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Abstract—Program comprehension accounts for a large por-
tion of software development costs and effort. The academic
literature contains research on program comprehension of short
code snippets, but comprehension at the system level is no less
important. We claim that comprehending a software system is
a distinct activity that differs from code comprehension. We
interview experienced developers, architects, and managers in
the software industry and open-source community, to uncover
the meaning of program comprehension at the system level. The
interviews demonstrate, among other things, that system com-
prehension is detached from code and programming language,
and includes scope that is not captured in the code. It focuses on
the structure of the system and less on the code itself. This is a
continuous, iterative process, which mixes white-box and black-
box approaches at different layers of the system, and combines
both bottom-up and top-down comprehension strategies.

I. INTRODUCTION

Software maintenance is responsible for the majority of
the development costs of a software system [3]. There is
a well-established direct relationship between the ability to
comprehend the software and the cost of software maintenance
[4]. Program comprehension is therefore a key element in the
software development life cycle. Indeed, many tools and prac-
tices that were developed in the software development world
over the last few decades—from UML architecture diagrams,
through modern programming languages, and on to design
patterns and coding practices—are all targeted at improving
the comprehensibility and maintainability of software, and thus
reducing maintenance costs [2], [32].

Research in program comprehension focuses on how de-
velopers understand code, by analyzing the cognitive models
that are employed in code comprehension [6], [18], [27],
suggesting tools and methodologies to improve code compre-
hension [14], [11], or analyzing the impact of code elements on
comprehension [12], [13], [1]. Such studies typically employ
short code segments. When considering comprehension of a
single function with an average complexity, it is expected that
an expert may be able to evaluate every possible code path,
understand the meaning of each variable, and successfully
predict the output of the function given a particular input.
Yet due to the volume of code in a large software system,
it is not possible for one person to understand the entire
system in the same way one understands a single function. And
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while the key to understanding a function is understanding
the programming language’s syntax and the semantics created
by the developer, the key to understanding larger volumes of
code is understanding abstractions and concepts. This requires
understanding that is not embedded in the code itself.

Large complex software systems are planned, developed,
and maintained regularly in the software industry. However, it
is not clear how software systems are comprehended based on
the existing software comprehension literature. Do the devel-
opers of these systems really understand the entire system?
To what extent do they understand it? What aids do they
use to better understand the system? More generally, what
is the meaning of the term “program comprehension” in this
context, and how does it differ from the comprehension of
small segments of code?

We try to answer these questions through a series of in-
depth interviews with experienced developers. We asked about
the different levels of comprehension, the comprehension
strategies that are required for different tasks, the role of doc-
umentation in comprehension, and the special skills required
for system comprehension. Some of our main findings are:

o System understanding is largely detached from code and
programming language, and includes scope that is not
captured in the code.

e Understanding at a larger scope shifts focus from the
code to its structure (architecture): the components, their
connections, data flow, and also the considerations that
led to this design.

o There are different levels of comprehension. In particular,
there is a significant difference between black-box and
white-box comprehension.

o Understanding a software system is a lengthy and iter-
ative process, which includes a mix of several levels of
comprehension and several comprehension strategies.

o There is a mutual interplay between software comprehen-
sibility and quality. Comprehensibility is an element of
software quality. Conversely, quality improves compre-
hensibility and affects the need to understand.

e Understanding a system requires a different skill-set
compared to the skills required for programming.

A. Terminology

Throughout the paper we discuss a hierarchical model of a
software system that includes the following layers:



o Function: as common in most modern programming
languages (such as C/C++/Java).

o Class: as common in most modern object oriented lan-
guages (such as C++/Java). We use a simplified model
where a class consists of a collection of functions (meth-
ods) and common state variables (data members), with
a differentiation between public methods that can be
used from outside the class and private methods which
are internal. This simplified definition, which does not
require inheritance, includes many non-object-oriented
programming languages with similar constructs (such as
modules in C modular programming).

« Package: we use the term “package” to loosely refer to a
collection of classes that provide a cohesive functionality.
Some of the research participants objected to this term
and proposed other terms or definitions. The term is
meant to provide an additional hierarchical level between
a class and a system.

o System: we use the term “system” to refer to an entire
software system. The exact definition of a system is
debatable and its boundaries may also be understood in
different ways.

B. Related Work

Several recent works measured code comprehension in
quantitative experiments using short code snippets. Ajami et al.
[1] measured the time it took experimental subjects to answer
questions related to code snippets, and showed, among other
results, that loops are harder to understand than conditional
statements. Beniamini et al. [5] showed that in some contexts
single-letter variable names can be meaningful. Other studies
performed controlled experiments to measure the impact that
trace visualization [9], reactive programming [26] or UML
object diagrams [33] have on program comprehension.

Xia et al [35] measure the different computer-mediated
activities related to program comprehension, finding they
account for 58% of the time in real-life environments. They
also show that senior developers spend less time on program
comprehension. Von-Mayrhauser et al. provide a thorough
survey of cognitive models used in program comprehension
[34]. They analyze various maintenance tasks, and map each of
them to the cognitive models. Razavizadeh et al. [24] suggest
aiding comprehension by providing multiple viewpoints to the
architecture. Kulkarni performed a case study of comprehend-
ing a large software system (500,000 lines of code) for the
purpose of reuse. He used a mix of top-down and bottom-up
approaches to eventually locate about 25,000 lines of code
that were critical to understanding the entire system [15].
Other works also provided methods for identifying the most
important parts of a large software system as a means for
system comprehension [25], [28].

