Paired Gang Scheduling

Yair Wiseman Dror G. Feitelson
School of CS & Engineering School of CS & Engineering
Hebrew University Hebrew University
and Dept. of Computer Science Jerusalem
Bar-llan University Israel
wiseman@cs.biu.ac.il feit@cs.huji.ac.il
Abstract

Conventional gang scheduling has the disadvantage that prioeesses perform 1/O or block-
ing communication, their processors remain idle, becalismative processes cannot be run
independently of their own gangs. To alleviate this problegensuggest a slight relaxation of
this rule: match gangs that make heavy use of the CPU withgyhrag make light use of the
CPU (presumably due to I/O or communication activity), acldeslule such pairs together, al-
lowing the local scheduler on each node to select eithereofitlo processes at any instant. As
I/O-intensive gangs make light use of the CPU, this only eaasminor degradation in the ser-
vice to compute-bound jobs. This degradation is more thésebby the overall improvement
in system performance due to the better utilization of tiseueces.

Keywords: Gang Scheduling, Job Mix, Flexible Resource Management

1 Introduction

Scheduling parallel jobs on a parallel supercomputer stésf deciding which processors to use
for each parallel job, and when to run it. A simple first-cofinst-serve (FCFS) approach keeps
waiting jobs in a queue in the order that they arrived. Thesdaler then tries to find free nodes
for the first job in the queue. If there aren’t enough free spdie job will have to wait until
nodes become available when some job that is currently mgnierminates. When this happens,
the needed nodes are allocated and the queued job starts tbising FCFS prevents starvation
of jobs which use a large number of nodes, but may cause nodesleft idle when waiting for
more nodes to become available. This can be reduced by uaakdilbng, in which jobs may be
selected out of order provided this will not delay the exexubf jobs which have a higher location
in the queue [13].

Another approach, called gang scheduling [14], slicesithe tn a round-robin manner. The
jobs are packed into a matrix. Each column in the matrix regames a node and each row represents
a time slot. Jobs assigned to different rows are execute@fbaethe other. One of the problems

*A preliminary version appeared in JPDPS-2001.
§Research supported by a Lady Davis Fellowship.

with this approach is fragmentation: processors may bedkftif nothing is assigned to them in a
certain slot. Several ideas for relaxations of gang scligltihat reduce this waste have therefore
been proposed [11, 7, 22, 1]. Our work is also a relaxationraftgyang scheduling, which is
called Paired Gang Scheduling [23]. All of these improvements remove the requirement #iiat
processes of a given job always run simultaneously on éfffiemodes. There are also other types
of improvements, e.g. the use of backfilling to handle theugus jobs being packed into the gang
scheduling matrix [24, 17].

Gang scheduling enables processes in the same job to runsrtie time. This leads to better
performance for compute-bound communicating procesgesH6wever, 1/O-bound processes
cause the CPUs to be idle too much of the time, while therether processes which can run. At
the same time, the effect on the disk performance is the agpdfO-bound processes keep the
disks busy, while compute-bound processes leave themindleed, it is non-trivial to balance the
use of these resources in applications that have large datigruand 1/O requirements [15].

The core idea of gang-scheduling is assigning as many poret a job as are required at
the same time. Such an assignment allows the job to avoidibigprocesses while they wait for
the completion of communications with other processesalse of two reasons:

1. It is guaranteed that the awaited process is running alkthgnarogress, so it makes sense
to wait for it.

2. There is nothing else to run on the processor (all the jolwsesses are assigned).

By contradistinction, when one assigns more than one psaiwesach processor, it can lead to
situations where one process needs to wait for another ggdode executed again, because it is
not currently running. Thus gang scheduling strives to mize the performance of the current
job, at the possible expense of overall system utilization.

The alternative to gang scheduling is to use local scheglutilependently on each node of the
machine. The local scheduler can use round-robin, or aifyrdbased algorithm such as the one
used in Unix. In such a system, a process that needs to waihfither should block, because the
two conditions listed above are negated: the awaited psasgsobably not running, and there are
other better things to do with the processor rather than tasty In other words, local scheduling
has the pretension of emphasizing overall system utibpnatat the possible expense of jobs that
need to perform a lot of communication. However, the extraext switches induced by fine grain
communication can lead to inefficiency and reduced effeatiization [6].

If the characteristics of each gang are known, this can biiag in order to keep both the
CPU and the 1/O devices busy. This paper presents the ideaatwhimgpairs of gangs, one
compute-bound and the other I1/O-bound. The rationale foln soatching is that these gangs will
hardly interfere in each other’s work, as they use diffedawices. Therefore they will “feel” that
they work alone in the system. If the I/O operations’ timeasmegligible relative to the CPU time,
such an overlap of the I/O activity with CPU work can be effitigl6]. The concept is illustrated
in Figure 1. Itis similar to the idea of symbiotic job schedglproposed for SMT processors [21].

Paired gang scheduling tries to be a compromise betweerbthe dwo schemes, with the
goal of utilizing the system resources well without causimtgrference between the processes of
competing jobs. It enjoys the best from the two worlds. On baed the processes won't have
to wait much because a process which occupies the CPU mdst tiie will be matched with a
process that occupies an 1/0O device most of the time, so tliepat interfere with each other’s

strict gang scheduling
gmpute_—bouncﬂob

paired gang scheduling

SEE =
= _' “/ =—8=

=3 computing

| mm /O

D 1 blocked/waiting
— — — —= communication

Figure 1: Paired gang scheduling: by running pairs of complementabg,jresource utilization is
improved without undue interference. Vertical bars repnegrocesses, with time flowing down-
wards.

work. On the other hand, the CPU and the I/O devices will nateewhile there are jobs which
can be executed.

The rest of the paper is organized as follows. Section 2 ptesbe model of paired gang
scheduling and the algorithms used in its implementati@ttiSn 3 describes the platform of the
realization and what changes were required to supportgpgareg scheduling. Section 4 evaluates
the concept of paired gang scheduling. It reports on therarpeats that have been conducted and
the workloads that were used. Finally, section 5 summatizgesults.

