
Performance and Overhead Measurementson the MakbilanYosi Ben-Asher Dror G. FeitelsonDepartment of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, IsraelE-mail: fyosi,drorfg@cs.huji.ac.ilTechnical Report 91-5October 1991AbstractThe Makbilan is a research multiprocessor with 12 single-board computers in a Multibus-IIcage. Each single-board computer is a 386 processor running at 20 MHz with 4 MB of memory.The software includes a local kernel (Intel's RMK) on each board, and a parallel run-timelibrary that supports the constructs of the ParC language. We report measurements of buscontention e�ects, context-switch overhead, overhead for spawning new tasks, the e�ectivenessof load balancing, and synchronization overhead on this system.

11 IntroductionWhen evaluating a new system, it is important to make accurate measurements of the overheadsinvolved in various system operations. This is not always as easy as it sounds.On the Makbilan, and bus-based shared memory machines in general, the problem is one ofisolating the measurements from irrelevant external e�ects. For example, the measured resultsdepend on the following:� Whether data structures are local or remote, and must be accessed through the bus.� If remote accesses are made, what is the contention for the bus at that time.� What is the contention for a speci�c memory module. This in
uences both local and remotereferences.� What is the load on the PEs, i.e. how many tasks are being time shared.The methodology used is to write application programs that perform a certain operation alarge number of times, and measure their execution times. The applications are written so that thetransient e�ects at startup are negligible relative to the total execution time, thus enabling us toattribute the whole time to the repeated performance of the operation being measured. However,care must be taken that some additional operation does not \slip in" together with the one we areinterested in.Hardware Con�gurationThe Hardware con�guration of the Makbilan, as used in these measurements, was as follows:� A Multibus-II backplane with 20 slots.� A CSM-001 bus controller.� 12 single-board computers (SBC) acting as PEs. Each has a 386 processor running at 20MHz, a 387 coprocessor, an MPC, and 4 MB of memory.� Another SBC acting as a Unix host.� A 186/410 board with six terminal ports.� A 186/224 board peripheral controller interfacing the bus with the SYP 500 chassis. Thischassis contains the I/O devices (disk and tape).2 Processing RatesEach processor in the Makbilan has an independent clock. The �rst experiment is designed tocheck how well these clocks are synchronized. The code used is as follows:

2lparfor int n; 0; proc no-1; -1; faddr[n] = (int*) malloc(sizeof(int));g eparfor (i=0 ; i<proc no ; i++) ffor (j=i+1 ; j<proc no ; j++) ffor (k=0 ; k<EXPR ; k++) flparfor int n; 0; proc no-1; -1;f int *loc, rem, it1, it2;if ((n != i) && (n != j))pcontinue; /* check i against j */it1 = ITER1;it2 = ITER2;loc = addr[n];*loc = 0;if (n == i) fwhile (*loc < it2) fif (*loc == it1)rem = *(addr[j]);(*loc)++;gres[i][j][k] = rem;gelse fwhile (*loc < it2) fif (*loc == it1)rem = *(addr[i]);(*loc)++;gres[j][i][k] = rem;gg epargggAll this code does is to check all pairs of processors against each other. this is done by spawning apair of activities, one on each processor, which iterate a large number of times | 12,000,000 wasused. A bit before the end, at 10,000,000 iterations, each activity checks the progress of the otheractivity and tabulates it. Everything is local with no interference from any other processor in thesystem.The results are shown in table 1. These are averages of �ve measurements for each pair. Rowi of the table contains the rates of all the processors relative to processor number i. Thus a rowwith many positive numbers, e.g. row 3, indicates a relatively slow processor. A row with manynegative numbers, e.g. row 7, indicates a relatively fast processor. The greatest di�erence measured,