Petersen et al. performed a case survey on selection of
components to integrate into a system [23]. This topic is a
particular facet of system comprehension—it requires under-
standing an unknown software component and how it relates to
the system requirements. In 9 of the 22 cases, the final decision

was perceived negatively. This may point to the difficulty in
system comprehension and the decisions in that area. Kulkarni
and Varma also discuss problems with package reuse practices
and the importance of structured decisions [16].

Storrle [31] performed a controlled experiment on UML
comprehension, and derived guidelines for UML diagram
layout and diagram size. He shows a negative correlation
between the experiment score and the diagram size. This may
be related to the complexity of the architecture conveyed by
the UML diagram.

II. METHODOLOGY

The concept of comprehension is difficult to measure.
Several methods for measuring different possible aspects of
comprehension exist, and have been used in controlled ex-
periments in small-scale code comprehension. However, the
meaning of “comprehension” at the software system level is
not well-defined. Clarifying this is the main objective of our
work. Given that this question concerns human understanding,
we looked for tools in the social sciences toolbox. Since
some of the basic terminology required to describe system
comprehension is missing from software engineering research,
as well as models of what such comprehension means, we
take an approach of exploratory qualitative research. Such an
approach is targeted to establish basic models, and seed future
empirical and more quantitative research efforts.

After defining our own perceived model of system com-
prehension, we constructed a semi-structured one-on-one in-
terview plan. This was intended to uncover the participant’s
existing thoughts on system comprehension, while allowing
further discussion beyond the interview plan in case the partic-
ipant raised thoughts and ideas that we found to be important
to program comprehension. Since we are interested in software
system comprehension as it is commonly practiced in the
field, we performed interviews with 11 experienced devel-
opers, managers, architects, and entrepreneurs from different
companies with different company profiles. The interviews,
each about an hour long, were recorded and then transcribed.

The analysis of the interviews followed common text anal-
ysis procedures. Both authors carefully read each interview
transcript, separately. Each one of us highlighted any quote
that was related to system comprehension, specific activities
used for comprehension, ideas about measuring and proving
comprehension, or connections between different aspects of
comprehension. This method of duplicate, separate analysis is
called “analyst triangulation”, and is used in order to increase
research validity [7]. We searched for common themes that
arose in several places in a single interview or in multiple
interviews, including contradictions between those instances.
We also looked for thoughts that supported or contradicted
our initial perceived model. Finally, we compared our notes
in order to arrive at a joint analysis of the text.

It should be noted that unlike common text analysis method-
ology, we are not necessarily seeking common ground such
as ideas that are widely agreed upon. We found that outliers



should not be discarded, quite the contrary. Experienced de-
velopers develop their own models of system comprehension,
but rarely discuss them. In some cases, a participant used
wording that shed light on ideas that were latent in our original
model and in other interviews. Thus ideas that are expressed
by a single individual sometimes inspire a modification in the
model and allow us to view things differently.

The interviews were conducted in Hebrew. The citations
from the interviews quoted in the following are translations of
the original quotes into English, with minimal rephrasing for
readability and flow.

A. The Interview Plan

We used a semi-structured interview plan designed to take
about an hour. It included the following discussion topics:

o Brief introduction.

o The participant’s professional experience and program-
ming-related history.

« Introduction of the hierarchical view of a software system
(function, class, package, and system) as defined in
Section I-A. We solicited feedback on this definition.

o Definition of “comprehension” in the context of the vari-
ous layers—what does it mean to understand a function?
What does it mean to understand a class? etc.

e The various levels of comprehension required for differ-
ent programming tasks in the different software layers—
can you use a function/class/package without understand-
ing it? What level of understanding is required to use a
function/class/package? What level of understanding is
required to debug or maintain a function/class/package?

« Inter-dependencies between the comprehension of differ-
ent layers: does one need class level understanding in
order to understand a method in the class?

o Comprehension process for the different layers—how do
you go about understanding a function/class? What is the
first thing you look at when you evaluate a package?

e Proof of comprehension in the different layers: how do
you test one’s comprehension of a function/class/pack-
age/system? What methods from the research literature
resonate with actual ways of testing comprehension?

o Importance of various aids for comprehension in the
different layers (different types of documentation, source
code, usage samples, etc.).

o Roles in the company that are related to software com-
prehension: who are the people that have a system level
comprehension? What is their percentage in the develop-
ment group? What are their roles?

« Definition of system architecture—how would you define
system architecture? We provided some general state-
ments on architecture and solicited feedback.

o Development process of system architecture—is this an
individual effort or a group effort? Are there documents
or any other forms to communicate the architecture?

o Importance of system architecture understanding and
relation to system comprehension.

The full plan is available online at http://tiny.cc/interview-plan.

