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tWe present an on-line (run-time) algorithm that manages the granularity of paral-lel fun
tional programs. The algorithm exploits useful parallelism when it exists, andignores ine�e
tive parallelism in programs that produ
e many small tasks. The ideais to balan
e the amount of lo
al work with the 
ost of distributing the work. Thisis a
hieved by ensuring that, for every parallel task spawned, an amount of work thatequals the 
ost of the spawn is performed lo
ally. We analyze several 
ases and 
om-pare the algorithm to the optimal exe
ution. In most 
ases the algorithm 
ompetes wellwith the optimal algorithm, even though the optimal algorithm has information aboutthe future evolution of the 
omputation that is not available to the on-line algorithm.This is quite remarkable 
onsidering we have 
hosen extreme 
ases that have 
ontra-di
ting optimal exe
utions. We also present experimental results that demonstrate thee�e
tiveness of the algorithm.1 Introdu
tionDuring the exe
ution of parallel fun
tional programs many independent tasks may be 
re-ated, some of whi
h may be sent for parallel exe
ution to other Pro
essing Elements (PEs).However, the size of ea
h task is generally not known before its exe
ution, whi
h makes itdiÆ
ult to de
ide whether to exe
ute it lo
ally, or to perform the relatively expensive oper-ation of sending it for remote exe
ution. On one hand, sending (spawning) a small task forremote exe
ution may result in a slowdown due to the 
ommuni
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hand, delaying the sending of a large task may result in loss of parallelism. This problem isoften referred to as the granularity problem.Controlling the degree of a
tual 
on
urren
y in order to a
hieve e�e
tive granularityis espe
ially important in �ne-grained 
omputation models, su
h as fun
tional program-ming, logi
 programming (Clark 1990), and the data
ow paradigm (Arvind and Nikhil 1990,Kirkham 1990). In su
h models, there is often too mu
h parallelism, whi
h burdens therun-time system with the handling of many small tasks.We investigate the granularity problem using a simple model that addresses the maindiÆ
ulties of determining when to allow the spawning of parallel tasks. In this model, the
omputation graph of the program is represented by a tree in whi
h the nodes representthe tasks, and the ar
s represent their dependen
ies. The tree, whose pre
ise shape andevolution is not known a priori, is traversed in parallel on a loosely-
oupled multi
omputersystem. The shape of the 
omputation graph is usually not known in advan
e be
auseit is generally diÆ
ult to predi
t the exa
t exe
ution patterns of re
ursive fun
tions andloops. The evaluation of a task is represented by a visit to a node; this visit also reveals thesu

essor nodes (
hildren), whi
h are pointed at by the out-going ar
s of the visited node.The obje
tive is to visit all the nodes of the tree in parallel in the minimum amount of time.In this paper we present a Controlled Granularity (CG) algorithm for the run-time man-agement of parallelism. The exe
ution platform for this algorithm is a multi
omputer system,
onsisting of several loosely-
oupled PEs that 
ommuni
ate via messages. In su
h systems,sending (spawning) a task from one PE to another usually involves non-negligible overhead.The CG algorithm balan
es between lo
al 
omputation and the 
ost of spawning paralleltasks. This is a
hieved by ensuring that for every spawn of a task, an amount of work thatequals the 
ost of the spawn is performed lo
ally. We show that this algorithm exploitsuseful parallelism but 
urtails super
uous parallelism when appropriate. The overhead ofthis algorithm is rather low, merely requiring some means of keeping tra
k of the amount ofwork that has been performed lo
ally.Our model of 
omputation 
aptures the main issue in de
iding when to spawn tasks,i.e. the 
ommuni
ation overhead. But it makes some simplifying assumptions and does notin
lude all the details found in real-life situations. For example, we assume that the overhead
osts of spawning a task are known, whereas in real programs it is sometimes diÆ
ult toestimate the 
osts of handling the result of a task, sin
e that 
ould be a stru
ture whose sizeis hard to determine in advan
e. Real programs also have 
omplex sharing between tasks,whi
h is not 
onsidered here. Nevertheless, the simpli
ity of the model enables us to provideformal proofs about the presented algorithm. Taking all the details into a

ount would makethe analysis intra
table.The CG algorithm is an on-line algorithm, i.e. an algorithm that is required to traversethe tree without having information of future development of the tree. To analyze theperforman
e of the CG algorithm we use as a referen
e point the optimal o�-line algorithm,i.e. an algorithm that has 
omplete knowledge about the shape of the tree and its future2