3

1 2 3 4 5 6 7 8 9 10 11 121 | +7 {54 +2 0 +25 +19 +1 +2 {9 {6 {102 {7 | {60 {7 +2 +18 +18 {3 {5 {16 0 {83 +54 +60 | +59 +53 +79 +80 +45 +54 +42 +59 +454 {2 +8 {58 | 0 +29 +25 +5 {1 {4 {3 {115 0 {1 {53 0 | +23 +15 +11 {17 {19 +4 {126 {25 {17 {80 {24 {23 | {10 {35 {28 {45 {20 {457 {18 {17 {80 {25 {15 +10 | {22 {30 {34 {24 {348 {1 +3 {45 {4 {11 +36 +22 | +5 {20 +5 {109 {2 +5 {54 +1 +18 +28 +30 {5 | {5 +7 +210 +9 +17 {41 +4 +19 +45 +34 +20 +5 | +9 {511 +6 0 {59 +3 {4 +20 +24 {5 {6 {9 | {1712 +10 +8 {44 +12 +12 +45 +34 +11 {2 +5 +17 |Table 1: Relative rates of the 12 processors currently in the Makbilan, in parts per million.

4between processor 3 and processor 6, is only 80 parts per million. At least the last digit of thesemeasurements should not be considered as accurate. For example, the table shows that processor#8 is slower than #11 by 5 ppm, and processor #4 is slower than #8 by an additional 4 ppm, butprocessor #4 is faster than #11 by 3 ppm.3 Bus ContentionThe Makbilan backplane is a Multibus-II, with a throughput of 40MB/s. This seems to be morethan enough to service a number of transfers within one processor cycle, implying that the busshould not be a bottleneck. But the Makbilan uses the bus mainly for remote memory access, andthe bus protocol requires that the bus be held until the transaction terminates. The memory hasdual ports, and access from the bus may su�er several wait states. Thus the memory response timemay be a bottleneck that limits the bus throughput. The experiments in this section are designedto check this.3.1 Contention for Bus AccessThis subsection contains two experiments: the �rst shows how performance degrades when moreprocessors try to use the bus simultaneously, and the second shows how the mix of local and globalaccesses in
uences the performance.Experiment 1This experiment is repeated with di�erent numbers of processors. The code for each run is asfollows:int g;lparfor int j; 1; num-of-procs; -1;f int k;/*register*/ int *pg, lg;pg = &g;for (k=0 ; k<ITER ; k++) f*pg=lg; /* repeated 100 times */ *pg=lg;gg eparThe assignment in the loop is repeated 100 times in-line to reduce the e�ect of the loop handlingitself. The experiment was conducted twice, once with pg and lg de�ned as local variables and onceas registers. Note that the global variable g is actually in the local memory of the �rst processor,so in the measurement for i processors only i � 1 are really using the bus. In particular, themeasurement for one processor is really a local access, not a global one.The results are shown in �g. 1. It is obvious that a linear relationship exists between the numberof processors and the elapsed time, indicating that the bus cannot support multiple requests withina single processor cycle. Thus the bus is indeed a bottleneck. As may be expected, when the

5
0

2

4

6

8

10

0 2 4 6 8 10

t
i
m
e

[
s
e
c
]

number of PEs

local variables:
in memory

in registers

Figure 1: Measurement showing that the bus is not faster than the processors. Time for 1000000global accesses from each processor is shown.local variables are in registers the elapsed time is slightly shorter. Note, however, that as moreprocessors are added the di�erence decreases until it disappears. The reason for this is that usingregisters reduces the time needed to issue the next global access, but the bottleneck is the globalaccess itself. Issuing the instruction faster does not help.Experiment 2The load on the bus depends, of course, on the access rate from the di�erent processors. This inturn depends on the ratio of local to global memory references. This experiment shows how a largerpercentage of local references makes the bus seem faster.The basic code is similar to the previous experiment, except that each processor does globalaccesses to a di�erent global variable. The global variables are arranged so that each is in thememory of a di�erent processor. This ensures that the bottleneck is indeed the bus (and itsprotocol), and not any overloading e�ects on a speci�c memory module./* allocate memory in every processor */lparfor int j; 1; proc no; -1;M[j] = (int *) malloc(sizeof(int));epar/* repeat for different numbers of PEs */lparfor int j; 1; num-of-procs; -1;f