2 Paired Gang Scheduling

The problem of how 1/0O-bound jobs affect system performamaer gang scheduling is discussed
by Lee et al. [11]. They suggest a method of varying the timantum which is given to processes
according to their characteristics. The proposal of thiggpas leaving the time quantum as a
constant, but dispatching a pair of processes in each tiraetgqm. The matching of processes is
based on a prediction of what their CPU utilization will bele next quantum.

2.1 Framework for Scheduling

The framework for paired gang scheduling is depicted in Fag2i We use a centralized gang
scheduler, as is used in many conventional implementaf@io®s 5, 8]. This is a user-level daemon
process that runs on a distinguished node in the clusterititains information in an Ousterhout
matrix [14], in which rows denote scheduling slots and catsmepresent processors. In strict
gang scheduling, one row is selected each time. Each noeéeweh is then directed to schedule
the process in the respective cell of the chosen row. Thigpisally done by making only this
process runnable, while the others are blocked (in Unix @mantations this is typically done by
sending them a SIGSTOP signal).

Ousterhout Ousterhout

@ matrix @ matrix

select select

gang — pairgang |—
scheduler scheduler | ™
@single
process
run or
@idle

Figure 2:Framework for paired gang scheduling (right), as oppossttict gang scheduling (left).
NS = node scheduler; P = processor.

e
/
i©
i
e
/

For paired gang scheduling, two rows are selected. In tisis t@o processes are left runnable
on each node, and their scheduling is done at the discretithre docal scheduler. In essence, the
paired gang scheduler uses its power over the local workimgenerate a good job mix with two
complementary processes. Similar mixes are generated nadss by virtue of the homogeneity
of processes in the same row of the matrix.

2.2 Measuring CPU Utilization

The idea is to match jobs that use the CPU with those that Gsgdyices (including the network).
This seems to imply that we need to measure both CPU utizatnd 1/O activity for each job.
However, as long as we bundle all the I/O activity into a snglass, I/0 and CPU usage are
actually complementary. A process that performs I/O iskadg and is prevented from utilizing the
CPU until the 1/0O completes. Thus it is enough to measure g Gtilization, and postulate that
the 1/O utilization is the remaining time. Indeed, this wdyreeasuring even works for applications
that use non-blocking I/O, thus boosting their CPU utilizat

Note that by using this definition paging is included in I/@chuse the operating system blocks
processes that are waiting for a page fault to be servicede\is is not strictly a characterization
of the inherent 1/O activity of the process, it does chanmdmtethe 1/0 activity under the current
system conditions (physical memory installed and compgbbs that also use memory). Thus it
is appropriate to include it.

The measured CPU utilization can be used directly. But clansa case where two gangs are
matched because they have a low CPU utilization, and thercttanges and they both become
compute-bound. Due to the fact that they are running togéties will by necessity achieve CPU
utilizations that are together bounded by 100%, so the sdbedill think that it is appropriate
to continue and schedule them together. A possible workeakas to replace the actual CPU
utilization by the effective utilization, defined as theli@ition out of what is |eft over by the other
process. Specifically, if processes andy have measured utilizationgz) andu(y), respectively,
their effective utilizations will be

u(x) u(y)

Uepf(2) = T—u(y) and uery(y) = T—u(z)

However, this would lead to misleading results if the trudJQRilizations are together slightly
less than 100%. A better solution is therefore to montt@nges in the CPU utilization. When
the utilization of a process that shares the processor gibean then be speculatively assigned a
utilization of 100%, thus forcing it into a slot by itself. iEthen provides a better test of the true
CPU utilization. If it fails the test (that is, if its utilizeon is actually much lower than 100%), it
will be matched again with another process the next timesicreduled.

2.3 Predicting CPU Utilization

The characteristics of a process can be assessed by lodkisigiatory. A reasonable guess is that
if a process had a high/low CPU utilization in its past, thegass will continue to have a high/low
CPU utilization in its future, respectively. In [19] Silva al. introduce a way for classifying
processes using fuzzy sets. An extension of their idea catiagned by using Markov chains. A
Markov chain can be useful in investigating the procesgonys A simple Markov chain can be
the average of the last CPU utilization values as measured in the |Astime slices. A more
complex Markov chain can give more weight to the recent sjiaile giving a reduced weight to
the far history. In [18] the authors suggest the formula:

Tpi1 = oty + (1 —)7y

Wheret,, is the actual length oft” CPU burst, is the predicted value for that CPU burst, and
is a coefficient having a value between 0 and 1.

Their method was used for predicting the length of the next @Brst, but it can be trivially
adapted for predicting utilization. However, this methaver forgets any CPU burst which was
in the process’ history. Although the influence of a very aloldb becomes very small, it is still
there. A Markov chain of the lasV CPU bursts can totally forget the old bursts, which can be
meaningless. Moreover, this formula considered just onegss. We would like to have a formula
which will take into account all of processes that make upralfe job.

The Markov Chain which was used in our test is:

| B &ty

i=1 j=1 ™M

Where:

n is the serial number of the next time quantum for this job.

T, IS the predicted CPU utilization in the next time slice.

t; ; is the actual CPU utilization in thetime slice on thg processor.
¢ m is the number of processors used by the job.

The first sum is over the 4 last CPU quanta, and gives thenrlingecreasing weights. The inner
sum produces the average for the job’s processes on theediffierocessors.

At the beginning, before any concrete data is available, jobs will be postulated to have
100% CPU utilization. This initialization will force eacbl to be executed separately in its first
time quantum, and gives the system a chance to measureghditization. If another initialization

5

real CPU utilization
h
o

a 10 20 30 40 S0 [=10] 70 &0 a0 100
predicted CPU utilization

Figure 3:Predicted CPU utilization compared with real CPU utilipati

were to be used, there is a danger that two computed-bousdcejazrute together, leading to an
erroneous measurement of less than 50% CPU utilizations Weustart with a speculative value
of 100%, as we also suggest to do after a sharp increase @etkt&igure 3 shows the correlation
between the predicted CPU utilization and the real CPUzatilon when running heterogeneous
applications as described in Section 4.2.2. The dots aigheare new jobs that were speculatively
predicted to have 100% utilization.

