
Gang S
heduling Performan
e Bene�tsfor Fine-Grain Syn
hronizationDror G. Feitelson� Larry RudolphDepartment of Computer S
ien
eThe Hebrew University of Jerusalem91904 Jerusalem, IsraelAbstra
tMultiprogrammed multipro
essors exe
uting �ne-grained parallel programs appear to requirenew s
heduling poli
ies. A promising new idea is gang s
heduling, where a set of threads ares
heduled to exe
ute simultaneously on a set of pro
essors. This has the intuitive appeal ofsupplying the threads with an environment that is very similar to a dedi
ated ma
hine. Itallows the threads to intera
t eÆ
iently by using busy waiting, without the risk of waiting fora thread that 
urrently is not running. Without gang s
heduling, threads have to blo
k inorder to syn
hronize, thus su�ering the overhead of a 
ontext swit
h. While this is tolerablein 
oarse grain 
omputations, and might even lead to performan
e bene�ts if the threads arehighly unbalan
ed, it 
auses severe performan
e degradation in the �ne-grain 
ase. We havedeveloped a model to evaluate the performan
e of di�erent 
ombinations of syn
hronizationme
hanisms and s
heduling poli
ies, and validated it by an implementation on the Makbilanmultipro
essor. The model leads to the 
on
lusion that gang s
heduling is required for eÆ
ient�ne grain syn
hronization on multiprogrammed multipro
essors.1 Introdu
tionMultipro
essors are often dedi
ated to running a single appli
ation at a time. The program isallowed full 
ontrol over what happens on ea
h pro
essor, and in fa
t it might be required to in
ludeinstru
tions that regulate the mapping and s
heduling of parallel threads. Mu
h experien
e relatingto these issues has been a

umulated over the years, and automati
 parallelization and 
ompilationte
hniques have been developed. These te
hniques allow dedi
ated pro
essors to be used eÆ
ientlyby a single appli
ation.In re
ent years multiprogrammed general-purpose parallel systems have begun to emerge. Insu
h systems, ea
h thread is viewed as a \virtual pro
essor". Threads belonging to the sameappli
ation 
ooperate with ea
h other, as before, while threads from di�erent appli
ations 
ompetefor system resour
es. The total number of threads is typi
ally larger than the a
tual number ofpro
essors, and the full details about the system state are not available to any of the individualappli
ations. Therefore the exe
ution 
annot be regulated by the programmer or the 
ompiler.Rather, the system software takes 
are of mapping and s
heduling issues. The question is, howshould pro
essing resour
es be divided among the 
ompeting jobs?Run-time systems on parallel ma
hines are typi
ally straightforward modi�
ations of unipro
es-sor systems. Sometimes ea
h pro
essor simply exe
utes a distin
t 
opy of the system, with various�Current address: IBM T. J. Watson Resear
h Center, P. O. Box 218, Yorktown Heights, NY 10598.1



lo
ks added to provide mutual ex
lusion where ne
essary. At best, the pro
essors are 
onsidered asjust another resour
e that is allo
ated upon request. Upon 
loser inspe
tion, however, it seems thatthis approa
h is not entirely satisfa
tory. The dynami
s of program exe
ution on a multipro
essorare fundamentally di�erent from the dynami
s on a unipro
essor, due to the fa
t that multiplethreads of 
ontrol are a
tive simultaneously. The system must a
knowledge the intera
tions andinterdependen
ies between the di�erent threads, and this must also be re
e
ted in the supportprovided by the system.The intera
tions between threads of a parallel appli
ation are embodied in the syn
hronizationrequirements of the appli
ation. This in
ludes both expli
it syn
hronization, su
h as barrier syn-
hronization and mutual ex
lusion, and impli
it syn
hronization, su
h as the relation between athread that produ
es a data item and the thread that 
onsumes it. The next se
tion examines thee�e
t of the s
heduling poli
y used by the run-time system on the eÆ
ien
y of syn
hronization. Inthe 
ase of �ne-grain intera
tions it is shown that it is best for the threads to exe
ute simultane-ously on distin
t pro
essors, and 
oordinate their a
tivities with busy waiting. This is a
hievedby a gang s
heduling poli
y, i.e. the s
heduling poli
y that 
oordinates 
ontext swit
hing a
rossa number of pro
essors so as to s
hedule a \gang" of intera
ting threads simultaneously. Notethe analogy between this and virtual memory management, where a working set of pages must bepresent simultaneously in order to prevent thrashing [21℄. With 
oarse-grain intera
tions, on theother hand, 
oordinated s
heduling is not ne
essary. If the varian
e in 
omputation times betweenintera
tions is high, it is then best to blo
k a thread that has to wait for syn
hronization. Thisallows the pro
essor to be used by another thread, possibly from another appli
ation, while the�rst thread is waiting.We have implemented gang s
heduling on the Makbilan multipro
essor in order to validate theseresults. While Makbilan is a shared-memory ma
hine, it should be noted that the results are alsoappli
able to message passing ar
hite
tures. The implementation is des
ribed in se
tion 3, followedby the experiments that were used to validate the model. The model and measurements are thenused to give a full 
hara
terization of situations in whi
h busy waiting with gang s
heduling ispreferred, as opposed to situations where blo
king is better. The implementation also showed thatgang s
heduling alone is not enough to support �ne-grain intera
tions: spe
ial hardware supportis needed to make the intera
tions fast enough. These and other results are dis
ussed in the
on
lusions.Related WorkGang s
heduling was introdu
ed by Ousterhout in the 
ontext of the Medusa system on Cm� [21℄(a
tually he suggested a less stri
t version 
alled 
os
heduling). He explained the intuition behindusing gang s
heduling to allow eÆ
ient use of busy waiting for �ne-grain syn
hronization, anddeveloped three algorithms for its implementation. Similar ideas were suggested by Edler et. al. inthe 
ontext of the the NYU Ultra
omputer proje
t [10℄. However, no analysis of the performan
eimpli
ations was done.Very little work has been done on gang s
heduling sin
e then. B la_zewi
z et. al. developed o�-linealgorithms for gang s
heduling, essentially using dynami
 programming [7℄. Seager and Sti
hnothhave simulated gang s
heduling on multipro
essor Crays, and 
on
lude that it is a good s
hedulingdis
ipline for multithreaded super
omputer appli
ations [26℄. Gupta et. al. have simulated gangs
heduling (and other s
heduling poli
ies) on a 
a
hed bus-based ma
hine [14℄. They 
on
ludethat gang s
heduling is one of the best approa
hes, be
ause busy waiting 
an be used eÆ
ientlywith it. However, due to the use of only four spe
i�
 appli
ations, they fail to 
hara
terize the2



