Process Prioritization Using Output Production:
Scheduling for Multimedia

YOAV ETSION, DAN TSAFRIR and DROR G. FEITELSON
The Hebrew University

Desktop operating systems such as Windows and Linux base scheduling decisions on CPU con-
sumption — processes that consume fewer CPU cycles are prioritized, assuming that interactive
processes gain from this as they spend most of their time waiting for user input. However, this
doesn’t work for modern multimedia applications, which require significant CPU resources. We
therefore suggest a new metric to identify interactive processes, by explicitly measuring interac-
tions with the user, and use it to design and implement a process scheduler. Measurements using
a variety of applications indicate that this scheduler is very effective in distinguishing between
competing interactive and non-interactive processes.

Categories and Subject Descriptors: D.£idcess Management]: Scheduling; H.5.1ultimedia Informa-
tion Systems]: ; H.1.2 [User/Machine Systems]: Human factors

General Terms: Algorithms, Design, Performance, Human Factors

Additional Key Words and Phrases: Multimedia, Resource management

1. INTRODUCTION

Modern desktop computers are required to run a plethoraffefreint applications: text
editors, spell and style checkers, network downloads,ipipgf audio and video, GUIs
with animations, etc. In many cases several threads frof@rdiit applications execute at
once, some in the background and some with direct user aitena The operating system
scheduler is charged with allocating CPU resources to tiferelnt threads, with the goal
of prioritizing those that are most important to the user.

Prevalent commodity systems use a simple scheduling scligmhdias not changed
much in 30 years. Processes are scheduled in priority ondeste priority is inversely
related to CPU usage. CPU usage is forgotten after someitimeder to focus on recent
activity instead of distant history. This is true for Windefamily [Solomon and Russi-
novich 2000], Linux [Bovet and Cesati 2001], and other vatsaof Unix such as Solaris

Part of this work was presented in preliminary form at NOSS[2A04 [Etsion et al. 2004].
Yoav Etsion was supported by a Usenix scholastic grant.

Authors’ address:

School of Computer Science and Engineering,

The Hebrew University,

91904 Jerusalem, Israel

{etsman,dants,fgi@cs.huji.ac.il

Permission to make digital/hard copy of all or part of thisten@al without fee for personal or classroom use
provided that the copies are not made or distributed forfppofiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead @aatice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

(© 20YY ACM 0000-0000/20Y'Y/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 220

2 . Yoav Etsion et al.

[Mauro and McDougall 2001], AlX, and BSD [McKusick et al. 799

Tying priority to lack of CPU usage achieves two importanalgo The obvious one is
fairness: all active processes get a fair share of the CP¥.s€bond one is responsive-
ness: the priority of a blocked (I/O-bound) process growth wime, so that when it is
awakened, it has higher priority than that of other (CPU#m)processes and is therefore
scheduled to run immediately. In fact, in most systems thith€ only mechanism that
provides responsiveness for I/O-bound (interactive) @sees. This was sufficient in the
past, when user-computer interaction was essentiallybtaséd, and interactive applica-
tions exhibited very low CPU consumption. Nowadays, coraputorkloads (especially
on the desktop) contain a significant multimedia componditese workloads are not
well supported by conventional operating system schesgl{iiéeh et al. 1993; Etsion et al.
2004], as multimedia applications are very demanding imseof CPU usage and are
therefore indistinguishable from traditional backgro(batch) jobs.

For example, the left graph in Fig. 7 of the experimental ltssdemonstrates what
happens when a Xine movie-player displays a short clip aleittyan increasing number
of synthetic CPU-bound processes (which we sa#ssory executing in the background.
When no such processes are present, Xine gets all the resatireeeds (which is about
40% of the CPU). Adding one stressor process is still toleraimce it takes the place of
the idle loop. But after that, each additional stressor ceduXine’s relative CPU share,
and causes a significant decline in its displayed frame rakais, when 4 stressors are
present, each gets about 15% of the CPU, and Xine only getg 8066 (half of what it
needs), thereby causing the frame rate to drop by a bit mare38%.

To prevent such scenarios, better support for interactidenaultimedia jobs is required.
We suggest that, on a general purpose system, this shouldrizei two phases. First,
the system has to correctly identify the interactive andtimaldia processes. Second, the
system has to schedule all the running processes, givirtigdpdtention to the interactive
and multimedia ones.

As an alternative to CPU usage we propose that schedulirigioles should be based
on a direct measurement of the level of user interactionfiged al. 1993]. This is done by
monitoring the amount of user 1/O performed by the diffenertcesses (e.g. mouse and
keyboard input events and screen-oriented output eveWts)also monitor inter-process
interactions, to identify the closure of processes tharatt with the user indirectly via
another process. This approach captures both traditintexbictive applications (such as
text editors) and modern multimedia applications, whichoebectively denote as being
Human CenteredHuC).

The availability of this information regarding user 1/O bies a new type of scheduling:
prioritize processes based on I/O production rather that @msumption. In other words,
instead of equalizing the CPU consumption of all processedyy to allocate processor
shares based on the various processes’ interactions weithisér, thus favoring HuC pro-
cesses over non-HuC ones; at the same time, we take carenioak the possibility of
process starvation. The right side of Fig. 7 shows this ferXme process competing with
the stressors. No matter how many stressors are added hibeéuser correctly identifies
the Xine processes and continues to allocate all the redjt@®ources to Xine; the stres-
sors have to make do with whatever is left over. This is cotepl@utomatic, and requires
neither modifications to Xine nor special actions by the .user

This effect can also be achieved by simply placing both ther¥ex and the Xine threads

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 3

in the SCHEDFIFO / SCHEDRRreal time scheduling classes mandated by the POSIX
standard [Gallmeister 1995]. However, doing that wouldseathe system to starve all
other running processes, as processes running in both teakéme classes amways
preferred over those running in the defées@HEDOTHERCclass. Moreover, this solution
requires manual intervention by the user or administratgetect the appropriate schedul-
ing class SCHEDFIFO / SCHEDRR/ SCHEDOTHER for each application.

Other scenarios, however, can be problematic. For examplat, should be done when
multiple interactive applications compete against eabler®t We have experimented with
creating a model of how output production depends on CPUeysagl using this to allo-
cate CPU resources so as to equalize 1/O production. Thighmaatks well for competing
applications from the same class, e.g. multiple movie vieyand leads to an equitable and
graceful degradation of the service received by all of thBut.it might do the wrong thing
when an application that produces sporadic text output edespwith a graphical visual-
ization. The bottom line is that using output productiongaioritization is complex, and
probably cannot be used as the sole metric. Instead, it dHmulintegrated with other
metrics in order to provide the scheduler with a completéupécof application behavior.
However, to fully understand human-computer interactipmesics in order to fine tune a
scheduling algorithm such as the one we propose, more oisisareeded in the cognitive
area.

We have presented the basic problems that current schedixieibit when scheduling
human centered processes in [Etsion et al. 2004], as weliggested the use of user 1/10
as an alternative metric. The main contributions of thisqpage a the design and imple-
mentation in the Linux kernel of a user I/O based scheduliggrichm that autonomously
identifies human centered applications and prioritizemthecordingly. Also, we demon-
strate the effectiveness of such a system in scheduling hgevatered processes.

The rest of this paper is organized as follows: We surveyedlaork in Section 2, then
go on to describe our methodology and test platform in Se@ioTlhe next three sections
discuss the first phase of HUC scheduling — identifying th&CHwocesses. Section 4
examines the failure of the standard identification base€BW consumption patterns.
Section 5 explains the concepts of I/O quantification, wBigetion 6 describe how this
is measured and used to identify HUC process. The secone pbaseduling the HuC
processes per-se, is discussed in Section 7, and its itimgiato the Linux kernel is
described in Section 8. We then show experimental resuitgpacing the classical CPU-
based scheduler with our HuC scheduler in Section 9, andwda@ Section 10.

2. RELATED WORK

Scheduling on a desktop machine attempts to achieve a catidrirof goals. One is to
run interactive applications in a timely manner, providiog response times. Another is
to enable the use of leftover processing resources for lbaokg processes, be they non-
interactive jobs belonging to the machine’s owner (e.grge@ompilation or download),
or imported work as part of a load sharing environment. Thadlehge is that this should
not interfere with the support for the interactive jobs.

Traditionally, schedulers on desktop machines prioritigeocesses based on their CPU
usage, or rather, lack of CPU usage. However, the reasdmatdpick of CPU usage iden-
tifies interactive processes is now obsolete [Etsion etG42Nieh et al. 1993]. Modern
desktop applications span a whole spectrum of CPU usagks|duem text editors that

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 . Yoav Etsion et al.

use little CPU up to interactive games that can dominate 160%e CPU. Those that use
significant CPU resources are therefore indistinguishfibla non-interactive jobs such
as compute-bound computations or large compilations. ,Tdngsheduler based on CPU
usage patterns will not give the interactive applicatiarficient resources, leading to de-
graded performance or an inability to run a mix of interaetind non-interactive jobs.

Desktop operating systems such as Windows have takenl isiigigs to identify and
prioritize interactive applications, e.g. by increasihg CPU allocation of threads that
are associated with the focus window or have waited for a slewice like the keyboard
[Solomon and Russinovich 2000]. However, this is oblivitauheir actual needs, and does
not necessarily solve the problem (what about displayirtgutiin a non-focus window?
or if the focus application depends on services providedtbgrs?).

Several research projects have devised systems speyiticadllow interactive multi-
media applications to run successfully. These can be byadasified into two groups,
that place the burden on the programmer or on the user of ieaton.

The solution adopted by the first group is to provide soft-teaé support so that multi-
media applications can sustain frame rates and audio saatple The programmer must
then use special interfaces to utilize these services. ®sythtem side, support includes
three components: high resolution timing services, a ppgigmand responsive kernel, and
appropriate scheduling [Goel et al. 2002]. Several sctezdilave been designed and im-
plemented, including SMART [Nieh and Lam 1997] and BEST [&amwski and Brandt
2002]. The latter has the distinction of also trying to idignapplications with periodic
computation needs automatically.