evolution. The CG algorithm applies 
ompetitive 
onsiderations (Sleator and Tarjan 1985)in order to minimize the e�e
t of inadvertently sending small tasks. An on-line algorithm xis de�ned to be 
-
ompetitive with respe
t to another algorithm y, if the worst possible ratiobetween the performan
e of x to that of y, taken over all inputs, is bounded by some small
onstant 
 (Sleator and Tarjan 1985). The 
onstant 
 is referred to here as the 
ompetitiveratio. We analyze several typi
al 
ases and show that the CG algorithm 
ompetes well withthe optimal o�-line algorithm for these 
ases. This is quite remarkable 
onsidering we have
hosen extreme 
ases that have diverse optimal exe
utions.Previous work on granularity 
ontrol in
luded both on-line and 
ompile-time algorithms.Compile-time algorithms (Debray, Lin and Hermenegildo 1990; Hudak and Goldberg 1985)try to de
ompose the sour
e program into suÆ
iently large tasks by using only the stati
information available at 
ompile time. These algorithms di�er from on-line algorithms inthat they do not have knowledge of the program's run-time behaviour, and therefore su�erfrom ineÆ
ient handling of re
ursive fun
tions and loops. This is due to the unknown depthof re
ursion of some re
ursive fun
tions, and the unknown number of iterations of some loops.Previous on-line algorithms (Mohr, Kranz and Halstead 1991; Peyton Jones et al. 1990; Raoand Kumar 1987) were mainly suited for full-tree-like 
omputation graphs, in 
ontrast to theCG algorithm, whi
h 
an handle most 
omputation trees eÆ
iently.Many theoreti
al models either assume zero 
ommuni
ation time between the PEs, orassume that only the re
eiver in
urs the 
ost of spawning (laten
y). In either 
ase, sin
e thesender does not in
ur any 
osts for spawning a task, it appears to be worthwhile to spawnalmost every parallel task, whi
h is obviously not true in reality. Therefore, su
h modelsavoid the question of granularity, and address only the problem of a
hieving a good loadbalan
ing between the PEs (Wu and Kung 1991). In 
ontrast, in our model both the senderand the re
eiver of a task in
ur some overhead 
ost, whi
h introdu
es the dilemma of whenit is worthwhile to spawn a task (i.e., the granularity problem).This paper is organized as follows: The 
omputational model is de�ned in Se
tion 2.The CG algorithm is presented in Se
tion 3. Se
tion 4 
ompares the performan
e of theCG algorithm with that of the optimal o�-line algorithm for several typi
al 
ases. Se
tion 5analyses the worst-
ase performan
e of the CG algorithm. Experimental results of the CGalgorithm are given in Se
tion 6. Several previous algorithms are examined and 
omparedto the CG algorithm in Se
tion 7, and Se
tion 8 
on
ludes the paper.2 The Computational ModelThe 
omputational pro
ess is expressed by the traversal of a tree, whose shape and run-time evolution are not known a priori. Ea
h node in the tree is a task. Visiting the noderepresents the exe
ution of the task, and is de�ned to take one unit of time (tasks that takemore time may be represented by strings of unit-time tasks). The obje
tive of the algorithmdeveloped here is to visit all the nodes of the tree, using a multi
omputer system, in the3



minimum amount of time. We assume a loosely-
oupled distributed-memory system with abounded number of PEs, whi
h 
ommuni
ate via messages. On su
h systems the overhead
osts of spawning a task are relatively high, whi
h a

entuates the granularity problem.The exe
ution of a program on su
h a platform begins with one PE visiting the root nodeof the tree. This visit reveals the su

essor nodes, whi
h are then pla
ed in a lo
al taskpool. Traversal is performed by sele
ting a node from the task pool, visiting that node, andthen adding its su

essor nodes to the pool. Nodes (tasks) in the pool may also be sent fortraversal (exe
ution) to other PEs. This pro
ess 
ontinues until all the nodes in the treehave been visited, i.e. all the lo
al pools are empty.Sending a node to be traversed in parallel on a di�erent PE is 
alled spawning a task.Let M (units of time) be the 
ost of spawning. M is a system-dependent parameter, whi
hin
ludes the 
osts of pa
king the task into a message, �nding a suitable PE, sending andre
eiving the task, unpa
king the task at the re
eiving end, and the sending and re
eivingof the result. We assume that the 
ost of spawning, M , is in
urred by both the sender andthe re
eiver of the task. In other words, when PE A sends a task to PE B, A will resume
omputation after a delay of M and B will start to exe
ute the task also after a delay ofM . In spite of the simplifying assumption that both PEs in
ur the same 
ost, this model ismore realisti
 than the usual model, in whi
h only the re
eiver in
urs the laten
y su�eredby the message passing. First, the a
t of sending requires some work (pa
king the task intoa message, unpa
king the result et
.). Se
ond, if syn
hronous messages are used, the senderhas to wait for an a
knowledgement. Finally, if we assume that sending is free, it seems asif it is bene�
iary to send almost all parallel tasks for remote exe
ution. However, pra
ti
alexperien
e shows that a 
onsiderable degradation of performan
e o

urs when too manytasks are sent.One important issue is the minimal e�e
tive \granularity" (amount of work) of the tasksthat are spawned. The essen
e of the granularity problem is the relation between the amountof pro
essing represented by the task, whi
h is the size of the subtree rooted at the task, andthe 
ost of spawning it. A simple s
heme that guarantees a performan
e gain is one thatensures that the amount of pro
essing performed by the spawned task is greater than M ,and the lo
al 
omputation that remains is also greater than M . However, sin
e there is noprior knowledge about the exe
ution times of the tasks, it is impossible to design a s
hemein whi
h only suÆ
iently large tasks are spawned. The alternative is to bound the numberof spawnings of tasks that may be too small. This is the basi
 idea in the CG algorithm,des
ribed in Se
tion 3.Sin
e the number of PEs in this model is bounded, some load-balan
ing s
heme has to beassumed in order to treat 
ases in whi
h there are more tasks than PEs (Eager, Lazowska,and Zahorjan 1986). We assume a simple load-balan
ing s
heme that spawns a task onlyif there is an idle PE. Some information-dissemination s
heme has to be applied in orderto lo
ate idle PEs. The model is not limited to a spe
i�
 s
heme sin
e its 
ost is in
ludedin M , the 
ost of spawning. The a
tual s
heme used in our implementation is des
ribed in4



Se
tion 6.2. To simplify the analysis we assume Depth First Sear
h (DFS) traversal of thetree and the sele
tion of the oldest task in the task pool for spawning. But we will show thatidenti
al results are obtained for any other deterministi
 traversal s
heme and task-sele
tionpoli
y.
visit visit visit visit