exa
t 
onditions under whi
h gang s
heduling is bene�
ial, and the spe
i�
 performan
e impa
t itmay have. Some results that support gang s
heduling were also presented by Lo and Gligor [17℄,Leutenegger and Vernon [16℄, and Zahorjan et. al. [30℄. We have des
ribed a novel 
ontrol stru
ture,
alled \distributed hierar
hi
al 
ontrol", for the implementation of preemptive gang s
heduling inlarge, intera
tive multipro
essor systems [11, 12℄. Some existing systems support spa
e-divisionsharing to exe
ute appli
ations side by side, whi
h is similar to bat
h-style gang s
heduling [6, 3℄.Busy waiting and blo
king have also been analyzed elsewhere. The two s
hemes have been
ompared by Zahorjan et. al. in two di�erent papers, using queueing models. The �rst does not
onsider the bene�ts of gang s
heduling [31℄, and is therefore biased against busy waiting. Theother paper, through their 
hoi
e of parameters, 
onsiders situations whi
h essentially amount to
oarse grain 
omputations, and therefore it 
on
ludes, not surprisingly, that both s
hemes arerather similar [30℄. Gupta et. al. show that the performan
e of busy waiting and blo
king dependsstrongly on the s
heduling me
hanism [14℄, but they are non
on
lusive as to whi
h is ultimatelybetter.To our knowledge, this paper is the �rst to analyze the performan
e impli
ations of gangs
heduling, and the interplay between s
heduling and syn
hronization. This allows us to identifythe situations in whi
h gang s
heduling should be used, namely when the appli
ation is based on�ne-grain syn
hronization. It is also the �rst to report experiments based on a real implementationof gang s
heduling on a multipro
essor.Gang s
heduling may 
ause an e�e
t reminis
ent of fragmentation, if the gang sizes do not �tthe number of available pro
essors. We have previously shown that under reasonable 
onditionsthis may lead to a loss of up to 25% of the 
omputing resour
es [13℄. In this paper we show that for�ne-grain 
omputations gang s
heduling 
an more than double the pro
essing 
apability. Thus the�nal balan
e indi
ates that in 
ertain 
ases gang s
heduling has 
onsiderable performan
e bene�ts.TerminologyDi�erent authors tend to use the same terms with slightly di�erent meanings. Therefore a note onour usage is in order. First, we use the term thread to denote the parallel light-weight a
tivitiesthat 
o-exist in and 
omprise the exe
ution of a parallel program. This is synonymous with taskin the 
ontext of our implementation on the Makbilan, des
ribed in se
tion 3.We use the term gang s
heduling to denote a s
heduling poli
y, implemented by the run-timesystem, in whi
h a set of threads is s
heduled simultaneously on a set of pro
essors, using a one-to-one mapping. In other words, we insist on a s
heduling that mat
hes the intuitive model ofparallelism, where spawned threads really exe
ute in parallel with ea
h other. This ex
ludes poli
ieswhi
h allo
ate a blo
k of pro
essors to an appli
ation without any regard to the number of threadsin it.Finally, we use the term blo
ked , as in a thread that is blo
ked, to mean that the tread isa
tually suspended from exe
ution, and the pro
essor swit
hes to another thread. This is morespe
i�
 than just implying it has nothing useful to do, so it 
an either busy wait or suspend.2 Syn
hronization and S
hedulingThe purpose of this paper is to 
ompare the two basi
 syn
hronization me
hanisms, busy waitingand blo
king, in the 
ontext of parallel pro
essing. Busy waiting is not used on unipro
essormultiprogrammed systems be
ause of the obvious waste it entails: one pro
ess 
onsumes CPU
y
les waiting for another pro
ess to advan
e, but the other pro
ess 
annot advan
e be
ause it3



parfor i := 1 to nf for j := 1 to kf 
ompute for tijp timesyn
ggFigure 1: Pseudo-
ode of appli
ation model.does not have the CPU. On the other hand, if the threads are a
tually running in parallel ondistin
t pro
essors, as is possible in parallel ma
hines, busy waiting seems to be the fastest andmost dire
t way to syn
hronize. It still might 
ause waste, however, if there are more threads thanpro
essors, be
ause a thread might again wait for another thread that is not running. The resultingperforman
e is therefore strongly dependent on the system's s
heduling poli
y.Two-phase blo
king, in whi
h a thread �rst busy-waits for a while and then blo
ks [21℄, is omit-ted from this 
omparison. The reason is that when gang s
heduling is used, and the syn
hronizationis �ne-grained, only the �rst phase of two-phase blo
king is exe
uted, making it identi
al to busywaiting. Without gang s
heduling, it is almost identi
al to blo
king (but with a larger overhead).Thus examining it would not add any new information.As the e�e
tiveness of busy waiting depends on whether or not the threads are a
tually runningin parallel, we 
onsider two 
ases. The �rst is when gang s
heduling is used, meaning that intera
tingthreads are always s
heduled to run side by side simultaneously. The se
ond is when the s
hedulingis performed independently on ea
h pro
essor in an un
oordinated manner; tasks are s
heduledregardless of the state of any other task. As the 
ombination of gang s
heduling with blo
king doesnot make sense, we are left with the following three methods:� Busy waiting with gang s
heduling.� Busy waiting with un
oordinated s
heduling.� Blo
king with un
oordinated s
heduling.The 
omparison is done by sele
ting a simple model of appli
ation behavior, and 
al
ulating theexpe
ted run time under the di�erent methods as a fun
tion of a number of parameters. Theseparameters in
lude a 
hara
terization of the granularity of the intera
tions among threads, the load,the gang size, and the s
heduling time quantum and the 
ontext-swit
h overhead of the run-timesystem.2.1 Model and AssumptionsAppli
ation ModelingThe appli
ation is modeled as a set of n intera
ting threads, where n, the gang size, is less than orequal to the number of pro
essors. This is expressed as a parfor loop, and is not to be 
onfusedwith doall loops; doall spe
i�es that the iterations may be done in parallel, while parfor spe
i�es4



