
1OVERVIEW OF THE MPI-IOPARALLEL I/O INTERFACEPeter Corbetty, Dror Feitelsony,Sam Fineberg�, Yarsun Hsuy,Bill Nitzberg�, Jean-Pierre Prosty,Marc Sniry, Bernard Traversat�,and Parkson Wong�yIBM T.J. Watson Research Center,Yorktown Heights, New York 10598USA* NASA Ames Research Center,Mo�ett Field, California 94035USAABSTRACTThanks to MPI, writing portable message passing parallel programs is almost a reality.One of the remaining problems is �le I/O. Although parallel �le systems supportsimilar interfaces, the lack of a standard makes developing a truly portable programimpossible. It is not feasible to develop large scienti�c applications from scratch foreach generation of parallel machine, and, in the scienti�c world, a program is notconsidered truly portable unless it not only compiles, but also runs e�ciently.The MPI-IO interface is being proposed as an extension to the MPI standard to �llthis need. MPI-IO supports a high-level interface to describe the partitioning of �ledata among processes, a collective interface describing complete transfers of globaldata structures between process memories and �les, asynchronous I/O operations,allowing computation to be overlapped with I/O, and optimization of physical �lelayout on storage devices (disks). 1

2 Chapter 11 PARALLEL I/OThanks to MPI [21], writing portable message passing parallel programs isalmost a reality. One of the remaining problems is �le I/O. Although parallel�le systems support similar interfaces, the lack of a standard makes developinga truly portable program impossible. It is not feasible to develop large scienti�capplications from scratch for each generation of parallel machine, and, in thescienti�c world, a program is not considered truly portable unless it not onlycompiles, but also runs e�ciently.We de�ne \parallel I/O" as the support of I/O operations from a single (SPMDor MIMD) parallel application run on many nodes, The application data isdistributed among the nodes, and is read/written to a single logical �le, itselfspread across nodes and disks.The signi�cant optimizations required for e�ciency (e.g. grouping [25], two-phase I/O [9], and disk-directed I/O [18]) can only be implemented as part ofa parallel I/O environment if it supports a high-level interface to describe thepartitioning of �le data among processes and a collective interface describingcomplete transfers of global data structures between process memories and the�le. In addition, further e�ciencies can be gained via support for asynchronousI/O, allowing computation to be overlapped with I/O, and control over physical�le layout on storage devices (disks).The closest thing to a standard, the UNIX �le system interface, is ill-suitedto parallel computing. The main de�ciency of UNIX I/O is that UNIX isdesigned �rst and foremost for an environment where �les are not shared bymultiple processes at once (with the exception of pipes and their restrictedaccess possibilities). In a parallel environment, simultaneous access by multipleprocesses is the rule rather than the exception. Moreover, parallel processesoften access the �le in an interleaved manner, where each process accesses afragmented subset of the �le, while other processes access the parts that the�rst process does not access [19]. UNIX �le operations provide no support forsuch access, and in particular, do not allow access to multiple non-contiguousparts of the �le in a single operation.Parallel �le systems and programming environments have typically solved theproblems of data partitioning and collective access by introducing �le modes.The di�erent modes specify the semantics of simultaneous operations by multi-ple processes. Once a mode is de�ned, conventional read and write operations

MPI-IO Parallel I/O Interface 3are used to access the data, and their semantics are determined by the mode.The most common modes are the following [2, 13, 16, 17, 26]:mode description examplesbroadcast all processes collectively Express singlreduce access the same data PFS global modeCMMD sync-broadcastscatter all processes collectively Express multigather access a sequence of data CFS modes 2 and 3blocks, in rank order PFS sync & recordCMMD sync-sequentialshared processes operate independently CFS mode 1o�set but share a common �le pointer PFS log modeindependent allows programmer complete Express asyncfreedom CFS mode 0PFS UNIX modeCMMD local & independentThe common denominator of those modes that actually attempt to captureuseful I/O patterns and help the programmer is that they de�ne how data ispartitioned among the processes. Some systems do this explicitly without usingmodes, and allow the programmer to de�ne the partitioning directly. Examplesinclude Vesta [7] and the nCUBE system software [8]. Recent studies show thatvarious simple partitioning schemes do indeed account for most of observedparallel I/O patterns [24].In addition to the commercial o�erings (IBM SP2 PIOFS [6], Intel iPSC CFS[25, 27] and Paragon PFS [11, 28], nCUBE [8], and Thinking Machines CM-5sfs [2, 20]), there has been a recent
urry of activity in the research community.PIOUS [22, 23] and PETSc/Chameleon I/O [14] are both widely available non-proprietary portable parallel I/O interfaces. PIOUS is a PVM-based parallel �leinterface. Files can be declustered across disks in a round robin fashion. Accessmodes support globally shared and independent �le pointers, and �le per nodeaccesses. PETSc/Chameleon I/O runs on top of vendor �le systems as wellas p4, PICL, and PVM. Two �le layouts are supported: sequential (sequential�les in the underlying �le system), and parallel (where every node accesses itsown disk). Global array operations are supported via speci�c collective calls toperform broadcast/reduce or scatter/gather operations.