2.4 Matching Pairs of Jobs

The data is represented in percents: 100% means all the tiaetign was dedicated to CPU
activity in this process, while 0% means none of the time guarwas dedicated to CPU activity.
The master collects the data from all active slaves. Thenpthster calculates the average CPU
utilization of all processes in the job. This is calculateéw at the end of each quantum in which
the job ran.

Scheduling is based on an Ousterhout matrix [14], with tihs ja successive slots scheduled
in turn in a round-robin manner. But as the job in the nextisl@bnsidered, the master will look
for a match for this job, and scheduteth of them. Let us assume the job to be scheduled now
(the one in the next slot) has a predicte¥ CPU utilization as calculated by formula (1). The
match for this job will be a job whose predicted CPU utilinati;, again according to formula (1),
satisfies

r+y+m<100%

wherem is a safety margin (we used = 1%). Such a match can keep the CPU busy on one hand,
but will not cause the processes to wait for the CPU to be freedhe other hand.

A naive approach could do the matching dynamically at eacttestd switch, based on the
most recent data available, using a best-fit searching gusee Thus, if several jobs tie as the best
match, the last one will always be chosen. Moreover, suchtahmg method is unfair. Suppose
we have a lot of I/0O-bound jobs with very low CPU utilizatioresg. 5% or less. If we have two
other jobs having 80% and 81% CPU utilizations, the 81% jdblvei the ideal match for each of
the low CPU jobs, so the 81% job will always be selected, givirmuch more CPU time than its

6

sort the jobs according to their CPU tine
Pstart POIiNtS to the beginning of the sorted vector
Pend POIiNts to the end of the sorted vector
whil e psart < Pend
whi l e (CPUutil(pstart) + CPUutil(pena) + M > 100% and (pstart < Pend)
mat ch pepg Wth NULL
Pback=Pstart - 1
while pper Still points to a valid job
i f CPUutil(ppack) + CPUutil(peng) + M < 100%
mat ch pyoer and pepg
br eak
Pvack = DPback - 1
Pend = Pend - 1
i f Pstart < Pend
mat ch Dstart W t h DPend
Dstart = Pstart + 1
Pend = Pend - 1

Figure 4: The matching algorithm (indentation is used to delimit kk)c

peer which has just 80% CPU utilization. In order to be mone fge have used another matching
method, in which matching is performed once for each rounthi®fvhole matrix. The matching
algorithm is described in Figure 4. The idea is to sort the jatcording to their CPU utilization,
and match jobs from both ends. Thus each job will be matchéld avidistinct other one if a
possible match exists. Only jobs which didn’t match any otivenatched job, will be matched to
a matched job. As a result, the waiting queue will be smalher the jobs will get more uniform
service. If a job needs exclusive control of the system’suisses (e.g. for running benchmark), a
flag can be set in order to indicate to the system that this jo&t mot be matched with another job.

2.5 Extension to General Gang Scheduling

The above description was based on matching single jobsinBhe general case more than one
job may be allocated to the same slot. If this is the case,libeeawill be generalized to matching
slots instead of jobs. This is achieved by modifying the folarto

max(z) + max(y) + m < 100%

wheremax(z) andmax(y) are the maximal CPU utilizations for jobs in slatandy, respectively.

It is desirable that all jobs in a slot will be homogeneousm8tmes, an exceptional job can
cause a problem. A given slot can be a perfect match to andtiiethe scheduler will not match
them because an exceptional job has much higher CPU ublizttan the other jobs in the same
slot. In order to prevent such cases, we would like to havedgemeous slots, in which all jobs
have similar characteristic. We therefore check the charatics of each running job on every
context switch. A jobJ in slot s which doesn’t satisfy’ PUwutil(.J) < min(s) + M (where M

is the allowed range within the slot), will be removed frone #lot. A search will be invoked in
order to find another slot for the removed job. If no such fdound, the job will be put in a new
slot. In our tests we have uséd = 20%. In effect, the range of each slot is then bounded as in
max(slot) — min(slot) < 20%.

2.6 Alternate Scheduling

Alternate Scheduling [3] can improve gang scheduling. Y¢ims method we look for idle nodes
in a slot. If we find some, we will try to execute a job or evenesal/jobs which need these nodes
or part of them. When using paired gang scheduling, we shiakélinto account the characteristic
of the alternate-scheduled jobs. In other words, when ag@issigned for alternate scheduling in
a slot, it must match the characteristics of other jobs thata#ready assigned to this slot. If its
utilization does not fall within the band af/ = 20% allowed, alternate scheduling will not be
used. However, this does not mean that the nodes will rerdinln paired gang scheduling each
node is supposed to rumwo processes. If no alternates are found, only one processumill A
node will remain idle only if it is not allocated in both sefed slots.

3 Implementation

3.1 The ParPar Environment

The implementation of paired gang scheduling was done ircdinéext of the ParPar cluster [4].

The cluster has a host node which is the “master” and 16 otta#swhich are the “slaves”. The

master runs a daemon which controls all system-wide agtidinong other things, it decides for

the slaves when they should do a context switch. The mastemaintains the gang scheduling
matrix. When the master decides on a context switch, it sandsessage to the slaves which job
should be executed instead of the current job. The slavestiséocurrent job and start executing
the new job as ordered by the master.

Each node is an independent PC with its own processor, meanruahydisk. The slaves and the
master are connected by a switched Ethernet. The mastes beratlcast messages using UDP,
and slaves reply using TCP [10]. The communication of apgibbos is performed using TCP/IP.
The cluster is also equipped with a Myrinet, but this was rsetduas explained blow.