The solution adopted by the second group is to use fair-sé@reduling [Childs and
Ingram 2001]. This does not require any modifications in {hgliaations, but shifts the
burden of configuring the system to the user, who must spéuifyesource requirements
of select applications. This is probably not a good solufmmtransient interactive and
multimedia tasks that come and go during normal work. Exansgktems of this type
include Lottery Scheduling [Waldspurger and Weihl 19944 &orrowed Virtual Time
[Duda and Cheriton 1999]. An extension to this is the use efdrchical schedulers, that
allocate CPU time between other, class-specific sched@ensal et al. 1996; Candea and
Jones 1998]. This principle is somewhat similar to the marizal scheduler we describe
in Section 8. The Eclipse operating system [Bruno et al. 188&s an additional step,
and supports guaranteed portions of multiple resourcescat mot only the CPU, but also
memory blocks, disk bandwidth, and network bandwidth.

In a related vein, Zhang and Sivasubramaniam [2001] atteorguthedule real-time jobs
along with best-effort ones in a manner which will maintdia teal-time deadlines. Their
proposed solution is dividing the CPU time among the twosgasaccording to a user
supplied “fairness” ratio, and letting each class schedal@rocesses in a hierarchical
model. The real-time class uses the earliest-deadlingiBF) scheme. Similar work by
Rau and Smirni [1999] requires the user to specify a toleraheshold for performance
degradation, and the system then adjusts allocations to tneet this specification. Their
notion of quality for multimedia applications is based orss&id deadlines, which is closely
related to our use of output rate (a generalization of fraate)r

In contrast to the aforementioned related work, one of oincjpal goals is to automate
the scheduling mechanism, shifting the tuning burden froemgrogrammer/user to the
scheduler itself, by making it aware of user—process iotem.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 5

3. EXPERIMENTAL METHODOLOGY

Before presenting our arguments and results, we first desorr platform and introduce
the applications used to evaluate the newly proposed stdredu

3.1 The Test Platform

Most measurements were done on a 664 MHz Pentium 3 machinppeguwith 256
MB RAM and a 3DFX Voodoo3 graphics accelerator with 16 MB RANat supports
OpenGL in hardware. The operating system was a 2.4.8 Lintnek¢RedHat 7.0), with
the XFree86 4.1 X server. The clock interrupt rate was ireeddrom the default 100Hz to
1,000Hz. This clock rate has already been adopted in the irawx 2.6 kernel, and is more
suitable for multimedia applications which require ma®nd timing resolution [Nieh
and Lam 1997; Etsion et al. 2003]. We have also verified thairtbrease in overhead is
negligible [Etsion et al. 2003].

It can be argued that our test platform is somewhat antigdteth in terms of hard-
ware (processor generation) and software (kernel versidajvever, this does not affect
the validity of the results: although the Linux kernel pregascheduler has undergone a
major revision in the 2.6 kernel version [Love 2005], thigiseon has focused mainly on
the scheduler’s data structures — most notably re-impléimgthe classic priority feed-
back queue [Silberschatz et al. 2004] so as to reduce thatdispverhead by eliminating
its dependency on the number of runnable processes. Thduttgealgorithm proper,
however, is still based on processes’ CPU consumptionrpaiteven though there was
some improvement in support for interactive processess 3theduler is thus still prone
to the same problems as in the 2.4 kernel.

Regarding hardware performance, experience shows that pr@cessor performance
improvementis soon used by software to enhance the quéligreice provided, maintain-
ing roughly the same level of use of processor capabilitizsthe context of multimedia
applications, improved performance enabled higher fraatesr(60fps for the HDTV stan-
dard [Benson and Fink 1990]) and better video compressideeand standards (such
as DivX [Zimmermann 2003] and MPEG-4 [Ebrahimi and Peref@2], to name a few).
As such, newer processors which yield better performararedhr test platform will sim-
ply be utilized to run more demanding applications, leavisgvith the same problem of
scheduling an overloaded processor.

3.2 The Kernel-Logger Utility

The measurements were conducted ugilogger[Etsion et al. 2005], a kernel logger we
developed that supports fine-grain events. While the lagguode is integrated into the
kernel, its activation at runtime is controlled by applyiagpecialsysctlicall using the

Iproc file system. In order to reduce interference and overhegggeld events are stored
in a sizable buffer in memory (typically 4MB), and only expet at large intervals. This
export is performed by a daemon that wakes up every five secdi implementation is
based on inlined code to access the CPU’s cycle counter areltbe logged data. Each
event has a 20-byte header including a serial number andtémg with cycle resolution,
followed by event-specific data. The overhead of each egemtly a few hundred cycles
leading to a total ok 1%. Logging is performed for all scheduling-related eventmtext

1This effect even inspired the phrase “What Groves givetlieStaketh away” (referring to the famous CEOs of
Intel and Microsoft).

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 . Yoav Etsion et al.

switching, recalculation of priorities, forks, execs, nbmg the state of processes, and
monitoring of activity on Unix-domain sockets (to track potial interactions with the X
server).

3.3 The Workload

As there are numerous different applications in contenmyatesktop workloads, we have
identified several dominant application classes and clm$ecus on a representative or
two from each class.

—~Classic interactive applications: The (traditional) Emacs and the (newer) OpenOffice
text editors. During the test, editors were used for stathtigring at a rate of about 8
characters per second.

—Classic batch applications: Artificial CPU-bound processes (stressors) and a complete
compilation of the Linux kernel. These serve as two variafitsackground jobs, that
can absorb any number of available CPU cycles, and comp#tédiC processes. They
differ however in their I/O behavior: while stressors reganet completely CPU-bound
applications, kernel compilation also employs extensigk tO.

—Movie players. MPlayer and the Xine MPEG viewer, which were used to shovi+ var
ous video segments encoded with different standard fraies.raVhile MPlayer is a
single threaded application, Xine’s implementation is tithdeaded, making it a suit-
able representative of this growing class of applicatiddaytner et al. 2000]. In our
experiments audio output was disabled, to allow focus @rattions with the X server.

—Modern interactive applications: The Quake Ill Arena action game. An interesting
feature of Quake is that it is adaptive: it can change its &aate based on how much
CPU time it gets. In our experiments, when running alonertuse almost all available
CPU time.

In addition, the system runs a host of default processes)yn@sious daemons. Of these,
the most important with regard to interactive processebvsonsly the X server.

4. THE FAILURE TO IDENTIFY HUC PROCESSES BY CPU USAGE PATTERNS

Prioritization based on CPU usage can take various fornthigrsection, we show that all
of them do not work, as modern HuC processes may use sighiftfad resources, and
are essentially indistinguishable from non-HuC work.

4.1 CPU Consumption

The simplest measure of CPU usage is total consumption. géostral purpose schedulers
base priority mainly on this metric. Processes that use #ld [@se priority, while those
that wait in the queue gain priority.

The question, however, is whether low CPU consumption causkd to identify HUC
processes. Figure 1 demonstrates that this is not the cas€. pkrbcesses are seen to
span the full range from very low CPU usage (the Emacs and Offiee editors) to very
high CPU usage (the Quake role-playing game). Movie plagach as Xine provide
an especially interesting example: their CPU usage is ptgpal to the viewing scale.
Showing a relatively small movie, taking about 13% of theeser space, required about
15% of the CPU resources for the player and X combined. Usirapan factor of 2:1, the
viewing size quadrupled to about half the screen, and tteures usage also quadrupled
to about 60%. Attempting to view the movie on the full screexuid overwhelm the CPU.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 7

100
80
60
40

20

CPU Usage Percent

o -
Other

Bl X Server

B Application

Fig. 1. CPU consumption of different applications expressed as@eptage of the wallclock time (from [Etsion
et al. 2004]). Xine 2:1 means resizing to 200% (quadrupleatba).

1 . ‘f—r_—éﬁ_‘_ —
0.8+ i |
{

4

_—

" 0.6 E
1 -
8 0.4+ — Kernel Make o B — Demo Quake
54 X é’leine) | " - Demo Stressor
0.2+ (E)mac(s)fr] === MPlayer o Demo Quake | = User Quake
1 ~"~ OpenOffice | | = Xine P == Stressor H =+ User Stressor
T TT T T

OE\ T T T LI T LI T T T T T T T 1

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(€ (b) (© (d)
Effective Quantum Duration [milliseconds]

Fig. 2. Cumulative distribution function of the effective quantaem applications are run alone.
(a) Editors have very short effective quanth) Movie players also have short effective quanta, but
this is similar to the profile of the kernel-make batch j{d). Quake can consume all available CPU
cycles, so when running in demo mode it behaves like a streBsoh are occasionally interrupted
by various system daemons, causing around 50% of the e@fegtianta to end prematurelid)
When a stressor runs together with Quake (in either demoesraede), both end up with the same
distribution, because Quake interrupts the stressor.

This is despite using an optimization by which the frame datsanded over to X using
shared memory.

4.2 Effective Quantum Lengths

While CPU consumption is the main metric used by currentdalegs, other (new) metrics
are also possible. A promising candidate is the distrilbbutibeffective quantum lengths
An effective quantum is defined to be the time period betwbertitne a process is allo-
cated a processor and until the processor is relinquishtedy decause the process is pre-
empted when its allocation expires or when a higher prigrnitycess awakens, or because
the process blocks, waiting for some event. The intuitiotihé although HuC processes
may exhibit large CPU consumption, their effective quamtdopbly remain very small due
to their close interaction with 1/0 devices, and becausg tiften need to use timer alarms
to pace themselves (e.g. to generate the correct frameagaediess of processor speed).

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 . Yoav Etsion et al.

Emacg Open|MPlayer| Xine| Quake Quake| Kernel| Stresso
Office user | demo|| make
99.6 | 99.1| 985 (83.1] 143 | 1.2 81.6 0.5

Table I. Percent of context switches that are voluntary for the varigpplications.