4 Chapter 1PPFS [15] is a general Parallel I/O system built on top of NXLIB intended asa workbench for studying issues and algorithms in Parallel I/O. Modules con-trolling prefetching, caching, data consistency, access patterns, and �le layoutcan be plugged-in, or de�ned procedurally, in order to evaluate (and optimize)parallel I/O performance.Vesta [4, 5, 7, 12] is a parallel �le system which runs on the IBM SP1. It providesuser-de�ned parallel views of �les for data partitioning, collective operationsfor data access, and asynchronous operations. Vesta is designed to scale tohundreds of compute nodes, with no sequential bottlenecks in the data-accesspath.Jovian [1], PASSION [3, 32], and VIP-FS [10] target out-of-core algorithms.Panda [29, 30, 31] supports a collective global array interface, and optimizes�le access by making the �le layout correspond to the global array distribution{ a 3-D array is stored in 3-D \chunks" in the �le.2 OVERVIEW OF MPI-IOThe goal of the MPI-IO interface is to provide a widely used standard for de-scribing parallel I/O operations within an MPI message-passing application.The interface establishes a
exible, portable, and e�cient standard for describ-ing independent and collective �le I/O operations by processes in a parallelapplication. In a nutshell, MPI-IO is based on the idea that I/O can be mod-eled as message passing: writing to a �le is like sending a message, and readingfrom a �le is like receiving a message. MPI-IO intends to leverage the rela-tively wide acceptance of the MPI interface in order to create a similar I/Ointerface. The MPI-IO interface is intended to be submitted as a proposal foran extension of the MPI standard in support of parallel �le I/O. The need forsuch an extension arises from three main reasons. First, the MPI standard doesnot cover �le I/O. Second, not all parallel machines support the same parallelor concurrent �le system interface. Finally, the traditional UNIX �le systeminterface is ill-suited to parallel computing.The MPI-IO interface was designed with the following goals:1. It was targeted primarily for scienti�c applications, though it may be usefulfor other applications as well.

MPI-IO Parallel I/O Interface 52. MPI-IO favors common usage patterns over obscure ones. It tries to sup-port 90% of parallel programs easily at the expense of making things moredi�cult in the other 10%.3. MPI-IO features are intended to correspond to real world requirements,not just arbitrary usage patterns. New features were only added whenthey were useful for some real world need.4. MPI-IO allows the programmer to specify high level information aboutI/O to the system rather than low-level system dependent information.5. The design favors performance over functionality.The following, however, were not goals of MPI-IO:1. Support for message passing environments other than MPI.2. Compatibility with the UNIX �le interface.3. Support for transaction processing.4. Support for FORTRAN record oriented I/O.Emphasis has been put in keeping MPI-IO as MPI-friendly as possible. Whenopening a �le, a communicator is speci�ed to determine which group of processescan get access to the �le in subsequent I/O operations. Accesses to a �le canbe independent (no coordination between processes takes place) or collective(each process of the group associated with the communicator must participateto the collective access). MPI derived datatypes are used for expressing thedata layout in the �le as well as the partitioning of the �le data among thecommunicator processes. In addition, each read/write access operates on anumber of MPI objects which can be of any MPI basic or derived datatype.3 DATA PARTITIONING IN MPI-IOInstead of de�ning �le access modes in MPI-IO to express the commonpatternsfor accessing a shared �le (broadcast, reduction, scatter, gather), we choseanother approach which consists of expressing the data partitioning via MPIderived datatypes. Compared to a limited set of pre-de�ned access patterns,this approach has the advantage of added
exibility and expressiveness.