Figure 1: DFS traversal of an unknown tree.To 
larify the details of the 
omputation model, 
onsider as an example the traversal ofthe tree in Figure 1. The dark nodes in this �gure represent nodes that have been visited.The light nodes are those that are in the task pool at ea
h stage. The visit of the root nodeof this example reveals two su

essor nodes. The left su

essor node is visited next, revealingthree additional nodes. The next visit does not reveal any new nodes, be
ause the visitednode is a leaf. DFS traversal 
ontinues, and the next visit reveals a single node. In thisexample, there is at least one node in the task pool after the root node has been visited, andone of these nodes may be sent to another PE to be traversed in parallel.3 The Controlled Granularity (CG) AlgorithmThe CG algorithm attempts to resolve the granularity problem by minimizing the e�e
t ofinadvertently sending tasks that are smaller thanM (the 
ost of spawning). This is a
hievedby balan
ing the amount of lo
al 
omputation performed with the 
ost of a spawn. Morespe
i�
ally, this balan
e is attained by ensuring that for every parallel task spawned, Mnodes are pro
essed (visited) lo
ally.The CG algorithm, outlined in Figure 2, performs ea
h spawn in two phases. In the�rst phase, 
alled the traversal phase, the su

essor nodes of ea
h visited node are added tothe task pool. When at least M + 1 nodes (tasks) have been added to the task pool, thetask allo
ation phase is performed. In this phase, one task is spawned from the task pool,provided there is an idle PE to whi
h to send it. These two phases are repeated iterativelyas the tree is traversed.To 
larify the details of the CG algorithm 
onsider �rst a simpler s
heme that ensuresthat at leastM nodes are pro
essed lo
ally for ea
h task spawned. This s
heme �rst visitsMnodes and only then spawns a (single) task. However, this s
heme may 
ause an unne
essarydelay. To see why, 
onsider a 
ase where after k nodes have been visited there are alreadymore than M � k nodes in the task pool. In this 
ase, a task 
an be spawned immediately,5



M : 
onst ; /* 
ost of spawning a task, M > 0 */n := root node ; /* points at the 
urrent node */t := 0 ; /* 
ounts the ex
ess of lo
al work over spawn overhead */repeatwhile t �M/* visit node n */add the 
hildren of n to task pool ;t := t + number of 
hildren of n ;n := get a node from the task pool ;if there is an idle PEspawn one task from the task pool to an idle PE ;t := t - 1 ; /* one less lo
al task */t := t�M ; /* see text */until no more nodes to visit ;Figure 2: An outline of the CG algorithm.provided the M � k nodes in the task pool are guaranteed to be exe
uted lo
ally. This isexa
tly what the CG algorithm does. The variable t is used to 
ount the ex
ess of guaranteedlo
al work (nodes added to the pool) over the spawning overhead. When t > M , a spawn isallowed. Then t is de
remented by M , e�e
tively guaranteeing that M nodes are traversedlo
ally to pay for the spawn. Some of these nodes have already been traversed, and theothers will be traversed in the future. If t is still larger than M , an additional spawn maytake pla
e.Note that when there is no idle PE, t is de
remented by M even if no task was spawned.This is ne
essary to prevent the algorithm from entering an in�nite loop. The algorithm maybe modi�ed slightly to keep a re
ord of the number of tasks that 
ould have been sent, butwere not sent be
ause there were no idle PEs available. When a PE subsequently be
omesfree, it 
an be sent a task without having to wait until an additional M + 1 tasks are addedto the task pool.The algorithm is not limited to a spe
i�
 traversal order, or to a spe
i�
 sele
tion of tasksto be spawned, but the analysis in the following se
tions assumes DFS traversal order, andthe sele
tion of the oldest task in the task pool for spawning. Note the adaptive nature ofthe algorithm, whereby the rate at whi
h tasks are spawned is proportional to the out-degreeof the tree (number of 
hildren of a node). In other words, tasks are spawned qui
kly whenthe tree is \dense", whereas the spawning is delayed when the tree is \sparse".The CG algorithm 
an also be extended to handle weighted trees, in whi
h the nodesin
lude information obtained from the 
ompiler about the size of some sequential tasks. Insu
h trees, the sum of the weights (rather than the number of the nodes) should be 
ompared6



withM . If information on the amount of data that has to be sent is also available, the valueof M may be modi�ed. An extra amount of lo
al 
omputation should be performed to
ompensate for extra 
ost of sending more data, thus maintaining the balan
e between the
ost of spawning and the amount of lo
al 
omputation performed.4 Performan
e EvaluationThis se
tion analyzes the performan
e of the CG algorithm, by 
omparing its performan
ewith that of the optimal o�-line algorithm for several typi
al and diverse 
ases. We showthat the CG algorithm 
ompetes well with the o�-line algorithm in these 
ases.It is important to emphasize the di�eren
e between this se
tion and the following se
tion(Se
tion 5). Here we try to show that the CG algorithm is generally an e�e
tive algorithm.We present drasti
ally di�erent 
ases, for whi
h there are 
ontradi
ting optimal exe
utions(the optimal algorithm in the sequential 
ase does not spawn any tasks, while the optimalalgorithm in the full tree spawns every available task), and yet the CG algorithm managesto 
ompete favorably with all of them. We have examined many 
ases, of whi
h we presentthe results of four here. We believe that for any pra
ti
al purposes the CG algorithm wouldserve as a most e�e
tive algorithm. However, from a theoreti
al point of view, Se
tion 5shows that there are 
ases (albeit 
ontrived) in whi
h the CG algorithm is not 
ompetitivewith the optimal o�-line algorithm.4.1 The Sequential CaseWe begin the 
omparison of the CG algorithm and the optimal o�-line algorithm with a
lass of trees whose optimal exe
ution is sequential. For su
h trees, all potential parallelismshould be ignored sin
e the size of every parallel task is smaller than the 
ostM of spawninga task. We show that in this 
ase the CG algorithm is within a fa
tor of two of the optimalalgorithm. This 
laim is proven by showing that for any tree the CG algorithm is within afa
tor of two of any sequential algorithm (Corollary 4.1 below).Lemma 4.1 The 
ost of traversing a tree with the CG algorithm is at most 2n, where n isthe number of nodes in the tree.Proof: Let M be the 
ost of spawning a task. The CG algorithm may spawn at most onetask for every M nodes visited. The overall exe
ution time of the CG algorithm has anupper bound of (n=M)M + n = 2n, whi
h a