Thus, we expect to see a difference between the allocatedajaad the effective ones in
HuC processes, but expect non-HuC processes to typicalthes full allocation.

Figure 2 shows these distributions for different groupspyglzations. Multimedia ap-
plications, in particular, are indistinguishable from etlapplication types: on one hand
Quake behaves just like a CPU stressor, both when runnimg @od when running with
a competing process, and on the other hand Xine resemblegthknown kernel-make
benchmark.

4.3 \Voluntary vs. Forced Context Switches

Another possible metric is thg/pe of context switch. HuC processes (such as movie
players) often relinquish the processor voluntarily, doighteir dependency on 1/0 and
timing devices, through which they communicate with the irs@ paced manner. We can
therefore classify processes according tofthetion of their effective quanta that ended
voluntarily, rather than thdurationof the effective quanta (as described above).

We define a voluntary context switch as one that was induceldégrocess itself, either
explicitly by blocking on a device, or implicitly by perforimg an action that triggered
another process to run (such as releasing a semaphore). Welkle to trace such context
switches by monitoring the various kernel queues. The t@shlown in Table | indicate
that this new metric also fails to make a clear distinctioteen HuC and other processes.
Quake is again similar to stressors, and Xine looks like éermake.

5. QUANTIFYING USER I/O

Before describing mechanisms to track interactions betwegecesses and the user, we
must first define what we want to track and how. Simply put — howw quantify user
interactions?

5.1 Quantifying User Input

Input events can be perceived as an immediate and explfiéssion of the user’s wishes.
The number of events is typically not so important: draggiit) the mouse, which gen-
erates multiple events per second, can be argued to coneey il same amount of user
interest as a single mouse button click or the typing of alsiebaracter. The most im-
portant metric is recency: the process receiving the masteuser input should get the
highest priority. This stems from the fact that nowadaysaigateract with computers
solely through the use of their hands (although other meensght around the corner).
Given that, along with the fact that the time to switch inpetvieen different applications
is measured in seconds, input can be considered a binary-traither the application
is receiving input now, or not — as opposed to output, whidfedént applications can
produce simultaneously while competing for the user'sita.

Reflecting these considerations, we implement input ratasga binary state variable:
either the process has received input recently, or it has ‘tiecently” means within a
certain predefined number of seconds, which is a tunablerpes (see below).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 9

It should be noted that this approach has the additionatatasi effect of implicitly
recognizing the application associated with the focus sndX assigns input to the focus
application, so input events imply focus. Thus, we do notdn@eseparate mechanism
for prioritizing the focus application, as is done in Windowlt can also be argued that
our approach is even better, as it uses real input (a direasune) rather than the focus
property (an indirect measure).

5.2 Quantifying Output to the User

Quantifying output is more complex than input: firstly, besa various applications may
simultaneously produce output to different windows, seltprbecause of different output
modalities (e.g. with or without the concept of a frame raae) finally, because we don't
know which of these output events are more significant to es.u

Two metrics suggest themselves for measuring importancipiut to different win-
dows: the size of the window, and the rate of change. We ptefese rate, motivated by
the fact that human vision is known to be more sensitive toenent (a remnant of our
hunting predecessors) [Shneiderman 1998]. Thus, quargitiie rate of change produced
by each application will lead to a reasonable guess abouthwhiocess has the user’s
attention.

The question remains of how to quantify the rate of screengbs. We see three possi-
ble candidates.

(1) The simplest approachis to count output events. Thisheaystifiable in cases where
each output event represents a unit of information, suchiasry a single character.
However, output events may come in very different sizes.cipally, this approach
is not suitable for the X-Windows system, as an X-protocdpatrequest can change
a single character, draw a line, or change the entire imageimdow.

(2) Another option is to count pixels. Thus, a “large” outgyent that modifies many
pixels will confer a larger amount of user interaction, it@cance with the notion
that human vision is more sensitive to movement. When cogritkie output in pixels
the result is biased towards larger windows, in which a sichbnge is likely to affect
more individual pixels.

(3) The third option is to use normalized pixel counts, basethe following formula:

pixels changed in last second
window size in pixels

output rate=

Normalizing the changed-pixel count by the window size idivated by the desire to
distinguish between raw 1/0 and a higher level of 1/0. Coasiideo or animation,
for example. Although simple pixel count is biased towasdgér windows, in accor-
dance with human vision, it is rarely considered to be pagro&pplication’s quality
of service, as opposed to the frame rate metric. Normaligirgl count by the win-
dow size yields a count of the frame rate, which is indepehdewindow size, uses
the same quality metric as the application level, and platesompeting processes
on an equal footing.

Our prototype implementation uses the third approach, ssiihplicitly geared toward
video applications.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 . Yoav Etsion et al.

6. IDENTIFYING HUC PROCESSES BASED ON USER INTERACTION

Our basic idea is to actually follow the flow of informationtyeen the user and the various
processes, and explicitly characterize HUC processescasasgording to the magnitude
of this flow. We achieve this using a combination of two medsas. The first, described
in section 6.1, is responsible for quantifying the volumelioéct interaction between each
process and the user. This by itself is insufficient becausegsses may interact with the
user in an indirect manner. This motivates the second mésthanescribed in Section
6.2, that tracks interprocess communication to uneartlemiggnce relationships between
them. Finally, newly forked processes inherit the HuC cewfttheir parent. Together,
these mechanisms allow the scheduler to correctly ideatityprioritize HuC processes.

Interestingly, the mechanisms described here have be@oggd in the past for other
uses. The idea of identifying HUC processes as those threatittwith the X server, and
notifying the kernel about them, was proposed a long time lag&vans et al. [1993].
However, they did not consider interactions among prosesssing the closure of pro-
cesses that interact with the X server has been proposeahbingr et al. [2000] — but in
the context of power management, not scheduling.

6.1 Monitoring Direct User 1/O

6.1.1 HuC Devices and the X ServelfO between the user and the various processes
is mediated by peripheral devices. ldentification of uségraction must therefore start
with the devices that represent the user: the keyboard,epeaeeen, joystick, sound card,
tablets, and touchscreens (to name a few) — which will bermedejto collectively as
HuC devices For the purpose of this research, we've decided to only toothe “bare
necessities”, namely the keyboard, mouse, and screerhdforore, we focus on the use
of windowing systems, and ignore the possible direct usetextconsole interface.

Unix environments use the X-Windows system [Scheifler anttySd4.986] as the con-
ventional mechanism to multiplex 1/0O between the user apd/élrious applications. Ap-
plications that wish to use the keyboard, mouse, and scneereterred to aX-clients
Clients connect to th¥-serverand communicate with it using thé&protocol The server
usually associates a window with each client, such thatinpeit events performed within
this window are forwarded to the client (in the formX{event}, and output produced by
the client (in the form oK-requestis directed to this window. Consequently, the X server
centralizes all work concerning the kernel mechanismsatay communication with the
canonical HuC devices, and hence with the user. It is thezefatural to use the X server
as a meta-device when monitoring user 1/O [Etsion et al. PO®4imilar approach can be
implemented for the Windows family of operating systemsiggsheDirectX subsystem
[Gray 2003].

Additional reasons for focusing on X are that it represeimsdommon denominator of
all systems (many don’t have joysticks, and some even dant lsound cards). Moreover,
the applications using other devices are typically the sanes using X: when playing a
game using the joystick, for example, the game displaydtcamn the screen and uses the
sound card for sound effects. Also, most systems do not afione than one application
at a time to use HuC devices. Thus, monitoring other devidksadd some information
about additional I/O modes, but not about other processiesilly; trying to incorporate
other devices would increase complexity by requiring usuardify their 1/0O rates using a
common metric, and combine them into a single number.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 11

font
1 1 ¢ height
R S

character
width

Fig. 3. Estimation of the area of a diagonal line and a text character

We remark that even though the X protocol is the conventipaadigm used to perform
user I/O in Unix environments, other mechanisms do exise Dinect rendering Infras-
tructure (DRI) [Paul 2000] is the dominant alternative since it is disy the OpenGL
graphical library, which in turn is heavily used by graphisaftware, and in particular
games. DRI interacts directly with the graphics controlbéicumventing the X protocol.
Thus, a complete implementation of our ideas should inciosteumentation of OpenGL,
similar to our instrumentation of the X server describedbel

The mechanism described in this section is but one examphagi&menting user in-
teraction monitoring in a kernel subsystem. The same apprdascribed here for the
graphics kernel/user subsystem can be generalized intoeglgler hints mechanism inte-
grated into other major kernel device subsystems, su&i&#\for audio,Input Corefor
input devices, and theideo4Linuxsubsystem [Bovet and Cesati 2001; Corbet et al. 2005]
(or even theDirectX subsystem in Windows [Gray 2003]).

6.1.2 Instrumenting the X ServeiThe mechanisms of Section 5 were implemented
by instrumenting the X server. The code for handling prodassst is simple. X already
has a list of callbacks to invoke whenever an input eventas feom the device files; we
have added another callback that logs this event. Countingged pixels is also feasible
since the X protocol defines a reduced set of only seventesgrhial X-requests that
are available to clients (drawing a polygonal line, a chinastring, an image, etc.). For
each X-request, we have implemented a function that apmateis the amount of change
it introduces to the screen, using a simple bounding boxmeheFigure 3 depicts how
this works for two common operations: drawing a diagona,liand drawing a character
[Etsion et al. 2004].

Note, however, that output events may refer to hidden pustiof windows. As our
motivation for using rate of change as a metric is based on ¢tmnge is perceived by
the user, changes that can’t be seen by the user shouldmitheléd in the application’s
ratings. We therefore hooked into the X clipping mechaniswrder to find out how much
of the change is indeed visible to the user.