B. The Participants

We interviewed 11 experienced participants from different
companies and roles:

e [AK], a developer and architect with 20 years of ex-
perience, mostly in C in embedded programming and
system applications; works for an international corporate
of 10,000+ employees (company A).

e [MN], a developer and architect with 20 years of experi-
ence, mostly in C in embedded programming and system
applications, also experienced in C++ and Java; works
for company A.

o [GA], a software team manager with 23 years experience,
including programming experience in C and C++ and
managerial experience with embedded programming and
algorithms teams; works for company A.

e [ES], a software team manager with 20 years experience
and programming experience in C, C++, and C#, mostly
in desktop and web applications; works for an interna-
tional corporate of 10,000+ employees (company B).

e [AO], a developer and architect with 20 years of expe-
rience, mostly in C++ and C# desktop and web applica-
tions; works for company B.

e [SN], a developer with 8 years of experience, mostly in
C in system applications; works for company B.

e [YI], a software manager with 6 years of experience,
founder and CTO of a start-up company of 100-200
employees developing mobile applications (company C).

e [DL], a team leader with 13 years of experience, mostly
in C, C++ and python; works for company C.

e [BY], a team leader with 4 years of experience, mostly
in C and objective C; works for company C.

e [BG], a developer with 17 years of experience, works at
a small start-up company of 10-20 employees and is also
a renowned developer in the open-source community.

e [AR], a university professor and researcher with 28 years
of experience, and industry experience as founder and
CTO of multiple start-up companies.

We opted to interview developers on the more senior end of the
scale, assuming senior developers have experience with large-
scale system and perspective on the comprehension process.
The relatively low number of participants is acceptable in this
type of research [10], especially given that the interviewer
(the first author) had a close association with them being an
architect with 18 years experience himself.

III. DEPTH OF COMPREHENSION
A. Levels of Comprehension

Almost all participants indicated that there are several
levels to the comprehension of a software component. The
participants distinguished between at least the following two
levels of comprehension:

o Black-Box Comprehension: this is the basic level of
comprehension. At this level the subject comprehends
what is the functionality of the given component. At
the function level, this equates to comprehending the
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function’s prototype, its arguments (inputs) and the ex-
pected output of the function given a certain input. At
the class level, this comprehension level is equivalent
to comprehending the class’s public interface. This can
be easily extended to a package or a system black-box
comprehension in a similar manner.

o White-Box Comprehension: at this level of comprehen-
sion, the subject would comprehend how the component
implements its functionality. They would be able to
describe the flow that leads from the input to the output.
In a function, this level of comprehension is equivalent
to comprehending the code of the function. In a higher
layer, such as in a package, this level of comprehension
is equivalent to describing the classes in the package that
are involved in the implementation of a particular package
API, and how data flows through those classes.

The difference between these two levels of comprehension
strongly relates to the concept of information hiding [21].
A well-designed component that employs proper information
hiding can be well-comprehended for most common uses us-
ing black-box comprehension only. White-box comprehension
would be required only for maintenance or refactoring.

Some participants also noted that white-box comprehension
itself has several levels. It may be possible to fix simple bugs
with only a superficial level of comprehension—for example,
a null pointer exception can in many cases be easily traced and
fixed without really understanding the code of the function. For
non-trivial bugs, a deeper, more complete level of white-box
comprehension is needed.

A few participants suggested additional levels of compre-
hension. [ES] pointed to a level where you would comprehend
“implicit and explicit assumptions that whoever wrote the
function had, that are related to some broader context”. We call
this the Unboxable Comprehension. Such comprehension
cannot be reconstructed from the code itself, and requires
some other source of knowledge—typically a documentation
of intent, or a chat with the original code developer. In the
common case where documentation is outdated, low-quality,
or missing, this level of comprehension is what is lost when
a developer leaves a project. “There are parts in the code that
nobody knows very well today. [...] If there are bugs you
can still fix them, but nobody has the understanding [...] of
the philosophy of this specific module” [BG]. This level of
comprehension may be required in common scenarios, but its
role as part of the comprehension process is often overlooked.

[AO] pointed to a level of comprehension concerning the
external interactions of a function beyond the code itself:
“There’s the comprehension of how it is built from below.
The classic example in C++, is that given a class with virtual
functions, how the memory layout looks. This doesn’t always
sound very important. Once you try to understand really how it
works, and use this understanding for optimization, memory
efficiency, performance, etc., this becomes a very important
understanding”. We call this level of comprehension Out-of-
the-Box Comprehension. It is needed in rather rare conditions
where the required level of optimization justifies it.

B. The Desire Not to Comprehend

While the goal of the interviews was to discuss the processes
required to comprehend software, in many cases the subjects
mentioned a desire not to comprehend. In addition, achieving
full comprehension may just be impossible. Comprehending a
complete software system, including all of its flows and corner
cases, becomes impractical when the system grows beyond a
certain volume of code, or when there are more than a few
developers of the system.

Comprehending a software component is a hard task, and
developers prefer to avoid comprehending as much as possible.
Design concepts such as information hiding and modularity
were created specifically to shield the developer from having
to know about other software components [22]. Code quality
and design quality are measured by the ability to understand
them with minimal effort: “The more understanding it is
a more trivial task, I consider it a better function” [GA].
Understandability becomes part of the definition for quality.

The subjects also mentioned the futility of trying to com-
prehend given the rate of changes: “Things are usually so
fluid, and projects [progress] in such a pace such that it is
meaningless to study [them] deeply” [AK]. “Our world is a
very dynamic world with systems that change all the time.
Also if it’s a system you develop with 50 other people and
they all change parts, so you need to learn on demand and dig
deep [only] as needed” [AO].