that they should be done in parallel (Fig. 1). It is assumed that the identity of the intera
tingthreads is known, i.e. the threads are de
lared to be a gang. The threads are iterative, as in themodels of Vrsalovi
 et. al. [29℄ or Dubois and Briggs [9℄. In ea
h iteration, ea
h thread 
omputesfor a 
ertain time, and then all the threads perform a barrier syn
hronization. The pro
essing timeof thread i in iteration j is given by the random variable tijp . It is assumed that this 
omputation islo
al, and in any 
ase it is not in
uen
ed by whatever other threads in the system are doing. Thenumber of iterations, k, is assumed to be large enough so that various overheads may be averagedover the iterations disregarding end e�e
ts.This model is representative of many parallel algorithms, whi
h are designed as a large numberof parallel 
omputation phases separated by barrier syn
hronizations or sequential phases. It alsoprovides a good approximation of the performan
e of divide-and-
onquer algorithms, where ea
hre
ursive level is repla
ed by a syn
hronized iteration [18℄, and pipelines algorithms, espe
ially forsystoli
 arrays. For n = 2, the model is redu
ed to a simple syn
hronization between two threads.This too is a 
ommon situation, whi
h o

urs in syn
hronous message passing, remote pro
edure
alls, rendezvous, et
. It should be noted, however, that this is not meant to be a 
ompletelygeneral model | it is just a simple 
ase that is easy to analyze.The equations to be subsequently derived in se
tion 2.2 give the expe
ted time needed to
omplete a single iteration, using the di�erent syn
hronization and s
heduling s
hemes. As thisdeals with the average time for an iteration, it is 
onvenient to base the equations on the averagepro
essing time and the average waiting time. The average pro
essing time, denoted by tp, is simplytp = 1nk nXi=1 kXj=1 tijp : (1)To de�ne the average waiting time, we �rst de�ne the maximal pro
essing time in a 
ertain iterationj. This is tmax jp = max1�i�n tijp : (2)If ea
h thread were to exe
ute on a dedi
ated pro
essor, threads that 
ompute for less time wouldhave to wait for the one that 
omputes the most. The waiting time for thread i in iteration j istherefore tijw = tmax jp � tijp ; (3)and the average waiting time, denoted by tw, istw = 1nk nXi=1 kXj=1 tijw : (4)Note that tp + tw = ik Pkj=1 tmax jp , i.e. this is the average of the full iteration times as di
tated bythe slowest thread in ea
h one.The barrier syn
hronization itself also takes some time. Instead of modeling this independently,we observe that this is an added overhead to all the threads. Hen
e we in
lude it in ea
h thread'svalue of tijp , and therefore also in tp. Note that the syn
hronization overhead may depend on thenumber of pro
essors, so when the model is used to predi
t performan
e tp should be adjusteda

ordingly.
5



System Chara
terizationRe
all that we are dealing with general purpose multiprogrammed systems, where there may bemany more threads than pro
essors. It is assumed that time sharing is used to servi
e all the threadsat the same time, rather then running only a subset to 
ompletion. The threads are mapped topro
essors when they are spawned. It is assumed that the total number of threads is a multipleof the number of pro
essors, and that there is perfe
t load balan
ing. The number of threads onea
h pro
essor is denoted by `. We fo
us our attention on a single gang of n threads, mapped to ndi�erent pro
essors. The 
hara
ter of the other n(`� 1) threads running on these pro
essors doesnot interest us in the general 
ase. The performan
e of the blo
king me
hanism, however, doesdepend also on the other threads. In this 
ase we 
he
k two possibilities: (i) that they have anidenti
al iterative behavior, and (ii) that they are independent 
ompute-bound threads.The s
heduler is assumed to be perfe
tly fair, giving the same servi
e to ea
h thread (or ea
hgang). The s
heduling time quantum is denoted by �q, and the 
ontext swit
hing overhead isdenoted by �
s. It is assumed that �
s � �q. Blo
king is assumed to 
ost a fa
tor of � more than aregular 
ontext swit
h, where � is a 
onstant somewhat larger than 1.Two 
ases are investigated: that of 
oarse-grain intera
tions, in whi
h tp is large relative to �q(i.e. many time quantums are required before a syn
hronization), and �ne-grain intera
tions, inwhi
h it is relatively small. The number of iterations, k, is assumed to be large enough so thatk(tp + tw) � �q in any 
ase. This allows us to average over a number of s
heduling rounds. Notethat k may have to be very large in the �ne grain 
ase, as it is realisti
 to assume �q to be on theorder of 104�105 instru
tions, and an intera
tion may o

ur every 10�100 instru
tions. Note alsothat the granularity relates to the intera
tion rate of the threads, not to their life time.2.2 Performan
e DerivationBusy-Waiting with Gang S
hedulingWhen gang s
heduling is used, the situation with respe
t to the intera
tions between the threadsis identi
al to that in whi
h the threads run on dedi
ated pro
essors. The only di�eren
e is thatwe should also take into a

ount the time allo
ated to other threads that share the use of the samepro
essors, and the 
ontext swit
hes that are involved. The granularity does not have any e�e
t.The total run time for k iterations is therefore given byT =  k(tp + tw) + k(tp + tw)�q �
s! `: (5)Dividing by k and rearranging, the average time for a single iteration ist =  1 + �
s�q ! (tp + tw) `: (6)In e�e
t, this equation shows that an iteration takes tp + tw time on average, meaning that the rateis di
tated by the slowest thread. In addition, there is an overhead fa
tor of �
s=�q. In the �ne-grain
ase, this means that the overhead is amortized a
ross a large number of iterations, be
ause manyiterations are 
ompleted in ea
h s
heduling round.Busy-Waiting with Un
oordinated S
hedulingThe behavior of busy waiting with un
oordinated s
heduling depends on the granularity. In the
oarse-grain 
ase, it is nearly identi
al to the behavior of busy waiting with gang s
heduling. In every6