To be useful, the data regarding each 1/0 event needs torimuigtt to the correct pro-
cess and communicated to the kernel. The X server maintaitssinternal data structures
aclient recordfor each client. We have added three fields to this record:

—client’s process ID (pid),
—client’s input status (input or not), and
—client’s output ratings (the relative pixel change rate)

The values of these fields are communicated periodicallyr¢okernel using the X na-
tive timer mechanism (the prototype does this once a se¢brm)gh the standard POSIX

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 . Yoav Etsion et al.

) ; UNIX
display | X domain pseudo
agraiplcorr '\i@'ﬂe socket terminal write
v Utp S
1 ut h o
! X-request E aracder
! A E— L — stdout
X xterm 17
I | ————® suin
X—event
keyboard read
device ‘6@3\ character
user driver | 107!

types

kernel space user space
Fig. 4. Information flow between the user and Mietext editor.

schedsetparansystem call [Gallmeister 1995]. We have simply concatehttese fields
to theschedparamstructure, which is the principal argumentswhedsetparam In ad-
dition to these periodic updates, whenever a client witl agout ratings receives an input
event, the kernel is immediately notified (again, throsghedsetparan). This allows the
scheduler to maximize responsiveness by promptly handliredp events — for example,
raise the priority of a process that just received some input

Client pids are needed because eventually the scheduldragi its decisions upon the
I/O ratings associated with each process. X doesn’t maipids, because one of its major
design goals is to serve local or remote clients in the same avad the pid of a remote
clientis meaningless. In the context of desktop schedyliogiever, we are only interested
in monitoring local clients, since these are the candidfte$eing HuC processes (the
option of running HuC applications remotely in a distritdienvironment is beyond the
scope of the current paper). To obtain the pids of connecliegts we slightly modified
the communication layer of the X server, to which local digstonnect using Unix-domain
sockets. While standard Unix-domain sockets do not proaidess to a peer’s pid, Linux
provides some non-standard Unix-domain socket optionslieigesuch access.

6.2 Indirect User I/O

As noted above, the main process that interacts with theinseiJnix system is the X
server. HUC applications interact with the user indireatging X and other processes as
intermediaries. Figure 4 demonstrates this with a sceiamichich the user writes some
document using th¥| text editor from within arxtermterminal emulator. When the user
presses a keyboard key, the X server reads the associatetttendrom the keyboard’s
device driver, sends it as an X-event messagdadan which in turn forwards it through
a pseudo-terminal connection. The latter performs the necessary processing and may
update the user’s view by propagating data in the oppogiéetitbn. This simple example
highlights the fact that the HuC quality has a transitivainatand therefore its definition
must be refined to include processes that indirectly intevéh the user.

The second component of identifying HuC processes is toerdinding the transitive
closure of the processes that enjoy direct interaction. dfeaj we must first identify the
graph of process interactions.

6.2.1 Identifying Process Interactiong?rocess interactions may take different forms:
communication using a pipe, storing to and loading from etianemory, the use of
semaphores, etc. While all these mechanisms are in some wdht®d by the kernel,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 13

keeping track of all of them is very arduous. Moreover, if maachanisms are introduced,
they will require separate monitoring. Finding all the degencies is therefore difficult
[Mosberger and Peterson 1996].

The alternative is to find a single mechanism that facilitata approximationof the
interactions that have taken place. For this, we proposedoitor attempted insertions
into the ready queue. When one process causes anothertohenteady queue, it implies
that the second process was waiting for the first one, andettbiatthey interact with each
other.

Implementing this idea in Linux is very simple, becauserafits to insert a waiting task
to the ready queue are always performed viamheo_wakeup(processjunction. Signifi-
cantly, the invoking process does not verify that the tapgetess is indeed waiting (which
explains the “try” prefix in its name). Thus, an invocationtgf_to_.wakeup represents a
true logical dependency between the two processes, regardf what their current status
happens to be. A similar idea was recently explored by lgptlinux developers [Tor-
valds et al. 2003], but eventually was not adopted in the 8r6. The possibilities of this
technique were also demonstrated in [Zheng and Nieh 2004yhich this dependency
data was used together with information about system dallsncover both direct and
indirect process dependencies, thus preventing priamitgrsion problems (as oppose to
the simpler use of tracking information flow described here)

The above heuristic has the apparent drawback that somediepees might go un-
noticed. This can happen when non-blocking mechanismssae, @.g. if information is
passed using shared memory. However, using shared mentgpydally accompanied by
some synchronization mechanism such as semaphores, whiobkldde blocking. In ad-
dition, we consider sets of processes that share their ssldpace as a single entity, rather
than considering each of them individually. As a conseqeewe find that in practice our
heuristic produces excellent results in identifying a# firocesses in the X server’s IPC
graph closure.

The interprocess communication graph is by far the most éexqgart of the HUC sys-
tem. We implemented it in full to get the most accurate ug@statistics, by which we can
prioritize the various processes. While this is befittingdgroof-of-conceptimplementa-
tion, it is less desirable to incorporate it in a productigatem. However, it is sufficient
to approximate this graph using mechanisms similar to tligsel to support priority in-
heritance and overcome priority inversion issues, commomadern operating systems
[Silberschatz et al. 2004; Solomon and Russinovich 200Qriand McDougall 2001].

6.2.2 Propagating HuC Input.As noted above, input is a direct reflection of user in-
terest. We therefore define the “HuC input” status to be iides. This means that if a
“HuC input” process inserts another process into the reashug, that process also be-
comes “HuC input”. Moreover, this is communicated to thenkebimmediately, without
waiting for the next periodic update.

For example, consider the scenario depicted in Fig. 4. Ther¥es is identified as HUC
input when it reads a character from the keyboard. When theacker is passed to the
xterm application, xterm too becomes HuC input. When it isspa to VI, so does VI.

6.2.3 Propagating Output RatingsOutput is different from input in that it is quan-
tified rather than being binary. The output ratings need tpropagated in the opposite
direction from process interactions, in order to assignrétiegs to the processes that in-

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 . Yoav Etsion et al.

deed initiated the output operation.

Process interactions induce a directed graph, which wetlvalProcess Dependency
Graph (PDG). The nodes of this graph are all active processes isytstem. The graph
contains an edgéP;, P;) iff P; was recently inserted to the ready queue due to an action
taken byP;. Returning to the example in Fig. 4, when VI generates ougpdt sends it
to xterm, we ge{ Py 1, Prterm) € PDG; then we also getPuterm, Pxserver) € PDG
when xterm forwards the request to X.

Our instrumentation of the X server includes the quantificabf output attributed to
processes that interact with it directly, e.g. the xterntpes. The PDG is used to propagate
this rating further. In the example, the edd®, ;, Pycrn) implies that xterm depends on
VI, and that VI may therefore be the source of the output. ®wmiltput rating of xterm is
also attributed to VI. If several such edges exist, the dutgting is divided among them
according to their weights. The weights reflect the numbeinods that the process at the
head of the edge tried to wake the process at its tail.

In future work we intend to consider possible simplificas@f this approach. Specifi-
cally, it may be better to propagate output information anfth as each interaction occurs,
as is done for input.

6.2.4 Aging the Data.Applications may change their behavior over time, e.g. ptce
input parameters from the user interactively and then peréolong non-interactive com-
putation. It is therefore desirable that the identificatbdiuC processes be based only on
recent user I/O. In order to actually maintain the I/O date,need to define the meaning
of “recent”.

After some deliberations, our final algorithm is very simple have a tunable parameter
that specifies for how long data is maintained, currentlytse® seconds. Initially we
experimented with exponential aging, in which the weiglitthe edges are divided by a
factor of 2 each second, until they become smaller than omeveMer, edge weights are
typically smaller than 100, so this implies that output dataetained for 5—7 seconds.
Also, aging input data would need a different treatmentt &sbinary to begin with. In
light of these considerations, using a life span of 8 seca@seasonable compromise that
provides for even handling of both data types. Any event treeian input or output edge
initializes its life time. While this seems to work nicelymnactice, further experimentation
with real users is required to fully justify this approachi@refine it.

7. THE HUC SCHEDULING ALGORITHM

Until now, we have only discussed how to identify the HuUC sees. Now, we describe
the HuC scheduling algorithm — how we allocate CPU time farsth and competing
processes. It should be noted however that the HuC schegdltjorithm only affects those
processes identified as human centered. A system containisgch processes behaves
just like a regular Linux system

Given the approximation of how much user I/O is associateéd @ach process, we need
to use this information to decide on CPU allocations. Thditianal Unix scheduler em-
ploys a negative feedback mechanism to achieve a uniformildison of CPU resources
(within the constraint that some processes may not need eb asuothers). When a pro-
cess runs its priority drops, until the CPU is relinquishad given to another process. In
contradiction, our HuC scheduler allocates CPU resouiees $0 achieveniform output
ratesby the different processes. This means that CPU allocatiead not be equal; rather,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 15

_ the
- knee ™~a. 8 application A
8 O
S g o
©
8 - S application B
o Q | targetoutputlevel
5 — 5 ! (B:pu '-EJTJI)
o o 1
+— - " "
> | S | ' application C
o (@] | :
\:/(Bcpu ’Bout) \l/
I I I I
CPU allocation CPU allocation

(a) The knee model of application behavior: (b) Using the knee model allows for an esti-
I/O activity is linearly dependent on CPU al- mation of what CPU allocation will lead to a
location, up to the maximum needed. Data desired level of output production.

points are measurements of Xine.

Fig. 5. The Knee model for application behavior, and its aseur scheduling algorithm

each process gets the CPU resources it needs to producegéelésel of output. In this
sense it is similar to the schedulers proposed by MassatinPan[1990] and by Steere
et al. [1999], who adjust the processing power allocatedgmaducer and a consumer so
that the producer’s production matches the consumer’sutopgon.

