
mechanism in the L2 cache, so as to reduce the average kdaneolved in L2 access. This is
complicated by the fact that the L2 cache does not see all meatgesses, as the lion’s share are
absorbed by the L1 caches. Thus we need to devise a mecharke®y the L2 filter informed of
the locality properties of the reference stream, so tharitroake and informed decision regarding
what to insert into the cache.

Another direction for future research is to try and incogiercriticality information with the
reuse information. The schemes proposed above are oldigbrequest criticality. However, in
real applications, some requests are more critical theerstln terms of their effect on the IPC
[19]. Adding such considerations to the filter can furthepiove its fidelity, and allow even higher
focus on caching only those addresses that lead to impraéormance.
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