s
heduling round, ea
h thread exe
utes on its respe
tive pro
essor, but this does not ne
essarilyhappen at the same time within the round. Given that tp + tw is substantially larger than �q, itis obvious that ea
h iteration is spread over a number of s
heduling rounds. Spe
i�
ally, thereare b(tp + tw)=�q
 full s
heduling rounds, in whi
h the whole time quantum is used, and then a�nal round in whi
h the syn
hronization is 
ompleted. The di�eren
e between the gang s
hedulings
heme and the un
oordinated s
heme is apparent only in the �nal round; therefore the di�eren
ein run times is relatively small. To summarize, equation (6) is a good approximation of the runtime for both busy-waiting s
hemes in the 
ase of 
oarse-grain intera
tions.With �ne-grain intera
tions, however, the situation is more 
ompli
ated: the fa
t that the nthreads are not running simultaneously might 
hange the waiting time. Spe
i�
ally, there is a
ertain probability that the n threads happen to be s
heduled simultaneously, even if no expli
itmeasures are taken to ensure gang s
heduling. When this happens, many iterations are 
ompleted.If, on the other hand, there is no overlap between the exe
utions of any two threads, then the wholegang 
an only 
omplete a single iteration.The expe
ted overlap of n segments of length � that are pla
ed at random in a loop of 
ir
um-feren
e �, where � � �, is �n=�n�1. In our 
ase, � = �q represents the exe
ution of a single thread,and � = `(�q + �
s) is the duration of a s
heduling round. The expe
ted overlap, i.e. the time inwhi
h all the threads happen to exe
ute simultaneously, is therefore �nq =`n�1(�q + �
s)n�1. Theexpe
ted number of iterations that will be 
ompleted in this time is �nq =`n�1(�q + �
s)n�1(tp + tw)(assuming this is not less than 1; see below). Hen
e the number of s
heduling rounds needed to
omplete k iterations is m = k`n�1(�q + �
s)n�1(tp + tw)=�nq , and the total run time isT = m (�q + �
s) `= k`n (�q + �
s)n (tp + tw)�nq : (7)The expe
ted time for a single iteration is thent =  1 + �
s�q !n (tp + tw) `n: (8)Assuming that �q � �
s, this is about a fa
tor of `n�1 slower than with gang s
heduling. Thehigher the load, the smaller the probability of being s
heduled simultaneously, thus in
reasing theprobability of wasting the rest of the time quantum. As a side note, we observe that two-phaseblo
king 
an be used to pla
e a bound on the waste, but it 
annot improve the performan
e to thelevel a
hieved by gang s
heduling.If the load is too high or the grain not �ne enough, the equations might show that less than oneiteration is 
ompleted ea
h time. This is of 
ourse not true. In the 
orre
t equations, the number of
ompleted iterations is the maximum between the expression given above and 1, and the expe
tedtime per iteration is the minimum between equation (8) and (�q + �
s)`.Blo
king Me
hanismBlo
king is an alternative to busy waiting. When a thread must wait for the 
ompletion of iterationj, it is suspended until the awaited threads a

umulate an additional tijw run-time. At this time thewaiting thread is moved to the ready queue; it gets to run again on the subsequent round. Notethat with blo
king the burden of syn
hronization lies with the operating system. We assume that7



the overhead in
urred is � times that of a regular 
ontext swit
h, where � is a 
onstant larger thanone.The fa
t that the waiting threads do not 
onsume CPU 
y
les during their wait does notredu
e the duration of the slower 
omputations. Its e�e
t is to redu
e the number of threads that
ompete for pro
essor usage. We therefore have to make some assumption about the behavior ofthe 
ompeting threads. Two possibilities are 
onsidered: (i) all the threads in the system have thesame behavior, i.e. they all 
ompute and syn
hronize iteratively, and blo
k when they have to wait;and (ii) the 
ompeting threads are independent and 
ompute bound, so they never blo
k.As usual, both possibilities must be investigated in the 
oarse-grain and the �ne-grain 
ases. Inthe 
oarse-grain 
ase, most of the 
ontext swit
hes are the result of a time quantum that expires,and do not involve blo
king. The extra overhead in blo
king is negligible. Based on the assumptionthat all the threads display the same behavior, only a fra
tion tptp+tw of them are a
tive at any givenmoment. The expe
ted total run time is thereforeT =  k(tp + tw) + k(tp + tw)�q �
s! tptp + tw `; (9)and the time per iteration is t =  1 + �
s�q ! tp`: (10)Comparing this with equation (6), we �nd that the e�e
tive length of ea
h iteration is redu
ed fromtp + tw to tp. Therefore this result 
an also be interpreted as an exe
ution of ` threads where ea
hiteration takes the average 
omputation time rather than the maximum time.If we do not assume that all the other `�1 threads have the same 
hara
teristi
s, i.e. that someof them also blo
k, then the number of a
tive threads remains `. In this 
ase, the blo
ked threadsgain no advantage. The average time per iteration is again given by equation (6). However, theblo
ked threads do redu
e the load on the system, freeing resour
es for their 
ompetitors. Thusblo
king is an altruisti
 me
hanism.Let us now 
onsider the �ne-grain 
ase, where a thread that blo
ks indu
es a 
ontext swit
h.In this 
ase the blo
king may be said to 
ause the system to adapt to the workload, by e�e
tivelyde
reasing the size of the s
heduling time quantum to �t the typi
al intera
tion rate of the appli
a-tion. An important point to noti
e is that as ea
h iteration is 
ompleted, the last thread to arriveat the barrier is not blo
ked. This thread 
an immediately 
ontinue to the next iteration, withoutpaying the overhead. Thus in ea
h iteration only n � 1 of the n parti
ipating threads in
ur theoverhead.Again, we start by assuming that all the threads sharing the use of the pro
essors have thesame 
hara
teristi
s. The average run time, whi
h is a
tually the e�e
tive time quantum, be
omestp. The 
ontext swit
hing overhead is multiplied by �, be
ause 
ontext swit
hes only o

ur whena thread is blo
ked. The total run time for k iterations is thereforeT = k �tp + n�1n ��
s� `; (11)and the time per iteration is t =  1 + (n� 1)��
sntp ! tp`: (12)Like the 
oarse grain 
ase, the e�e
tive length of ea
h iteration is redu
ed. However, the overheadis in
reased relative to the busy-waiting 
ase (equation (6)). First, blo
king is more expensive than8