The scheduler operates at two levels of granularity. Lileltinux scheduler, we have
a notion ofepochs In each epoch, aallocationis made for each process. During the
epoch the different processes execute in an interleavedenas decided by thdispatch
algorithm. When all processes have exhausted their altsator no ready process is
available, a new epoch is started. Unlike Linux, we set a maxi on the duration of an
epoch, 200ms in the current implementation. This is needextder to bound the time
until a process gets to run. The scheduler guarantees gt jgnocess will get some CPU
time at least once per epoch. Note that until recertl00ms was the default length of a
scheduling quantum on many Unix variants, but in practicetmamaller effective quanta
are typical for many interactive applications on today’sdweare [Etsion et al. 2003].

7.1 The Knee Model of Application Behavior

In order to achieve a certain target level of output actjvitg need a model of how output
production is related to CPU resources. We suggestribe modedf application behavior
for this purpose. Simply put, it states that the level of otitpan be approximated as a
linear relation to the CPU allocation, up to a certain limitbove that limit the application
does not need any more CPU resources, so additional abbosatiill not be used, and in
particular, will not lead to additional output.

We have evaluated this model using a few actual measurem&application behavior
to find how accurate itis. Fig. 5(a) shows such measurementeé Xine MPEG viewer
(measurements for the X server exhibit a similar structufée measurements were con-
ducted by running X and Xine with different numbers of conipgtstressor (synthetic

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 . Yoav Etsion et al.

CPU-bound) processes under the default Linux schedulereriithere are no stressors,
the application simply uses whatever it needs (we consigetallocation” to include the
system’s idle time, since it is in fact at the applicationispibsal); this serves to iden-
tify the knee point. When enough stressors are presentpileation receives less CPU
resources, and produces less output. This example deratasstinat while not 100% accu-
rate, the Knee model serves as a good approximation for Ho¢zpses’ output production
as a function of their CPU allocation.

Importantly, the model is simple enough so that model patars@are accessible to the
scheduler. At runtime, the scheduler can keep track of hoshm@PU was actually used by
each process, and also get a quantification of the outputipeatias described in Section
6). The quotient of the output volume to the CPU usage pratide slope of the line. Any
discrepancy between the allocated and used CPU gives araiiwdi about the location of
the knee.

7.2 CPU Time Allocation

If the total CPU requirements of all applications are lessittihe full capacity, the scheduler
does not have to make any hard decisions, allowing all agidic to reach their desired
output rate. But if requirements exceed capacity, the adbedieeds to decide how to
allocate the CPU resources. Our algorithm performs thisation in a way that will lead
to uniform levels of output production, subject to the coaistt that some applications can
only produce a limited amount of output. This is similar irrgpo a fair-share scheduling
algorithm, except that the shares are calculated autoatigitfend indeed this prioritization
mechanism can be used on top of most fair-share schedulers).

Let us start by justifying this approach. Consider a systhat ts used for video-
conferencing, and is displaying two incoming streams, ona small window and one
in a larger window, with 4 times the area. Assume also thatsifstem is overloaded,
so the processes displaying the two streams cannot getlti@Hu resources they need
to display their respective streams at the full frame ratsinga conventional scheduler,
both processes will receive about the same CPU time. Buladigiy a frame in the large
window requires about 4 times more processing power thaladimg a frame in a small
window [Etsion et al. 2004]. As a result, the smaller windawhich is probably less im-
portant (otherwise, why did the user choose to make it sml\ill end up displaying 4
times more frames, and providing better video quality! At #ame time, the larger, more
important window, will lose more frames and provide redugadlity.

Now, consider allocating CPU time so as to achieve a desingglb rate. Recall that
we define the output rate in relative terms, that is countimxglp that changed divided
by total pixels in the window. Using this metric, having ebaatput rates translates to
displaying the videos at the same frame rate, regardlessnalow size. So an allocation
that equalizes output rate achieves the desired balanesdetcompeting applications.
Under this allocation, the small-window Xine will receivalg a quarter of the CPU time
that the large-window one gets.

Our allocation algorithm is based on the knee model as iilitestl in Fig. 5(b). As the
model is simply a linear relationship, the allocation ist jtlee amount of CPU that will
generate the desired level of output. For example, assushéothapplication B the current
CPU allocation was3.,,, and the generated output was,,.. If the target output level is
T, the allocationB7,, will be

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 17

B* _ BCPU T*
cpu out
Bout

becaus€Bcpu, Bout) and(B;,,,, Ty,.) lie on the same slope, and therefore have the same
ratios. For application C the maximal possible output ratéower than the target, so
the knee has to be identified and the allocation will be thahefknee. Note that when
the system is underloaded (i.e. requirements are less #patity) this is the case for all
applications, and they all get allocations that bring therieir perspective knees.

One may wonder at this point how the target valu&y, is set. The answer is that there
is a circular dependency, in thaf,,, should be set so that the total CPU time allocated will
be about the duration of the scheduling epoch. To break ticécive initially set7};,,
to be the average of thd,,;, Bou:, - . . values of all HuC processes from the previous
epoch, derive CPU allocations, and then rescale them sahthiatsum matches the total
allocation. If this sumis less than the total CPU allocatimscaling is needed — meaning
the system is not overloaded and all applications are giahtsr desired CPU share.

A special case occurs when a new process is inducted intouBeckhss. Such a process
might have had a small allocation previously, but a verydargw allocation, especially if
its slope in the knee model is low. However, it is dangerousfstem stability to give a
large allocation at once to such a new process. The soligitmdgrow exponentially. At
each new allocation, the process is limited to some factanes the previously used time,
e.g. doubling it & = 2). The expression for the CPU allocation is then

B,, = min {% T4 chpu}

For new HuC input processes, which do not yet have any medswtput, an arbitrary
initial allocation is used (in the prototype, this is 1% oétbpoch). The reason for this is
that when a process receives input we know it is importarttyaudo not yet know how
much CPU it needs. Therefore we initially just give it a chatacproduce output, and base
future allocations on this output.

Another special case concerns the X server. As all /O agpasses through X, it needs
to be able to handle a larger amount of I/O thgp),. We therefore set its allocation based
onT} ., multiplied by the number of applications using it.

out

7.3 Dispatching

Dispatching is the decision of which process to run nexggithat a few ready processes
with non-zero allocations are available. In principle, weud like all processes to make
progress together, at their respective rates (i.e. acoptditheir allocations). In practice,
progress is made in a granular manner, as only one procasallgatuns at any given
time. The challenge is then to select the processes in a veawih allow all of them to
make progress at about the correct rate, without leavingamgess too far behind (which
amounts to starvation).

The common solution to this problem is to schedule accorttingrtual time (VT)
[Nieh et al. 2001]. Each process has a virtual time, that acks at a rate that depends
on its allocation (or weight). Thus, the virtual time of a pess that has a large allocation
will advance more slowly when it runs, and the virtual timeaoprocess with a small
allocation will advance more quickly. When called, the slifler chooses the process with
the smallest virtual time to run next.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 . Yoav Etsion et al.

hypothetical
processor sharing
A progress - g
real
© progress
£
(=)
g -
£ |
c
2 |B —
(O] - -
2 -
(_<E -
g |C
=1
o
D
— T T T e —
1 2 3 4 5 6 7

wallclock time

Fig. 6. Using PSVT to dispatch 4 competing processes. Initially Boems to run. As a result A, which has the
largest allocation, suffers the largest deviation fromPi& progress (vertical arrows at time 1). After running A
for a quantum this is no longer the case, and C is selected ldl ¢mve been as well; arrows at time 2). After
running C, A is again more behind than D, so it runs again, ansl delayed again (arrows at time 3). At time
4, D is finally selected. The end result is that the symmettwéen the low-allocation processes is broken, and
they are dispersed rather than running one after the other.

For example, consider four processes of which one has aratitho of 4 “ticks™ (call it
process A) and the other three an allocation of 1 each (eaihtB, C, and D). When B, C,
or D run, their VT immediately becomes 1. But when processisrits VT only increases
by i. It will therefore have an advantage over those processeseWiT is already 1.

The problem with VT is that once process A runs, its \%‘5 is already higher than that
of any process that has not run yet (0). Therefore the schedull select B, C, and D
within the first 4 time slots, and leave the last three slotsAoTo solve such problems,
one can consider the upcoming run time in the decision, ardhevirtual finish time
(VFT) instead of the VT. Thus, we hypothetically add the rgx@ntum to each process in
turn, and see what its virtual time will be if the quantum isehted to this process.

Note that when some allocations are very small, VFT may beadsals VT: it simply
delays B, C, and D to the end rather than running them first. é¥ew interactive and
multimedia processes typically fragment their allocagiorio many short runs (less than a
full tick), based on their real-time needs [Etsion et al. Z00 is therefore actually better
to use VT and not VFT, because VT better reflects how CPU timesity used. VFT will
lose this information, as it always assumes that the fudicaition will be used.

What we would really like to achieve is an interleaving of tliéerent processes, ideally
a sequence of dispatch decisions like A, B, A, C, A, D, A. Trds be approximated by
a scheme we caffrocessor sharing virtual tim@SVT). Under this scheme, scheduling
priority is proportional to the difference between a praesinning time and its hypothet-
ical running time if the system were to use processor shatimgler processor sharing, all
processes advance all the time, with rates that are propaitio their shares (dashed lines
in Fig. 6). Thus, when process A does not run, its PS runtinvaracks quickly, while its
real runtime stays the same, leading to a large mismatch &ighapriority. As a result,

2The units of time allocation, defined by the operating systérok interrupt rate.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 19

the scheduler will tend to pick process A after it has not mugn if some low-allocation
process has not run at all yet.

The current implementation supports both VF and VFT didpat: We plan to imple-
ment PSVT in the future.

7.4 Workload Dependence

As hinted above, some of the choices made in designing tloeitdm are workload depen-
dent. For example, the idea of equalizing output rates asuned by normalized counts
of pixel modification is geared toward multimedia applioas, allowing the same frame
rate to be achieved. But this may be the wrong thing to do iertbhenarios. For example,
consider the following.