6 Chapter 1MPI derived datatypes are used in MPI to describe how data is laid out in theuser's bu�er. We extend this use to describe how the data is laid out in the�le as well. Thus we distinguish between two (potentially di�erent) deriveddatatypes that are used: the �letype, which describes the layout in the �le,and the buftype, which describes the layout in the user's bu�er. In addition,both �letype and buftype are derived from a third MPI datatype, referred toas the elementary datatype etype. The purpose of the elementary datatype isto ensure consistency between the type signatures of �letype and buftype andto enhance portability by basing them on datatypes rather than bytes. O�setsfor accessing data within the �le are expressed as an integral number of etypeitems.The �letype de�nes a data pattern that is replicated throughout the �le (orpart of the �le { see the concept of displacement below) to tile the �le data.It should be noted that MPI derived datatypes consist of �elds of data thatare located at speci�ed o�sets. This can leave \holes" between the �elds, thatdo not contain any data. In the context of tiling the �le with the �letype,the process can only access the �le data that matches items in the �letype. Itcannot access �le data that falls under holes (see Figure 1).
filetype

tiling a file with the filetype:

accesible data

holes

etype Figure 1 Tiling a �le using a �letypeData which resides in holes can be accessed by other processes which use com-plementary �letypes (see Figure 2). Thus, �le data can be distributed amongparallel processes in disjoint chunks.MPI-IO provides �letype constructors to help the user create complementary�letypes for common distribution patterns, such as broadcast/reduce, scat-ter/gather, and HPF distributions. In general, we expect most MPI-IO pro-grams will use �letype constructors exclusively, never needing to generate acomplicated MPI derived datatype by hand.In MPI-IO, the �letype and etype are speci�ed at �le open time. This is the mid-dle ground between specifying the data layout during �le creation (or �lesystem

MPI-IO Parallel I/O Interface 7
process 3 filetype

tiling a file with the filetypes:

process 1 filetype

etype

process 2 filetype Figure 2 Partitioning a �le among parallel processescreation) and during data access (read/write). The former is too restrictive, asit prohibits accessing a �le using multiple patterns simultaneously. In addition,static data layout information must be stored as �le metadata, inhibiting �leportability between di�erent systems. Specifying the �letype at data accesstime is cumbersome, and it is expected that �letypes will not be changed toooften.In order to better illustrate these concepts, consider a 2-D matrix, stored inrow major order in a �le, that is to be transposed and distributed among agroup of three processes in a row cyclic manner (see Figure 3). The �letypesimplement the row cyclic data distribution, and can easily be de�ned via a�letype constructor. The transpose is performed by de�ning a buftype whichcorresponds to a column of the target matrix in processor memory. Since allprocesses are performing the same transpose operation, identical buftypes canbe used for all processes. Note that the elementary datatype allows one to havea generic implementation that applies to any type of 2-D matrix (see appendixfor example code).Note that using MPI derived datatypes leads to the possibility of very
exiblepatterns. For example, the �letypes need not distribute the data in rank order.In addition, there can be overlaps between the data items that are accessed bydi�erent processes. The extreme case of full overlap is the broadcast/reducepattern.Using the �letype allows a certain access pattern to be established. But it isconceivable that a single pattern would not be suitable for the whole �le. TheMPI-IO solution is to de�ne a displacement from the beginning of the �le, andhave the access pattern start from that displacement. Thus if a �le has two ormore segments that need to be accessed in di�erent patterns, the displacementfor each pattern will skip over the preceding segment(s). This mechanismis also particularly useful for handling �les with some header information at

8 Chapter 1
process 2 filetype

logical view: partition file in row cyclic pattern and transpose

file structure

process 1 buffer

process 2 buffer

process 3 buffer

implementation using etype, filetypes, and buftypes

actual layout in the file:

buftype (all processes)

etype

process 1 filetype

process 3 filetype Figure 3 Transposing and partitioning a 2-D matrixthe beginning (see Figure 4). Use of �le headers could allow the support ofheterogeneous environments by storing a \standard" codi�cation of the �ledata.
second tiling

file structure:

