Gang Scheduling Performance Benefits
for Fine-Grain Synchronization

Dror G. Feitelson* Larry Rudolph

Department of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Abstract

Multiprogrammed multiprocessors executing fine-grained parallel programs appear to require
new scheduling policies. A promising new idea is gang scheduling, where a set of threads are
scheduled to execute simultaneously on a set of processors. This has the intuitive appeal of
supplying the threads with an environment that is very similar to a dedicated machine. It
allows the threads to interact efficiently by using busy waiting, without the risk of waiting for
a thread that currently is not running. Without gang scheduling, threads have to block in
order to synchronize, thus suffering the overhead of a context switch. While this is tolerable
in coarse grain computations, and might even lead to performance benefits if the threads are
highly unbalanced, it causes severe performance degradation in the fine-grain case. We have
developed a model to evaluate the performance of different combinations of synchronization
mechanisms and scheduling policies, and validated it by an implementation on the Makbilan
multiprocessor. The model leads to the conclusion that gang scheduling is required for efficient
fine grain synchronization on multiprogrammed multiprocessors.

1 Introduction

Multiprocessors are often dedicated to running a single application at a time. The program is
allowed full control over what happens on each processor, and in fact it might be required to include
instructions that regulate the mapping and scheduling of parallel threads. Much experience relating
to these issues has been accumulated over the years, and automatic parallelization and compilation
techniques have been developed. These techniques allow dedicated processors to be used efficiently
by a single application.

In recent years multiprogrammed general-purpose parallel systems have begun to emerge. In
such systems, each thread is viewed as a “virtual processor”. Threads belonging to the same
application cooperate with each other, as before, while threads from different applications compete
for system resources. The total number of threads is typically larger than the actual number of
processors, and the full details about the system state are not available to any of the individual
applications. Therefore the execution cannot be regulated by the programmer or the compiler.
Rather, the system software takes care of mapping and scheduling issues. The question is, how
should processing resources be divided among the competing jobs?

Run-time systems on parallel machines are typically straightforward modifications of uniproces-
sor systems. Sometimes each processor simply executes a distinct copy of the system, with various

*Current address: IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598.

locks added to provide mutual exclusion where necessary. At best, the processors are considered as
just another resource that is allocated upon request. Upon closer inspection, however, it seems that
this approach is not entirely satisfactory. The dynamics of program execution on a multiprocessor
are fundamentally different from the dynamics on a uniprocessor, due to the fact that multiple
threads of control are active simultaneously. The system must acknowledge the interactions and
interdependencies between the different threads, and this must also be reflected in the support
provided by the system.

The interactions between threads of a parallel application are embodied in the synchronization
requirements of the application. This includes both explicit synchronization, such as barrier syn-
chronization and mutual exclusion, and implicit synchronization, such as the relation between a
thread that produces a data item and the thread that consumes it. The next section examines the
effect of the scheduling policy used by the run-time system on the efficiency of synchronization. In
the case of fine-grain interactions it is shown that it is best for the threads to execute simultane-
ously on distinct processors, and coordinate their activities with busy waiting. This is achieved
by a gang scheduling policy, i.e. the scheduling policy that coordinates context switching across
a number of processors so as to schedule a “gang” of interacting threads simultaneously. Note
the analogy between this and virtual memory management, where a working set of pages must be
present simultaneously in order to prevent thrashing [21]. With coarse-grain interactions, on the
other hand, coordinated scheduling is not necessary. If the variance in computation times between
interactions is high, it is then best to block a thread that has to wait for synchronization. This
allows the processor to be used by another thread, possibly from another application, while the
first thread is waiting.

We have implemented gang scheduling on the Makbilan multiprocessor in order to validate these
results. While Makbilan is a shared-memory machine, it should be noted that the results are also
applicable to message passing architectures. The implementation is described in section 3, followed
by the experiments that were used to validate the model. The model and measurements are then
used to give a full characterization of situations in which busy waiting with gang scheduling is
preferred, as opposed to situations where blocking is better. The implementation also showed that
gang scheduling alone is not enough to support fine-grain interactions: special hardware support
is needed to make the interactions fast enough. These and other results are discussed in the
conclusions.

Related Work

Gang scheduling was introduced by Ousterhout in the context of the Medusa system on Cm* [21]
(actually he suggested a less strict version called coscheduling). He explained the intuition behind
using gang scheduling to allow efficient use of busy waiting for fine-grain synchronization, and
developed three algorithms for its implementation. Similar ideas were suggested by Edler et. al. in
the context of the the NYU Ultracomputer project [10]. However, no analysis of the performance
implications was done.

Very little work has been done on gang scheduling since then. Blazewicz et. al. developed off-line
algorithms for gang scheduling, essentially using dynamic programming [7]. Seager and Stichnoth
have simulated gang scheduling on multiprocessor Crays, and conclude that it is a good scheduling
discipline for multithreaded supercomputer applications [26]. Gupta et. al. have simulated gang
scheduling (and other scheduling policies) on a cached bus-based machine [14]. They conclude
that gang scheduling is one of the best approaches, because busy waiting can be used efficiently
with it. However, due to the use of only four specific applications, they fail to characterize the

exact conditions under which gang scheduling is beneficial, and the specific performance impact it
may have. Some results that support gang scheduling were also presented by Lo and Gligor [17],
Leutenegger and Vernon [16], and Zahorjan et. al. [30]. We have described a novel control structure,
called “distributed hierarchical control”, for the implementation of preemptive gang scheduling in
large, interactive multiprocessor systems [11, 12]. Some existing systems support space-division
sharing to execute applications side by side, which is similar to batch-style gang scheduling [6, 3].

Busy waiting and blocking have also been analyzed elsewhere. The two schemes have been
compared by Zahorjan et. al. in two different papers, using queueing models. The first does not
consider the benefits of gang scheduling [31], and is therefore biased against busy waiting. The
other paper, through their choice of parameters, considers situations which essentially amount to
coarse grain computations, and therefore it concludes, not surprisingly, that both schemes are
rather similar [30]. Gupta et. al. show that the performance of busy waiting and blocking depends
strongly on the scheduling mechanism [14], but they are nonconclusive as to which is ultimately
better.