ounts for the maximum 
ost of spawning, inaddition to the n operations required to traverse all the nodes of the tree.Corollary 4.1 The CG algorithm is 2-
ompetitive with any sequential algorithm.
7



Proof: The 
ost of sequentially traversing a tree of n nodes is n units of time. By Lemma 4.1,the 
ost of the CG algorithm is at most 2n. Hen
e, the 
ost of the CG algorithm is withina fa
tor of two of the 
ost of any sequential algorithm.The importan
e of this 
orollary is that it guarantees that no program will run slower(by more than a fa
tor of two) on a parallel system than on a single pro
essor ma
hine, aphenomenon that often o

urs in parallel systems when exe
uting �ne-grained programs. In
ases where sequential exe
ution gives optimal performan
e, CG is 2-
ompetitive with theoptimal.4.2 The Comb-Tree Case
M

M

Figure 3: The CG algorithm applied to a 
omb tree.Consider the 
omb tree depi
ted in Figure 3. In this example the tree produ
es mostlysmall tasks. The optimal o�-line algorithm for su
h a tree is not stri
tly sequential; never-theless its exe
ution 
ost is bounded from below by the height of the tree, whi
h is n=2. The
ost of the CG algorithm when applied to su
h a tree is at most 2n (Lemma 4.1); therefore,the CG algorithm is within a fa
tor of four of the optimal o�-line algorithm.4.3 The Full tree CaseWe 
ontinue the 
omparison of the CG algorithm with the o�-line algorithm by 
onsideringanother typi
al 
ase { a full (binary) tree. This 
ase deals with a 
omputation in whi
h everypotential parallelism should be exploited, namely when all the tasks are large and should besent to idle PEs. Let P be the number of PEs, and let n be the number of nodes in the tree.Assume n is large, say n > PM .Lemma 4.2 In the full binary tree 
ase, the 
ost of the optimal parallel algorithm is (M +1) logP + (n� P + 1)=P .Proof: An optimal o�-line algorithm exe
utes su
h a tree in two stages: distribution oftasks and lo
al 
omputation. In the distribution stage, every task 
reated is sent to an idle8



PE, until all the PEs are busy. In the lo
al-
omputation stage, ea
h PE exe
utes an equalpart of the tree in parallel. Sin
e the distribution of tasks is done in parallel, it takes logPsteps before all the PEs are busy, where ea
h step in
ludes the traversal of one node andthe sending of one task. The 
ost of the distribution stage is therefore (M + 1) logP . On
eall the PEs are busy, ea
h exe
utes an equal part (1=P ) of the rest of the tree in parallel.Sin
e the distribution stage forms a binary tree with P leaves, the total number of nodestraversed in the distribution stage is P � 1, and the size of the rest of the tree is n� P + 1.The 
ost of the lo
al-
omputation stage is therefore (n� P + 1)=P . Hen
e, the overall 
ostof the optimal algorithm is (M + 1) logP + (n� P + 1)=P .Figure 4 illustrates the proof of Lemma 4.2 by giving the optimal exe
ution of a binarytree for an example of four PEs. The dotted line in the �gure indi
ates the end of thedistribution stage and the beginning of the lo
al-
omputation stage. Visiting the root of the
spawned node
local node

Computation
Local

Distribution

PE4PE3PE2PE1Figure 4: The optimal algorithm applied to a full binary tree.tree 
reates two tasks (two subtrees to traverse), one of whi
h (the rightmost 
hild) is sentto one of the other PEs. The next node visited 
reates two more tasks, and again the rightsubtree is sent to an idle PE. At the same time that this subtree is spawned another subtreeis spawned by the PE that re
eived the �rst task sent. Hen
e, at this point all four PEsare busily working, ea
h on a quarter of the rest of the tree. The 
ost of the distributionstage in this example is therefore two spawns, and two nodes traversed. All other spawnsand traversed nodes are not 
ounted sin
e they o

urred in parallel. The 
ost of the lo
al-
omputation stage is 
al
ulated by subtra
ting the nodes traversed during the distributionstage from n, the total number of nodes in the tree, and dividing by four. The overall optimal
ost of this example is therefore 2M + (n + 5)=4.Lemma 4.3 In the full binary tree 
ase, the 
ost of the CG algorithm is (3M=2) logP +(n� P + 1)=P .Proof: The 
ost of distributing the tasks for the CG algorithm is alsoM logP , but there are(M=2) logP lo
al operations performed before the last task is sent (the fa
tor is M=2 ratherthan M be
ause a task is spawned after M tasks are exposed, but not ne
essarily visited).The 
ost of the lo
al-
omputation stage remains 1=P of the rest of the tree. Therefore, theoverall 
ost of the CG algorithm is (3M=2) logP + (n� P + 1)=P .9