6int l, k, *p;/* arrange pointers */if (get pid() < proc no)p = M[get pid()+1];elsep = M[1];/* perform local and global accesses */for (k=0 ; k<ITER ; k++) fDOx(*p, l)gg eparThe DOx macro includes 100 instructions, out of which x are assignments to the global variable, ofthe form *p=l, and the rest are increments of the local variable, i.e. l++. results for �ve values ofx are reported: 1, 10, 20, 50, and 100. for example, the macro DO50(x,y) looks like this:#define DO50(x,y) f \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; \l++; x=y; l++; x=y; l++; x=y; l++; x=y; l++; x=y; gAs may be expected, when practically all the accesses are local, the number of processorsworking in parallel has no in
uence (x = 1). When a certain fraction of accesses are global, buscontention begins to take its toll (x = 50 to x = 50), and the larger the fraction of global accessesthe larger the elapsed time becomes (x = 100).The results for heavy bus activity are practically identical to those from experiment 1. thismeans that it is not possible to decouple the degradation due to bus contention from the degradationdue to contention for the same memory module.3.2 Bus Access PrioritiesThe Multibus-II arbitration mechanism gives higher priority to PEs with lower serial numbers.This experiment was designed to check how big the di�erence in performance can be. The code is:/* allocate a counter in every processor */lparfor int j; 1; proc no; -1;f C[j] = (int *) malloc(sizeof(int));*(C[j]) = 0;

7
0

2

4

6

8

10

0 2 4 6 8 10

t
i
m
e

[
s
e
c
]

number of PEs

x=1
x=10
x=20
x=50
x=100

Figure 2: E�ect of di�erent ratios of global to local accesses on the degradation due to bus con-tention.g eparflag = 1;/* increment neighbor's counter until threshold reached */lparfor int j; 1; proc no; -1;f int k, *p;p = C[(j<proc no)? j+1 : 1];while (g) ffor (k=0 ; k<ITER ; k++)*p = *p + 1;if (*p >= THRESHOLD)g = 0;gg eparAgain, each processor increments a counter in another processor's local memory. Note that theaccesses are done in a double loop: the outer loop checks the termination condition (when the�rst PE reaches the threshold value), and the inner one performs a certain constant number ofiterations. This is done to reduce the e�ect of checking the termination condition.The results are tabulated in table 2. The relative performance displays a step-like behavior.Using PE number 1 as a reference point, we �nd that PE number 2 achieves the same number ofaccesses, PE number 3 achieves 90% of that, PEs numbers 4 through 6 achieve about 2/3, and

8serial number number of accesses1 10002 9933 8934 6885 6716 6587 5018 5019 50110 501Table 2: Number of accesses performed by di�erent PEs, when all compete for the bus.PEs 7 through 10 achieve only 1/2. The reason for this behavior is that the arbitration mechanismoperates in a gated manner. First, all the contending PEs are noted. Then they are servicedaccording to their serial numbers. While this is being done, new requests that arrive are blockedout. Only when the previous set have all been serviced, does a new round begin. Thus PEs withlow serial numbers, that are serviced early in the round, manage to generate a new request beforethe round is over, and therefore get into the next round as well. PEs late in line are servicedtowards the end of the round, and do not manage to generate a new request before the round isover. Therefore they miss alternate rounds. PEs in the middle sometimes make it and sometimesnot.4 Remote Access PenaltyObviously a remote access takes more time than a local one. But how much more? The experimentsin this section are designed to answer this question, and characterize the performance in di�erentoperating conditions.4.1 ExperimentsAll these experiments have the same structure. A set of activities is spawned and access somevariables in a loop. In each set there is always one activity that accesses a local variable, suchthat no other activity accesses any variable in its local memory. This activity is therefore isolatedfrom all the others, and serves as a reference point. When it completes 100000 iterations, it notesthe number of iterations that the other activities have completed in the same time. This gives therelative execution rates. Of course the measured time is for the whole instruction execution cycle,not only the memory reference to get the operands. To reduce this e�ect, the instruction that isexecuted is the increment instruction, which performs an increment on a memory address. Thisrequires two memory accesses, and only minimal decoding. In addition, the overhead for executingthe loop itself (which is local) may obviously bias the performance �gures. To reduce this e�ect,