header

first displacement second displacement

first tiling Figure 4 Displacements

MPI-IO Parallel I/O Interface 94 MPI-IO DATA ACCESS FUNCTIONSData is moved between �les and processes by issuing read and write calls.There are three orthogonal aspects to data access: positioning (explicit o�set vs.implicit �le pointer), synchronism (blocking vs. nonblocking), and coordination(independent vs. collective). MPI-IO provides all combinations of these dataaccess functions, including two types of �le pointers, individual and shared.positioning synchronism coordinationindependent collectiveexplicit blocking MPIO Read MPIO Read allo�sets (synchronous) MPIO Write MPIO Write allnonblocking MPIO Iread MPIO Iread all(asynchronous) MPIO Iwrite MPIO Iwrite allindividual blocking MPIO Read next MPIO Read next all�le pointers (synchronous) MPIO Write next MPIO Write next allnonblocking MPIO Iread next MPIO Iread next all(asynchronous) MPIO Iwrite next MPIO Iwrite next allshared blocking MPIO Read shared MPIO Read shared all�le pointer (synchronous) MPIO Write shared MPIO Write shared allnonblocking MPIO Iread shared MPIO Iread shared all(asynchronous) MPIO Iwrite shared MPIO Iwrite shared allUNIX read() and write() are blocking, independent operations, which useindividual �le pointers; the MPI-IO equivalents are MPIO Read next() andMPIO Write next().4.1 PositioningUNIX �le systems traditionally maintain a system �le pointer specifying whato�set will be used for the read or write operation. The problem with thisinterface is that it was primarily designed for �les being accessed by a singleprocess. In a parallel environment, we must decide whether a �le pointer isshared by multiple processes or if an individual �le pointer will be maintainedby each process. In addition, parallel programs do not generally exhibit localityof reference within a �le [19]. Instead, they tend to move between distinct non-contiguous regions of a �le. This means that the process must seek on almostevery read or write operation. In addition, in multithreaded environmentsor when performing I/O asynchronously, it is di�cult to ensure that the �lepointer will be in the correct position when the read or write occurs.

10 Chapter 1MPI-IO provides separate functions for positioning with explicit o�sets, indi-vidual �le pointers, and a shared �le pointer. The explicit o�set operationsrequire the user to specify an o�set, and act as atomic seek-and-read or seek-and-write operations. The individual and shared �le pointer operations usethe implicit system maintained o�sets for positioning. The di�erent position-ing methods are orthogonal; they may be mixed within the same program,and they do not a�ect each other. In other words, an individual �le pointer'svalue will be unchanged by executing explicit o�set operations or shared �lepointer operations. The MPI-IO data access functions which accept explicito�sets have no extensions (e.g. MPIO xxx), the individual �le pointer func-tions have next appended (e.g. MPIO xxx next), and the shared �le pointerfunctions have shared appended (e.g. MPIO xxx shared). In order to allow theimplicit o�set to be set, two seek functions are also provided (MPIO Seek andMPIO Seek shared).In general, �le pointer operations have the same semantics as explicit o�setoperations, with the o�set argument set to the current value of the system-maintained �le pointer.Explicit O�setsMPI-IO uses two \keys" to describe locations in a �le: an MPI datatype andan o�set. MPI datatypes are used as templates, tiling the �le, and an o�setdetermines an initial position for transfers. O�sets are expressed as an integralnumber of elementary datatype (etype) items. The etype argument is associ-ated with a �le and used to express the �letype, buftype and o�set arguments.Therefore, the �letype and buftype datatypes must be directly derived frometype, or their type signatures must be a multiple of the etype signature.One can view an o�set into a �le from the global perspective, as an absolutecount of etypes, or from an individual process's perspective, as a count of etypesrelative to the �letype. MPI-IO provides both views (see Figure 5). An absoluteo�set is one that ignores the �le partitioning pattern, and is based on thecanonical view of a �le as a stream of etypes. Absolute o�sets can point toanywhere in the �le, so they can also point to an item that is inaccessible bythis process. In this case, the o�set will be advanced automatically to thenext accessible item. Therefore specifying any o�set in a hole is functionallyequivalent to specifying the o�set of the �rst item after the hole. A relativeo�set is one that only includes the parts of a �le accessible by this process,excluding the holes of the �letype associated with the process.