The interviews included a discussion on evaluating and
integrating external software packages into a system. A few
subjects mentioned reliability indicators—stars on github, pop-
ularity of the package [BG], or the identity of the package
developer [SN]—as factors in such an evaluation. [SN] also
explained that “If it is a source that I trust, that is, for example,
open source code, it has a relatively high level of reliability.
Why? Because many people look at it, in many cases libraries
that are standard libraries are used by lots and lots of people
and then you know that the reliability of this thing is high.
[...] So as the reliability of the code is higher, you can trust
it blindly and what you are interested in is the interface”.
So the perceived quality is also used as a method to avoid
comprehension. In other words, the reliability indicators serve
as a proxy to the quality of the software package, and this
allows the developer to skip parts of the understanding process.

Another way to avoid understanding is using unit tests.
While this is not considered a recommended method (/YI],
[BY]), a good set of unit tests allows an outsider developer
to debug and modify the code without fully understanding it:
they just modify the code as they think needed, and then run
the unit tests to make sure nothing else was broken. As put by
[AO], unit tests can provide an “automation of understanding”.
A similar approach is promoted by software engineering gurus,
e.g. in refactoring tasks [19].

C. Top-Down vs. Bottom-Up

The academic discussion of cognitive models of software
comprehension has a long history, circling around two well-
known main models: the “top-down” model [6] and the



“bottom-up” model [18]. Several combinations or variations
of these models have also been proposed [30]. It has also been
shown that when a software developer tries to comprehend a
larger software component (a package or an entire system), a
combination of the two approaches is useful (e.g. [15]).

The interviews confirm this conclusion, and show a pattern
of usage of the two approaches. Activities related to compre-
hending functions or classes were mostly associated with the
“bottom-up” approach. But when asked about comprehending
a package or a system, the participants described activities that
are more related to a “top-down” approach.

A typical system comprehension would start with the “top-
down” approach—get a system overview, run sample code,
read the architecture documentation, trace the code from the
main loops, and review the interfaces of the first level of
classes or modules. But this approach has its limitations.
The amount of new information for a newcomer may be
overwhelming, and it is hard to understand without spend-
ing some time “in the trenches”, developing and debugging
code. The participants therefore suggested to take up a small
“bottom-up” task related to some sub-component—fixing a
bug, adding a small feature, or studying a piece of code and
generating appropriate documentation. Through this task, they
develop familiarity with the sub-component and its related sub-
components, and gradually comprehend that sub-component
and its place in the system. In an iterative fashion, the devel-
oper then gets familiar with more components and combines
this with the “top-down” comprehension of the system.

A few participants made statements implying that there is
an element of personal inclination between the approaches. As
[AO] described it: “Some people tend to dive deeper. [...] They
tend to open the hood and understand how the engine works.
Others prefer to sit behind the steering wheel and drive”.

Following the above discussion, it appears that developers
that have a tendency towards a “top-down” approach have
a better chance to comprehend large volumes of code. The
“bottom-up” capabilities are basic capabilities that are required
for everyday programming tasks, but tasks related to larger
volumes of code, such as package comprehension or system
architecture, require a combination of those “bottom-up” ca-
pabilities with “top-down” capabilities. This is related to the
amount of details: “bottom-up” is based on understanding the
details, and when the volume of code gets larger, the amount
of details exceed what can be digested by a single person.
The “top-down” approach allows a developer to avoid under-
standing many of the details by understanding abstractions.
As described by [MN], “it is more likely that a person knows
all the execution possibilities [...] of a function, while a single
person is not likely to reach the same level of comprehension
in an entire system [...] This entire discipline of software
engineering is a matter of volume”.

D. Aids to Comprehension

In one of the interview questions the participants were
given 6 slips of paper denoting elements that may aid in
comprehension: Source code, API documentation, Sample
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Fig. 1. Example rankings of comprehension aids for functions (left) or classes
(right).

code demonstrating use, Inline documentation and function
header documentation, Training materials, and Design doc-
ument. The participants were asked to organize the paper
slips in a way that shows the relative importance of each
element for understanding a function, understanding a class,
understanding a package for the purpose of using it (as part
of package evaluation), and understanding a package for the
purpose of maintaining it. Examples are shown in Figure 1.
The cumulative distribution functions for the rankings of each
element in each of the questions is shown in Figure 2.

For understanding a function, the elements that appeared
most at the top of the list were Source code and Inline docu-
mentation. This is not surprising and matches the notion that
for a single function, a bottom-up approach to comprehension
is more efficient. The general assumption is that in order to
comprehend a single function, everything is there in the code
itself, and whatever is missing from the code is expected to
be documented inline in the function.

For understanding a class, the most significant elements the
participants noted were API documentation and Sample code
demonstrating use. Here we see that the class is mostly defined
by the API and methods’ contracts, and understanding these
contracts is the most important part of class comprehension.

When moving on to a package, we see a higher diversity in
the answers. When asked about understanding a package for
maintenance purposes, the most significant element is Design
document, followed by API documentation and Source code.
We see that when approaching a larger volume of code, the
participants opt for a top-down approach and prefer a well-
written design document. When asked about understanding a
package for evaluation purposes, the most significant element
was Sample code demonstrating use. Far behind it come
API documentation, Training materials, and Design document.
Here we see that the task at hand has an impact on the
comprehension process.