To our knowledge, this paper is the first to analyze the performance implications of gang
scheduling, and the interplay between scheduling and synchronization. This allows us to identify
the situations in which gang scheduling should be used, namely when the application is based on
fine-grain synchronization. It is also the first to report experiments based on a real implementation
of gang scheduling on a multiprocessor.

Gang scheduling may cause an effect reminiscent of fragmentation, if the gang sizes do not fit
the number of available processors. We have previously shown that under reasonable conditions
this may lead to a loss of up to 25% of the computing resources [13]. In this paper we show that for
fine-grain computations gang scheduling can more than double the processing capability. Thus the
final balance indicates that in certain cases gang scheduling has considerable performance benefits.

Terminology

Different authors tend to use the same terms with slightly different meanings. Therefore a note on
our usage is in order. First, we use the term thread to denote the parallel light-weight activities
that co-exist in and comprise the execution of a parallel program. This is synonymous with task
in the context of our implementation on the Makbilan, described in section 3.

We use the term gang scheduling to denote a scheduling policy, implemented by the run-time
system, in which a set of threads is scheduled simultaneously on a set of processors, using a one-
to-one mapping. In other words, we insist on a scheduling that matches the intuitive model of
parallelism, where spawned threads really execute in parallel with each other. This excludes policies
which allocate a block of processors to an application without any regard to the number of threads
in it.

Finally, we use the term blocked, as in a thread that is blocked, to mean that the tread is
actually suspended from execution, and the processor switches to another thread. This is more
specific than just implying it has nothing useful to do, so it can either busy wait or suspend.

2 Synchronization and Scheduling

The purpose of this paper is to compare the two basic synchronization mechanisms, busy waiting
and blocking, in the context of parallel processing. Busy waiting is not used on uniprocessor
multiprogrammed systems because of the obvious waste it entails: one process consumes CPU
cycles waiting for another process to advance, but the other process cannot advance because it

parfor i := 1 ton

{

for j :=1 to k

{
compute for tg time
sync

Figure 1: Pseudo-code of application model.

does not have the CPU. On the other hand, if the threads are actually running in parallel on
distinct processors, as is possible in parallel machines, busy waiting seems to be the fastest and
most direct way to synchronize. It still might cause waste, however, if there are more threads than
processors, because a thread might again wait for another thread that is not running. The resulting
performance is therefore strongly dependent on the system’s scheduling policy.

Two-phase blocking, in which a thread first busy-waits for a while and then blocks [21], is omit-
ted from this comparison. The reason is that when gang scheduling is used, and the synchronization
is fine-grained, only the first phase of two-phase blocking is executed, making it identical to busy
waiting. Without gang scheduling, it is almost identical to blocking (but with a larger overhead).
Thus examining it would not add any new information.

As the effectiveness of busy waiting depends on whether or not the threads are actually running
in parallel, we consider two cases. The first is when gang scheduling is used, meaning that interacting
threads are always scheduled to run side by side simultaneously. The second is when the scheduling
is performed independently on each processor in an uncoordinated manner; tasks are scheduled
regardless of the state of any other task. As the combination of gang scheduling with blocking does
not make sense, we are left with the following three methods:

e Busy waiting with gang scheduling.
e Busy waiting with uncoordinated scheduling.
e Blocking with uncoordinated scheduling.

The comparison is done by selecting a simple model of application behavior, and calculating the
expected run time under the different methods as a function of a number of parameters. These
parameters include a characterization of the granularity of the interactions among threads, the load,
the gang size, and the scheduling time quantum and the context-switch overhead of the run-time
system.

2.1 Model and Assumptions

Application Modeling

The application is modeled as a set of n interacting threads, where n, the gang size, is less than or
equal to the number of processors. This is expressed as a parfor loop, and is not to be confused
with doall loops; doall specifies that the iterations may be done in parallel, while parfor specifies

that they should be done in parallel (Fig. 1). It is assumed that the identity of the interacting
threads is known, i.e. the threads are declared to be a gang. The threads are iterative, as in the
models of Vrsalovic et. al. [29] or Dubois and Briggs [9]. In each iteration, each thread computes
for a certain time, and then all the threads perform a barrier synchronization. The processing time
of thread i in iteration j is given by the random variable t;j. It is assumed that this computation is
local, and in any case it is not influenced by whatever other threads in the system are doing. The
number of iterations, k, is assumed to be large enough so that various overheads may be averaged
over the iterations disregarding end effects.

This model is representative of many parallel algorithms, which are designed as a large number
of parallel computation phases separated by barrier synchronizations or sequential phases. It also
provides a good approximation of the performance of divide-and-conquer algorithms, where each
recursive level is replaced by a synchronized iteration [18], and pipelines algorithms, especially for
systolic arrays. For n = 2, the model is reduced to a simple synchronization between two threads.
This too is a common situation, which occurs in synchronous message passing, remote procedure
calls, rendezvous, etc. It should be noted, however, that this is not meant to be a completely
general model — it is just a simple case that is easy to analyze.

The equations to be subsequently derived in section 2.2 give the expected time needed to
complete a single iteration, using the different synchronization and scheduling schemes. As this
deals with the average time for an iteration, it is convenient to base the equations on the average
processing time and the average waiting time. The average processing time, denoted by %, is simply

1 k B
thy=— > 1. (1)

i=1j=1

To define the average waiting time, we first define the maximal processing time in a certain iteration
j. This is

tl’l’lan — t’L]. 2

P max (2)
If each thread were to execute on a dedicated processor, threads that compute for less time would
have to wait for the one that computes the most. The waiting time for thread i in iteration j is
therefore

ti] = gmd 41, (3)

and the average waiting time, denoted by %, is

1 k .
tw:%;;tu]f (4)

Note that t, +t,, = % Zle t?a"j, i.e. this is the average of the full iteration times as dictated by
the slowest thread in each one.

The barrier synchronization itself also takes some time. Instead of modeling this independently,
we observe that this is an added overhead to all the threads. Hence we include it in each thread’s
value of t;j, and therefore also in ¢,. Note that the synchronization overhead may depend on the
number of processors, so when the model is used to predict performance ¢, should be adjusted
accordingly.