just swit
hing; this is represented by the fa
tor of �. Moreover, tp appears in the denominatorrather than �q, and in �ne grained intera
tions we expe
t that tp � �q. The result is that theoverhead per iteration is a 
onstant n�1n ��
s, instead of be
oming negligible as the grain be
omes�ner as it does for busy waiting with gang s
heduling (or two-phase blo
king with gang s
heduling).If we do not assume that the other threads have the same 
hara
teristi
s, then their timequantum stays a whole �q. Thus the gang of iterative threads that we are examining still manageonly one iteration per s
heduling round on average, as in the above derivation, but the s
hedulinground does not get shorter. The run time in this 
ase is approximatelyT = k (tp + (`� 1)�q + (` + �� 1)�
s) : (13)As tp and �
s are assumed to be small relative to �q, the 
y
le time of the 
ompeting threadsdominates; thus the 
ompetitors again bene�t more than the altruisti
 blo
king gang. Note thatthis derivation depends on the assumption that the s
heduler sti
ks to a rigid round-robin poli
y,whi
h 
auses it to be unfair. A smart s
heduler 
an 
ompensate for this to some degree by givingtop priority to a thread that was just resumed; in fa
t, this is the motivation behind giving higherpriority to I/O bound jobs in many operating systems.3 Implementation and ExperimentsIn order to validate the model presented in the previous se
tion, a run-time library using a gangs
heduling poli
y was written for the Makbilan resear
h multipro
essor. This se
tion provides someba
kground about the system, and delineates the implementation of gang s
heduling. Then theexperimental results are des
ribed. Note that while Makbilan is a shared memory ma
hine, themodel is more general and does not rely on this feature.3.1 Ba
kgroundThe Makbilan TestbedThe Makbilan resear
h multipro
essor 
onsists of up to 15 pro
essor boards in a Multibus II 
age.The experiments reported in the next se
tion were run on a 10-pro
essor 
on�guration. Ea
hboard has an Intel 386 pro
essor running at 20 MHz, providing about 4 MIPS. It also has a 387mathemati
al 
o-pro
essor, a message passing 
o-pro
essor, and 4MB of memory. Memory onremote boards may be a

essed through the bus, thus supporting a shared-memory model. Asa

ess to on-board memory is faster than a

ess to memory on remote boards, Makbilan is a non-uniform memory a

ess (NUMA) ma
hine [5℄. The pro
essors have on-board 
a
hes, but they donot 
a
he remote referen
es. Hen
e there is no issue of 
a
he 
oheren
e.The box also in
ludes one board that a
ts as a Unix host, a bus 
ontroller, a peripherals interfa
e,and a terminals 
ontroller. Users log on to the Unix board, and 
an then load and exe
ute ParCprograms on all the other boards.The ParC LanguageParC is a superset of the C programming language intended to support parallel programmingin a shared memory environment [4℄. The main additions over C are two blo
k-oriented parallel
onstru
ts, parblo
k and parfor; the �rst indi
ates that the 
onstituent sub-blo
ks exe
ute inparallel, while the se
ond indi
ates that iterations of the loop body be done in parallel. Ea
hsub-blo
k or iteration is 
alled an a
tivity ; these are equivalent to threads in the dis
ussion so far.9
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Figure 2: MAXI system 
on�guration on ea
h board.These 
onstru
ts may be nested in arbitrary ways, 
reating a tree of a
tivities where all the leavesare exe
uting in parallel. Variables de
lared within the blo
k of 
ode that de�nes a 
ertain a
tivityare a

essible only by that a
tivity and its des
endants. For the work reported in this paper, theset of a
tivities that are spawned together in a single 
onstru
t is taken as the de�nition of a gang.In addition to the parallel 
onstru
ts, there are three main syn
hronization me
hanisms: fet
h-and-add, semaphores, and syn
. The syn
 instru
tion implements a barrier syn
hronization amongall the a
tivities 
reated by a 
ertain parallel 
onstru
t. However, it is not used in the experimentsdes
ribed in se
tion 3.3. Rather, a spe
ially optimized version of barrier syn
hronization withless overhead is used. This version is based on atomi
 bitwise logi
al operations supported bythe multibus II. It 
annot be used in the general implementation be
ause it limits the number ofa
tivities that are involved.The MAXI SystemMAXI is an a
ronym for the Makbilan System, based on an abuse of the English alphabet. Thesystem may be partitioned into two main layers: A run time library that supports the ParC
onstru
ts, and a lo
al kernel on ea
h board. The lo
al kernel is Intel's RMK [15℄, whi
h is a real-time kernel designed to use hardware support provided by the 386 and the Multibus II. This kernelis highly optimized to provide fast task 
reation, termination, and 
ontext swit
hing. Parallela
tivities are implemented by RMK tasks (whi
h are the RMK equivalents of Unix pro
esses).These tasks embody the threads from the analysis of se
tion 2.The 
urrent version supports only a single user at a time. The system design emphasizesasyn
hronous distributed operation without unne
essary interdependen
ies between boards. Thusea
h board has a lo
al 
opy of the run-time library, 
omplete with lo
al data stru
tures (Fig. 2).Global data stru
tures in shared memory are used only when a
tivities exe
uting on one boardneed to in
uen
e what happens on other boards, e.g. when new a
tivities are spawned or when abarrier syn
hronization point is rea
hed.
10



free: 5

free: 5

free: 5

free: 5

free: 5

free: 5

free: 0

free: 1

1

2

3

4

5

slots

capacities
spawn

descriptor
size: 3 size: 2

descriptor
spawn

Figure 3: Global data stru
tures used for gang s
heduling.3.2 The Gang S
heduling LibraryIn the default ParC run-time library, s
heduling is done by the RMK kernel on ea
h board inde-pendently. In order to implement gang s
heduling, a new library with an external s
heduler waswritten. This s
heduler for
es RMK to s
hedule the desired task by raising its priority.The gang s
heduling algorithm and data stru
tures are based on the matrix algorithm developedby Ousterhout [21℄. S
heduling spa
e is seen as a matrix, where ea
h row 
orresponds to a s
hedulingslot and ea
h 
olumn to a pro
essor. Tasks belonging to a single gang are mapped to entries in thesame slot. In our implementation, the matrix is not stored expli
itly; it is simply the 
onjun
tionof the PCB tables1 on all the pro
essors.The s
heduling is done in round-robin style, by 
ir
ling through the used slots. Res
hedulingis triggered when the alarm on PE #1 goes o�, indi
ating that the time quantum has expired.Alternatively, any pro
essor may trigger a res
heduling if it �nds that no gang s
heduling is takingpla
e in the 
urrent slot. This information is mediated by a shared bit mask, with a distin
t bitrepresenting ea
h pro
essor. A set bit indi
ates that the 
orresponding pro
essor is not parti
ipatingin gang s
heduling in the 
urrent slot: this 
an happen if a pro
essor was not allo
ated a task inthe slot, if the task is suspended, or if it terminated. A pro
essor that �nds all the bits set triggersa res
heduling.Res
heduling is implemented by a broad
ast interrupt, whi
h 
auses all the pro
essors to swit
hto the next slot simultaneously. When the broad
ast interrupt is re
eived, the interrupt handlerredu
es the priority of the 
urrent task (if any), and raises the priority of the task in the next slot.A hint about the maximal used slot is maintained to indi
ate when to return to the �rst slot.Two global data stru
tures are used to allo
ate slots to gangs (Fig. 3). The �rst is an arrayof pointers to lists of slots with a given 
apa
ity. The se
ond is a table of slots. Ea
h slot entryindi
ates how mu
h free spa
e there is in the slot, and the entries are linked to ea
h other a