9the loop contains in-line code for 250 consecutive increment instructions. The code for the �rstexperiment is:pparblockf /* local undisturbed */register int *p;int i, res2, res3;p = &i;while (flag1 == 0);for ((*p)=0 ; (*p)<ITER ;) f(*p)++; /* repeated 250 times */ (*p)++;gres2 = *p2;res3 = *p3;sync;g :f /* local disturbed */register int *p;int i, j;p3 = &j;flag2 = 1;p2 = &i;p = &i;while (flag1 == 0);for ((*p)=0 ; (*p)<ITER ;) f(*p)++; /* repeated 250 times */ (*p)++;gsync;g :f /* remote */register int *p;while (flag2 == 0);p = p3;flag1 = 1;for ((*p)=0 ; (*p)<ITER ;) f(*p)++; /* repeated 250 times */ (*p)++;gsync;gepar

10access conditions ratelocal free memory 1.00contention from a single remote activity 0.74contention from multiple remote activities 0.57remote to unused memory, no bus contention 0.11to locally used memory, no bus contention 0.11with heavy bus contention 0.01{0.03Table 3: Relative access rates under di�erent conditions.The variable flag1 is used to signal that all are ready and the measurement can begin. flag2signals that the global pointer p3 now points to a local variable, and can be used by the processthat performs the remote accesses. res2 and res3 take a snapshot of the progress of the locallydisturbed activity and the remote activity, respectively, at the instant that the locally undisturbedactivity �nishes its iterations.The other experiments follow the same principle. To measure remote access to an unusedmemory, the middle (local disturbed) activity is terminated with a pcontinue after it allocateslocal memory and assigns its address to p3. malloc is used so that this memory will persist afterthe activity terminates. To measure contention from multiple activities, the third activity (remote)is replaced by a pparfor that spawns proc no - 2 additional activities, which all access the samevariable.4.2 ResultsThe results of these experiments are summarized in table 3. Remote references cause a degradationin the local access rate, and reduce it to 56{74% of the rate when there are no remote references.Under ideal conditions, remote references take nine times as long as local references to an unusedmemory, or 5{7 times as long as local references that are disturbed by remote references. Under lessideal conditions, where bus contention also takes its toll, remote references are much slower. Themost extreme di�erence is between local references to an unused memory and remote references thatsu�er sever contention; in this case the remote references are from thirty to seventy times slower.The large variance is due to the fact that di�erent PEs have di�erent priorities, and thereforesu�er di�erent degrees of degradation under contention. Under reasonable conditions, where allthe memories are accessed both locally and through the bus, and there is moderate contention, theratio between local and remote references is about a factor of ten to twenty.5 SchedulingThe scheduling overhead is the time required to perform a context switch. The main problem withmeasuring this quantity is that the run time library has a few tasks that compete with the usertasks for the CPU. This adds overhead that is unaccounted for.

115.1 The Default LibraryThis experiment measures the scheduling overhead by spawning a set of activities, one per PE.Each activity performs an empty loop, yielding the processor in each iteration. Thus the averagetime required per iteration is actually the time required to reschedule the activity. This scenario isrepeated for di�erent loads, so as to distinguish between the constant overhead due to the librarytasks and the scheduling overhead that is proportional to the number of activities that are beingtime shared. The code used is the following:lparfor int i; 1; proc no; -1;f start = get loctime();for (j=0 ; j<ITER ; j++)fgstop = get loctime();control[i] = (float) stop - start;gif (load == 1)sem init(&ready, 1);elsesem init(&ready, 0);pparblockf /* create loading conditions */pparfor int l; 2; load; 1;f lparfor int i; 1; proc no; -1;f int j;if ((l == 2) && (i == 1))V(&ready); /* signal when ready */for (j=0 ; j<ITER+load+3 ; j++) fKN sleep(0);ggepargeparg:f /* perform measurements */P(&ready); /* wait for load to be ready */lparfor int i; 1; proc no; -1;f int j, start, stop;start = get loctime();for (j=0 ; j<ITER ; j++) f