System Characterization

Recall that we are dealing with general purpose multiprogrammed systems, where there may be
many more threads than processors. It is assumed that time sharing is used to service all the threads
at the same time, rather then running only a subset to completion. The threads are mapped to
processors when they are spawned. It is assumed that the total number of threads is a multiple
of the number of processors, and that there is perfect load balancing. The number of threads on
each processor is denoted by ¢. We focus our attention on a single gang of n threads, mapped to n
different processors. The character of the other n(¢ — 1) threads running on these processors does
not interest us in the general case. The performance of the blocking mechanism, however, does
depend also on the other threads. In this case we check two possibilities: (i) that they have an
identical iterative behavior, and (i) that they are independent compute-bound threads.

The scheduler is assumed to be perfectly fair, giving the same service to each thread (or each
gang). The scheduling time quantum is denoted by 7,, and the context switching overhead is
denoted by 7. It is assumed that 7., < 7,. Blocking is assumed to cost a factor of o more than a
regular context switch, where « is a constant somewhat larger than 1.

Two cases are investigated: that of coarse-grain interactions, in which ¢, is large relative to 7,
(i.e. many time quantums are required before a synchronization), and fine-grain interactions, in
which it is relatively small. The number of iterations, k, is assumed to be large enough so that
k(ty + tyw) > 74 in any case. This allows us to average over a number of scheduling rounds. Note
that £ may have to be very large in the fine grain case, as it is realistic to assume 7, to be on the
order of 10* — 10° instructions, and an interaction may occur every 10 — 100 instructions. Note also
that the granularity relates to the interaction rate of the threads, not to their life time.

2.2 Performance Derivation
Busy-Waiting with Gang Scheduling

When gang scheduling is used, the situation with respect to the interactions between the threads
is identical to that in which the threads run on dedicated processors. The only difference is that
we should also take into account the time allocated to other threads that share the use of the same
processors, and the context switches that are involved. The granularity does not have any effect.
The total run time for k iterations is therefore given by

k(t, +1
T = (k(tp + tw) + MTw) L. (5)
q
Dividing by k£ and rearranging, the average time for a single iteration is
Tes
t= <1 + T—) (tp + tw) L. (6)
q

In effect, this equation shows that an iteration takes ¢, +¢,, time on average, meaning that the rate
is dictated by the slowest thread. In addition, there is an overhead factor of 7.4/7,. In the fine-grain
case, this means that the overhead is amortized across a large number of iterations, because many
iterations are completed in each scheduling round.

Busy-Waiting with Uncoordinated Scheduling

The behavior of busy waiting with uncoordinated scheduling depends on the granularity. In the
coarse-grain case, it is nearly identical to the behavior of busy waiting with gang scheduling. In every

scheduling round, each thread executes on its respective processor, but this does not necessarily
happen at the same time within the round. Given that ¢, + t,, is substantially larger than 7,, it
is obvious that each iteration is spread over a number of scheduling rounds. Specifically, there
are |(t, + ty)/7q] full scheduling rounds, in which the whole time quantum is used, and then a
final round in which the synchronization is completed. The difference between the gang scheduling
scheme and the uncoordinated scheme is apparent only in the final round; therefore the difference
in run times is relatively small. To summarize, equation (6) is a good approximation of the run
time for both busy-waiting schemes in the case of coarse-grain interactions.

With fine-grain interactions, however, the situation is more complicated: the fact that the n
threads are not running simultaneously might change the waiting time. Specifically, there is a
certain probability that the n threads happen to be scheduled simultaneously, even if no explicit
measures are taken to ensure gang scheduling. When this happens, many iterations are completed.
If, on the other hand, there is no overlap between the executions of any two threads, then the whole
gang can only complete a single iteration.

The expected overlap of n segments of length A that are placed at random in a loop of circum-
ference A, where A > X, is A" /A"~!. In our case, A = 7, represents the execution of a single thread,
and A = {(1, + 7s) is the duration of a scheduling round. The expected overlap, i.e. the time in
which all the threads happen to execute simultaneously, is therefore T(?/E”_l(Tq + Tes)" !, The
expected number of iterations that will be completed in this time is 7, /£" " (1q + 7¢5)" (tp + tw)
(assuming this is not less than 1; see below). Hence the number of scheduling rounds needed to
complete k iterations is m = k€" 1 (1g + 75)" (tp + tw)/7;', and the total run time is

T

m (7q + Tes) £

kO™ (Tq 4 Tes)" (tp + tw)

iz
The expected time for a single iteration is then
n
.
t= (1 + ﬁ) (tp + tw) " (8)
Tq

Assuming that 7, > 7., this is about a factor of £*~! slower than with gang scheduling. The
higher the load, the smaller the probability of being scheduled simultaneously, thus increasing the
probability of wasting the rest of the time quantum. As a side note, we observe that two-phase
blocking can be used to place a bound on the waste, but it cannot improve the performance to the
level achieved by gang scheduling.

If the load is too high or the grain not fine enough, the equations might show that less than one
iteration is completed each time. This is of course not true. In the correct equations, the number of
completed iterations is the maximum between the expression given above and 1, and the expected
time per iteration is the minimum between equation (8) and (7, + 7).

Blocking Mechanism

Blocking is an alternative to busy waiting. When a thread must wait for the completion of iteration
7, it is suspended until the awaited threads accumulate an additional tﬁg run-time. At this time the
waiting thread is moved to the ready queue; it gets to run again on the subsequent round. Note
that with blocking the burden of synchronization lies with the operating system. We assume that

the overhead incurred is « times that of a regular context switch, where « is a constant larger than
one.

The fact that the waiting threads do not consume CPU cycles during their wait does not
reduce the duration of the slower computations. Its effect is to reduce the number of threads that
compete for processor usage. We therefore have to make some assumption about the behavior of
the competing threads. Two possibilities are considered: (7) all the threads in the system have the
same behavior, i.e. they all compute and synchronize iteratively, and block when they have to wait;
and (i7) the competing threads are independent and compute bound, so they never block.

As usual, both possibilities must be investigated in the coarse-grain and the fine-grain cases. In
the coarse-grain case, most of the context switches are the result of a time quantum that expires,
and do not involve blocking. The extra overhead in blocking is negligible. Based on the assumption
that all the threads display the same behavior, only a fraction tpf:tw of them are active at any given
moment. The expected total run time is therefore

E(ty + tuw) T) t)
CcS

2 (9)

T = | k(ty, + ty) +
<(” w) Ty tp + tw

and the time per iteration is
t= (1 + @> . (10)
Tq

Comparing this with equation (6), we find that the effective length of each iteration is reduced from
tp +ty to t,. Therefore this result can also be interpreted as an execution of ¢ threads where each
iteration takes the average computation time rather than the maximum time.