ordingto this value. The list is lo
ked when a slot is manipulated. A slot 
an also point to a list of spawn1PCB stands for Pro
ess Control Blo
k. This is the data stru
ture used by the run-time system to store informationabout the task. 11



run-time librarydefault gang s
heds
heduling 0:07 + 0:14` � 0.2spawning 1.6 2.5�The se
ond term is due to overhead expe-rien
ed on
e in ea
h s
heduling round, andtherefore amortized.Table 1: Run-time library overheads (in ms).des
riptors. These are data stru
tures that des
ribe gangs that have been allo
ated to this slot,but have not 
ommen
ed yet. The allo
ation is stati
 and does not 
hange during exe
ution. Inparti
ular, slots that are left with a small number of tasks due to the termination of other tasksare not united.For example, Fig. 3 shows a possible 
on�guration for a system with 5 pro
essors and a maximumof 8 tasks per pro
essor (the real numbers in MAXI are 15 and 512, respe
tively). The �rst slot
ontains a
tive tasks on all the pro
essors ex
ept one. The se
ond slot has been allo
ated to twogangs of sizes 3 and 2, so it has no free spa
e. When it is s
heduled, the tasks will be 
reated andthe spawn des
riptors removed. All the rest of the slots are unused.The gang s
heduling library su�ers more overhead than the default library (Table 1) [5℄. This hastwo reasons: �rst, it requires more 
oordination through global variables and broad
asts. Se
ond,various fun
tions whi
h would normally be implemented inside the kernel are a
tually implementedabove it, and use a sequen
e of kernel 
alls to a
hieve the desired end result. The next se
tionshows that despite this higher overhead, the gang s
heduling version does indeed perform betterfor �ne-grain appli
ations.3.3 Experimental ResultsThe experiments used to verify the model of se
tion 2 are based on a syntheti
 program thatsimulates intera
tions with various degrees of granularity. The program spawns gangs with onethread per pro
essor. These threads loop a large number of times and syn
hronize in ea
h iteration.The average time to 
omplete an iteration and syn
hronize is measured. Ea
h instan
e of theprogram, i.e. ea
h exe
ution, is 
hara
terized by three parameters:� LOAD | the number of 
ompeting gangs.� GRAIN | the number of instru
tions in ea
h iteration, ex
luding the 
ode that implementsthe syn
hronization. If di�erent a
tivities in the gang have di�erent granularities, this is theminimal one.� VAR | the di�eren
e between the minimal and maximal numbers of instru
tions in di�erenta
tivities in ea
h iteration. The a
tual numbers are sele
ted at random from a uniformdistribution between GRAIN and GRAIN+VAR.As the exe
ution times are sele
ted from a uniform distribution, the expe
ted exe
ution timeof the longest a
tivity in any iteration is GRAIN + nn+1VAR, and that of the shortest a
tivity isGRAIN + 1n+1VAR, where n, the number of a
tivities, is equal to the number of pro
essors. 10 were12
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used in the experiments. The system time quantum is 50 ms. Measurements show that ea
h unit ofGRAIN takes 0.00141 ms, and the intera
tion at the end of ea
h iteration takes an additional 0.137ms on 10 pro
essors. Thus the relationship between the experimental parameters and the modelparameters used in se
tion 2 is the following:tp = 0:137 + 0:00141 � (GRAIN + 12VAR)tw = 0:00058 � VAR (14)The above expressions and values, and the overheads shown in table 1, are used to 
al
ulate modelpredi
tions. Equations (6) and (12) are used. The predi
tions are then 
ompared with the a
tualmeasurements.The number of iterations that were measured was 30000 or 50000 in most of the experiments.Repeated measurements show that this is large enough so that the a

ura
y is within 5%, andin most 
ases even within 1% (ex
ept for some of the results of experiments 3 and 4, see below).To prevent situations in whi
h the starting 
onditions 
ause the system to settle into a s
hedulingpattern that a�e
ts syn
hronization performan
e, a set of skewing threads is generated at theoutset. These threads exe
ute for random durations of up to one quantum. Thus they terminateearly in the measurement, and serve to 
ause the di�erent pro
essors to start asyn
hronously.There are two versions of the program: one using busy waiting and the other using blo
king. Asimpli�ed version of blo
king was used, where threads just yield the pro
essor but do not join anyexpli
it blo
ked queue. In e�e
t, the run queue serves as a blo
ked queue as well. This saves theneed for expli
it dequeueing. As a result, the blo
king overhead is not 
onstant. Rather, it dependson how many times the waiting thread yielded the pro
essor. The program 
ounts this parameter,and its average value is used for � in the model predi
tions.Experiment 1This experiment shows the additive overhead in
urred by blo
king, and also that blo
king 
annota
hieve any gains when the load is 1 (e.g. on a dedi
ated ma
hine). VAR is set to 0. With busy waitingthe time per iteration is essentially the time needed for GRAIN instru
tions plus syn
hronization.With blo
king, ea
h iteration su�ers an additional 
onstant overhead. The measured and predi
ted13
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Figure 5: Results of experiment 2. 0
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Figure 6: Ratio of time required by blo
kingto time required by busy waiting with gangs
heduling.results are shown in Fig. 4. The x axis is the time needed to 
omplete an iteration on a dedi
atedma
hine, tp + tw. The y axis shows the time that was a
tually required. The model equationsfor the �ne-grain 
ase were used, and indeed the agreement with the measurements deterioratesslightly as the grain be
omes larger.Experiment 2This is the main experiment used to verify the performan
e relations between busy waiting withgang s
heduling and blo
king with un
oordinated s
heduling. LOAD is set to 3, and VAR is equal toGRAIN. As expe
ted, when the granularity is large enough, blo
king 
an use the idle time of waitinga
tivities to exe
ute other a
tivities, thus redu
ing the average time per intera
tion (Fig. 5). For�ne-grain intera
tions, however, the blo
king overhead dominates the possible gain.Note that the 
rossover o