12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

t
i
m
e

p
e
r

i
t
e
r
a
t
i
o
n

load (tasks per PE)

df
gang

Figure 3: Overhead for scheduling.KN sleep(0);gstop = get loctime();for (j=0 ; j<CUSHION ; j++);res[i] = (float) stop - start;res[i] = res[i] - control[i];gepargeparThe control measurement evaluates the time needed do the loop itself. The ready semaphoreis used to trigger the measurement after the additional loading activities have been spawned.The CUSHION delays writing the results into the shared array, so as not to interfere with othermeasurements that have not terminated yet.The results of this experiment are shown in �gure 3. The average over 12 PEs was measured.As expected, the total scheduling overhead in a scheduling round is a linear function of the load,obeying the expression 0:140+0:072 � load (where the measurement is in ms). This means that eachRMK context switch takes about 72�s. The additional constant overhead of 140�s is attributedto the scheduling and execution of the get work task. This overhead would be bigger if this taskactually had something to do; 140�s is the time needed to �nd out that there is nothing to do.

13It should be noted that the measurements show that the overhead on the master PE (PE #1)is between 2 and 4% higher than on the other PEs. This di�erence may be due to the fact that theget work tasks on all the other PEs access global data structures that are located in the memoryof the �rst PE, thus slowing it down.5.2 The Gang Scheduling LibraryThis experiment is designed to measure the context switching overhead when the gang schedulinglibrary is used. With this library, context switching is coordinated and done simultaneously on allthe PEs, by means of a broadcast interrupt. To measure the overhead, a set of activities is created,one per PE. All the activities loop endlessly on a local variable, but one of them calls the libraryfunction ts sched in each iteration; this function sends the scheduling broadcast. The code usedis int flag=1;pparfor int l; 1; load; 1;f lparfor int i; 1; proc no; -1;f int j, start, stop;if (i == 2) f /* to avoid flag traffic */start = get loctime();for (j=0 ; j<ITER ; j++) fts sched(0);gstop = get loctime();flag = 0;res = (float) stop - start;gelse fwhile(flag) ffor (j=0 ; j<1000 ; j++);gggepargeparThe results of this experiment are also shown in �gure 3. Again the overhead is more or lesslinear with the load, but in this case there is no added constant because there is no get work task.However, the overhead is signi�cantly higher than for the df library: it is approximately 0:2 � load.This is reasonable since every scheduling operation here involves two RMK scheduling operations,a broadcast, and the execution of the scheduler task.

146 Spawning new activitiesThe question here is \how much time does it take to create a new activity, execute it, and terminateit". This is important since activities that are too short relative to this overhead usually cause adegradation rather than an improvement in performance.6.1 Experiment 1In this experiment a set of empty activities is spawned, one per PE. This is repeated a large numberof times, and the average time needed for a spawn in reported. The following code was used:start = get loctime();for (j=0 ; j<lim ; j++)fgstop = get loctime();control = (float) stop - start;start = get loctime();for (j=0 ; j<lim ; j++) flparfor int i; 1; proc no; -1;fgepargstop = get loctime();res = (float) stop - start;time per spawn = (res - control)/lim;Values of lim that were used were between 10000 and 50000. Rounded results were then typicallythe same to within less than 1%.The sequence of events in each iteration, in the df library, is as follows:1. The parent activity runs on the master PE, and(a) Starts another loop.(b) Spawns a new set of activities. This involvesi. Initialization of the spawn descriptor.ii. Linking the descriptor to the global list.iii. Suspending execution.2. The get work task runs (on all PEs), doing(a) Get a lock on the global descriptor list and get a new activity.(b) Create a new RMK task to execute the activity.(c) Yield the processor.3. The new activities execute on all the PEs. This includes