If we do not assume that all the other £ — 1 threads have the same characteristics, i.e. that some
of them also block, then the number of active threads remains £. In this case, the blocked threads
gain no advantage. The average time per iteration is again given by equation (6). However, the
blocked threads do reduce the load on the system, freeing resources for their competitors. Thus
blocking is an altruistic mechanism.

Let us now consider the fine-grain case, where a thread that blocks induces a context switch.
In this case the blocking may be said to cause the system to adapt to the workload, by effectively
decreasing the size of the scheduling time quantum to fit the typical interaction rate of the applica-
tion. An important point to notice is that as each iteration is completed, the last thread to arrive
at the barrier is not blocked. This thread can immediately continue to the next iteration, without
paying the overhead. Thus in each iteration only n — 1 of the n participating threads incur the
overhead.

Again, we start by assuming that all the threads sharing the use of the processors have the
same characteristics. The average run time, which is actually the effective time quantum, becomes
tp. The context switching overhead is multiplied by «, because context switches only occur when
a thread is blocked. The total run time for k iterations is therefore

T=k (t,, n ”T—lmcg) /, (11)

and the time per iteration is

t= (1 + %) 0. (12)

ntp

Like the coarse grain case, the effective length of each iteration is reduced. However, the overhead
is increased relative to the busy-waiting case (equation (6)). First, blocking is more expensive than

just switching; this is represented by the factor of @. Moreover, t, appears in the denominator
rather than 7,, and in fine grained interactions we expect that ¢, < 7,. The result is that the
overhead per iteration is a constant %aTCS, instead of becoming negligible as the grain becomes
finer as it does for busy waiting with gang scheduling (or two-phase blocking with gang scheduling).

If we do not assume that the other threads have the same characteristics, then their time
quantum stays a whole 7,. Thus the gang of iterative threads that we are examining still manage
only one iteration per scheduling round on average, as in the above derivation, but the scheduling
round does not get shorter. The run time in this case is approximately

T:k(tl)"’_(z—1)Tq+(£+a_1)7'cs)- (13)

As t, and 7., are assumed to be small relative to 74, the cycle time of the competing threads
dominates; thus the competitors again benefit more than the altruistic blocking gang. Note that
this derivation depends on the assumption that the scheduler sticks to a rigid round-robin policy,
which causes it to be unfair. A smart scheduler can compensate for this to some degree by giving
top priority to a thread that was just resumed; in fact, this is the motivation behind giving higher
priority to I/O bound jobs in many operating systems.

3 Implementation and Experiments

In order to validate the model presented in the previous section, a run-time library using a gang
scheduling policy was written for the Makbilan research multiprocessor. This section provides some
background about the system, and delineates the implementation of gang scheduling. Then the
experimental results are described. Note that while Makbilan is a shared memory machine, the
model is more general and does not rely on this feature.

3.1 Background
The Makbilan Testbed

The Makbilan research multiprocessor consists of up to 15 processor boards in a Multibus II cage.
The experiments reported in the next section were run on a 10-processor configuration. KEach
board has an Intel 386 processor running at 20 MHz, providing about 4 MIPS. Tt also has a 387
mathematical co-processor, a message passing co-processor, and 4MB of memory. Memory on
remote boards may be accessed through the bus, thus supporting a shared-memory model. As
access to on-board memory is faster than access to memory on remote boards, Makbilan is a non-
uniform memory access (NUMA) machine [5]. The processors have on-board caches, but they do
not cache remote references. Hence there is no issue of cache coherence.

The box also includes one board that acts as a Unix host, a bus controller, a peripherals interface,
and a terminals controller. Users log on to the Unix board, and can then load and execute ParC
programs on all the other boards.

The ParC Language

ParC is a superset of the C programming language intended to support parallel programming
in a shared memory environment [4]. The main additions over C are two block-oriented parallel
constructs, parblock and parfor; the first indicates that the constituent sub-blocks execute in
parallel, while the second indicates that iterations of the loop body be done in parallel. Each
sub-block or iteration is called an activity; these are equivalent to threads in the discussion so far.

local
ParC global

data » data
structures library structures

local W

data .

interprocessor
interrupts

structures

Figure 2: MAXI system configuration on each board.

These constructs may be nested in arbitrary ways, creating a tree of activities where all the leaves
are executing in parallel. Variables declared within the block of code that defines a certain activity
are accessible only by that activity and its descendants. For the work reported in this paper, the
set of activities that are spawned together in a single construct is taken as the definition of a gang.

In addition to the parallel constructs, there are three main synchronization mechanisms: fetch-
and-add, semaphores, and sync. The sync instruction implements a barrier synchronization among
all the activities created by a certain parallel construct. However, it is not used in the experiments
described in section 3.3. Rather, a specially optimized version of barrier synchronization with
less overhead is used. This version is based on atomic bitwise logical operations supported by
the multibus II. It cannot be used in the general implementation because it limits the number of
activities that are involved.

The MAXI System

MAXT is an acronym for the Makbilan System, based on an abuse of the English alphabet. The
system may be partitioned into two main layers: A run time library that supports the ParC
constructs, and a local kernel on each board. The local kernel is Intel’s RMK [15], which is a real-
time kernel designed to use hardware support provided by the 386 and the Multibus II. This kernel
is highly optimized to provide fast task creation, termination, and context switching. Parallel
activities are implemented by RMK tasks (which are the RMK equivalents of Unix processes).
These tasks embody the threads from the analysis of section 2.

The current version supports only a single user at a time. The system design emphasizes
asynchronous distributed operation without unnecessary interdependencies between boards. Thus
each board has a local copy of the run-time library, complete with local data structures (Fig. 2).
Global data structures in shared memory are used only when activities executing on one board
need to influence what happens on other boards, e.g. when new activities are spawned or when a
barrier synchronization point is reached.

10

slots

capacities — | freerl |
M 1 ﬁ ree: 0 1* . spawn) spawn
] ree: escriptor escriptor]
n size:pS size:pz 1
& 2 — — | free: 5 —
— Al REAE R
o 3 | — | free:5 | —
2| C R
a 4 | — | free:5 | —
I NG B
ﬁ 5 —~ — | free: 5 —
(p
<— free: 5 —1
f_ free: 5 —1

Figure 3: Global data structures used for gang scheduling.