3.2 Modifications to Support Paired Gang Scheduling

While the original ParPar software includes support forggeeheduling, in paired gang scheduling
things are a little bit more complex. The master still hasdoide on context switches, but it has
to take into account the characteristics of the differebsjand do the matching. The data on the
characteristics of the processes comes from the slavesadht eontext switch the salves send
the master a message about the processes they were exethgngessage contains information
regarding how much of the last quantum was actually consibyi¢lde processes as CPU time.

To get this data, the node daemon reads kernel data strathatedescribe different processes
and their resource consumption. By comparing the readih@Pt) usage at the beginning and
end of the quantum, the CPU usage is obtained. While theutsolprovided by the kernel is not

1. select next slot

2. send instruction to
schedule this slot and
its matching slot

1. stop previous jobs
2. collect data about

3. collect data from previous jobs

all nodes 3. send data to master

4. recalculate CPU 4. start new jobs

utilizations

5. if round finished, (jobs run)
recalculate matching

6. sleep for one quantum

master nodes

Figure 5:Actions by the master and node daemons during a paired gaegling quantum.

very high, itis adequate, especially considering that gygaheduling quantum on ParPar is a full

second.
The master daemon collects the data from all the nodes acudlatds the average CPU utiliza-

tion for the job. This data is then used for the matching, asileed above. The way all this fits
together is described in Figure 5.

The main problem with the experimental implementation & thbreaks the communication
mechanisms. ParPar integrates a modified version of the E¥Mlesel communications library
for Myrinet, in which only one communication context is usadd this is replaced as part of the
context switching [2]. Obviously this cannot work if two messes run at once. This can be fixed
(at the cost of considerable recoding) by having two acto@exts each time. However, for our
evaluations, it was simpler to use conventional Unix IPCcdmmmunications, as is done in many
clusters based on PVM or MPICH.

4 Evaluation

To evaluate the performance impact of paired gang scheguli@ ran several tests using the ParPar
implementation described above.

4.1 Proof of Concept
4.1.1 Workload

All the experiments were based on the synthetic program showigure 6, used with different
parameters. For example, settiig,, = 0 creates a compute-bound job, whereas setiing,, =
0 creates an I/O-bound job. Makirtg.,,., and/orGo large increases the granularity (the amount

of computation or I/O between barriers).
This structure of alternating compute and I/O phases islywiecepted as a reasonable model

for parallel applications [15]. The barrier is implementgdall processes sending a message to
process 0, and waiting for a reply. Process 0 sends the repyyabter it receives a message

9

loop N tines

/1l conmpute part
l oop Geomp times
nul | statenent

/1 110 part

loop Gpo times
open new file
wite B bytes
close the file

/1 synchronize
barri er

Figure 6: The test program used in experiments.

from every other process in the job. In the following resulte use a mix of compute-bound and
/0 bound jobs, with,,,, = 2,500,000 andG,o = 20 respectively;B was set t3193. These
values lead to approximately similar times for a computeibaand an I/O barrier. Note, however,
that the communication involved in barrier synchronizatioeates some 1/0-like activity even for
compute-bound processes.was set to 250.

The proof-of-concept experiments were conducted with auallytexecuted job mix. In other
words, a set of jobs were all started at the same time, and jebtshsize was the same as the
cluster size (8 nodes were used unless otherwise notedpriance data was collected during
the interval in which all the jobs ran concurrently on theteys using the original strict gang
scheduling scheme or the new paired gang scheme. When thielliia the mix terminated, all
other jobs were killed, and the measurements stopped. Fheensure that the measurements
indeed reflect a consistent job mix. If jobs are allowed totauoompletion, the mix changes with
time as some jobs terminate, and then it is harder to assegrestults to the original mix.

4.1.2 Experimental Results

The metrics recorded during the runs are the rate of progmesasured in barriers completed per
second, and the success rate of matching jobs to each ottugtiate.

Performance Impact

To gauge the performance impact of paired gang scheduhegérformance of 5 job mixes were
measured. Mix, i = 0...4, was composed afl/O-bound jobs and — i compute-bound jobs.
The upper part of Figure 7 shows how many barriers per secare wompleted by the
compute-bound jobs and the I/O-bound jobs, averaging divsueh jobs in each mix. The fig-
ure shows an improvement when using the paired gang schgdgicompared to the traditional
gang scheduling. There is no meaningful difference wheretaee just compute-bound jobs in the
system, because compute-bound jobs can’t be matched, paitbd gang scheduling acts like the

10

-
o
=
[=]

far)
2

[i]
=]

mCormpute - pair m Cornpute - pair

£
=1

oOCormpute - strict
& /0 - pair
alfQ - strict

O Compute - strict
® /0 - pair
o /0 - strict

w
=

Humber of barriers

Number of barriers

20 1

4 co. Feoolio 2co2io lco 3o 4in 4 co. 3ecolin 2o 2in oo 3o 4 in

100 100

a0 an

a0 0

70 70
Oslot 0 Oslot 0
Oslot 1 & Oslot 1
a0 mslot 2
mslot 3

40 40
mho slot m Mo slot

a0 30

20 1 20 1
10 5 10
1] T T T T 0

4 co. 3co lio 2o 20 1co 3o 4in 4 co. Jeco 1o 2o 2in 1eo 3o 4 in

B0

50

mslot 2

Percents
Percents

mslot 3

Figure 7: Top: Performance of different jobs in each mix, as measuyebapriers per second,
comparing paired gang scheduling with strict gang schaduli

Bottom: Fraction of quanta in which jobs occupying diffarsfots in the matrix were used for
matching, in percent.

Left: using best-fit matching. Right: using the predesigapproach.

strict gang scheduling in this case. However, when ther&@rbound jobs which can be matched
with the compute-bound jobs, the progress of the jobs isla@ated in paired gang scheduling.
Note that this is true both for the compute-bound jobs (asfigevhen there are 2 or 3 1/0O-bound

jobs), and for the 1/0-bound jobs (especially when there2aoe 3 compute-bound jobs). Thus
we find that both types of jobs benefit from the additional asde the CPU provided by being

paired with another job, and this benefit outweighs the digran suffered when another job is
paired with them. The conclusion is that the interferendevben the matched jobs is indeed low
(matching the results of [11]).