Additional elements were also mentioned in the interviews
as aids to comprehension:

o Naming (especially in functions): a meaningful name for

a function is one of the first things developers look for.

« Coding and naming conventions: consistent conventions

can help parsing and provide context to the code.

+ Minor maintenance tasks: when discussing the training

of new members in a development team, a few partic-
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Fig. 2. Cumulative distribution functions for the rankings provided for each
comprehension aid in different contexts. The X axis is the ranking, normalized
to [0,1] because participants sometimes used different numbers of distinct
ranks. Lower X values indicate a higher ranking. An aid appearing at top left
of a diagram (e.g. the yellow line for “sample code” in the bottom diagram)
was ranked higher than other aids.

ipants recommended giving them tasks such as fixing
a simple bug or adding a simple feature to help them
focus on the important parts of the code. Creating missing
documentation or explaining the code to others are also
considered tasks that build understanding.

o Asking others: involving other members of the team in
the understanding process, including asking questions,
sharing thoughts, or reviewing the code, can be helpful.

o Debugging: debugging helps gets acquainted with the
code. Single-stepping through the code using a debugger
exposes flow and behavior of code, as opposed to a

static view. One participant mentioned adding ‘“throw”
statements in the code in order to pause the execution
and examine the call stack [BG]. Adding tests is also a
way to exercise the code.

« Drawing analogies to familiar things: as part of under-
standing a large amount of code.

The role of documentation in the comprehension process
generated ambivalent sentiments by the participants. On one
hand, participants acknowledged the difficulty of understand-
ing a software system from the code alone. Many assumptions
made by the developers are not exposed in the code, and
documentation is the best source for understanding those as-
sumptions. This includes architecture documentation providing
a system-wide overview, or low-level design documentation
for a single class or function. Even at the code level, non-
trivial inline documentation is largely considered crucial in
understanding hidden assumptions and developers’ intents that
cannot be gleaned from the code itself. “When you use
a function without reading its documentation, it is mostly
guessing that something behaves as you want, meaning you
make up some reality for yourself and hope for the best.
Even in functions that could be terribly trivial like arithmetic
operations, you always have corner cases” [YI].

On the other hand, documentation is not part of the com-
piled code, and therefore “my attitude to comments is respect
them and suspect them” [ES]. In other words, comments may
quickly become stale and not in sync with the actual code.
Many of the participants therefore refrain from depending on
the documentation, and a few of them prefer to avoid reading
documentation altogether.

In contrast, sample code that compiles and demonstrates
how a software component should be used is in effect live
documentation of the code. However, “it is very hard to
generate good sample code when [demonstrating use of a]
class, unless it is a lot of sample code” [AO]. Sample code
demonstrates a use case, and a class, especially when it is
complex, participates in many use cases, making it harder to
demonstrate.

A particular type of sample code is test code, and in partic-
ular, tests that are part of a package’s continuous integration
test suite, which gates updates to the code repository. “The
documentation may be maintained or may not be maintained,
the tests are surely maintained to the most recent state because
otherwise the continuous integration [tests] wouldn’t pass”
[BG]. Continuous integration tests are therefore the highest
form of live documentation—it is code that compiles and is
in absolute synchronization with the system’s code.

E. System Comprehension Specialization

Based on the above, it appears that comprehension at the
system level is a unique specialization, distinct from the
baseline specialization of a software developer. It combines
top-down system understanding with relevant low-level details
that impact the high-level breakdown. It lives in the realms of
documentation and block diagrams, and is detached from the
code itself and even from a particular programming language.



One extreme example is a participant who introduced him-
self as follows: “I do not have a very strong background in
development [...] My industry background is mostly as an
entrepreneur, | started a software company [...] but I was not
involved in the development of code, I was the CTO [...] The
original idea was in fact an architectural idea” [AR]. So, the
main product of the company was an architectural innovation,
by a person that was not involved in the development and does
not have a strong programming background. The architecture
is completely detached from the code itself.

Unfortunately, the skills required for system comp-
rehension—advanced design principles, a top-down approach
to systems, managing a large software system—are seldom
taught in most software engineering university-level schools,
even though it is a critical skill for every software team.

IV. HIERARCHICAL COMPREHENSION

We will now break down the meaning of comprehension
to the different levels—function, class, package, and system.
Although several concepts are similar at all the levels, such as
the distinction between black-box and white-box comprehen-
sion, there are important differences that help shed a light on
the meaning of system comprehension.

A. Function

The participants were asked to define what does it mean
to understand a function. A few participants pointed out that
this is an artificial situation, because in practice understand-
ing a function is always part of a larger context, and that
understanding a function outside of any context resembles
“a job interview situation” [DL], [ES]. “A function [...] is
part of some whole. It affects the [class’s] state and is
affected by the [class’s] state, so you need some more general
understanding of the class” [ES]. On the other hand, [BG]
mentioned that in a code-review situation—common in open
source development—you sometimes do consider a function
in isolation outside of its context.