3.2 The Gang Scheduling Library

In the default ParC run-time library, scheduling is done by the RMK kernel on each board inde-
pendently. In order to implement gang scheduling, a new library with an external scheduler was
written. This scheduler forces RMK to schedule the desired task by raising its priority.

The gang scheduling algorithm and data structures are based on the matrix algorithm developed
by Ousterhout [21]. Scheduling space is seen as a matrix, where each row corresponds to a scheduling
slot and each column to a processor. Tasks belonging to a single gang are mapped to entries in the
same slot. In our implementation, the matrix is not stored explicitly; it is simply the conjunction
of the PCB tables' on all the processors.

The scheduling is done in round-robin style, by circling through the used slots. Rescheduling
is triggered when the alarm on PE #1 goes off, indicating that the time quantum has expired.
Alternatively, any processor may trigger a rescheduling if it finds that no gang scheduling is taking
place in the current slot. This information is mediated by a shared bit mask, with a distinct bit
representing each processor. A set bit indicates that the corresponding processor is not participating
in gang scheduling in the current slot: this can happen if a processor was not allocated a task in
the slot, if the task is suspended, or if it terminated. A processor that finds all the bits set triggers
a rescheduling.

Rescheduling is implemented by a broadcast interrupt, which causes all the processors to switch
to the next slot simultaneously. When the broadcast interrupt is received, the interrupt handler
reduces the priority of the current task (if any), and raises the priority of the task in the next slot.
A hint about the maximal used slot is maintained to indicate when to return to the first slot.

Two global data structures are used to allocate slots to gangs (Fig. 3). The first is an array
of pointers to lists of slots with a given capacity. The second is a table of slots. Each slot entry
indicates how much free space there is in the slot, and the entries are linked to each other according
to this value. The list is locked when a slot is manipulated. A slot can also point to a list of spawn

'PCB stands for Process Control Block. This is the data structure used by the run-time system to store information
about the task.

11

run-time library
default gang sched
scheduling | 0.07 4 %* 0.2
spawning 1.6 2.5

*The second term is due to overhead expe-
rienced once in each scheduling round, and
therefore amortized.

Table 1: Run-time library overheads (in ms).

descriptors. These are data structures that describe gangs that have been allocated to this slot,
but have not commenced yet. The allocation is static and does not change during execution. In
particular, slots that are left with a small number of tasks due to the termination of other tasks
are not united.

For example, Fig. 3 shows a possible configuration for a system with 5 processors and a maximum
of 8 tasks per processor (the real numbers in MAXI are 15 and 512, respectively). The first slot
contains active tasks on all the processors except one. The second slot has been allocated to two
gangs of sizes 3 and 2, so it has no free space. When it is scheduled, the tasks will be created and
the spawn descriptors removed. All the rest of the slots are unused.

The gang scheduling library suffers more overhead than the default library (Table 1) [5]. This has
two reasons: first, it requires more coordination through global variables and broadcasts. Second,
various functions which would normally be implemented inside the kernel are actually implemented
above it, and use a sequence of kernel calls to achieve the desired end result. The next section
shows that despite this higher overhead, the gang scheduling version does indeed perform better
for fine-grain applications.

3.3 Experimental Results

The experiments used to verify the model of section 2 are based on a synthetic program that
simulates interactions with various degrees of granularity. The program spawns gangs with one
thread per processor. These threads loop a large number of times and synchronize in each iteration.
The average time to complete an iteration and synchronize is measured. Each instance of the
program, i.e. each execution, is characterized by three parameters:

e LOAD — the number of competing gangs.

¢ GRAIN — the number of instructions in each iteration, excluding the code that implements
the synchronization. If different activities in the gang have different granularities, this is the
minimal one.

e VAR — the difference between the minimal and maximal numbers of instructions in different
activities in each iteration. The actual numbers are selected at random from a uniform
distribution between GRAIN and GRAIN-+VAR.

As the execution times are selected from a uniform distribution, the expected execution time
of the longest activity in any iteration is GRAIN + -Z5VAR, and that of the shortest activity is
GRAIN + n%_lVAR, where n, the number of activities, is equal to the number of processors. 10 were

12

block —— Y
3 block model -+ --
bw+gang -=—
bw+gang model -=--
@ 2.5
E
5
8 2]
3
w 15-
o
(O]
£ 1
0.5
0 ‘ ‘ ‘ ‘ ‘
)) 0 05 1 15 2 25 3
Figure 4: Results of experiment 1. grain [ms]

used in the experiments. The system time quantum is 50 ms. Measurements show that each unit of
GRAIN takes 0.00141 ms, and the interaction at the end of each iteration takes an additional 0.137
ms on 10 processors. Thus the relationship between the experimental parameters and the model
parameters used in section 2 is the following:

tp = 0.137 4+ 0.00141 - (GRAIN + JVAR)
tw = 0.00058 - VAR

(14)

The above expressions and values, and the overheads shown in table 1, are used to calculate model
predictions. Equations (6) and (12) are used. The predictions are then compared with the actual
measurements.

The number of iterations that were measured was 30000 or 50000 in most of the experiments.
Repeated measurements show that this is large enough so that the accuracy is within 5%, and
in most cases even within 1% (except for some of the results of experiments 3 and 4, see below).
To prevent situations in which the starting conditions cause the system to settle into a scheduling
pattern that affects synchronization performance, a set of skewing threads is generated at the
outset. These threads execute for random durations of up to one quantum. Thus they terminate
early in the measurement, and serve to cause the different processors to start asynchronously.

There are two versions of the program: one using busy waiting and the other using blocking. A
simplified version of blocking was used, where threads just yield the processor but do not join any
explicit blocked queue. In effect, the run queue serves as a blocked queue as well. This saves the
need for explicit dequeueing. As a result, the blocking overhead is not constant. Rather, it depends
on how many times the waiting thread yielded the processor. The program counts this parameter,
and its average value is used for « in the model predictions.