The case of a single I/O-bound job is especially interestWigen multiple 1/0-bound jobs are
present, they can be matched with each other, but this dogise’a big improvement, because
these jobs interfere with each other when writing to the dikis interference causes the disk
to become a bottleneck, so paired gang scheduling doese’egsignificant improvement (higher
CPU allocations leading to reduced performance due to disteation has also been observed by
Rosti et al. [15]). However, when there is just one 1/0-bojotland 3 compute-bound jobs, the
I/0-bound job is matched withll the compute-bound jobs in turn. This job will therefore athe
almost four times faster than when it only runs on its own,naeed shown in the upper part of

11

Figure 7. This implies that the 1/0O-bound job achieved netivé maximal performance possible,
as if it had the system dedicated to itself — and without campsing the performance of the
compute-bound jobs.

One approach to decide which jobs should run together indheesquantum, is the best-fit
algorithm. The left part of Figure 7 shows the results of #igorithmic decision. Best fit always
scans all 4 slots in the same order. The lower slots belongrtgate-bound jobs, while the higher
slots belong I/0O-bound jobs. The number of jobs of each tyy@mges in the various tests.

When there are only compute-bound jobs in the system, thdéywaé a high CPU utilization.
Therefore no matching will be done in this case, as indicatélde leftmost part of the figure.

At the other extreme, when only I/O-bound jobs are preséetr CPU utilization is typically
0% (because they immediately perform an I/O operation wiamidey run, and do not log any
noticeable CPU time). Therefore they are all equivalentas$ the matching algorithm is con-
cerned. As a result, the matching algorithm always chodsesasst available job for matching.
Thus when the jobs in slots 0, 1, and 2 are scheduled to ruplbhe slot 3 is chosen as the best
match. When it is slot 3's turn, the job in slot 2 is chosen.sTlkads to the skewed histogram in
which slot 2 is chosen 25% of the time and slot 3 is chosen 758tedtime.

The intermediate cases can also be analyzed in a similar M#éhen there are one 1/O job
and three compute jobs, the 1/0O job is matched with all of tl{é&%6), but they take turns being
matched with it (8% each) because their CPU utilizationyg géghtly. Conversely, when there is
one compute job and three I/O jobs, the compute job is matelibdall I/O jobs (75%), but only
the last I/O job is matched with the compute job (because diidyave the same 0% utilization).
Finally, in the case of two jobs of each type, the compute jake turns being matched (around
25% each), whereas the second I/O job dominates over thé@at 50%).

An alternative is to use a matching algorithm that emphadaeness. At the beginning of each
round, the matching algorithm described in Figure 4 is pertal. As can be seen in Figure 7, this
leads to a much more equitable selection of slots for magghiith no harm to the rate of barriers
per second. The slots which previously got less time slieeaibse of their lower serial number,
will now get an equal opportunity to be executed, so some®jdhs will pass more barriers per
second, while other will pass less, but the total number ofigrs which will be passed, is very
similar to the one which the best-fit method had produced.

Sensitivity to Cluster Size

In the next set of experiments the measurements were repeadusters of sizes 2, 4, and 12 (in
addition to the size of 8 used before).

Figure 8 shows the impact of the cluster’s size on rate of @sgyof the different job types.
Starting from the left, we see that when all the jobs are cdspound the size does not have
any real impact. But when compute-bound jobs are mixed withbound jobs, an interesting
interaction occurs. As the processes of an 1/0O-bound jopefiorm 1/0O to the same server, a
larger cluster size implies that more I/O operations ardopered, leading to congestion at the
server. Therefore the rate of progress of the 1/0-bound (oteasured in barriers per second, not
total 1/0 done per second!) decreases when the clusterssinereased. This decrease would be
avoided if the I/O itself was parallelized. But due to the abpaired gang scheduling, the reduced
activity of the 1/0-bound processes is picked up by the caeymound processes. Thus the rate of
progress of the compute-bound jobs improves with clustr grovided enough 1/0-bound jobs

12

70
B0 - —_—
Compute - 4 co.
_ 50
Cornpute - 3co. 1in| @ e
2 =
—sa— Compute - Zeo. Zio E 0
—+— Compute - Teo. 3io| 2
-]
¥ -3 i =
Fo- e g
—--e--- O - Zeo. Zio =
------- IIO-1F0. Jio =] - -
ceeteo- /O - i A —
4 e - ©
n4— ey
e
0
2 4 a8 12

Figure 8: Barriers per seconds in various size of clusters, for diffemixes of compute and I/O
jobs.

-
[}

o
[u]

m
]

=)

in
.
[=]

[m]

(]
o]
[l

[m]
N
m
Number of barriers

B
o

(=]
|

m_ Bis

Compute I{8]

o
!

Figure 9: Barriers per seconds in various granularities. The numéfge legend are the size of
the internal null loop in millions.

are present.

Sensitivity to Granularity

In another set of these experiments, we changed the gréaguwathe compute part of the test’s
compute-bounded jobs. Specifically, the size of the interal loop of the compute-bound jobs
was reduced from 2.5 million down to 1 million, in steps of 3W@W. This is an important test of
the concept of paired gang scheduling, because there isgeidtimat when the granularity is finer,
the asynchronous nature of the I/O-bound processes wilecenore severe interference.

Figure 9 shows that in fact the different granularities domave much impact on the rate of
progress, despite the fact that the time between a barrtbetoext barrier is smaller. Thus paired
gang scheduling is not very sensitive to the granularityhefjobs.

13

G000 g

—s— strict gang / —— strict gang /
45 H

5000 4 scheduling scheduling
—=— paired with —a— paired with

homogeneous load 47 homogeneous load //
4000 1 paired with a5 4 paired with

heterogeneous load heterogeneous load
3000 //
2000 / : /

2
1000 < _,_.,//"/‘
____._71./——-'—’—/.’_,_ 15 "_ﬂd_____.——I—"_

0

045 05 065 O OBS OF 075 08 085 08 095 1 045 0.5 055 06 0G5 0OF OF5 08 085 09 055 1
load load

slowdown
M
m (o]

response time (seconds)

Figure 10:Average response time and slowdown as function of systeth loa

4.2 Performance with a Dynamic Workload

The results presented in the previous subsection were fiatia workload containing a carefully
controlled mix of jobs. While this allowed us to analyze tletalled behavior of the system, it was
not very realistic. In this subsection we turn to more re@liworkloads.