MPI-IO Parallel I/O Interface 11If the �letypes have no holes, absolute and relative o�sets are the same.
process 2 filetype

abs 2
rel 2

abs 7 equiv
to abs 10

abs 14
rel 9

disp

abs 8
rel 3

abs 15
rel 5

process 1 offsets:

process 2 offsets:

etype

process 1 filetype Figure 5 Absolute and relative o�setsFile PointersWhen a �le is opened in MPI-IO, the system creates a set of �le pointers tokeep track of the current �le position. One is a global �le pointer, shared byall the processes in the communicator group. The others are individual �lepointers local to each process in the communicator group, and can be updatedindependently. A shared �le pointer only makes sense if all the processes canaccess the same dataset. This means that all the processes should use the same�letype when opening the �le.The main semantic issue with system-maintained �le pointers is how they areupdated by I/O operations. In general, each I/O operation leaves the �lepointer pointing to the next data item after the last one that was accessed.This principle applies to both types of o�sets (absolute and relative), to bothtypes of �le pointers (individual and shared), and to all types of I/O operations.When absolute o�sets are used, the �le pointer is left pointing to the nextetype after the last one that was accessed. This etype may be accessible to theprocess, or it may not be accessible. If it is not, then the next I/O operationwill automatically advance the �le pointer to the next accessible etype. Withrelative o�sets, only accessible etypes are counted. Therefore it is possible toformalize the update procedure by the equation:new file position = old position + size(buftype) � bufcountsize(etype) (1.1)where bufcount is the number of elements of type buftype to be accessed andwhere size(datatype) gives the number of bytes of actual data (excluding holes)that composes the MPI datatype datatype.

12 Chapter 1Another complicationwith UNIX I/O operations, is that the system-maintained�le pointer is normally only updated when the operation completes. At thatstage, it is known exactly how much data was actually accessed (which can bedi�erent from the amount requested), and the �le pointer is updated by thatamount. When MPI-IO nonblocking accesses are made using an individualor the shared �le pointer, the update cannot be delayed until the operationcompletes, because additional accesses can be initiated before that time by thesame process (for both types of �le pointers) or by other processes (for theshared �le pointer). Therefore, the �le pointer must be updated at the outset,by the amount of data requested.Similarly, when blocking accesses are made using the shared �le pointer, up-dating the �le pointer at the completion of each access would have the samee�ect as serializing all blocking accesses to the �le. In order to prevent this,the shared �le pointer for blocking accesses is updated at the beginning of eachaccess by the amount of data requested. For blocking accesses using an indi-vidual �le pointer, updating the �le pointer at the completion of each accesswould be perfectly valid. However, in order to maintain the same semantics forall types of accesses using �le pointers, the update of the �le pointer in this caseis also made at the beginning of the access by the amount of data requested.Although consistent, and semantically cleaner, updating the �le pointer at theinitiation of all I/O operations di�ers from accepted UNIX practice, and maylead to unexpected results. Consider the following scenario:MPIO_Read_Next(fh, buff, buftype, bufcount, &status);MPIO_Write_Next(fh, buff, buftype, bufcount, &status);If the �rst read reaches the end of the �le before completing, the �le pointerwill be incremented by the amount of data requested rather than the amount ofdata read. Therefore, the �le pointer will point beyond the current end of the�le, and the write will leave a hole in the �le. However, such a problem onlyoccurs if reads and writes are mixed without checking for the end of the �le.Although common in a single process workstation environment, we believe thisis uncommon in a parallel scienti�c environment.

MPI-IO Parallel I/O Interface 134.2 SynchronismMPI-IO supports the explicit overlap of computation with I/O, hopefully im-proving performance, through the use of nonblocking data access functions.MPI-IO provides both blocking and nonblocking versions of these functions.As in MPI, the nonblocking versions of the calls are named MPIO Ixxx, wherethe I stands for immediate.A blocking I/O call will block until the I/O request is completed. A nonblockingI/O call only initiates an I/O operation, but does not wait for it to complete.A separate request complete call (MPI Wait or MPI Test) is needed to completethe I/O request, i.e., to certify that data has been read/written, and it is safefor the user to reuse the bu�er. With suitable hardware, the transfer of dataout/in the user's bu�er may proceed concurrently with computation.Note that just because a nonblocking (or blocking) data access function com-pletes does not mean that the data is actually written to \permanent" stor-age. All of the data access functions may bu�er data to improve performance.The only way to guarantee data is actually written to storage is by using theMPIO File sync call. However, one need not be concerned with the converseproblem { once a read operation completes, the data is always available in theuser's bu�er.4.3 CoordinationGlobal data accesses have signi�cant potential for automatic optimization, pro-vided the I/O system can recognize an operation as a global access. Collectiveoperations are used for this purpose. MPI-IO provides both independent andcollective versions of all data access operations. Every independent data accessfunction MPIO xxx, has a collective counterpart MPIO xxx all, where all meansthat \all" processes in the communicator group which opened the �le mustparticipate.An independent I/O request is a request which is executed individually by anyof the processes within a communicator group. An independent operation doesnot imply any coordination among processes and its completion only dependson the activity of the calling process.A collective I/O request is a request which is executed by all processes within acommunicator group. Collective operations imply that all processes belonging

