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Abstract

Mass-count disparity is the technical underpinning of the
“mice and elephants” phenomenon — that most samples
are small, but a few are huge — which may be the most im-
portant attribute of heavy-tailed distributions. We propose
to visualize this phenomenon by plotting the conventional
distribution and the mass distribution together in the same
plot. This then leads to a natural quantification of the effect
based on the distance between the two distributions. Such
a quantification addresses this important phenomenon di-
rectly, taking the full distribution into account, rather than
focusing on the mathematical properties of the tail of the
distribution. In particular, it shows that the Pareto distribu-
tion with tail index1 < a < 2 actually has a relatively low
mass-count disparity; the effects often observed are the re-
sult of combining some other distribution with a Pareto tail.

1. Introduction

Heavy tails have been found to characterize the distri-
butions of many aspects of computer-related systems. This
means that while most elements are very small, some are
very big and may even dominate the observations of the sys-
tem. In many cases, this disparity among numerous small
items and few large items is the main factor that affects
system performance, and is more important than the exact
mathematical description of the shape of the distribution’s
tail. It is therefore beneficial to have a set of simple and
intuitive metrics that describe and quantify this effect.

Examples of system designs where heavy tails play an
important role include the following. The heavy-tailed dis-
tribution of file sizes justifies the Unix inode structure, with
its direct support for small files and indirect links that are
only used for very large files [4, 13]. The heavy-tailed dis-
tribution of process runtimes can be exploited for load bal-
ancing in a cluster, by focusing on migrating the longest
processes [15, 11]. The heavy-tailed distribution of Inter-

net flows has led to the proposal that only the large flows
need to be monitored for accounting purposes [8]. Heavy
tails also affect caching strategies: caching to minimize the
number of requests forwarded to a server should focus on
requests for small pages, whereas caching to minimize the
number of bytes requested from the server should focus on
the large ones [3].

The apparent importance of heavy tails has prompted
considerable debate about the best way to model them
[7, 19, 6]. However, the practical optimizations for heavy-
tailed workloads cited above do not depend on the precise
characteristics of the tail of the distribution. Rather, they
rely on the distinction between the body of the distribu-
tion and its tail, and more specifically on the phenomenon
of mass-count disparity: that a small number of items ac-
count for the majority of mass, whereas all small items to-
gether only account for negligible mass [5, 10] (or, using
concrete examples from computer workloads, a typical pro-
cess is short, but a typical second of CPU activity is part
of a long process; a typical file is small, but a typical byte
of storage belongs to a large file). This disparity is some-
times referred to as the “mice and elephants” phenomenon.
But this metaphor may conjure the image of a bimodal dis-
tribution1, which could be misleading: in most cases, the
progression is continuous.

Our contribution in this paper is to suggest a way to visu-
alize mass-count disparity by a combined plot of the count
and mass distributions. Based on this, we propose met-
rics that quantify the effect. One is a generalization of the
proverbial 20/80 rule. Another two are based on what we
call the 0/50 rule. Furthermore, our suggested metrics are
non-parametric, so they do not depend on the underlying
distribution, and can be easily calculated for an empirical
distribution. Thus they sidestep the whole issue of what dis-
tribution provides the best fit to the data. Using these met-
rics we can make several interesting observations regarding
heavy-tailed workload distributions.

1A typical mouse weighs about 28 grams, whereas an elephant weighs
3 to 6 tons, depending on whether it is Indian or African. Cats, dogs, and
zebras, which fall in between, are missing from this picture.
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Figure 1. A Lorenz curve for the Unix 1993 data.
The Gini coefficient corresponds to the shaded area.

2. Mass-Count Disparity Plots

A typical way to look at a distribution is by plotting its
CDF (cumulative distribution function)Fc(x) = Pr(X <
x). We call this the “count” distribution, because we are
counting how many items, say files, there are of each size
(hence the subscriptc). Another way to look at the same
data is to weight each file by its size. In effect this creates
a distribution of bytes rather than files: instead of specify-
ing the probability that a file be smaller thanx, it specifies
the probability that a bytebelong toa file smaller thanx.
We call this the “mass” distribution, because here we are
looking at the bytes that make up the files. In mathemati-
cal notation, assuming a pdff(x), the mass distribution is
calculated as [5]

Fm(x) =

∫ x

−∞
x′f(x′) dx′

∫

∞

−∞
x′f(x′) dx′

Mass-count disparity occurs when these two distribu-
tions are very different from each other. This need not be
the case. If mass is concentrated in one main mode, the
two distributions will be similar. For example, this happens
when data comes from a normal distribution (Fig. 8 below).
But if the tail of the distribution contains a disproportional
fraction of the mass, while the body contains a dispropor-
tional fraction of the items, the count and mass distributions
will diverge.