Theorem 4.1 In the 
ase of a full binary tree, the CG algorithm is within a fa
tor of 3=2of the optimal algorithm.Proof: The ratio between the performan
e of the CG algorithm, given in Lemma 4.3, tothat of the optimal algorithm, given in Lemma 4.2, is always less than 3=2, and tends to onefor a large n.4.4 The Client-Server Case

Figure 5: A 
lient-server 
omputation tree.We now analyze the performan
e of the CG algorithm when applied to a 
lient-servertree, whi
h is portrayed in Figure 5. This 
ase has one \server" PE handing out sequentialwork to the rest of the PEs.The analysis of this 
ase is similar to the analysis of the binary tree, only the workdistribution is linear, rather than logarithmi
, in P . The optimal algorithm spawns the �rstP � 1 right subtrees. The time taken for the last task to start exe
uting on its PE in theoptimal algorithm is (P � 1)M +(P � 1). In the CG algorithm there is a longer delay in thedistribution of the tasks, and the overall time taken for the last task to begin exe
ution onits PE is (P � 1)M + (P � 1)M . Again, the optimal algorithm beats the CG algorithm byat most a fa
tor of 2.5 Worst-Case AnalysisIn this se
tion we prove that there does not exist a 
ompetitive deterministi
 on-line al-gorithm for solving the problem dis
ussed in this paper. This theorem implies that theCG algorithm is not a 
ompetitive algorithm; that is, there exists a 
ase in whi
h the CGalgorithm exe
utes a tree sequentially, whereas the optimal o�-line algorithm manages toexe
ute this tree almost 
ompletely in parallel. This means that the CG algorithm doesnot always su

eed in fully exploiting all the useful parallelism that exists. Nevertheless, noother on-line algorithm 
an ever a
hieve this either.10



We �rst give an upper bound on the worst-
ase performan
e of the CG algorithm in
omparison to the optimal o�-line algorithm.Lemma 5.1 The 
ompetitive ratio between the CG algorithm and the optimal o�-line algo-rithm has an upper bound of 2minfP; n=Hg, where P is the number of PEs, and H is theheight of the tree.Proof: The worst-
ase performan
e of the CG algorithm when applied to a tree of n nodesis 2n (Lemma 4.1). The optimal o�-line algorithm 
an at best fully use the available PEs, soit has a lower bound of n=P . Moreover, it is also bounded from below by the height of thetree. Hen
e, the optimal algorithm a
tually has a lower bound of maxfn=P;Hg. Therefore,the ratio between the 
ost of the CG algorithm to that of the optimal o�-line algorithm isbounded by minf2P; 2n=Hg = 2minfP; n=Hg for any input.Assume the existen
e of a 
ompetitive deterministi
 on-line algorithm for the paralleltraversal of a tree whose shape is not known in advan
e. The performan
e of su
h an algo-rithm should be within a small 
onstant fa
tor of the performan
e of the optimal algorithmfor any tree. The following 
ounter example proves that su
h an on-line algorithm does notexist, at least if we require that the 
onstant be small enough.
h = log(M+1)

L = Th

Figure 6: T-tree.Consider a T-tree whi
h 
onsists of T full binary subtrees that are pla
ed one on top ofthe other, as shown in Figure 6. The T-tree is 
onstru
ted su
h that the root of ea
h fullbinary subtree (apart from the top one) is a su

essor node of one of the leaves of the fullbinary subtree above it. Let there be M nodes in ea
h su
h subtree, where M is the 
ostof spawning a task, and let h = log(M + 1) be the height of the subtree. The height of theT-tree is therefore L = Th, and its total number of nodes is n = TM . The path that leadsfrom the root of the T-tree to the subtree at the lowest level is 
alled the spine.11



Lemma 5.2 For every deterministi
 on-line algorithm, there exists a T-tree su
h that the
ost in
urred by the algorithm in traversing this tree is at least n time units.Proof: Given a deterministi
 on-line algorithm, an adversary 
an 
onstru
t a T-tree in a waythat will 
ause it to in
ur a 
ost of at least M for ea
h full binary subtree. If the algorithmspawns a task while traversing a 
ertain subtree, then this already 
osts M operations. Ifit does not, the deterministi
 traversal order allows the adversary to identify whi
h leaf willbe visited last. The adversary then pla
es the next subtree as a su

essor node of the lastleaf node visited in the subtree above it. This for
es the algorithm to visit all M nodes ofthe subtree before rea
hing the root of the next subtree. Therefore, the algorithm in
urs a
ost of at least TM = n time units for the whole T-tree.Lemma 5.3 There exists an o�-line algorithm that traverses any T-tree in less than n=P +L +MP time units.Proof: The o�-line algorithm has the advantage of knowing the stru
ture of the tree inadvan
e. Consider an o�-line algorithm where the �rst PE begins traversal of the T-treeat the root, and 
ontinues down the spine until it visits some r spine nodes (the way r isdetermined is shown below). All the other tasks exposed while going down the spine are
olle
ted in the lo
al pool. The �rst PE then sends the whole subtree under the r + 1 spinenode to be traversed in parallel on an idle PE, while it works on the tasks left in the lo
alpool. The PE that re
eives the spawned task applies the same algorithm to de
ide when tospawn again.Let A be the number of nodes left for lo
al traversal after the task has been sent. Let Bbe the number of nodes in the task (the subtree whose root is the r + 1 spine node). Thenumber of nodes in the T-tree is therefore n = A+B + r. Let P > 1 be the number of PEs,and let TP (m) be the time it takes to pro
ess a T-tree with m nodes on P PEs using thisalgorithm. The algorithm traverses down the spine in hops of h nodes and tries to sele
t anr su
h that Tp(B) = A, where p is the number of PEs that are still idle. As shown below,setting r to 1=p of the height of the tree is a good 
hoi
e.The following 
ase analysis uses indu
tion on the number of PEs to evaluate the 
ost ofthe above o�-line algorithm. To keep the equations simple, we assume that all the ne
essaryvalues divide ea
h other without a remainder.� Base 
ase: the number of PEs is P = 2. The algorithm sele
ts r = L=2, so thatB = n=2. From n = A+B + r it follows that A < B, so that the time to perform theparallel task is greater than the 
ost of the lo
al remaining tasks. The total parallel
ost is therefore: T2(n) = r +M +B = L=2 +M + n=2whi
h is made up of sequential traversal of r spine nodes, then spawning one task,followed by sequential traversal of B nodes.12