Experiment 1

This experiment shows the additive overhead incurred by blocking, and also that blocking cannot
achieve any gains when the load is 1 (e.g. on a dedicated machine). VAR is set to 0. With busy waiting
the time per iteration is essentially the time needed for GRAIN instructions plus synchronization.
With blocking, each iteration suffers an additional constant overhead. The measured and predicted

13

block —— x measured ——
block model —+-- with less PEs - x--
7.5 bw+gang —=— 254 model —x--
bw+gang model —=-- y
@ ° l‘
E 6- S
c
(=] jo)]
& 451 -g
2
E 3 =
1.5 0.5 1
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
grain [mg] grain [mg]
Figure 5: Results of experiment 2. Figure 6: Ratio of time required by blocking
to time required by busy waiting with gang
scheduling.

results are shown in Fig. 4. The z axis is the time needed to complete an iteration on a dedicated
machine, t, + t,,. The y axis shows the time that was actually required. The model equations
for the fine-grain case were used, and indeed the agreement with the measurements deteriorates
slightly as the grain becomes larger.

Experiment 2

This is the main experiment used to verify the performance relations between busy waiting with
gang scheduling and blocking with uncoordinated scheduling. LOAD is set to 3, and VAR is equal to
GRAIN. As expected, when the granularity is large enough, blocking can use the idle time of waiting
activities to execute other activities, thus reducing the average time per interaction (Fig. 5). For
fine-grain interactions, however, the blocking overhead dominates the possible gain.

Note that the crossover occurs at a granularity of about 0.8 ms; for smaller granularity, gang
scheduling is better. As the execution time of fine grain computations is small, the difference
between the two schemes is also small in absolute terms. The relative performance gains, however,
are unmistakable. The measurements show that for the most fine-grain interactions that were
measured, busy waiting with gang scheduling was twice as fast as blocking (Fig. 6). This was a
granularity of about 0.16 ms. The results indicate an obvious increase in the relative performance
ratio for smaller granularities. Measurements on a smaller number of processors, where the barrier
synchronization overhead is smaller, confirm this trend (dotted line in the figure).

Experiment 3

This experiment demonstrates the altruistic nature of blocking. Both GRAIN and VAR are set equal
to 1000. Two versions of the test program with blocking are used. In one all the competing gangs
have the same iterative nature with the same granularity, and block when they try to synchronize.
In the other, only one gang has these characteristics. The competing gangs are composed of
compute-intensive activities that do not block.

14

3 a
bw uncoord -«
200 - B o -
al block —~— ° E oo)
oneblocks © “ m 2.5+ WbﬁJ E /
average - 7 ock —— ,
e T
£ i T 2
5 - S
= s ®
B e 5 T i
g 1004 3 =10
g / o
/ o Q .
£ / g
= o .
/// 05,
M
0 T T T T 0 T T T
1 2 3 4 1 2 3
load load
Figure 7: Results of experiment 3. Figure 8: Results of experiment 4.

The results indicate that the time per iteration of the blocking gang is approximately the
product of the number of competing gangs times the scheduling time quantum, as expected from
equation (13). The exact relation depends on the details of the scheduling pattern that the system
falls into, hence the large variance in the measured results.

The slightly non-linear characteristic of the curve results from the fact that a changes from
about 4 for a load of one down to about 1.2 for a load of four. The reason for this is that at higher
loads there is a larger delay until a task is rescheduled, so the rest of the gang has a better chance
to reach the synchronization point.

Experiment 4

This experiment shows that busy waiting without gang scheduling is indeed not a viable alternative
(Fig. 8). Pairs of threads are used (n = 2), with GRAIN and VAR set to 100. As expected, there is a
linear dependence between the required time and the load for busy waiting with gang scheduling
and for blocking. While the results for busy waiting with uncoordinated scheduling are not as
accurate, because they depend on the exact pattern that the system falls into, it is evident that in
this case the dependence is quadratic.

4 Discussion and Conclusions

Based on the model and experiments, we can derive the following conclusions regarding synchro-
nization mechanisms and scheduling policies:

1. When busy waiting with gang scheduling is compared with blocking, the relative performance
is a function of the granularity. For fine-grain jobs, busy waiting with gang scheduling is
better.

2. Blocking altruistically frees system resources. If all the jobs are unbalanced and coarse
grained, the run time is reduced. For fine-grained jobs, however, the blocking overhead
dominates any possible savings and thus degrades the performance. If competing jobs do not
block, a job that does use blocking may receive disproportionally low service.

15

A
tw
[ms]
0.9 tBLK l
tBw 2
0.6 —
tBLK
smaller
0.3 ro— <l ra—
\QBLK 9 smaller
0.0 T i >
0.0 0.3 0.6 iy [ms]

Figure 9: Phase diagram comparing the relative performance of busy waiting with gang scheduling
vs. blocking, on the Makbilan multiprocessor.

3. Busy waiting with uncoordinated scheduling is wasteful, especially in fine-grained jobs. With
very coarse-grain interactions, however, it is basically similar to busy waiting with gang
scheduling.

4. Two-phase blocking limits the waste, but does not provide any real benefits unless it is used
together with gang scheduling.

When to use busy waiting with gang scheduling

The comparison between busy waiting with gang scheduling and blocking can be quantified in our
model in the following manner. Denote the expected time per iteration when using busy waiting and
gang scheduling by ¢pw, and the time when using blocking by ¢prx; these are given in equations
(6) and (12), respectively. Note that for blocking this rests on the assumption that all the threads
in the system display the same behavior and block to save system resources. We would like to know
when one is smaller than the other by a certain factor . In other words, we would like to find a

t
condition that will cause the inequality tBW < o < 1 to be satisfied. By using the equations and
BLK
changing sides, it is easy to see that the condition is
o a1, T oT,
y < —n— 9% 4 L —1]t, (15)
Tqg + Tes Tqg + Tes

This defines a certain area in “interaction space”, i.e. the quarter-plane consisting of all possible
combinations of ¢, and t,,, using coefficients that are a function of system parameters. The area is
delimited by a straight line with a negative slope, yielding that corner in interaction space where
both ¢, and t,, are small. In this area, busy waiting with gang scheduling is at least 1/o times
faster than blocking.

IBLK

BW

The same approach may be used to find a condition that guarantees that <o <1, ie.

16

that blocking has the advantage. The condition turns out to be

n—1
—
ty > TqT“’+< Ta —1>t,, (16)

o (7q + Tes) o(7q + Tes)

This is again a straight line, but now the area of interest is above it.