15
0

1

2

3

4

5

0 2 4 6 8 10 12

t
i
m
e

p
e
r

s
p
a
w
n

number of PEs

df
gang

Figure 4: Results for experiment 1: overhead for spawning empty activities on all the PEs.(a) The selector runs and gets whatever is needed from the parent.(b) The activity terminates and the task is deleted. The last one links the parent's descriptorto the resume list.4. the get work task runs again (on the master PE), doing(a) Resume the parent.(b) yield the processor.The results are shown in �gure 4. These results indicate that as more PEs are used, the overheadincreases. This increase is slightly superlinear, probably due to contention for the bus and for thespawn descriptor, and possibly also to the fact that the additional PEs have to perform remoteaccesses.The increased overhead in the gang scheduling library is probably due to the fact that thelibrary scheduler must run to perform all the necessary context switches.6.2 Experiment 2The main problem with the previous experiment is that it measures the total time to perform aparallel construct, not just the time to spawn an activity. To measure the net time required justto get an activity and execute it, without the time needed for the spawn, we need to have one PEthat just creates activities all the time, while other PEs keep the global list of spawn descriptorsfrom becoming empty. This is achieved by the following code:

16
0

0.5

1

1.5

2

0 1 2 3 4 5

t
i
m
e

p
e
r

s
p
a
w
n

number of generatorsFigure 5: Results for experiment 2: overhead for creating empty activities from a remote descriptor.start = get loctime();lparfor int j; 1; proc no; -1;f intk, lim;if (j == 1)pcontinue; /* leave PE #1 free */lim = ITER;for (k=0 ; k<lim ; k++) f /* spawn single task on PE # 1 */lparfor int l; 1; 1; -1;fgeparggeparstop = get loctime();res = (float) stop - start;time per spawn = res/(ITER*(proc no-1));The results are shown in �gure 5. When only one activity generates new descriptors, the PEthat creates the activities has to wait for the next one each time. When there are two or more, itdoes not have to wait, so the time per spawn is reduced. If there are too many generators, however,they contend for the global descriptor list, causing a degradation in performance.

17
0

0.5

1

1.5

2

0 2 4 6 8 10 12

t
i
m
e

p
e
r

s
p
a
w
n

number of PEsFigure 6: Results for experiment 3: overhead for creating empty activities from a large descriptor.6.3 Experiment 3As a �nal touch, we also consider a simpler version of the previous experiment. In this case a largenumber of activities are spawned at once, and executed by all the processors. Thus there is nocontention for the global descriptor list due to the addition of new descriptors, but only contentiondue to the execution of activities. However, one of the PEs has the descriptor in its local memory,while the others have to access it via the bus. The code is:lim = ITER*proc no;start = get loctime();pparfor int i; 1; lim; 1;fgeparstop = get loctime();res = (float) stop - start;time per spawn = res/ITER;The results of this experiment are shown in �gure 6.6.4 SummaryThe experiments described in this section show that the e�ective overhead for spawning an activityis highly variable. The reason for this is that spawning is communication intensive, and hence

18depends on the loading conditions. The minimum time needed just to create a task, start it andterminate it, is about 1ms. This number grows when there is contention for the bus, either due toother tasks being spawned, or due to computation.7 Load Balancing and GranularityThe ParC run time library spawns tasks as follows: the activity that performs the spawn placesa spawn descriptor in global memory, and each processor checks the descriptor and creates a newactivity once every scheduling round. This should provide a measure of load balancing, becauseprocessors that are overloaded have a longer scheduling round, so they will take additional work ata slower rate.It should be noted that load balancing can be de�ned in two ways: according to the numericalload and according to the work/performance load. Balancing the numerical load means that eachprocessor will have the same number of activities. Balancing the work/performance means thateach processor will do work proportional to its performance: ine�cient processors will do less, soas not to cause a delay. The two are not the same, even if all the activities are identical, becausethe e�ciency of di�erent processors is indeed di�erent. This is a result of the global memory accesspenalty and the di�erent bus access priorities.The question of load balancing is further complicated by the issue of granularity. In particular,the system might be prevented from performing any load balancing because the program is parti-tioned into activities with the wrong granularity. The experiment reported in this section showshow all of this is tied together.The methodology used is to how much time it would take to perform a constant amount of workusing di�erent numbers of activities. The work is 100,000,000 assignments to a global variable. Thisis divided equally among a certain number of activities, that are then executed on a 10-processorsystem. The code for this experiment is simplyexp = 0;for (i=1 ; i<100000000 ; i=i*10) fexp++;start = get loctime();pparfor int j; 1; i; 1;f int l, k, n;l = 100000000/i;for (k=0 ; k<l ; k++)n = g;res[exp][get pid()]++;g eparstop = get loctime();time[exp] = stop - start;gThe experiment is divided into phases, each of which does the same work with a di�erent numberof activities. The res array counts the number of activities performed on each processor in each