14 Chapter 1to the communicator associated with the opened �le must participate. How-ever, as in MPI, no synchronization pattern between those processes is en-forced by the MPI-IO de�nition. Any required synchronization may dependupon a speci�c implementation. A process can (but is not required to) returnfrom a collective call as soon as its participation in the collective operation iscompleted. The completion of the operation, however, does not indicate thatother processes have completed or even started the I/O operation. Collectiveoperations can be used to achieve certain semantics, as in a scatter-gather op-eration, but they are also useful to advise the system of a set of independentaccesses that may be optimized if combined. Collective calls may require thatall processes, involved in the collective operation, pass the same value for anargument (e.g. MPIO Open requires all processes to pass the same �le name).From a semantic viewpoint, the only di�erence between collective operationsand their independent counterparts is potential synchronization. From a per-formance view, however, collective operations have the potential to be muchfaster than their independent counterparts.5 MISCELLANEOUS FEATURES5.1 File Layout in MPI-IOMPI-IO is intended as an interface that maps between data stored in memoryand a �le. Therefore, the basic access functions only specify how the data shouldbe laid out in a virtual �le structure (the �letype), not how that �le structure isto be stored on one or more disks. This was avoided because it is expected thatthe mapping of �les to disks will be system speci�c, and any speci�c controlover �le layout would therefore restrict program portability. However, thereare still cases where some information will be necessary in order to optimizedisk layout. MPI-IO allows a user to provide this information as hints speci�edwhen a �le is created. These hints do not change the semantics of any of theMPI-IO interfaces, instead they are provided to allow a speci�c implementationto increase I/O throughput. However, the MPI-IO standard does not enforcethat any of the hints will be used by any particular implementation.

MPI-IO Parallel I/O Interface 155.2 Read/Write Atomic SemanticsWhen concurrent data accesses involve overlapping data blocks, it is desirableto guarantee consistent interleaving of the accesses. For example, the UNIXread/write interface provides atomic access to �les. Suppose process A writesa 64K block starting at o�set 0, and process B writes a 32K block starting ato�set 32K (see Figure 6). The resulting �le will have the 32K overlapping block(starting from o�set 32K), either come from process A, or from process B. Theoverlapping block will not be intermixed with data from both processes A andB.
Process B

NOT

OR

Process A

Figure 6 UNIX Atomic SemanticsSimilarly, if process A writes a 64K block starting at o�set 0, and process Breads a 64K block starting at o�set 32K, process B will read the overlappingblock, as either old data, or as new data written by process A, but not mixeddata.For performance, most parallel �le systems decluster �les across multiple stor-age servers. In this environment, providing atomic data access can be expensive,requiring synchronization and adding overhead to merely check for read/writeoverlaps. However, as parallel applications rarely issue concurrent, overlappingread and write accesses, MPI-IO does not provide atomic data access by de-fault. To guarantee atomicity, MPI-IO provides a cautious mode, enabled viaMPIO File control.

16 Chapter 1Note that the cautious mode only guarantees atomicity of accesses within anMPI application, between two di�erent MPI processes accessing the same �ledata. Therefore, its e�ect is limited to the con�nes of the MPI COMM WORLDcommunicator group of the processes that opened the �le, typically all theprocesses in the job.6 CURRENT STATUSCurrently, several implementations of MPI-IO are in progress. NASA AmesResearch Center is working on a portable implementation, primarily targetedat workstation clusters. IBM Research is working on an implementation forthe IBM SP2, built on top of the IBM Parallel I/O File System. LawrenceLivermore National Laboratory is also working on implementations for theCray T3D and Meiko CS-2.General information, copies of the latest draft, and an archive of the MPI-IOmailing list, can be obtained at http://lovelace.nas.nasa.gov/MPI-IO/ viathe world-wide web. To join the MPI-IO mailing list, send your request tompi-io-request@nas.nasa.gov (see the Web page for details).APPENDIX ATRANSPOSING A 2-D MATRIXThe following C code implements the example depicted in Figure 3. A 2-Dmatrix is to be transposed in a row-cyclic distribution onto m processes. Forthe purpose of this example, we assume that matrix A is a square matrix ofsize n by n.read matrix(char *fname, /* File containing matrix "A[n][n]" */int n, /* Number of rows (columns) of matrix */MPI Datatype etype, /* Matrix element type */