Most participants defined understanding a function as under-
standing its “contract”: its parameters, its return values [AK],
its name, and its functionality [SN]. Others mentioned the
function’s prerequisites, how it works in different conditions,
what is the system state before and after the function. This
is what was earlier referred to as black-box comprehension.
This is tightly coupled with the idea of information hiding and
Meyer’s contracts [21], [20]. The participants described white-
box comprehension as the “deeper” level of comprehension.
This means “understanding how the function does what it
does” [SN], “understanding how it works and does what it is
supposed to do” [AK] or “actually understanding the logical
order of operations and why this is the order” [DL].

The level of understanding that is required depends on
the task at hand, what one is planning to do with the
function. Most participants agreed that it is very possible to
use a function without “fully” understanding it—i.e., black-
box comprehension is required, but not necessarily white-box
comprehension. [DL] gave an example of a face recognition

function: most developers who use the function do not have
any understanding of how the function works.

Unfortunately, functions may have properties that impact
their “black-box” behavior, but are in many cases overlooked
as being part of the function’s contract. This forces developers
wanting to use the function to dive deeper into the implemen-
tation details and to defer to “white-box” comprehension. Such
properties include:

o Side effects: a situation in which the function changes a
state that is outside its local environment. The participants
identified this as a pain point in function comprehension:
“The difficulty in functions is side effects” [MN]. Indirect
side effects can be even harder to track, such as when a
function depletes resources from a global resource pool.

o Reentrancy or thread synchronization: The developer
of a function may not be aware, at the point of writing
the function, what are the synchronization requirements
of the function, or those might change later.

o Performance: Consider for example a function that im-
plements a core algorithm. The function’s asymptotic
complexity or actual performance become a critical prop-
erty of the function, and one might consider them part
of the function’s contract. However, these cases are rare.
In most cases the runtime of the function is considered
part of the function’s implementation details (white-box)
[YI], and not part of the function’s contract. “The under-
standing and the need to understand the function depends
on what you are looking for, what your constraints are.
If you care about performance you need to understand
the performance of the function. If you care about [...]
communication bounds then you care about that” [BG].
“The level of understanding will change depending on
the level of optimization you need to perform” [AO].

B. Class

A class is a collection of functions (methods) and data
members (which hold each instance’s state). “When you work
with a function that is part of a class, [...] the object itself
provides you with context and a translation of the problem to
entities that are part of the problem’s solution” [YI].

Participants mentioned various aspects of black-box com-
prehension that are related to understanding the wider context
of the system and the place of the class in the system, beyond
the formal contract. “Why do we use the class, when do we
use the class” [DL], “it’s limitations—when can it not be used”
[DL], “why is it there, why isn’t it part of some other object,
why isn’t it split into two” [YI]. As [YI] coined it, this is all
part of the intent of the developer that is reflected in the class
design. The intent is not part of the code. Ideally it would
be part of a design document. This is a particular example of
what we earlier called “unboxable comprehension”.

It is interesting to look at the effect of the class on the com-
prehension of its methods. Assuming a class has cohesion, its
components are not independent: methods and data members
know of each other and interact. Thus a method is related to



the class’s state, and cannot be comprehended by the contract
alone, without the context of the class.

Finally, as we go up to the level of a class and beyond,
it may be impossible to maintain complete abstraction of the
interfaces from the details. This is Joel Spolsky’s “Law of
Leaky Abstractions” [29]. “From some level of complexity
abstractions always leak. [...] there is always a situation where
the abstraction is supposed to tell you, you don’t care what’s
inside, but it would actually break and you would care” [ES].
To some extent this conclusion contradicts the “black-box” vs.
“white-box” distinction: you need to understand the details
in order to understand the abstractions. This might explain
why system comprehension is hard, and why it requires a
combination of a top-down view of the system with a bottom-
up understanding of the details and how they impact the
system and its breakdown.

C. Package

The term “package” is ill-defined. For the following dis-
cussion, we define it as an “atomic unit of reuse”. While
classes and interfaces are intended to be reusable, the reality
is that in many cases functionality is divided between inter-
dependent classes that each have a single responsibility—and
as such they cannot really be used independently of supporting
classes or related classes. The package is the smallest unit of
code that can be extracted and reused in a different context.
This is especially true for packages that are developed with
the intention to be reused, such as open-source libraries or
services or their commercial counterparts.

In the context of comprehension, this means that a package
can be comprehended outside the context of the system.
“Third-party packages are perhaps the best example. There is
a company that develops the package so that it would not be
dependent of the system, and so usually it is really independent
of the system. [...] I think of packages in our system that
we developed, there we created more dependencies to other
things, whether we intended to do so or not” [ES]. Under
this definition, a package is the only level that can really be
comprehended as a black-box.

If the reuse is “as is”, with no modifications to fit the
specific system, this reduces the comprehension effort as the
package is comprehended at a black-box level only. This
is especially true when the package performs a complex
functionality that requires an expertise that is not available in
the hosting system’s development team, such as an algorithm
implementation. “If you need a library that will implement
’zip’ or “unpack’ [...] it is a black box, you don’t care how it
works. It just needs to have the right interface and then you
just use it”.

In the context of evaluating packages to be reused, factors
such as reliability and popularity become significant as proxies
to the quality of the code, and therefore to the need to
comprehend them, as previously discussed in Section III-B.