The two expressions converge when o = 1. This gives a line with a negative slope, but assuming
that 7., < 7,4 the slope is very very small. In effect, this line therefore divides the interaction space
into two. The lower part, where t,, is smaller than the blocking overhead (¢, < a7.), includes
all combinations in which busy waiting with gang scheduling has the advantage. The upper part
includes those interactions in which blocking is better.

Applying the above formulas to the parameters that characterize the Makbilan system (7, = 50,
Tes = 0.2, @ = 1.5), and using 0 = %, we get the phase diagram of Fig. 9. The lower shaded area
is the part of interaction space where busy waiting with gang scheduling is at least twice as good
as blocking?®. The shaded triangle at the top left is the part where blocking is twice as good. The
white area indicates combinations in which the difference is smaller than a factor of two. This area
is neatly divided, and busy waiting has the advantage whenever t,, is smaller than 0.3 ms.

Obviously the advantage of busy waiting with gang scheduling increases for finer grained in-
teractions. The specific area in the figure is defined by the requirement that t, 4+ 2¢,, < 300us;
given that each Makbilan processor is capable of about 4 MIPS, this represents a granularity of
up to a few hundred instructions. In a multiprocessor based on modern RISC microprocessors
the graularity would be even larger, because the context is bigger. Blocking only has a decided
advantage when ¢, is larger than ¢, by 0.6 ms. This happens only if the computational tasks of
the different threads are highly unbalanced.

Note that all the above was done under assumptions that favor blocking, namely that all the
competing gangs display the same behavior. If this assumption is dropped, equation (13) should
be used for g7,k rather than equation (12). This leads to the following condition for the advantage
of busy waiting and gang scheduling:

‘-1
ty < UTq()‘l' O QTgTes +(0Ty)€_1> tp- (17)

/ (Tg + Tes)? (T4 + Tes

This is again the fine-grain corner of interaction space, but due to the first term it is a much larger
corner. The other condition changes in a similar manner.

The conclusion from the above is that busy waiting with gang scheduling is a viable and promis-
ing method for the implementation of fine-grain parallel systems, a target that has been problematic
to date. Its importance lies in the fact that many algorithms are naturally expressed using small
parallel blocks of code, and the finer the granularity the larger the degree of parallelism that is
exposed [8]. Gang scheduling allows busy waiting to be used for synchronization, which allows fine
grain threads to be supported. In addition, busy waiting has an advantage on multiprocessors with
caches, as the frequent context switches induced by blocking may make caching much less effective
[20, 14]. Moreover, busy waiting can actually utilize the cache coherence mechanism to reduce
network load [24, 2].

However, blocking is easier to implement than gang scheduling, so blocking is used in most of the
parallel systems existing today. Consequently fine-grained algorithms have to be restructured to run
efficiently on contemporary coarse-grain systems (see, e.g., [25, 19, 8]). This places an unnecessary

2This does not correspond exactly with the results of experiment 2 because the actual values of e in that experiment
were different for different data points, and varied between 1.1 and 2.1.

17

burden on the programmer and the compiler. In addition, it is imperative that systems that use
blocking raise the priority of tasks that become unblocked. If this is not done, the altruistic nature
of blocking can cause these tasks to suffer severe performance degradation.

While gang scheduling would provide better support for fine-grain computations, this approach
too has its limitations. Specifically, a gang cannot involve more than P threads, where P is the
number of processors. This does not mean that applications cannot spawn more threads: it only
means that larger groups should not interact simultaneously. In effect, the application is required
to display interaction locality, which is analogous to the requirement for reference locality in virtual
memory. The gangs are actually “thread working sets”, and gang scheduling is a means to prevent
thrashing [21]. While this requirement may seem restrictive to the point of limiting the usefulness of
gang scheduling, this is in fact not so. Scheduling policies that schedule threads in an uncoordinated
manner implicitly require the threads to be independent, which is much more restrictive.

It should be emphasized that this definition of interaction locality is completely different from
the often mentioned requirement that programs display communication locality. Communication
locality refers to cases in which the hardware has a certain topology, and threads are required
to communicate with only a small subset of the other threads, so as to facilitate the mapping of
threads to processors. Interaction locality means that threads may be grouped into gangs with
no more than P threads each, such that the vast majority of the interactions do not cross gang
boundaries. However, a thread may interact with all the other members of its gang. This has
nothing do to with topology.

Implications

The support of fine-grain computations through busy waiting and gang scheduling requires adapta-
tions in various areas of parallel computing. For example, explicitly parallel programming languages
should give the compiler and run-time system information about threads that can be expected to
interact strongly, e.g. through the syntactic structure of parallel blocks. Alternatively, compile-time
dependency analysis can be used to glean information about interaction patterns and granularity.
Automatic parallelization may also produce threads that must interact: for example, this happens
with doacross loops [22]. If the granularity of interactions is fine enough, the relevant threads
should be marked for gang scheduling.

The implementation of gang scheduling also requires additional research. To date, only a
small number of parallel operating systems incorporate preemptive gang scheduling [21], while
some others support batch-style space-division sharing which has similar features [6, 3]. New
algorithms and control structures are needed to support gang scheduling on increasingly larger
machines [11, 12]. Hardware support for the operating system may also be needed. For example,
in our implementation the ability to broadcast interprocessor interrupts was necessary.

It is conceivable that special hardware support might also be necessary for the efficient im-
plementation of inter-thread interactions. Gang scheduling guarantees that threads will find their
interaction partners, but if the interactions themselves take too long they will violate the fine-
grain time scale [8]. For example, hardware supporting access to shared variables conditioned on a
full/empty status bit can save explicit busy waiting, resulting in faster operation and reducing the
load on the communication network; this already exists in a number of systems [27, 1]. Hardware
support for barrier synchronization is also advocated [23, 28]. In addition, it would be beneficial
to have caching with hardware support for cache coherence, as this can reduce the contention and
further reduce the cost of busy waiting [2]. Of course, the opposite point of view should also be
remembered. Systems that incorporate hardware support for synchronization will not utilize this

18

support if the synchronizing threads do not execute simultaneously. Thus gang scheduling is needed
to ensure the efficiency of hardware mechanisms and justify the investment in them.

Acknowledgments

ParC was developed by Yosi Ben-Asher. Much of the original version of the MAXI system was
written by Moshe Ben Ezra and Lior Picherski. We thank the anonymous referees for their com-
ments.