� In the 
ase P = 3, the o�-line algorithm sele
ts r = L=3, so that B = 2n=3. The timeto 
ompute the parallel task on the two available PEs is (using the result for the 
aseP = 2): T2(B) = (2L=3)=2 +M + (2n=3)=2 = L=3 +M + n=3The time to 
ompute the parallel task, T2(B), is greater than the time it takes totraverse the remaining lo
al A nodes, sin
e A = n=3� L=3. The total parallel 
ost ofexe
uting the tree in this 
ase is therefore:T3(n) = r +M + T2(B) = 2L=3 + 2M + n=3� For the general 
ase, P > 2, the indu
tion hypothesis is thatTP�1(B) = (P � 2)L0=(P � 1) + (P � 2)M +B=(P � 1)Where L0 is the length of the spine of the subtree with B nodes. The o�-line algorithm
hooses r = L=P , so that B = (P � 1)n=P and L0 = (P � 1)L=P . The total 
ost onP PEs is therefore:TP (n) = r +M + TP�1(B)= L=P +M + (P � 2)(P � 1)L=(P (P � 1)) + (P � 2)M + (P � 1)n=(P (P � 1))= (P � 1)L=P + (P � 1)M + n=PThe 
ost of the above o�-line algorithm is therefore bounded byn=P + L+MPTheorem 5.1 The 
ompetitive ratio of any deterministi
 on-line algorithm to the optimalparallel algorithm has a lower bound of 13 minfP; n=Lg, provided the tree size satis�es n >MP 2.Proof: The 
ost of any on-line algorithm is at least n time units for some T-tree (Lemma 5.2),and the 
ost of the optimal o�-line algorithm is at most n=P + L + MP (Lemma 5.3).Note that we do not know whi
h of the three terms is the largest; nevertheless, we 
aninfer that the a
tual 
ost is bounded from above by 3maxfn=P; L;MPg. Therefore, theratio of the performan
e of the on-line to the o�-line algorithms is bounded from below by13 minfP; n=L; n=MPg. The third term 
an be as large as we want, be
ause n 
an be aslarge as we want. The se
ond term does not ne
essarily in
rease with n, sin
e L is also afun
tion of n. If we limit the dis
ussion to inputs (trees) that satisfy P � n=MP , whi
himplies n � MP 2, then the bound is a
tually determined by the �rst two terms, that is,13 minfP; n=Lg.The impli
ation of Theorem 5.1 is that there does not exist a 
ompetitive deterministi
on-line algorithm for solving the problem presented in this paper (de
iding when to spawn13



tasks). In simple terms this means that for any on-line algorithm there exists at least onetree that the on-line algorithm exe
utes in sequential time, whereas the optimal o�-linealgorithm 
an run this tree almost 
ompletely in parallel. Sin
e this proposition appliesto any on-line algorithm it also applies to the CG algorithm. In other words, the CGalgorithm may sometimes be unsu

essful in fully exploiting all the useful parallelism thatexists. However, it is important to emphasize that the 
autiousness feature of the CGalgorithm (whi
h sometimes 
auses the algorithm to overlook useful parallelism) guarantees\safety", in the sense that the algorithm will never run signi�
antly slower than sequentialtime (Corollary 4.1).We note that be
ause there does not exist a 
ompetitive on-line algorithm it is not easyto 
ompare the CG algorithm with other on-line algorithms. The problem with 
omparingtwo on-line algorithms is that ea
h algorithm may perform better than the other on di�erenttrees. This makes it diÆ
ult to de�ne the meaning of one algorithm being better than theother.6 Experimental MeasurementsThis se
tion presents performan
e results of the CG algorithm. The exe
ution platform isthe MOSIX system (Barak and Wheeler 1989), a distributed operating system with a built-indynami
 pro
ess migration me
hanism. The MOSIX system integrates a 
luster of loosely-
oupled, independent pro
essors to a virtual, single ma
hine UNIX environment. The spe
i�

on�guration used in
ludes eight NS32532 
omputers, ea
h with its own lo
al memory and
ommuni
ation devi
es. These 
omputers are arranged in two identi
al en
losures, ea
h withfour pro
essors that 
ommuni
ate via a shared VME bus. The two en
losures are 
onne
tedby a ProNET-80, an 80 Mbits/se
ond token-ring LAN.We present results of two di�erent implementations: a distributed tree traversal, whi
himplements the abstra
t model des
ribed in Se
tion 2, and a distributed �-
al
ulus evaluator.6.1 Performan
e of the Lambda-Cal
ulus EvaluatorOur implementation of the �-
al
ulus evaluator is based on 
ompiled graph redu
tion te
h-niques (Peyton Jones 1987), but without many of the optimizations. The evaluator a