The experiments reported here were run on the full 16 nodéseoParPar cluster. Each ex-
periment consisted of running 1000 jobs generated acaptdithe Lublin workload model [12].
The model specifies the arrival time, number of nodes, andimgrtime of each job. As the model
is based on long-running jobs from production supercompuogtallations, we divided the arrival
times and running times by 40 to reduce the overall time taherexperiments. The arrival times
were further multiplied by a constant factor to achieveatd#ht load conditions. The time to com-
plete a single experiment was typically in the range of 8-dur$, with more time needed for the
lower load conditions.

4.2.1 Homogeneous Fine-Grain Applications

In the first set of experiments all jobs are homogeneous, mgdhat they display the same be-
havior. The selected behavior is one of fine-grain companétiat still allows for matching. We
started by measuring the time for the communication inwblvea barrier synchronization, and
setting the loop in the compute part to take slightly lesstiso that the CPU utilization will be
about 45%. We used the program described in Figu¥ @as set t&00 x sec, Wheresec is the
number of seconds the job should run according to the wodkioadel. G ., was set to 25,000
andGy,o was set to 0. Sincé';/o was 0,B is meaningless.

Our aim was to compare strict gang scheduling and paired getmeduling. Exactly the same
workload was used for all the different schedulers and loaatitions. The results show that
even under heavy loads, performance is reasonable wheg paired gang scheduling. However,
when using strict gang scheduling, the results show a satnrander heavy loads, created by a
bottleneck of jobs, which the system cannot handle fastgmou

Figure 10 shows the average slowdown and response timelsioé gbbs with:

14

e strict gang scheduling.
e paired gang scheduling with a homogeneous workload.
¢ paired gang scheduling with a heterogeneous workload ritéesicbelow).

N tElapsedi

The slowdown is calculated by 3"} | S whereN is the number of jobs (in our caseé is
1000),tgaecuting, 1S the execution time of job measured by the kernel on the nodes, &0,
is the elapsed time of job The response time is simply the averagemf, ;-

Both response time and slowdown clearly show that paired gaheduling can use the com-
puter resources more efficiently. Hence, the jobs can campileir tasks in a shorter time period.
When the workload is heavier, the ratio between paired gelngdiling and strict gang scheduling
will be higher. Under 0.5 load, the response time with pagaxg scheduling is about twice faster,
while under 0.95 load the response time with paired gangdadimg is nearly 6 times faster.

Figure 11 shows the number of jobs in the system while runtiiagimulation using these two
methods of scheduling, for different load conditions. Faw loads the strict gang scheduling and
the paired gang scheduling are similar, and both schedgieesalmost the same results. At all
loads, the paired gang scheduling sometimes succeedsatoatiehe jobs, while the strict gang
scheduling fails to do so for loads above 0.6 or 0.7. At sugh hbads, after all 1000 jobs have
been submitted, the scheduler still has some dozens ofgftis ithe system. At the highest load
of 0.95 it takes over three hours to successfully completeghobs. In fact, for loads of 0.9 and
0.95 it seems that the system is actually saturated, as théeruof jobs in the system seems to
rise with time. This is due to wasting resources when prasessit for synchronization. Paired
gang scheduling, on the other hand, does not saturate eadoad of 0.95.

Note that in these experiments we enable an unrestrictedeuaf jobs in the system at the
same time. This might be unrealistic for real applicatides;ause of the memory pressure. How-
ever, this demonstrates that when paired gang schedulirsgd; jobs can complete their computa-
tion faster. This leads to less overlap and a smaller dedmneemory congestion, and the memory
pressure is actually reduced significantly.

4.2.2 Heterogeneous Applications

The previous subsection focused on fine-grain applicatiasghey are expected to be the most
sensitive to interference from other applications thatetiaeir time slot. To further increase the
interference, we tailored the applications so that theid@#lization would be roughly 45%, so
that they will always be matched. The results indicate thanén this case the benefits of improved
resource usage far outweigh the degradation due to intéecer

The question we wish to tackle in this subsection is whethatiching occurs enough in prac-
tice to make a difference. To do so, we need to create a mixtefétgeneous applications, with
different granularities and CPU utilizations. As there esreal data about the mixes of CPU uti-
lizations in production workloads, we will use a mix in whitthe CPU utilization is selected at
random uniformly in the range from 0 to 100%, with the reshigaiised for barrier synchroniza-
tions. Thus, the granularities correlates with the utilmaand for each degree of CPU utilization,
we use the most fine-grain application possible.

The results are shown in Figure 10, and indicate that enouafichimg occurs to make the
performance similar to that of the homogeneous case. Fi2rehows the number of jobs in
the system while running the heterogeneous load. As candieisehis figure, there is just a

15

[

i1
I
L=

. — 35 k 0.6 load ﬁ
s | “ P M
S e
?Zwmm JA A I
A N\“'F'MJW G i v v

time {minutes) time (minutes)

=]
=

=il

=
=1

a5]
=

"‘l” ! L{ T | r' L

’l] 50 - 8loa "{\
_4%9 0.7 IoadM ’l [\\ 08 load IJ lw'\ - Ur\)\
20 ,H \ 1 \ L

il | ‘k IRV AN R
i, HM" N T
M’ WWW www LRI uw n

=]
=

number of jobs
number of jobs

[

o

540 g 480 540
time {minutes) time {minutes)
50 120 7
B0 09 load |‘rl\ ; 100 1 0.95 load ‘lll_i — paired gang |
70 - o= Y scheduling
w rﬂd \'Il AL Hw - 2 a0 e | j‘w I\\-\ L
2 A = 2 i I
= 5, AL IWJ | w i W 5 ——— strict gang
5 & I MJJ 1 i 2 B0 5 e 4 \-‘ scheduling |
E LT | 2 I Nj ¥ \
£ =7 “\ 5 L \
Z 3 7 . 3 oa Ly]
x ’4% | =) A A \
= i !
10 el ‘W\ o (JU{ KM}M 79 P \KLNW \L =
AN LA o AL ¥l . S S e
0 B0 120 180 240 300 360 42U 480 240 D [al] 120 180 240 300 360 420 480 540

time {minutes) time {minutes)

Figure 11:Evolution of the simulation for different load conditions.

slight difference between the homogeneous load and thedgeteeous load, when paired gang
scheduling is used.