urs at a granularity of about 0.8 ms; for smaller granularity, gangs
heduling is better. As the exe
ution time of �ne grain 
omputations is small, the di�eren
ebetween the two s
hemes is also small in absolute terms. The relative performan
e gains, however,are unmistakable. The measurements show that for the most �ne-grain intera
tions that weremeasured, busy waiting with gang s
heduling was twi
e as fast as blo
king (Fig. 6). This was agranularity of about 0.16 ms. The results indi
ate an obvious in
rease in the relative performan
eratio for smaller granularities. Measurements on a smaller number of pro
essors, where the barriersyn
hronization overhead is smaller, 
on�rm this trend (dotted line in the �gure).Experiment 3This experiment demonstrates the altruisti
 nature of blo
king. Both GRAIN and VAR are set equalto 1000. Two versions of the test program with blo
king are used. In one all the 
ompeting gangshave the same iterative nature with the same granularity, and blo
k when they try to syn
hronize.In the other, only one gang has these 
hara
teristi
s. The 
ompeting gangs are 
omposed of
ompute-intensive a
tivities that do not blo
k. 14
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Figure 8: Results of experiment 4.The results indi
ate that the time per iteration of the blo
king gang is approximately theprodu
t of the number of 
ompeting gangs times the s
heduling time quantum, as expe
ted fromequation (13). The exa
t relation depends on the details of the s
heduling pattern that the systemfalls into, hen
e the large varian
e in the measured results.The slightly non-linear 
hara
teristi
 of the 
urve results from the fa
t that � 
hanges fromabout 4 for a load of one down to about 1.2 for a load of four. The reason for this is that at higherloads there is a larger delay until a task is res
heduled, so the rest of the gang has a better 
han
eto rea
h the syn
hronization point.Experiment 4This experiment shows that busy waiting without gang s
heduling is indeed not a viable alternative(Fig. 8). Pairs of threads are used (n = 2), with GRAIN and VAR set to 100. As expe
ted, there is alinear dependen
e between the required time and the load for busy waiting with gang s
hedulingand for blo
king. While the results for busy waiting with un
oordinated s
heduling are not asa

urate, be
ause they depend on the exa
t pattern that the system falls into, it is evident that inthis 
ase the dependen
e is quadrati
.4 Dis
ussion and Con
lusionsBased on the model and experiments, we 
an derive the following 
on
lusions regarding syn
hro-nization me
hanisms and s
heduling poli
ies:1. When busy waiting with gang s
heduling is 
ompared with blo
king, the relative performan
eis a fun
tion of the granularity. For �ne-grain jobs, busy waiting with gang s
heduling isbetter.2. Blo
king altruisti
ally frees system resour
es. If all the jobs are unbalan
ed and 
oarsegrained, the run time is redu
ed. For �ne-grained jobs, however, the blo
king overheaddominates any possible savings and thus degrades the performan
e. If 
ompeting jobs do notblo
k, a job that does use blo
king may re
eive disproportionally low servi
e.15
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�Figure 9: Phase diagram 
omparing the relative performan
e of busy waiting with gang s
hedulingvs. blo
king, on the Makbilan multipro
essor.3. Busy waiting with un
oordinated s
heduling is wasteful, espe
ially in �ne-grained jobs. Withvery 
oarse-grain intera
tions, however, it is basi
ally similar to busy waiting with gangs
heduling.4. Two-phase blo
king limits the waste, but does not provide any real bene�ts unless it is usedtogether with gang s
heduling.When to use busy waiting with gang s
hedulingThe 
omparison between busy waiting with gang s
heduling and blo
king 
an be quanti�ed in ourmodel in the following manner. Denote the expe
ted time per iteration when using busy waiting andgang s
heduling by tBW , and the time when using blo
king by tBLK ; these are given in equations(6) and (12), respe
tively. Note that for blo
king this rests on the assumption that all the threadsin the system display the same behavior and blo
k to save system resour
es. We would like to knowwhen one is smaller than the other by a 
ertain fa
tor �. In other words, we would like to �nd a
ondition that will 
ause the inequality tBWtBLK � � < 1 to be satis�ed. By using the equations and
hanging sides, it is easy to see that the 
ondition istw � � n�1n � �q �
s�q + �
s +  ��q�q + �
s � 1! tp (15)This de�nes a 
ertain area in \intera
tion spa
e", i.e. the quarter-plane 
onsisting of all possible
ombinations of tp and tw, using 
oeÆ
ients that are a fun
tion of system parameters. The area isdelimited by a straight line with a negative slope, yielding that 
orner in intera
tion spa
e whereboth tp and tw are small. In this area, busy waiting with gang s
heduling is at least 1=� timesfaster than blo
king.The same approa
h may be used to �nd a 
ondition that guarantees that tBLKtBW � � < 1, i.e.16