eptsa fun
tional program written in the usual �-
al
ulus notation, and produ
es target 
ode inC. The tasks are realized as Unix pro
esses, and task-spawning as Unix forks. In these ex-periments we have used M = 2000, whi
h means that we have estimated the 
ost of a spawn(forking a Unix pro
ess and its migration) to be 2000 redu
tion steps. This implementationtakes advantage of the automati
 load-balan
ing of the MOSIX system. To 
omply with theCG algorithm's requirement of stopping task spawning when there are no more idle PEs,this implementation stops forking new pro
esses when the load on the lo
al ma
hine is abovesome �xed threshold (whi
h is equal to the load of about three pro
esses). This approa
h14



is e�e
tive sin
e the automati
 load-balan
ing works well (Barak and Shiloh, 1985), and thepro
esses are evenly distributed a
ross the system. Hen
e, if the lo
al load is high, thisindi
ates that all the PEs are not idle. The results show that the CG algorithm manages tobridge the gap between the �ne granularity of �-
al
ulus and the 
oarse granularity of Unix.Let the fun
tions �b, power, and 
omb0 be de�ned by:�b(0) = 1�b(1) = 1�b(n) = �b(n� 1) + �b(n� 2)power2(0) = 1power2(n) = power2(n� 1) + power2(n� 1)load(0) = 1load(n) = load(n� 1) and load(n� 1)
omb0(0; n) = 1
omb0(h; n) = 
omb0(h� 1) + load(n)Table 1 presents the performan
e results of the CG algorithmwhen applied to these fun
tions.The table gives the exe
ution time (in se
onds) and the speedup for di�erent numbers ofPEs. The speedup is 
al
ulated by the ratio Ts=Tp, where Ts is the serial exe
ution timeobtained from a purely sequential evaluator, and Tp is the parallel exe
ution time obtainedfrom the distributed evaluator running on p PEs. The ratio Ts=T1 indi
ates the overheadof distributing the serial evaluator, in
luding the overhead of the CG algorithm. Theseoverheads turns out to be about 7%.The power fun
tion represents the 
ase with mu
h useful parallelism, the �b fun
tion isthe standard Fibona

i fun
tion, and the 
omb0 fun
tion represents the 
ase whi
h generatesmany small tasks. The performan
e results show that the CG algorithm manages to exploitthe useful parallelism in the 
ase of the power and �b fun
tions, while there is no signi�
antdegradation of performan
e in the 
ase of the 
omb0 fun
tion in spite of the large numberof small tasks. We note that the exe
ution of the fun
tion load is sequential due to thenon-stri
t and operation. The exe
ution time of load(8) is approximately 0.2 se
onds, whi
hresults in 
ooding the system with many small tasks when exe
uting the 
omb0 fun
tion.power(22) �b(32) 
omb0(500,8)Con�guration time (se
) speedup time (se
) speedup time (se
) speedupSerial 3660.3 1 3062.0 1 126.5 11 PE 3935.0 0.93 3290.3 0.93 135.9 0.932 PEs 1980.3 1.9 1672.3 1.8 139.0 0.914 PEs 1024.5 3.6 877.2 3.5 143.6 0.888 PEs 541.1 6.8 478.7 6.4 142.4 0.89Table 1: The performan
e of the CG algorithm on the �-
al
ulus evaluator.15



6.2 Performan
e of the Abstra
t ModelThe abstra
t model is de�ned to be the traversal of a tree on a multi
omputer system,where the obje
tive is to visit all the nodes in the tree in the minimum amount of time.Our distributed implementation of su
h a model �rst builds a tree of a desired shape, andthen traverses the tree a

ording to the prin
iples of the CG algorithm. One advantage ofsu
h an approa
h is the ability to isolate the granularity problem from other parameters,and thus examine it 
losely. Another important advantage is the possibility of measuringthe performan
e of the exe
ution of random trees.Ea
h PE is realized as a Unix pro
ess, and tasks are realized as messages 
ontainingreferen
es to subtrees. In order to simplify the task distribution poli
y, we assume that thePEs are 
onne
ted along a (logi
al) dire
ted ring, although the physi
al 
onne
tion allowsfull 
onne
tivity among all the PEs. In our poli
y, whenever a PE be
omes idle, it sendsa request for work to the next PE along the ring. A PE that re
eives a request for a taskwhen its task pool is empty passes on the request to the next PE along the ring. A PEthat re
eives a request when its task pool is not empty responds by sending a task to therequesting PE. These tasks are sent dire
tly, and not through the ring.power(17) 
omb(32000) �b(23) serv(24,5000)PEs time speedup time speedup time speedup time speedup1 8.33 1 4.46 1 5.89 1 7.87 12 4.20 1.98 4.84 0.92 3.02 1.95 4.47 1.764 2.26 3.69 4.81 0.93 1.69 3.49 2.80 2.816 1.81 4.60 4.89 0.91 1.31 4.50 2.26 3.488 1.50 5.53 4.84 0.92 1.20 4.91 2.03 3.88Table 2: The performan
e of the CG algorithm on the abstra
t model.Table 2 depi
ts the exe
ution time (in se
onds) and the speedup of four types of trees:power tree (full binary), �b tree, 
omb tree, and serv tree. The traversal of these treesrepresents the exe
ution of the fun
tions power, �b, 
omb, and serv. The latter two fun
tionsare de�ned by: 
omb(0) = 1
omb(h) = 
omb(h� 1) � (h + 1)
hain(0) = 0
hain(n) = 1 + 
hain(n� 1)serv(0; m) = 0serv(n;m) = serv(n� 1; m) + 
hain(m)The power fun
tion represents the 
ase with mu
h useful parallelism, the 
omb fun
tionrepresents the 
ase with mu
h ine�e
tive parallelism, and the serv fun
tion represents the
lient-server 
ase. The experiment was run with M = 800. Note that the CG algorithmmanages to exploit the useful parallelism in the power, �b and serv trees, whereas it avoidsfalling into the trap of trying to utilize the super
uous parallelism of the 
omb tree.16