19number of elapsedactivities time [s]1 384.35010 100.230100 100.2101000 85.75010000 85.625100000 95.1851000000 170.97510000000 1154.620Table 4: Elapsed time for computations with di�erent numbers of activities.
PE serial numberpercentofactivities 1 2 3 4 5 6 7 8 9 1005101520

25 number of activities:1001000100001000001000000
Figure 7: Number of activities executed on each processor.phase. The time array tabulates the elapsed time of each phase.The results of the elapsed time are given in table 4. The best speedup, which is about 4.5, isachieved when between 1000 and 10000 activities are used (a more accurate measurement showedthe optimal number to be 1900 activities, which took 85.005 seconds). Using 10000000 activities isthree times slower than doing the work serially, because the granularity is much too �ne. Most ofthe time is spent in overhead just creating all those activities.For each measurement (identi�ed by the number of activities used), the percentage of activitiesexecuted on each processor is shown in �g. 7. The results indicate that the best performance isobtained when the loads are not numerically equal. Three cases may be distinguished:1. The number of activities is too small the their granularity is too large. In this case a moree�cient processor may �nish executing its activity before less e�cient processors, but by thetime it �nishes all the activities have been picked up already. Therefore it idles, and the time

20is determined by the slower processors.2. The optimal case: a medium number of activities with medium granularity. In this caseprocessor #1 does 212 times more work than the others. Its increased e�ciency is due to thefact that both the spawn descriptor and the global variable that are used in the computationare in its local memory. Processor #2 also does a relatively large amount of work. This isdue to the fact that it has the highest bus priority of all the processors that get work throughthe bus.3. The number of the activities is too large and their granularity is too small. In this casethe contention for the spawn descriptor takes its toll, and limits the performance. All theprocessors execute about the same number of activities, but it takes them a long time becausethey have to wait for access to the descriptor. Processor #1 becomes relatively slow, becausethe heavy burden on its local memory slows it down.8 Synchronization OverheadParC has three synchronization mechanisms: an atomic fetch-and-add instruction (faa), a barriersynchronization instruction (sync), and semaphores. In this section we measure the performanceof the �rst two, and show how it depends on the number of activities involved.8.1 Fetch-And-AddThe faa instruction is implemented by a set of locks. The address of the variable in question ishashed to one of the locks. The atomic test-and-set instruction from the 386 instruction set, whichis supported across the Multibus-II, is used to obtain the lock. Busy waiting is used if the lock isnot available. Once the lock is obtained, the faa operation is simulated.Obviously this implementation serializes concurrent faa instructions to the same variable. Thefollowing code was used to gauge the e�ect of this serialization:start = get loctime();lparfor int i; 1; proc no; -1;f int *p, j;p = &g;/* or p = ptr[(i==proc no)?1:i+1]; */for (j=0 ; j<ITER ; j++)faa(p, 1);g eparstop = get loctime();As indicated by the comment, two cases were checked. In the �rst, all the activities accesses thesame variable. In the second, each accessed a distinct variable placed in the memory of anotherprocessor.The results are plotted in �g. 8. As expected, the overhead rises with the number of processors.When the faas are directed at distinct variables, the relationship is linear: it re
ects the global