that blo
king has the advantage. The 
ondition turns out to betw � n�1n � �q �
s�(�q + �
s) +  �q�(�q + �
s) � 1! tp (16)This is again a straight line, but now the area of interest is above it.The two expressions 
onverge when � = 1. This gives a line with a negative slope, but assumingthat �
s � �q the slope is very very small. In e�e
t, this line therefore divides the intera
tion spa
einto two. The lower part, where tw is smaller than the blo
king overhead (tw < ��
s), in
ludesall 
ombinations in whi
h busy waiting with gang s
heduling has the advantage. The upper partin
ludes those intera
tions in whi
h blo
king is better.Applying the above formulas to the parameters that 
hara
terize the Makbilan system (�q = 50,�
s = 0:2, � = 1:5), and using � = 12 , we get the phase diagram of Fig. 9. The lower shaded areais the part of intera
tion spa
e where busy waiting with gang s
heduling is at least twi
e as goodas blo
king2. The shaded triangle at the top left is the part where blo
king is twi
e as good. Thewhite area indi
ates 
ombinations in whi
h the di�eren
e is smaller than a fa
tor of two. This areais neatly divided, and busy waiting has the advantage whenever tw is smaller than 0.3 ms.Obviously the advantage of busy waiting with gang s
heduling in
reases for �ner grained in-tera
tions. The spe
i�
 area in the �gure is de�ned by the requirement that tp + 2tw � 300�s;given that ea
h Makbilan pro
essor is 
apable of about 4 MIPS, this represents a granularity ofup to a few hundred instru
tions. In a multipro
essor based on modern RISC mi
ropro
essorsthe graularity would be even larger, be
ause the 
ontext is bigger. Blo
king only has a de
idedadvantage when tw is larger than tp by 0.6 ms. This happens only if the 
omputational tasks ofthe di�erent threads are highly unbalan
ed.Note that all the above was done under assumptions that favor blo
king, namely that all the
ompeting gangs display the same behavior. If this assumption is dropped, equation (13) shouldbe used for tBLK rather than equation (12). This leads to the following 
ondition for the advantageof busy waiting and gang s
heduling:tw � � �q(`� 1)` + � � �q �
s(�q + �
s)` +  ��q(�q + �
s)` � 1! tp: (17)This is again the �ne-grain 
orner of intera
tion spa
e, but due to the �rst term it is a mu
h larger
orner. The other 
ondition 
hanges in a similar manner.The 
on
lusion from the above is that busy waiting with gang s
heduling is a viable and promis-ing method for the implementation of �ne-grain parallel systems, a target that has been problemati
to date. Its importan
e lies in the fa
t that many algorithms are naturally expressed using smallparallel blo
ks of 
ode, and the �ner the granularity the larger the degree of parallelism that isexposed [8℄. Gang s
heduling allows busy waiting to be used for syn
hronization, whi
h allows �negrain threads to be supported. In addition, busy waiting has an advantage on multipro
essors with
a
hes, as the frequent 
ontext swit
hes indu
ed by blo
king may make 
a
hing mu
h less e�e
tive[20, 14℄. Moreover, busy waiting 
an a
tually utilize the 
a
he 
oheren
e me
hanism to redu
enetwork load [24, 2℄.However, blo
king is easier to implement than gang s
heduling, so blo
king is used in most of theparallel systems existing today. Consequently �ne-grained algorithms have to be restru
tured to runeÆ
iently on 
ontemporary 
oarse-grain systems (see, e.g., [25, 19, 8℄). This pla
es an unne
essary2This does not 
orrespond exa
tly with the results of experiment 2 be
ause the a
tual values of � in that experimentwere di�erent for di�erent data points, and varied between 1.1 and 2.1.17



burden on the programmer and the 
ompiler. In addition, it is imperative that systems that useblo
king raise the priority of tasks that be
ome unblo
ked. If this is not done, the altruisti
 natureof blo
king 
an 
ause these tasks to su�er severe performan
e degradation.While gang s
heduling would provide better support for �ne-grain 
omputations, this approa
htoo has its limitations. Spe
i�
ally, a gang 
annot involve more than P threads, where P is thenumber of pro
essors. This does not mean that appli
ations 
annot spawn more threads: it onlymeans that larger groups should not intera
t simultaneously. In e�e
t, the appli
ation is requiredto display intera
tion lo
ality, whi
h is analogous to the requirement for referen
e lo
ality in virtualmemory. The gangs are a
tually \thread working sets", and gang s
heduling is a means to preventthrashing [21℄. While this requirement may seem restri
tive to the point of limiting the usefulness ofgang s
heduling, this is in fa
t not so. S
heduling poli
ies that s
hedule threads in an un
oordinatedmanner impli
itly require the threads to be independent, whi
h is mu
h more restri
tive.It should be emphasized that this de�nition of intera
tion lo
ality is 
ompletely di�erent fromthe often mentioned requirement that programs display 
ommuni
ation lo
ality. Communi
ationlo
ality refers to 
ases in whi
h the hardware has a 
ertain topology, and threads are requiredto 
ommuni
ate with only a small subset of the other threads, so as to fa
ilitate the mapping ofthreads to pro
essors. Intera
tion lo
ality means that threads may be grouped into gangs withno more than P threads ea
h, su
h that the vast majority of the intera
tions do not 
ross gangboundaries. However, a thread may intera
t with all the other members of its gang. This hasnothing do to with topology.Impli
ationsThe support of �ne-grain 
omputations through busy waiting and gang s
heduling requires adapta-tions in various areas of parallel 
omputing. For example, expli
itly parallel programming languagesshould give the 
ompiler and run-time system information about threads that 
an be expe
ted tointera
t strongly, e.g. through the synta
ti
 stru
ture of parallel blo
ks. Alternatively, 
ompile-timedependen
y analysis 
an be used to glean information about intera
tion patterns and granularity.Automati
 parallelization may also produ
e threads that must intera
t: for example, this happenswith doa
ross loops [22℄. If the granularity of intera
tions is �ne enough, the relevant threadsshould be marked for gang s
heduling.The implementation of gang s
heduling also requires additional resear
h. To date, only asmall number of parallel operating systems in
orporate preemptive gang s
heduling [21℄, whilesome others support bat
h-style spa
e-division sharing whi
h has similar features [6, 3℄. Newalgorithms and 
ontrol stru
tures are needed to support gang s
heduling on in
reasingly largerma
hines [11, 12℄. Hardware support for the operating system may also be needed. For example,in our implementation the ability to broad
ast interpro
essor interrupts was ne
essary.It is 
on
eivable that spe
ial hardware support might also be ne
essary for the eÆ
ient im-plementation of inter-thread intera
tions. Gang s
heduling guarantees that threads will �nd theirintera
tion partners, but if the intera
tions themselves take too long they will violate the �ne-grain time s
ale [8℄. For example, hardware supporting a

ess to shared variables 
onditioned on afull/empty status bit 
an save expli
it busy waiting, resulting in faster operation and redu
ing theload on the 
ommuni
ation network; this already exists in a number of systems [27, 1℄. Hardwaresupport for barrier syn
hronization is also advo
ated [23, 28℄. In addition, it would be bene�
ialto have 
a
hing with hardware support for 
a
he 
oheren
e, as this 
an redu
e the 
ontention andfurther redu
e the 
ost of busy waiting [2℄. Of 
ourse, the opposite point of view should also beremembered. Systems that in
orporate hardware support for syn
hronization will not utilize this18



support if the syn
hronizing threads do not exe
ute simultaneously. Thus gang s
heduling is neededto ensure the eÆ
ien
y of hardware me
hanisms and justify the investment in them.A
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