Expe
ted Value of Out-DegreePEs 1.1 1.5 2.0 2.71 1 1 1 12 1.37 1.85 1.96 1.974 1.55 2.63 3.15 3.326 1.63 2.87 3.65 4.078 1.54 2.93 3.79 4.35Table 3: The average speedup of the CG algorithm when applied to random trees.Table 3 presents the performan
e �gures of the CG algorithm when applied to randomtrees. The table lists the expe
ted values of the out-degree used for 
onstru
ting the randomtrees, and the 
orresponding average speedups obtained. The random trees are 
onstru
tedwith a bounded height, and the number of 
hildren (out-degree) at ea
h node is determinedrandomly, using a binomial distribution. Thus, the trees be
ome denser as the expe
tedvalue of the out-degree in
reases, whi
h also in
reases the potential useful parallelism in thetrees. In the experiment, we ran 200 di�erent random trees for ea
h entry in the table, and
al
ulated the speedup by 
omparing the sequential time with the parallel exe
ution time.Consider for example the fourth 
olumn in the table, whi
h presents the results of runningrandom trees with an expe
ted out-degree value of 2.0, and 
ompare it to the exe
ution of afull binary tree depi
ted in the third 
olumn of Table 2. It is important to emphasize thatbeing random trees they are of di�erent sizes and shapes, and therefore do not all 
ontainonly useful parallelism, as is the 
ase in 
ompletely full trees. The results show a 
leartrend of a higher average speedup for a denser tree, that is, a tree with larger amount ofuseful parallelism on average. Hen
e, again, this experiment demonstrates the e�e
tivenessof the CG algorithm, and its ability to exploit useful parallelism while ignoring super
uousparallelism.7 Related WorkPrevious on-line algorithms were mainly oriented towards programs with a full-tree-like 
om-putation graph. Two su
h algorithms are des
ribed and examined here. One algorithm,
alled \task stealing" (Mohr, Kranz and Halstead 1991), has idle PEs \steal" tasks fromnon-idle PEs. The se
ond algorithm, whi
h is used in the GRIP proje
t (Peyton Jones etal. 1990), assumes that every PE knows the global load of the system. Then, based on thisknowledge, ea
h PE \sparks" (spawns) new tasks if that load is below some threshold. Bothof the above algorithms attempt to redu
e the 
ommuni
ation overhead when all the PEsare busy, by pro
essing all the tasks that are 
reated lo
ally.Let us now examine the appli
ation of the above two algorithms to a program thatprodu
es many small tasks. Consider a 
omb-like tree, as shown in Figure 3. The task-stealing algorithm has idle PEs repeatedly steal tasks from the PE that exe
utes the main17



spine of the 
omb tree, only to �nd that these tasks are small. Similarly, in the GRIPalgorithm, the PE that exe
utes the main spine 
ontinuously sparks new tasks, sin
e it relieson the global system's load, whi
h remains low be
ause the other PEs are exe
uting onlysmall tasks.The above two algorithms may therefore spawn a separate task for ea
h node along thespine of the 
omb tree. This results in a performan
e loss of M � 1 for ea
h task spawned.The overall 
ost is therefore (M � 1)n=2 + n=2 = nM=2, whi
h a

ounts for n=2 spawnsand n=2 nodes traversed lo
ally. Hen
e, in the 
omb-tree 
ase, the performan
e of the CGalgorithm is an order of M better than the above algorithms, where M may be rather large.Other on-line s
hemes (Hudak and Goldberg 1984; Lin and Keller 1987) 
on
entrate moreon the load balan
ing aspe
t of the 
omputation, and aim to keep the PEs busy nearly allthe time. These algorithms do not 
onsider the grain size of the task, and therefore wouldalso exhibit poor performan
e when applied to a program that produ
es many small tasks,su
h as the 
omb tree shown in Figure 3. Our implementation shows that the load balan
-ing is a
tually a se
ondary issue: good performan
e was obtained when the CG algorithmwas used to de
ide when to spawn in order to 
ontrol the granularity. On
e a task wasspawned, MOSIX automati
ally moved it to an idle PE. Granularity 
ontrol is tightly linkedto fun
tional programming. Load balan
ing is of general importan
e, but should not takepre
eden
e over the granularity 
onsiderations.8 Con
lusionsWe have des
ribed a run-time algorithm that 
ontrols the degree of 
on
urren
y of parallel
omputation in order to a
hieve e�e
tive granularity. The CG algorithm that was presentedis signi�
antly better than existing strategies for solving this problem. Moreover, no otheron-line algorithm 
an be 
onsistently better than it. This algorithm in
reases granularity byexploiting useful parallelism when it exists, and ignoring ine�e
tive parallelism in programsthat 
ontain many small tasks. The overhead of this algorithm is rather small, 
onsist-ing mainly of an additional program 
ounter. Furthermore, the CG algorithm has someadaptiveness quality whi
h distributes graphs with a high out-degree faster.In the future we shall be looking to enhan
e the CG algorithm to handle more general
omputation graphs, su
h as DAGs. In addition, we shall look into the possibility of makinga more sophisti
ated 
hoi
e of whi
h task to spawn, based on the depth of re
ursion observedfor di�erent fun
tions at run time.A
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