D. System

What is System Comprehension? We asked our research
participants what does it mean to comprehend a system. Many

participants described the structure of the system as the key
to comprehension: “Intuitively, comprehending a system is
[...] its modules and how they communicate with each other,
what is the role of each one, and how they play together to
create something” [BY]. This includes the flow of data between
modules: “In a system you look at how the objects come
together, it is more a view of pipes of how the data flows
from here to there. [...] Something comes in from one side, it
splits into three copies here, it goes through some processing,
the processing is synchronous or asynchronous [...] and what
comes out from the other side” [YI]; “We talk not only about
input and output, but more about data flow” [AO].

Another common reference made was to intent. This could
refer to the intent of the system as a whole: “Understanding
a software system is first and foremost understanding its
grand objective, what service it provides” [DL]. But it could
also refer to the intent behind the structure of the system,
the considerations that led to this particular structure: I
also want to understand all sorts of considerations why, [...]
why are these the system’s modules” [DL]. “Non functional
considerations start to be part of the comprehension. As the
system is larger and more complex, the need to understand
its non functional aspects rises—if it’s regarding where this
system is vulnerable, where are its reliability parameters, its
performance behavior” [AO].

These two traits of system comprehension—understanding
the structure of the system, and understanding the rationale
of the structure—are completely unrelated to the code. This
conclusion is opposed to the comprehension of lower layers
of the system hierarchy, where the code and related elements,
such as the contract, were critical to the comprehension. As we
go higher in the system hierarchy, the focus of comprehension
moves away from code and contracts, and towards discussion
of general structures and data flows. An architect that is
developing the structure of the system does not necessarily
need to be familiar with the code to develop it. Similarly, a
person trying to understand the structure of the system might
not need the code to do so. As a result this comprehension level
is also completely independent of the programming language
used to create the system, and may be described in terms that
are independent of the programming language.

As part of understanding the reasoning behind the system
structure, the system’s history and evolution also play an
important part. “If you observe Thunderbird, you first need
to understand why they developed this project. It is very
important to understand [...] the original objective, what need
they tried to address. Would anyone today start this project?
[...] You can read your email in a browser, why do you need
a desktop client? It is debatable, but you need to understand
why they did this in order to understand the system” [AR].

In fact, the history and evolution of a system is one of
the reasons understanding the system is difficult. The current
structure of the system may reflect intentions, constraints, and
choices that are no longer relevant. Systems that were orig-
inally well-designed may be modified to address unexpected
needs and usages in such a way that makes them convoluted.



In addition, sometimes the architecture documentation reflects
the original design and not the design that evolved.

One reservation to the above is the law of leaky abstractions

TABLE I
RESULTS REGARDING THE ARCHITECTURE STATEMENTS, IN ORDER OF
GENERAL AGREEMENT (NOT THE ORDER IN WHICH THEY WERE
PRESENTED TO PARTICIPANTS); 1 IS THE AVERAGE OF ALL RESPONSES

(Section IV-B): that the details at lower layers tend to leak
into the abstractions made at higher layers. This is inevitable
as the system gets more complex, and may affect the system
level [17]. The meaning in this context is that sometimes
implementation details of a certain function or class may lead
to a particular design of the system structure. If this happens
the system structure cannot be fully understood without ap-
preciating the leaks that affected it.

Architecture: The term ‘“architecture” is widely used in
the context of system description, but its meaning may differ
depending on context, organizational culture, and personal
preferences. We presented the participants with statements
related to architecture, and asked them to rate their agreement
with these statements. The scale is -3 to 3, where -3 means
“strongly disagree” and 3 means “strongly agree”. The results
are shown in Table L.

All the participants agreed that every system has an architec-
ture, whether it was designed by a conscious set of decisions
or not. In other words, the architecture exists independently
of the architecture definition process. The documents and
diagrams that support the architecture (hopefully) reflect the
implemented architecture, but do not define it. There was
strong agreement that the architecture is the system’s structure,
but that a UML description of the system is not architecture.

Most participants agreed that having a design phase is
important to an effective development process and that the
architecture reflects the design decisions. However in many
cases, as part of the system’s evolution, architecture “happens”
and does not entirely reflect conscious decisions. It is also
harder to maintain documents that reflect the architecture as
it evolves over time. The constant drift between the conscious
decisions and the actual architecture, and between the design
documents and the actual code, may be reasons for the
difficulties in comprehending the architecture.

The architecture includes both the internal decomposition
of the system and data pathways, and externally visible at-
tributes of the system'. Architecture consists mostly of design
decisions, and the considerations that led to the decisions.
The considerations and decisions could be conditioned upon
the philosophy that drives the system goals [BG]. In many
cases the design decisions are trade-offs between conflicting
considerations, such as performance, physical resources, cost,
or development effort [AO]. Elements that are not part of
the designed system but surround it—such as the operating
system, the underlying network, the selection of programming
language and compiler—are all factors that impact the system
design decision and the architecture.

In the hardware world there is a distinction between the terms ‘architec-
ture” and ‘micro-architecture’, reflecting the externally visible attributes of the
system vs. its internal design. Software organizations in hardware corporations
sometimes adopt this terminology. However in the software world the term
‘architecture’ usually refers mainly to the internal design.