21
0

1

2

3

4

5

6

0 2 4 6 8 10 12

t
i
m
e

[
s
e
c
]

number of PEs

same variable
different variables

Figure 8: Time for 10000 faa instructions by each of a set of processors.operations on the bus. When all the faas are directed at the same variable, the relationship becomessuperlinear for a large number of processors. This is a result of the contention for the same lock.Note that the overhead is quite large relative to the simple nature of the operation (about 0.4 msper faa). The extra overhead is due to raising the priority of the activity when it holds the lock,so as to prevent it from being preempted.8.2 Barrier SynchronizationThe sync instruction imposes a barrier synchronization across sibling activities, i.e. across activitiesthat were spawned together by the same construct. The implementation uses a counter and a
agin the spawn descriptor: each activity that reaches the barrier decrements the counter and thenspins on the
ag. The last to arrive raises the
ag and releases all its waiting siblings (it also setsthings up for the next barrier). In order to avoid excessive waste if there are more activities thanprocessors, the busy-wait loop includes an instruction to yield the processor if the
ag is not up.The counter is decremented using faa, so there is an obvious serialization of this procedure. Inaddition, when there are more activities than processors, context switches are needed so that allwill run and reach the barrier. The experiments in this subsection quantify these two e�ects.Experiment 1In this experiment there is exactly one activity on each processor. These activities synchronizerepeatedly, and the time required is measured. The code used is:start = get loctime();

22
0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12

t
i
m
e

p
e
r

s
y
n
c

[
m
s
]

number of PEsFigure 9: Time for sync instruction by a set of processors. Average over 10000 is shown.lparfor int i; 1; proc no; -1;f int j;for (j=0 ; j<ITER ; j++)sync;geparstop = get loctime();The results are shown in �g. 9. The measurement for one processor is much lower than the restbecause everything is local. Note that the measured time includes the time for the loop itself.Measurements show this to be 0.0015 ms per iteration, so the di�erence is small.Experiment 2When the number of activities exceeds the number of processors, context switches are needed toallow them all to run and reach the barrier. This is greatly exacerbated if all the activities do notexist yet when the �rst reach the barrier.In this experiment 10 processors are used. Three types of measurements are made:1. A large number of activities are spawned, and they synchronize repeatedly for a large numberof times. Thus in e�ect we can measure the average time to perform a sync when all theactivities have been spawned already. This is a direct extension of the previous experiment;it is shown by the \just sync" graph in �g. 10. The results indicate a linear relation between

23
0

300

600

900

1200

1500

0 250 500 750 1000

t
i
m
e

p
e
r

o
p
e
r
a
t
i
o
n

[
m
s
]

number of activities

just sync
spawn & sync
just spawn

Figure 10: Time for sync instruction by a large number of activities. Performance degrades sharplyif the activities have to be spawned.the number of activities and the time required, which is expected considering that the imple-mentation of the sync is actually serial. The constant of proportionality includes the timefor the faa on the counter and the context switch.2. A large number of activities are spawned and they synchronize once. Thus the price ofspawning also enters the picture. This is shown in the \spawn & sync" graph in �g. 10.3. To calibrate the previous measurement, we also measured the time just to spawn the tasks(\just spawn" graph in �g. 10). As expected, this is linear in the number of activities, andthe constant of proportionality is about 1 ms per activity.The important e�ect to notice is that the time to spawn and sync is much larger than the sumof its parts. In fact, it seems to have a quadratic relation to the number of activities. This is aresult of the way that the sync is implemented, and speci�cally, a result of using busy waitingwith a yield instruction. The system then operates according to the following scenario. First, oneactivity is spawned by the get work task. This activity tries to sync, �nds that its siblings havenot arrived yet, and yields. get work runs again, and spawns another activity. This activity tootries to sync, fails, and yields. The �rst activity is then rescheduled, tries again, fails again, andyields again. This pattern is repeated until all the activities are spawned: after each one, all theexisting activities try to sync. Thus the time to spawn and sync N activities is proportional tothe sum of N times the spawn overhead, plus (N=P)2=2 times the overhead to perform a contextswitch and check the sync condition.