MPI-IO Parallel I/O Interface 17void *localA) /* Target for transposed matrix */{ MPIO File fh;MPI Datatype ftype, buftype;MPI Status stat;MPI Datatype column t;int m, rank, nrows, sizeofetype;/** Create row-cyclic filetype for data distribution*/MPIO Type hpf cyclic(MPI COMM WORLD, n * n, n, etype, &ftype);MPI Type commit(&ftype);/** Create buftype to transpose matrix into process memory*/MPI Comm size(MPI COMM WORLD, &m);MPI Comm rank(MPI COMM WORLD, &rank);nrows = (rank < n % m) ? (n / m + 1) : (n / m);MPI Type extent(etype, &sizeofetype);MPI Type vector(n, 1, nrows, etype, &column t);MPI Type hvector(nrows, 1, sizeofetype, column t, &buftype);MPI Type commit(&buftype);MPI Type free(&column t);/** Read, distribute, and transpose the matrix (and cleanup)*/MPIO Open(MPI COMM WORLD, fname, MPIO RDONLY, MPIO OFFSET ZERO,etype, ftype, MPIO OFFSET RELATIVE, NULL, &fh);MPIO Read all(fh, MPIO OFFSET ZERO, localA, buftype, 1, &stat);MPIO Close(fh);MPI Type free(&ftype);MPI Type free(&buftype);}

18 Chapter 1AcknowledgementsThe authors would like to thank William Gropp, David Kotz, John May, andthe other contributors to the MPI-IO mailing list who helped with this work.REFERENCES[1] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, and Joel Saltz.Jovian: A framework for optimizing parallel I/O. In Proceedings of the1994 Scalable Parallel Libraries Conference, pages 10{20. IEEE ComputerSociety Press, October 1994.[2] Michael L. Best, Adam Greenberg, Craig Stan�ll, and Lewis W. Tucker.CMMD I/O: A parallel Unix I/O. In Proceedings of the Seventh Interna-tional Parallel Processing Symposium, pages 489{495, 1993.[3] Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer,Ravi Ponnusamy,Tarvinder Singh, and Rajeev Thakur. PASSION: paralleland scalable software for input-output. Technical Report SCCS-636, ECEDept., NPAC and CASE Center, Syracuse University, September 1994.[4] Peter F. Corbett, Sandra Johnson Baylor, and Dror G. Feitelson. Overviewof the Vesta parallel �le system. In IPPS '93 Workshop on Input/Output inParallel Computer Systems, pages 1{16, 1993. Also published in ComputerArchitecture News 21(5), pages 7{14, December 1993.[5] Peter F. Corbett and Dror G. Feitelson. Design and implementation of theVesta parallel �le system. In Proceedings of the Scalable High-PerformanceComputing Conference, pages 63{70, 1994.[6] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S. Al-masi, Sandra Johnson Baylor, Anthony S. Bolmarcich, Yarsun Hsu, JulianSatran, Marc Snir, Maurice Chi, Robert Colao, Brian Herr, Joseph Kavaky,Thomas R. Morgan, and Anthony Zlotek. Parallel �le systems for the IBMSP computers. IBM Systems Journal, Vol.34, No.2, pages 222{248, June1995.[7] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, and Sandra John-son Baylor. Parallel access to �les in the Vesta �le system. In Proceedingsof Supercomputing '93, pages 472{481, 1993.