Every system has an architecture (1 =
2.0)

SN WE IO

Architecture reflects design decisions
(¢ = 1.545)

ORNWETD

Architecture is the product of a design
process (1 = 1.3)

O WA

Architecture is the structure of the sys-
tem (u = 1.27)

SN WE DN

Implementation changes over time as
a result of architecture changes (u =
1.18)

O W

Architecture defines internal interfaces
between components in the system
(w=0.77)

O

Architecture reflects the company’s or-
ganizational structure (¢ = 0.0)

O WA G

Architecture defines internal interfaces
between teams in the development
group (1 = —0.1)

O N Lo

Architecture changes over time as a
result of implementation changes (1 =
—0.44)

O Lo

Everyone in the development groups
is familiar with the architecture (u =
—0.78)

S W o

Architecture is defined in documents
(w=—0.91)

O =W Tt

Architecture defines only the externally
visible properties of the system (u =
—1.64)

oo

Architecture is a UML description of
the system (u = —2.18)

SN W o

Architecture defines only the internal
structure of the system (u = —2.27)

o WE GO




Most participants acknowledge that there is some relation-
ship between the architecture and the organizational structure
(a soft version of “Conway’s Law” [8]). In some cases the
system is decomposed to teams based on the teams’ location
or expertise. The architecture may also put special emphasis
on internal interfaces that reflect interfaces between teams, es-
pecially if they are geographically or organizationally distant.
There are also instances in which the architecture drives the
organizational structure (instead of the other way around).

This discussion on architecture highlights the relationship
between system comprehension and architecture. Many ele-
ments discussed as part of the definition of system compre-
hension (as discussed above) appear in the definition of ar-
chitecture. The structure of the system—the main components
and the communication paths between these components—
plays a significant role in understanding the system, and is
also a key part of the architecture. Understanding the intent of
the system, of its main components, through understanding the
system usages and the system’s history and evolution, are also
significant in both system comprehension and the architecture.

Yet most participants indicated that understanding the sys-
tem is more than understanding the architecture—it also
includes understanding some of the important low-level details
of the system. Those details may have an impact on the larger
structure of the system, or may not—and therefore are not part
of the architecture definition—but they are significant in un-
derstanding the system. Thus, system comprehension requires
both views of the system—the top-down view provided by
the architectural elements, and the bottom-up view provided
by the low-level details. Obtaining both views takes time and
requires a combination of architecture tasks, such as reading
documentations and API definition, and maintenance tasks,
such as fixing bugs or adding features.

V. THREATS TO VALIDITY

The participants interviewed in this research are not a
representative sample. Their number is small, 10 out of 11
are male, and all are from a small set of companies in
one country. However, in exploratory qualitative research a
representative sample is not necessarily required, and in fact
the target population may not be well defined. The goal
of the research was to raise the appropriate questions and
terminology in order to seed future experimental research
(see Section VI). The participants are highly experienced
professionals, many working in multi-national companies, who
interact with developers from other cultures. Some of their
responses were common enough to lead us to believe they
can be reproduced in a larger, more representative sample.
Nevertheless we believe wider studies must be performed to
ratify the results of this research.

The first author (and interviewer) is an experienced profes-
sional in the field of system architecture. This is an advantage
in terms of being familiar with the terminology and the work
processes of the participants. However, a valid concern to the
research validity is whether preconceived notions and personal
biases were mixed with the interview and the analysis. We
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addressed this concern by using general, open-ended questions
and allowing the participants to challenge whatever definitions
or constructs were proposed in the interview. In the analysis
phase, we both performed the interview analysis separately
and reached conclusions only after a joint discussion (‘“analyst
triangulation”, a known method to increase research validity).
The analysis was based on the textual analysis of the interview
audio recording transcripts, rather than on personal impres-
sions (an “audit trail”, also a known method to increase valid-
ity). Nevertheless and as aforementioned, replication studies
are required to ratify the results of the research.

VI. CONCLUSIONS

Program comprehension accounts for a large portion of any
software development effort. We attempt to understand the
processes that are related to comprehension of a software
system as a whole, as opposed to existing research which
focuses on program comprehension in small scale. Through a
series of semi-structured interviews with experienced software
developers, architects, and managers, we drew the distinction
between system comprehension and code comprehension.

The analysis of the interviews demonstrates that such a dis-
tinction indeed exists. We show that program comprehension
is in fact comprised of two separate and distinct activities—
code comprehension and system comprehension. System com-
prehension requires different skills and experience compared
to code comprehension. System comprehension involves both
top-down and bottom-up comprehension strategies, and devel-
opers apply different strategies depending on the tasks they
need to perform. System comprehension shifts focus from the
code to its structure, and is a continuous, iterative effort. Not
all skilled software developers have the skills required for
system comprehension, but these skills are highly required by
at least a portion of the development team.

Future Research: As an exploratory research, we offer
models that can be used in future quantitative research. For
example, in the context of code comprehension, it would be
interesting to investigate unboxable comprehension (implicit
assumptions) and out-of-the-box comprehension (required for
optimization). Another possible research could build con-
trolled experiments that measure some of the findings of
this research, such as the effectiveness of code samples for
package-level comprehension. One could also explore what
attributes allow developers to circumvent the understanding
process (like developer’s reliability or package popularity).

The world of open source is touched upon in this paper, to
show the differences in system comprehension compared to
the industry. Further research is required to understand system
comprehension in the open source world, which is typically
more evolutionary and less planned than industrial software.
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