We thank Intel Corp. for their generous equipment donation, without which the Makbilan
multiprocessor could not be built. This research was funded in part by the US-Israel Binational
Science Foundation grant no. 88-00045. Dror Feitelson was supported by an Eshkol fellowship from
the Ministry of Science and Technology, Israel.

References

[1] Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A., and Smith, B. The
Tera computer system. Intl. Conf. Supercomputing. Jun 1990, pp. 1-6.

[2] Anderson, T. E. The performance of spin lock alternatives for shared-memory multiprocessors.
IEEE Trans. Parallel € Distributed Syst. 1, 1 (Jan 1990), 6-16.

[3] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduler activations:
effective kernel support for the user-level management of parallelism. ACM Trans. Comput.
Syst. 10, 1 (Feb 1992), 53-79.

[4] Ben-Asher, Y., Feitelson, D. G., and Rudolph, L. ParC — an extension of C for shared memory
parallel processing. Manuscript, Dept. Computer Science, The Hebrew University of Jerusalem,
Oct 1990. Submitted for publication.

[5] Ben-Asher, Y., and Feitelson, D. G. Performance and Overhead measurements on the Mak-
bilan. Technical Report 91-5, Dept. Computer Science, the Hebrew University of Jerusalem,
Oct 1991.

[6] Black, D. L. Scheduling support for concurrency and parallelism in the Mach operating system.
Computer 23, 5 (May 1990), 35-43.

[7] Blazewicz, J., Drabowski, M., and Weglarz, J. Scheduling multiprocessor tasks to minimize
schedule length. IEEE Trans. Comput. C-35, 5 (May 1986), 389-393.

[8] Chen, D-K., Su, H-M., and Yew, P-C. The impact of synchronization and granularity on
parallel systems. 17th Ann. Intl. Symp. Computer Architecture Conf. Proc. May 1990, pp. 239—
248.

[9] Dubois, M., and Briggs, F. A. Performance of synchronized iterative processes in multiproces-
sor systems. IEEE Trans. Softw. Eng. SE-8, 4 (Jul 1982), 419-431.

[10] Edler, J., Gottlieb, A., and Lipkis, J. Considerations for massively parallel UNIX systems on
the NYU Ultracomputer and IBM RP3. EUUG (European UNIX system User Group) Autumn
86 Conf. Proc. Sep 1986, pp. 383-403.

19

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[21]

22]

23]

Feitelson, D. G., and Rudolph, L. Distributed hierarchical control for parallel processing.
Computer 23, 5 (May 1990), 65-77.

Feitelson, D. G., and Rudolph, L. Mapping and scheduling in a shared parallel environment
using distributed hierarchical control. Intl. Conf. Parallel Processing. Aug 1990, vol. I, pp. 1-8.

Feitelson, D. G., and Rudolph, L. Wasted resources in gang scheduling. 5th Jerusalem Conf.
Information Technology. IEEE Computer Society Press, Oct 1990, pp. 127-136.

Gupta, A., Tucker, A., and Urushibara, S. The impact of operating system scheduling policies
and synchronization methods on the performance of parallel applications. SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst. May 1991, pp. 120-132.

Intel Corporation. iRMK 1.2 Real-Time Kernel Reference Manual. 1988. Order number 462660-
001.

Leutenegger, S. T., and Vernon, M. K. The performance of multiprogrammed multiprocessor
scheduling policies. SIGMETRICS Conf. Measurement € Modeling of Comput. Syst. May
1990, pp. 226-236.

Lo, S-P., and Gligor, V. D. A comparative analysis of multiprocessor scheduling algorithms.
7th Intl. Conf. Distributed Computing Systems. Sep 1987, pp. 356-363.

Madala, S., and Sinclair, J. B. Performance of synchronous parallel algorithms with regular
structures. IEEE Trans. Parallel & Distributed Syst. 2, 1 (Jan 1991), 105-116.

McCreary, C., and Gill, H. Automatic determination of grain size for efficient parallel process-
ing. Comm. ACM 32, 9 (Sep 1989), 1073-1078.

Mogul, J. C., and Borg, A. The effect of context switches on cache performance. 4th Intl.
Conf. Architect. Support for Prog. Lang. & Operating Syst. Apr 1991, pp. 75-84.

Ousterhout, J. K. Scheduling techniques for concurrent systems. 3rd Intl. Conf. Distributed
Computing Systems. Oct 1982, pp. 22-30.

Polychronopoulos, C. D., Kuck, D. J., and Padua, D. A. Execution of parallel loops on parallel
processor systems. Intl. Conf. Parallel Processing. Aug 1986, pp. 519-527.

Polychronopoulos, C. D. Compiler optimizations for enhancing parallelism and their impact
on architecture design. IEEE Trans. Comput. 37, 8 (Aug 1988), 991-1004.

Rudolph, L., and Segall, Z. Dynamic decentralized cache schemes for MIMD parallel processors.
11th Ann. Intl. Symp. Computer Architecture Conf. Proc. Jun 1984, pp. 340-347.

Sarkar, V. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
1989.

Seager, M. K., and Stichnoth, J. M. Simulating the Scheduling of Parallel Supercomputer
Applications. Technical Report UCRL-102059, Lawrence Livermore National Laboratory, Sep
1989.

Smith, B. J. A pipelined, shared resource MIMD computer. Intl. Conf. Parallel Processing.
1978, pp. 6-8.

20

28]

[29]

[30]

[31]

Stone, H. S. High-Performance Computer Architecture. Addison-Wesley, 2nd ed., sect. 7.2.5,
1990.

Vrsalovic, D. F., Siewiorek, D. P., Segall, Z. Z., and Gehringer, E. F. Performance prediction
and calibration for a class of multiprocessors. IEEE Trans. Comput. 37, 11 (Nov 1988), 1353—
1365.

Zahorjan, J., Lazowska, E. D., and Eager, D. L. The effect of scheduling discipline on spin
overhead in shared memory parallel systems. IEEE Trans. Parallel € Distributed Syst. 2, 2
(Apr 1991), 180-198.

Zahorjan, J., Lazowska, E. D., and Eager, D. L. Spinning Versus Blocking in Parallel Sys-
tems with Uncertainty. Technical Report 88-03-01, Dept. Computer Science, University of
Washington, Mar 1988.

21