—Some applications simply do not have a frame rate. For el@nifpa kernel make
competes with a movie player, the sporadic prints from thkewaill create much less
output, and therefore the make will be given a much largercation in order to enable
it to make up.

—Just as multimedia applications exhibit CPU-usage pofifat are indistinguishable
from those of compute-bound processes, so do animated pamidisplay 1/0 pro-
files that are indistinguishable from multimedia applicat. By prioritizing I/O we
also prioritize such popups. This however is not unique &oHiC scheduler, as this
phenomenon also affects CPU pattern based schedulers x&wopke, a web browser
experiencing popups under the regular Linux scheduleragifisume more CPU thus
having its priority reduced.

The lesson from this is that there is probably no single smiuthat will be good for
all possible situations. However, it seems that monitotiQgis certainly an interesting
addition to the toolbox of system designers. In some caspsyvides exactly the support
that is needed. In others, it may be possible to combine it wiiber tools to achieve the
desired results.

8. INTEGRATION WITH LINUX

The HuC scheduling algorithm described above specifies HoM @sources are allocated
to HuC processes. But a general purpose desktop systenuakother types of processes.
Moreover, processes may be classified as belonging to eliffetasses during their exe-
cution. In this section, we describe the allocation of CP&bteces between the different
classes, and the issue of class mobility.

8.1 Scheduling-Classes Hierarchy

The Linux scheduler is POSIX compliant and therefore suggbree scheduling classes:
FIFO, Round-Robin, and OTHER (the latter is not defined by BXJ&it its implemen-
tation is mandated and it is the default [Gallmeister 199%ach process is associated
with a single class that can be changed through the stasghedisetparamsystem call.
FIFO and Round-Robin processes are categorized by POSlealisne, and when ready
to run should always be preferred over OTHER processes. rtlmiately, in Linux all
three schedulers are hard-coded into one complex functioohwnakes it very tricky to
add adequate handling for HUC processes. For this reasoawveedecided to rewrite the
scheduler in such a way that will allow new policies to be lgascorporated. Our design
was inspired by that of the Solaris 8 scheduling scheme [Mand McDougall 2001] and

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 . Yoav Etsion et al.

[Class | Subclass | Description
Realtime | FIFO POSIX first-in first-out
RR POSIX round-robin
KTHREAD | kernel threads
Collective | HUC processes identified as HUC
OTHER Linux default
Idle IDLE idle loop

Table Il. Scheduling classes hierarchy ordered by importance.

can be described adéerarchical schedulerThe various scheduling classes are organized
in a hierarchy, in order of importance. Whenever the screxduteds to choose the next
process to run, it goes to the top class with a ready procedsasks” it to pick its most
desirable process.

Table Il lists the scheduling classes we have implementediirscheduler. FIFO and
RR are retained with the same semantics as in Linux. KTHRE#&Padpulated by the
various kernel processes which may be considered as pdreaiperating system (e.g.
daemons involved with paging). Originally, such processdenged to the OTHER class.
But once we identify HUC processes and give them a higherigytive need to ensure that
we do not starve these system processes, as this may haestialis effect on the system.
We therefore created the KTHREAD class, above the HUC clagsstill below the FIFO
and RR classes. Prioritizing within the KTHREAD class is d@s in the original OTHER
class.

Next come all the processes that should share availablanesoand all make progress
collectively. Our scheduler’s goal is that HuC processerikhbe prioritized relative to
other processes. The HUC class includes all processesfidérds HuC by virtue of
having positive input or output ratings. Scheduling wittiie HUC class is as described in
the previous section.

OTHER processes are scheduled as in standard Linux: eadts laiscation, and the
sum of allocations define the epoch. But this does not neilyssarrespond to the epoch
as defined in Section 7. To make ends meet, we rescale the ejoh so as to fit into
our epoch (200ms) after subtracting the allocations to th€ processes.

IDLE currently contains only the idle loop. However, it isgzible to envision situations
in which this class will be used to run processes that shonilgl lze run when the system
doesn’t have anything better to do. For example, one cand@WNE subclass for special
system processes that perform self tuning [Feitelson ardida 1999], and a STANDBY
class for user processes such as participation in the SEGi@effort.

8.2 Class Allocations and Class Mobility

Traditional Unix schedulers are stable because they iedutegative feedback loop. High
priority processes get to run and lose priority, whereasimgprocesses gain priority. As
a result active processes quickly converge to the sameitgrievel and share the CPU
equitably.

Our scheduler has the potential danger of an unstable yo&iedback loop: processes
that generate output get a higher allocation, which alldvesrt to run more, potentially
creating even more output (obviously input cannot be agfitbly a positive feedback loop
since it solely depends on the user). Thus, a new HuC procagbeunable to get started
and gain enough momentum to compete with existing HUC psesesThis may not to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 21

O Xine
m X server
m Stressors
m other

CPU utilization [%]

012345678910 012345678910
Number of Stressors

Fig. 7. Competition between the Xine movie player and backgroureksor processes. Using the Linux sched-
uler (left), Xine receives less CPU resources as more stresse added, resulting in increased frame loss rates.
With the HuC scheduler (right) it receives enough resoudespite this competition.

be a problem for new processes that inherit the user-irtteracounts of their parents,
but it could in principle happen to processes forked by naiGHbrocesses or processes
that change their nature over time. We therefore need ai@oltitat allocates CPU time
to processes despite the fact that their I/O ratings are lomil o Luckily, this meshes in
nicely with the concept of an epoch. During an epoch, alvagbrocesses get a chance to
run. Rather than defining the epochs within each schedulassgcwe can define an epoch
to span all collective classes.

The allocation of time within the epoch depends on the cla$sC processes get as
much of the allocation as they need to meet the target outpat IOTHER processes get
whatever is left over. Note that if the HuC processes hava héguirements, they will
tend to monopolize the full epoch; time will be left over ofiflyall HuC processes reach
their knee. If not enough time is left for the OTHER class, d#p@ch is rescaled so as
to ensure that each OTHER process gets at least one tick.isThesded to ensure that
such processes will be able to generate some output and ¢cosie identified as HuC.
And indeed, our tests indicate that starvation is not a pmbhnd processes that generate
output are quickly identified and prioritized.

It should be noted that our approach is only one of a wholetapmmf possibilities. Itis
also possible to decide to give the OTHER class a certairesifahe CPU time, or a share
that depends on the number of processes in it. For examjdenty be desirable in order
to guarantee good progress for background tasks (e.g. tatiops or network downloads)
even when the user is engaged in an interactive game to passnh. Evaluating such
options is currently left for future work, while the currentplementation simply favors
the HUC class.

9. EXPERIMENTAL RESULTS

To evaluate the concept of HuC scheduling and our Linux impletation of this concept
we conducted measurements with several workloads. Theloaatk typically included
one or more HuC process, and different numbers of streseoepses that compete for the
CPU. Results here are slightly different from the prelimnjnanes in [Etsion et al. 2004]
due to further development of the scheduler.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 . Yoav Etsion et al.

o 25 = small
D 20 20 ' g’('g
o

0 X

Q 15 A 2% 15 A

%) >

Q 10 o 10 A

S O

C 54 5

LC

0 - 0 - =
Linux HuC Linux HuC
Scheduler

Fig. 8. CPU allocations and frame rates of competing Xine vieweth diiferent sizes. Small is 1:1, and big is
2:1, in all cases showing the same movie coded with 30 frareesgzond.

9

5 Xine big —
B Xine big

2 Xine small -
g Xine small =
Q

S

©

S

L

0 5 10 15 22 27 32 37 0 5 10 15 22 27 32 37
Time [min]

Fig. 9. Allocations to a dynamic workload of Xine movie players. FXine players of different sizes are started
5 minutes apart and run for 22 minutes each. Left: Linux sofezdRight: HuC scheduler.

9.1 Prioritizing HUC Processes

A striking result is shown in Fig. 7. This shows profiles of exting Xine showing a movie
at a 2:1 size ratio, with up to 10 stressor processes. Xindten¥ server require about
60% of the CPU in this case. Under the original Linux scheduley do not get this
percentage when there are two or more stressors, resuitangincreasing frame-loss rate
as stressors are added. But with the HuC scheduler Xine ané Klentified and given
priority over the stressor processes, and they continuett6@j6 of the CPU regardless of
the number of stressors. As a result the frame loss rate nsmagligible.

Similar results are obtained for other applications as.watlthe low end of CPU us-
age, applications like the Emacs editor are unaffected &yHiC scheduler. Emacs only
requires about 1% of the CPU resources, and gets it even theldefault scheduler; the
HuC scheduler provides the same.

9.2 Equalizing Output Production

The above experiments show that HUC processes are corpeitititized relative to non-
HuC processes. But what happens when multiple HuC processepete against each
other? As an example, we test the performance of 4 Xine mdaigeps showing a 22-
minute movie at two different sizes. The results are that.ihex scheduler attempts to
provide them with equitable CPU resources, allowing thellsomes to display many more
frames (Fig. 8). Under HUC, on the other hand, the averagesfrates are equalized. To

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 23

)
& gg o Xine big —
= . Xine big
g = | m] Xine small -
0w 20 : 1 Xine small -
o 15]
E 10 ‘ i 1
S osp 0 T | B
L 0 H i i 3 i H i i i

0 5 10 15 22 27 32 37 0 5 10 15 22 27 32 37

Time [min]

Fig. 10. Allocations to a dynamic workload of Xine movie players, wé 2-way parallel kernel make as back-
ground load. Four Xine players of different sizes are sthfteninutes apart and run for 22 minutes each. Left:
Linux scheduler. Right: HuC scheduler.

achieve this, about 3% of CPU time is taken from each of theetkmall Xines, and given
to the large one.