4.2.3 Applications with Distinct Phases

The applications used in the previous subsections werlesséay, in the sense that their behavior
did not change during the course of their execution. In paldr, we used their phases to create
fine-grain interactions, as we wanted to investigate howegittble they were to interference from

other applications. But real applications may have longsphaf computation and I/O, and the

pattern may also change during the run. In this section westnyate such applications, and check
how paired gang scheduling adjusts to the changing behalapplications.

16

[
&

o

=

=
=

0.6 load 25 0.8 load ﬂ

o

P—
gz
=
number of jobs
= @

number of jobs
@ =
1 =
= -
e —
e

!
i B0 120 180 240 300 360 4320 480 &40 i 60 120 180 240 00 360 420 480
time (minutes) time (minutes)

z: Ill“ 0.9 load Iﬂ .
N [L %0 l h];

|
O\ I 1. |
(TR f

I l
| L S Y
ﬂ o | M ; 1044 j /lUL 'ﬁ' ‘H 5 \]
DM' %\f@ lﬁ \U : K\n W W

o
1} 60 120 180 240 300 360 420 1} 60 120 180 240 300 360
time {minutes) time {minutes)

0951

oad
fu\

=2

number of jobs
number of jobs

Figure 12:Evolution of the simulation for heterogeneous loads.

We used a model of the QCRD application as described in [15ik dpplication is structured
as 12 short I/0-bound phases alternating with 12 longer G8lhd phases. The final part of the
application is a relatively long 1/0-bound phase.

Figure 13 shows the CPU utilizations and the success of nmgtevhen 4 copies of QCRD are
running. We can see that when the CPU utilization is high,gusingle job runs at a time, while
when the CPU utilization is low jobs are paired and run togeth

First, the CPU-bound phase is done executing each job inaaaepslot. Then the I/O-bound
phase comes and the jobs are matched and run in pairs. When@Rig¢-bound phase comes, it
will take a little while for the scheduler to understand ttiegre was a change and to run the CPU-
bound phase alone. Sometimes, the scheduler executesa @&tJ bound jobs, but it doesn’t
split them because it sees a CPU utilization lower than 50¢&&ch one of the jobs. Note that
this can only happen if the jobs are perfectly synchroninddch sometimes happens in this case
where they are copies of the same application started tegeth

In order to solve the problem of the unnoticed changes bydheduler, we changed the sched-
uler to detect any sharp change in the behavior of a job. Wheh a sharp change occurs, the
scheduler will give the job an opportunity to run one quanalane so its real characteristics can
be observed. This might cause a little delay, because a pab® which could be executed to-
gether are sometimes separated. However, it gives the welnedbetter way to know what is the
real character of the jobs.

The results of the scheduler which notices sharp changeshaxen in Figure 13. A sharp
change was defined as a change of more than 20% in the CPatinitiz The response time was

17

100 100

a0 a0

60 60

40 40

percents of CPU utilization
percents of CPU utilization

20 20

] T T T T T T T — 1] T T T T T T T T
] 500 1000 1500 2000 2500 3000 3500 4000 4500] 500 1000 1500 2000 2500 3000 3500 4000 4500
time (seconis) time (seconds)
single l_ — ————— —— 5 single |
pair | —_— 77— T 1 pair ! T — — — T T 1
] 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

time (seconds) time (seconds)

Figure 13:Four instances of the QCRD model are executed in paralldl: éeginal paired gang
scheduling. Right: with special treatment of sharp changes

30

TN Y
1 '!j‘\k w{) \H\ M H h rﬂqv %
| | MP i \I ! l

DPJ : j‘ g | i ‘\1‘1—\

0 B0 120 180 240 300 360 420

time (minutes)

number of jobs
I

Figure 14:A dynamic workload with QCRD-like jobs, load=0.8.

longer by just about 1%.

We also experimented with a dynamic workload where all jalessaaled versions of QCRD.
Since the running time in the Lublin workload model is diéfet for each job, we shrank the phases
so the total time will be same as it is in the Lublin workloaddab The results were similar to
the results of the stationary applications, with only a vslight degradation. The progress of
the runs can be seen in Figure 14, for a load of 0.8. When cangptire run of QCRD-like job
under paired gang scheduling with running the same jobgstiict gang scheduling, the average
response time was reduced by half.

5 Conclusions

The results of the experiments are promising: given a goddhrad a compute-bound parallel job
and an I/0 bound parallel job, they can run within the sameatyua with little mutual interference,
nearly doubling the resource utilization. Thus paired gsecigeduling seems to be a good compro-

18

mise between the extreme alternatives of strict gang sdimgdur uncoordinated local scheduling.
Naturally, the system'’s ability to find such a match depemndthe available job mix. Recent work
has identified various I/O-intensive applications, so @me that the potential is there [15, 20].

Especially noteworthy is the fact that this is achieved byeysimple device, based on data
easily available directly to the scheduler. This distirsingis paired gang scheduling from other
flexible gang scheduling schemes that are based on mogtooimmunication in order to deduce
the characteristics of parallel jobs (e.g. [11, 7, 22, 1]).

The idea can be extended if there are more I/O devices in thiersy One /O operation
won't interfere with other 1/0O operation, so a group/®f+ 1 gangs can be dispatched, whév¥e
is the number of I/O devices in the system. In particulars ipossible to overlap disk /0O with
communication.