MPI-IO Parallel I/O Interface 19[8] Erik DeBenedictis and Juan Miguel del Rosario. nCUBE parallel I/Osoftware. In Eleventh Annual IEEE International Phoenix Conference onComputers and Communications (IPCCC), pages 0117{0124, April 1992.[9] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-proved parallel I/O via a two-phase run-time access strategy. In IPPS '93Workshop on Input/Output in Parallel Computer Systems, pages 56{70,1993. Also published in Computer Architecture News 21(5), pages 31{38,December 1993.[10] Juan Miguel del Rosario, Michael Harry, and Alok Choudhary. The designof VIP-FS: A virtual, parallel �le system for high performance parallel anddistributed computing. Technical Report SCCS-628, NPAC, Syracuse, NY13244, May 1994.[11] R�udiger Esser and Renate Knecht. Intel Paragon XP/S | architecture andsoftware environment. Technical Report KFA-ZAM-IB-9305, Central In-stitute for Applied Mathematics, Research Center J�ulich, Germany, April1993.[12] Dror G. Feitelson, Peter F. Corbett, and Jean-Pierre Prost. Performanceof the Vesta parallel �le system. In Proceedings of the Ninth InternationalParallel Processing Symposium, pages 150{158, April 1995.[13] Dror G. Feitelson, Peter F. Corbett, Yarsun Hsu, and Jean-Pierre Prost.Parallel I/O Systems and Interfaces for Parallel Computers. Chapter inMultiprocessor Systems { Design and Integration, World Scienti�c. Toappear.[14] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O.In Proceedings of Supercomputing '93, pages 462{471, 1993.[15] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, andDavid S. Blumenthal. PPFS: A high performance portable parallel �lesystem. Technical Report UIUCDCS-R-95-1903, University of Illinois atUrbana Champaign, January 1995.[16] Intel Supercomputer Systems Division. iPSC/2 and iPSC/860 User'sGuide, April 1991. Order number: 311532-007.[17] Intel Supercomputer Systems Division. Intel Paragon XP/S User's Guide,April 1993. Order number: 312489-01.[18] David Kotz. Disk-directed I/O for MIMD multiprocessors. Technical Re-port PCS-TR94-226, Dept. of Computer Science, Dartmouth College, July

20 Chapter 11994. Also in Proceedings of the First Symposium on Operating SystemsDesign and Implementation, USENIX, pages 61{74, November 1994.[19] David Kotz and Nils Nieuwejaar. Dynamic �le-access characteristics of aproduction parallel scienti�c workload. In Proceedings of Supercomputing'94, pages 640{649, November 1994.[20] Susan J. LoVerso, Marshall Isman, Andy Nanopoulos, William Nesheim,Ewan D. Milne, and Richard Wheeler. sfs: A parallel �le system for theCM-5. In Proceedings of the 1993 Summer USENIX Conference, pages291{305, 1993.[21] Message Passing Interface Forum. MPI: A message-passing interface stan-dard, May 1994.[22] Steven A. Moyer and V. S. Sunderam. A parallel I/O system for high-performance distributed computing. In Proceedings of the IFIP WG10.3Working Conference on Programming Environments for Massively ParallelDistributed Systems, 1994.[23] Steven A. Moyer and V. S. Sunderam. PIOUS: a scalable parallel I/Osystem for distributed computing environments. In Proceedings of theScalable High-Performance Computing Conference, pages 71{78, 1994.[24] Nils Nieuwejaar and David Kotz. Low-level interfaces for high-level parallelI/O. In Proceedings of IPPS '95 Workshop on Input/Output in Paralleland Distributed Systems, pages 47-62, April 1995.[25] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Tech-nical Report RND-92-020, NAS Systems Division, NASA Ames, December1992.[26] Parasoft Corp. Express Version 1.0: A Communication Environment forParallel Computers, 1988.[27] Paul Pierce. A concurrent �le system for a highly parallel mass storagesystem. In Fourth Conference on Hypercube Concurrent Computers andApplications, pages 155{160, 1989.[28] Brad Rullman and David Payne. An e�cient �le I/O interface for parallelapplications. Draft distributed at Frontiers '95, 1995.[29] K. E. Seamons and M. Winslett. An e�cient abstract interface for multidi-mensional array I/O. In Proceedings of Supercomputing '94, pages 650{659,November 1994.

MPI-IO Parallel I/O Interface 21[30] K. E. Seamons and M. Winslett. Physical schemas for large multidimen-sional arrays in scienti�c computing applications. In Proceedings of the7th International Working Conference on Scienti�c and Statistical Data-base Management, pages 218{227, September 1994.[31] K. E. Seamons and M. Winslett. A data management approach for han-dling large compressed arrays in high performance computing. In Pro-ceedings of the Fifth Symposium on the Frontiers of Massively ParallelComputation, pages 119-128, February 1995.[32] Rajeev Thakur, Rajesh Bordawekar, Alok Choudhary, Ravi Ponnusamy,and Tarvinder Singh. PASSION runtime library for parallel I/O. In Pro-ceedings of the Scalable Parallel Libraries Conference, pages 119{128, Oc-tober 1994.