Another important question is how the allocation adjustiyieamic load conditions. To
check this we again measure four Xines, starting them up antmintervals. The above
behavior was repeated, with the HuC scheduler adjustingations so they all achieve
the best rate possible at each instant (Fig. 9 right), wisareder Linux the small window
sizes are given priority when the system is overloaded)(I&br example, in the period
between 10 and 15 minutes into the test, two big and one sniradl Xre active. As the
small one needs less CPU, it is unperturbed under Linux, alydloe big ones suffer. With
the HuC scheduler, the big ones achieve a somewhat higheefrate, at the expense of
the small one that is also brought down to this level. Alsernbat new processes manage
to get up to speed very quickly and don't fall behind those #ra already running (the
vertical lines indicate a Xine instance start or stop). Tiiespecially noteworthy given
that the processes are spawned by a script, and therefor dtart out identified as HuC.

9.3 Combining HuC Prioritization with Output Equalization

After separately demonstrating the HuC scheduler’s &slito both identify human cen-
tered processes over background ones and equalize the# fede, the remaining question
is how those two effects combine. To examine this combinatie repeated the previous
4-Xine experiment depicted in Figure 9, but with a 2-way pat&ernel make running as
background load. The results are shown in Figure 10. On fheviesee the frame rate
achieved by all the different Xine players when using thed&iLinux scheduler, with the
HuC scheduler on the right.

As opposed to the previous background load, in this caseotied ik not purely CPU
bound, but rather both CPU and I/0O bound. The most notabéetsfi the Linux scheduler
are the perturbations in the frame rate throughout the rsbpiaying time. Since both
Xine — running a~ 300MB movie — and the kernel compilation are I/O bound, givin
both equitable shares for the CPU results in enhanced depepan disk performance.
This dependency is best demonstrated in the first five minftbe experiment, when only
a single Xine is running. When comparing the stability of fieene rate achieved during
this time with that achieved between minutes 10 and 15 inrei§u— time in which the
CPU was also overloaded — we see that the kernel compilatamatically degrades
the predictability of the 1/0 bandwidth available to Xinesulting in a perturbed frame

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 . Yoav Etsion et al.

=

£, 10 _Linux Scheduler 10 -HUC Scheduler

? 8 8 -e- - - ® OpenOffice
ine

] —-=--0 i i

g 67,0 6 S Eiae "

c 4 4

O

T 2 2

o

0 0 T I [

] 0123456782910 0123456782910

Number of Stressors
Fig. 11. Average dispatch latency of HuC applications under theudedgand HuC schedulers.

rate. Another effect caused by the Linux kernel’s attempdoalize CPU allocations are
the different frame rate ranges achieved by the smaller aygkbXine processes. Even
though both suffer from extreme perturbations, the difiesein the frame rate ranges is
clearly visible.

When using the HuC scheduler, on the other hand, CPU altot#&igeared towards
multimedia and the frame rate is stable throughout the mplaging time. The only
changes in the frame rates occur when more Xine processésusmehed — at minutes
5, 10, and 15 into the test — but again these result in promgatedul degradation of all
processes’ frame rates into a single, relatively stablgeamhese changes in the frame
rates correspond to the ones shown in Figure 9, with the aefifiects of 1/O collisions.

Equalizing output production is still prone to a few pattgital cases of mis-scheduling:
a small window showing a high frame rate movie might be moygartant to the user than
a competing larger window showing a lower frame rate movkee frame rate equalization
metric might reduce the small window’s frame rate, conttarthe users’ wishes. How-
ever, consciously scheduling such a case correctly (natethle classic, CPU equalizing
scheduler will make this decision unconsciously) requiresvledge about the importance
of movies’ content which requires explicit user intervention. The generalecthough is
closer to the examples depicted in figures 7, 8, 9 and 10, sigothie superiority of our
scheduling metric over the classic CPU equalizing one irtimedia environments.

9.4 Keeping Latency Low

The HuUC scheduler not only allocates CPU time preferegttalHUC processes, it also
does so promptly. The left of Fig. 11 shows the dispatch Btef various process types
under loaded conditions when served by the Linux schedulerdefine dispatch latency
as the period from entering the ready queue to being dispdjcihe right side shows the
results of running the same experiment with the HuUC schedtife dispatch latencies of
HuC-processes remains very low (typicatty2ms), regardless of the background load.
While the worst results are obtained for Emacs, they atleestiiemely good in absolute
terms, and significantly lower than the 150ms threshold ofidwn perception [Dabrowski
and Munson 2001]. To verify this, Fig. 12 shows the totaldatefrom the time of a
keystroke (as timestamped in the device driver) to when treesponding character is
displayed on the screen (as timestamped upon completiolneb) server). The average
grows to about 6ms, which corresponds to three dispatchdege (from whatever process
is running to X, then to Emacs, and back to X again). Beforéddaystroke we have
verified that Emacs has timed out as a HUC process, and rdttoiee OTHER class. As
such, the maximal measurements of up to 30ms include then@aded for the scheduler

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 25

%)

E 3 |, |Linux average —+—
; o1 Linux maximum

o O 1 |HuCaverage -
g 20 = Hretd 4 |Huc maximum =
© 157 By |

— 10} O B

o S) %%

~ 0 F— . :

0 1 2 3 4 5 6 7 8 9 10
Number of stressors

Fig. 12. Latency of displaying characters typed into Emacs.

to identify Emacs as a HuC process again. But even thisvelgthigh value is actually
extremely good, and there is no real need for additionakitidation, which might come
at the expense of other competing applications.

Another point worth mentioning in this context is the impeovresponsiveness of the
window-manger itself. While conducting measurementsliriag heavy background load
under the default scheduler, we have noticed that movinglevius around produces ex-
tremely jerky and abrupt results. By contrast, the HuC saleedmpressively rectified this
misfeature: identifying the window-manager as HuC allosewoth window movement
which (subjectively) felt as if no background load was prese

9.5 Costs

One cost of running a scheduler is the direct overheadsvadah its operations. Cal-
culating all priorities each second when new informatioivas takes 69,276 cycles on
average, aggregating at omly0.01% overhead of the CPU'’s cycles on our 664MHz pro-
cessor, as it only occurs once a second. Other overheadsiéstarting a new epoch
which takes 14,878 cycles, dispatch overhead is about Lyd8s, and moving a process
between classes takes 1,425 cycles. As dispatch and eothatcur more often, their
total effect is higher, and stands at 0.6% and 0.04% resgdctiThe total overhead of the
scheduler activity is thus about 0.65% These results shtiifiany dependence on queue
length with O to 10 stressors and several Xines running. ingarison, averaging both the
dispatch and epoch restart in the default Linux 2.4 scheduileeasured at 5000 cycles
[Tsafrir 2001] total, resulting in roughly similar overtg=a

As noted in Section 3.1, these measurement are not apgitatihe Linux 2.6 ker-
nels, as data structure changes made the dispatch overtuegubndent of the number of
runnable processes in the system. Also, time slices for gaahtum are now dispensed in
the previous schedule-out event, effectively cancelirgegpoch restart loop.

Another cost of the HUC scheduler is the possible effect antdoC processes. For
example, such an effect occurs when network activity ocguthe background. Under
sufficiently high loads, allocating the CPU preferentiallyHuC activities may deprive
the networking process from timely access to the CPU, reduttie achievable commu-
nication bandwidth. For example, we ran a test of Xine shgverb0 frames per second
movie at double size together with a communicating procé&s® achieved Xine frame
rate grows from 21 under Linux to 37 with the HuC scheduler.aAgsult, the achieved
communication bandwidth drops from 10.9MB/s to 3.9MB/s.

Finally, it should be noted that the HUC scheduler may beeqtdde to some user

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 . Yoav Etsion et al.

recent time to retain I/O status or count (8 sec)
countout metric for output (normalized pixels)
Tupdate period of updates from X to kernel (1 sec)
epoch maximum scheduling cycle (200 ms)

«a factor by which initial allocation grows (2)
init initial allocation for new HuC (1% of epoch)

min_alloc minimal allocation to OTHER process (1 tick)

Table lll. Configurable parameters of user-I/O monitoring and HuC calirey.

counter-measures. For example, it is possible to envisiapalication that opens a small
window for a short time just in order to perform some spurioutput and gain priority.
While we do not currently address such concerns, we notatbst schedulers are actually
open to such manipulations.

10. DISCUSSION AND CONCLUSIONS

To summarize, the main observation leading to our work isitigimpossible to use CPU
usage patterns to identify processes that are of immeditgteest to the user [Etsion et al.
2004]. A possible alternative is to directly track the aititds of the user, and compute the
closure of processes that participate in user interactidhese processes, which we call
human-centered, are then prioritized relative to othecgsees in the system.

Our main contribution is the proposal of a new metric to gifposer interest in running
processes, based on their input and output events. Thisheasused to prioritize the
processes and allocate CPU resources with the goal beiradizgg output production.
We have found this new metric to be much more suitable forimellia environment than
the contemporary metric of equalizing CPU allocations. lengenting this idea involved
considerable work and modifications to the Linux system anseXer, because it runs
contrary to current designs. As such, it should be undedstioat many issues were left
open. For example, the system has various parameters (domtéobr are listed in Table
[ll) that need to be optimized. In particular, the choiceswade were geared towards
multimedia applications such as movie viewers. Other @d®imay be more appropriate
for other workloads.

The idea of prioritization by user I/O opens many new anddning directions. For
example, being based on I/O events also allows our schettutespond to very simple
cues from the user. Simply clicking on a window will cause aewént to be sent to the
associated application, and will raise its priority, eveit tcompletely ignores the actual
input. This opens intriguing possibilities for new typesimteractions between the user
and the system. It is also possible to consider a tighterloaupf the machine and the
user. In our work, we need to infer what the user wants fronutirgmd output events.
But one can also use devices that can provide even betteuneeaasnts of user comfort
or frustration, e.g. galvanic skin response meters andreg&gm sensors [Scheirer et al.
2002], a webcam joint with a face recognition software takrifithe user is looking at the
screen [Dalton and Ellis 2003], or even pupil sensors toktkalsich window the user is
looking at, like some SLR cameras use for accurate focusiagdn Inc. 2004]. This will
enable the user’'s mood and actions to directly affect sysiemavior.