Additional future work includes the handling of user-legeimmunication, in which poling and
busy waiting may mask I/O activity and make it look like CPUinaty. This requires modifications
of the communications library, and in particular, the sitbs8bn of busy waiting by spin blocking.

Finally, we also intend to experiment with more advancedipgischemes. For example, we
would like to consider a more precise matching of slots, &sgg a detailed measurement of CPU
utilization on each processor rather than average valuesafth job.

References

[1] Arpaci-Dusseau A. C., Implicit coscheduling: coordi scheduling with implicit information in
distributed system#ACM Trans. on Computer Systems 19(3), pp. 283—331, August 2001.

[2] Etsion Y. and Feitelson D. G., User-level communicatiom system with gang schedulinggth Intl.
Parallel & Distributed Processing Symp., Apr 2001.

[3] Feitelson D. G., Packing schemes for gang schedulindoltrScheduling Strategies for Parallel Pro-
cessing, Springer-Verlag, LNCS Vol. 1162, pp. 89-110, 1996.

[4] Feitelson D. G., Batat A., Benhanokh G., Er-El D., EtsdnKavas A., Klainer T., Lublin U., and
Volovic M. A., The ParPar system: a software MPPHIigh Performance Cluster Computing, \Vol. 1:
Architectures and Systems, Rajkumar Buyya (Ed.), pp. 754-770, Prentice-Hall, 1999.

[5] Feitelson D. G. and Jette M. A., Improved utilization aedponsiveness with gang schedulingJdh
Scheduling Strategies for Parallel Processing, Springer Verlag, LNCS Vol. 1291, pp. 238-261, 1997.

[6] Feitelson D. G. and Rudolph L., Gang scheduling perfaroesbenefits for fine-grain synchronization.
J. Parallel & Distributed Comput. 16(4), pp. 306—318, 1992.

[7] Frachtenberg E., Feitelson D. G., Petrini F. and Ferearld, Flexible CoScheduling: mitigating load
imbalance and improving utilization of heterogeneous ueses, 17th Intl. Parallel & Distributed
Processing Symp., Apr 2003.

[8] Franke H., Pattnaik P., and Rudolph L., Gang schedulimdnighly efficient distributed multiprocessor
systems 6th Symp. Frontiers Massively Parallel Comput., pp. 1-9, Oct 1996.

[9] Hori A., Tezuka H., Ishikawa Y., Soda N., Konaka H., and éda M., Implementation of gang-
scheduling on workstation cluster. Oob Scheduling Strategies for Parallel Processing, Springer-
Verlag, LNCS Vol. 1162, pp. 126-139, 1996.

[10] Kavas A., Er-EID., and Feitelson D. G., Using multicasspre-load jobs on the ParPar clustearalléel
Comput. 27(3), pp. 315-327, Feb 2001.

19

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Lee W., Frank M., Lee V., Mackenzie K. and Rudolph L., liogtions of I/O for gang scheduled
workloads. InJob Scheduling Strategies for Parallel Processing, Springer-Verlag, LNCS vol. 1291,
pp. 215-237, 1997.

Lublin U. and Feitelson D. G.The Workload on Parallel Supercomputers: Modeling the Character-
istics of Rigid Jobs. Technical Report 2001-12, School of Computer Science amgingering, The
Hebrew University of Jerusalem, Oct 2001.

Mu'alem A. W. and Feitelson D. G., Utilization, predattility, workloads, and user runtime estimates
in scheduling the IBM SP2 with backfillindEEE Trans. Parallel & Distributed Syst 12(6), pp. 529-
543, June 2001.

Ousterhout J. K., Scheduling technigues for concursgstems3rd Intl. Conf. Distributed Comput.
Syst., pp. 22-30, Oct 1982.

Rosti E., Serazzi G., Smirni E., and Squillante M. S.,ddIs of parallel applications with large com-
putation and I/O requirementdEEE Trans. on Software Engineering 28(3), pp. 286—-307, Mar 2002.

Rosti E., Serazzi G., Smirni E. and Squillante M. S., Thpact of I/O on program behavior and par-
allel schedulingSIGMETRICS Conf. Measurement and Modeling of Comput. Syst. pp. 56—65, 1998.

Schwiegelshohn U. and Yahyapour R., Improving firateefirst-serve job scheduling by gang
scheduling. InJob Scheduling Strategies for Parallel Processing, Springer-Verlag, LNCS Vol. 1459,
pp. 180-198, 1998.

Silberschatz A. and Galvin RQperating System Concepts. 5th ed., Addison-Wesley, pp. 130-133,
1997.

Silva F. A. B. and Scherson I. D., Improving parallel jptheduling using runtime measurements. In
Job Scheduling Strategies for Parallel Processing, Springer-Verlag, LNCS vol. 1911, pp. 18-38, 2000.

Smirni E. and Reed D. A., Workload characterization rgdtit/output intensive parallel applications.
9th Intl. Conf. Comput. Performance Evaluation, Springer-Verlag, LNCS vol. 1245, pp. 169-180, Jun
1997.

Snavely A., Tullsen D. M. and Voelker G., Symbiotic jebgduling with priorities for a simultaneous
multithreading processdfl GMETRICSConf. Measurement and Modeling of Comput. Syst. pp. 66—76,
Jun 2002.

Sobalvarro P. G., Pakin S.,Weihl W. E. and Chien A. A.nBsnic coscheduling on workstation clus-
ters. InJob Scheduling Srategies for Parallel Processing, Springer-Verlag, LNCS vol. 1459, pp. 231-
256, 1998.

Wiseman Y. and Feitelson D. G., Paired gang scheduliergisalem Parallel & Distributed Processing
Symp., Jerusalem, Israel, Nov 2001.

Zhang Y., Franke H., Moreira J. and Sivasubramaniammproving parallel job scheduling by com-
bining gang scheduling and backfilling techniquiesl. Parallel & Distributed Processing Symp., pp.
133-142, May 2000.

20