Acknowledgements
We would like to thank the reviewers for their comments, viattielped improve the paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Process Prioritization Using Output Production:Scheduling for Multimedia . 27

REFERENCES

BANACHOWSKI, S. A.AND BRANDT, S. A. 2002. The BEST scheduler for integrated processitugst-effort
and soft real-time processes. NMultimedia Computing and Networkinintl. Society for Optical Engineering
(SPIE), San Jose, CA, USA, 46-60.

BENSON, K. B. AND FINK, D. G. 1990. HDTV: Advanced Television for the 1990dcgraw-Hill, Berkeley,
CA, USA.

BoVET, D. P.AND CESATI, M. 2001. Understanding the Linux KernelO'Reilly & Associates, Sebastopol,
CA, USA.

BRUNO, J., GABBER, E.,OzDEN, B., AND SILBERSCHATZ, A. 1998. The Eclipse operating system: Provid-
ing quality of service via reservation domains. Uisenix Annual Technical Confhe Usenix Association,
Berkeley, CA, USA, 235-246.

CANDEA, G. AND JONES, M. B. 1998. Vassal: Loadable scheduler support for mutiey scheduling. In
Second USENIX Windows NT Syrihe Usenix Association, Berkeley, CA, USA, 157-166.

CANON INC. 2004. EOS ELAN 7N/7NE Camera. www.canon.com.

CHILDS, S.AND INGRAM, D. 2001. The Linux-SRT Integrated Multimedia Operatingt®yn: Bringing QoS
to the Desktop. IHEEE Real-time Technology & Apps. SynpEE Computer Society, Los Alamitos, CA,
USA, 135-140.

CORBET, J., RUBINI, A., AND KROAH-HARTMAN, G. 2005. Linux Device Drivers 3rd ed. O'Reilly &
Associates, Sebastopol, CA, USA.

DaBROWSKI, J. R.AND MUNSON, E. V. 2001. Is 100 Milliseconds Too Fast? @onf. Human Factors in
Computing SystACM Press, New York, NY, USA, 317-318.

DALTON, A. B. AND ELLIS, C. S. 2003. Sensing User Intention and Context for Energpdgament. In
Workshop on Hot Topics in Operating Systeifise Usenix Association, Berkeley, CA, USA.

DupA, K. J. AND CHERITON, D. R. 1999. Borrowed Virtual Time (BVT) Scheduling: Supfag Latency
Sensitive Threads in a General Purpose ScheduleACIM Symp. on Operating Systems Principle€M
Press, New York, NY, USA, 261-276.

EBRAHIMI, T. AND PEREIRA, F. 2002.The MPEG-4 BookPrentice Hall, Upper Saddle River, NJ, USA.

ETsSION, Y., TSAFRIR, D., AND FEITELSON, D. G. 2003. Effects of Clock Resolution on the Scheduling of
Interactive and Soft Real-Time Processeslniih Conf. on Measurement & Modeling of Computer Systems
ACM Press, New York, NY, USA, 172-183.

ETSION, Y., TSAFRIR, D.,AND FEITELSON, D. G. 2004. Desktop Scheduling: How Can We Know What the
User Wants? Inntl. Workshop on Network & Operating Systems Support f@itBi Audio & Videa ACM
Press, New York, NY, USA, 110-115.

ETSION, Y., TSAFRIR, D., KIRKPATRICK, S.,AND FEITELSON, D. G. 2005. Fine grained kernel logging with
klogger: Experience and insights. Tech. Rep. 2005-35, @dfcComputer Science and Engineering, Hebrew
University. June.

EVANS, S., Q.ARKE, K., SINGLETON, D.,AND SMAALDERS, B. 1993. Optimizing Unix Resource Scheduling
for User Interaction. IrfJsenix Annual Technical Conf. (SummeéFhe Usenix Association, Berkeley, CA,
USA, 205-218.

FEITELSON, D. G.AND NAAMAN , M. 1999. Self-Tuning System$EEE Software 162 (Mar/Apr), 52—60.

FLAUTNER, K., UHLIG, R., REINHARDT, S.,AND UDGE, T. M. 2000. Thread-Level Parallelism and Interactive
Performance of Desktop Applications. Axch. Support for Programming Languages & Operating System
ACM Press, New York, NY, USA, 129-138.

GALLMEISTER, B. O. 1995. Posix. 4: Programming for the Real World'Reilly & Associates, Sebastopol,
CA, USA.

GOEL, A., ABENI, L., KRASIC, C., SNOW, J.,AND HAN WALPOLE, J. 2002. Supporting Time-Sensitive
Applications on a Commodity OS. IBymp. on Operating Systems Design & Indfile Usenix Association,
Berkeley, CA, USA, 165-180.

GOYAL, P., Quo, X.,AND VIN, H. M. 1996. A Hierarchical CPU Scheduler for Multimedia @qteng Systems.
In Symp. on Operating Systems Design & Infile Usenix Association, Berkeley, CA, USA, 107-121.

GRAY, K. 2003. Microsoft DirectX 9 Programmable Graphics Pipelinglicrosoft Press, Redmond, WA, USA.

LovE, R. 2005.Linux Kernel Developmengnd ed. Novell Press, Indianapolis, IN, USA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 . Yoav Etsion et al.

MASSALIN, H. AND Pu, C. 1990. Fine-grain adaptive scheduling using feedb&smputing Systems 3,
139-173.

MAURO, J.AND MCDOUGALL, R. 2001. Solaris Internals: Core Kernel ArchitecturePrentice Hall, Upper
Saddle River, NJ, USA.

McKusick, M. K., BosTic, K., KARELS, M. J.,AND QUARTERMAN, J. S. 1997.The Design and Imple-
mentation of the 4.4 BSD Operating Systékddison Wesley, Reading, MA, USA.

MOSBERGER D. AND PETERSON L. L. 1996. Making Paths Explicit in the Scout Operating t8ys. InSymp.
on Operating Systems Design & Imfphe Usenix Association, Berkeley, CA, USA, 153-167.

NIEH, J., HANKO, J. G., NORTHCUTT, J. D.,AND WALL, G. A. 1993. SVR4 UNIX Scheduler Unacceptable
for Multimedia applications. Iintl. Workshop on Network & Operating Systems Support fgitBi Audio &
Videa ACM Press, New York, NY, USA, 35-48.

NIEH, J.AND LAM, M. S. 1997. The Design, Implementation and Evaluation ofARW: A Scheduler for
Multimedia Applications. IPACM Symp. on Operating Systems Princip®&8M Press, New York, NY, USA,
184-197.

NIEH, J., VAILL, C.,AND ZHONG, H. 2001. Vitrual-Time Round-Robin: An O(1) Proportiondi€8e Sched-
ulers. InUsenix Annual Technical Confhe Usenix Association, Berkeley, CA, USA, 245-259.

PauL, B. 2000. Introduction to the Direct Rendering Infrastrwet
http://dri.sourceforge.net/doc/DRIintro.html.

RAU, M. A. AND SMIRNI, E. 1999. Adaptive CPU Scheduling Policies for Mixed Mukidia and Best-Effort
Workloads. InModeling, Anal. & Simulation of Comput. & Telecomm. SystéEiSE Computer Society, Los
Alamitos, CA, USA, 252-261.

SCHEIFLER, R. W.AND GETTYS, J. 1986. The X Window systemACM Trans. Graph. 52, 79-109.

SCHEIRER, J., FERNANDEZ, R., KLEIN, J.,AND PICARD, R. W. 2002. Frustrating the user on purpose: a step
toward building an affective computenteracting with Computers 14, (Feb), 89-169.

SHNEIDERMAN, B. 1998.Designing the User Interfac@rd ed. Addison Wesley, Reading, MA, USA.

SILBERSCHATZ, A., GALVIN, P. B.,AND GAGNE, G. 2004. Operating System Concepfgh ed. Addison
Wesley, Reading, MA, USA.

SOLOMON, D. A. AND RUSSINOVICH, M. E. 2000.Inside Windows 20Q®rd ed. Microsoft Press, Redmond,
WA, USA.

STEERE, D. C., GOEL, A., GRUENBERG, J., MCNAMEE, D., Pu, C.,AND WALPOLE, J. 1999. A Feedback-
driven Proportion Allocator for Real-Rate Scheduling. Symp. on Operating Systems Design & Inifiie
Usenix Association, Berkeley, CA, USA, 145-158.

TORVALDS, L., Cox, A., AND MOLNAR, |. 2003. Improving interactivity. http://kerneltrapginode/view/603.
Linux Kernal Mailing List, Summarized Thread.

TSAFRIR, D. 2001. Barrier synchronization on a loaded SMP using thasp waiting algorithms. M.S. thesis,
School of Computer Science and Engineering, Hebrew Untyederusalem, Israel.

WALDSPURGER C. A. AND WEIHL, W. E. 1994. Lottery Scheduling: Flexible Proportionalah Resource
Management. I'8ymp. on Operating Systems Design & Injile Usenix Association, Berkeley, CA, USA,
1-11.

ZHANG, Y. AND SIVASUBRAMANIAM , A. 2001. Scheduling Best-Effort and Real-Time Pipelingzbhcations
on Time-Shared Clusters. KCM Symp. on Parallel Algorithms and Architectures(SPAMOM Press, New
York, NY, USA, 209-218.

ZHENG, H. AND NIEH, J. 2004. SWAP: A scheduler with automatic process depeaydaeiection. InfSymp.
on Networked Systems Design & Iniphe Usenix Association, Berkeley, CA, USA, 183-196.

ZIMMERMANN , R. 2003. Streaming of DivX AVI movies. IACM symp. on Applied ComputingCM Press,
New York, NY, USA, 979-982.

ACM Journal Name, Vol. V, No. N, Month 20YY.