One way to compare the two distributions is to create a
derived graph showing the relationship between their per-
centiles — essentially a P-P plot [14]. For each value
of x, we find the percentile ofx in the two distributions:
pc = Fc(x) andpm = Fm(x). We can then plotpm as a
function ofpc:

pm = Fm( F−1
c (pc) )

This is called the Lorenz curve, and is used in economics
to measure equality (or rather, inequality) in the distribu-
tion of wealth [17]. If wealth is equally distributed, the

p percentile of the population also controlsp percent of
the wealth, sopm = pc — a straight diagonal line. But
if wealth is unequally distributed, and the poorestp per-
centiles of the population control less thanp percent of the
wealth, we will find thatpm < pc. A measure of inequality
is therefore the degree to which the curve diverges from the
diagonal, which can be measured by the area between the
curve the the diagonal, a metric called the Gini coefficient2.
Of course, the same procedure can be applied to other types
of data. Fig. 1 shows the Lorenz curve corresponding to the
file sizes found in a large-scale survey of Unix systems from
1993 [13]. Such a graph was used by Crovella to show that
the few largest files may account for some 60% of the total
bytes in a file system [5]; similarly, Arlitt and Williamson
showed that 10% of documents were responsible for 80–
95% of requests from different web servers [3].

However, graphs like the Lorenz curve are somewhat
hard to interpret. Here we suggest a simpler approach: sim-
ply plot the two CDFs together. Doing this for the Unix
files data leads to the plot shown in Fig. 2. The difference
between the distributions is immediately apparent: in the
count (files) distribution, most of the weight is at low val-
ues around a kilobyte, whereas in the mass (disk space) dis-
tribution the weight is spread out at higher values around
several megabytes. Plotting the two distributions together
has been done before, e.g. in [16, 18]. However, they did
not use this to derive simple metrics as we do next.

3. Metrics for Mass-Count Disparity

Mass-count disparity is often described in words by
quoting certain percentiles of the distributions. For exam-
ple, Harchol-Balter et al. describe a heavy-tailed distribu-
tion of files requested from a Web server as “the largest
<3% or the requested files make up>50% of the total
load... 50% of the files have size less than 1K bytes. 90%
of files have size less than 9.3 K bytes” [12].

As an alternative, we suggest the use of mass-count dis-
parity plots as an inspiration for two simple “rules”. One
is the proverbial 20/80 or 10/90 rule (also known as the
“Pareto principle”). Its application to the Unix files data
is shown on the top of Fig. 2. The graph shows that the data
is very close to the 10/90 rule: 10% of the files are big files,
and account for 90% of the disk space, and vice versa. The
boundary between big and small in this case is 16 KB. Less
extreme data sets would be closer to a ratio of 20/80.

An even more dramatic demonstration of mass-count
disparity is the 0/50 rule. As shown on the bottom of Fig. 2,
a full half of the files are so small that together they account
for a negligible fraction of the disk space. At the same time,
half of the disk space is occupied by a very small fraction

2Actually the Gini coefficient is defined to be twice this area,so as to
normalize it to the range [0..1].
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Figure 2. The distribution of Unix file sizes from
1993, showing the 10/90 and 0/50 rules.

of files, which are each very large. This is the property that
is often the most important in the context of computer sys-
tems, as it allows one to focus on that part of the workload
that is responsible for most of the mass, and ignore the nu-
merous items that do not account for much [11, 5, 10, 8].

Formalizing this idea, we can suggest several numeri-
cal measures that indicate the degree to which a distribu-
tion indeed displays mass-count disparity. While our names
for these metrics are new, the metrics themselves have been
used by others, e.g. by Irlam in his descriptions of the Unix
files data from 1993 [13].

The simplest metric is thejoint ratio. This is a direct
generalization of the 10/90 rule and the 20/80 rule. The
10/90 rule, for example, says two things at once: That 10%
of the items account for a full 90% of the mass, and also
that 90% of the items account for only 10% of the mass.
The generalization is to find the percentagep such thatp%
of the items account for100−p% of the mass, and100−p%
of the items account forp% of the mass. The smallerp is,
the greater the mass-count disparity. To find the joint ratio,
note that CDFs are non decreasing, so the complement of a
CDF is non-increasing. Therefore there is a uniquex that
satisfies the condition

Fc(x) = 1 − Fm(x)

Given thisx, computeR = 100Fm(x). The joint ratio is
thenR/(100 − R).

The 0/50 rule is generalized by two metrics. In practice,
the 0 here is not really 0; the metrics quantify how close

to 0 we get. The first metric isN1/2, which quantifies the
percentage of items from the tail needed to account for half
of the mass:

N1/2 = 100(1 − Fc(F−1
m (0.5) ))

The second isW1/2, and quantifies the total mass of the
bottom half of the items:

W1/2 = 100Fm(F−1
c (0.5) )

Note that all these three metrics measure the vertical dis-
tance between the two distributions. This is because the
vertical distance best characterizes the mass-count disparity.
But it may also be interesting to know how much larger the
tail items are. This can be measured by themedian-median
distance, that is the distance between the medians of the two
distributions. The farther apart they are, the heavier the tail
of the distribution. As absolute values depend on the units
used, it makes sense to express this distance as a ratio (or
take the log of the ratio in order to express the distance as
the number of orders of magnitude that are spanned).

4. Real-World Examples

The above metrics are readily applied to myriad exam-
ples of data that displays mass-count disparity. We start
with two types of highly skewed distributions that charac-
terize computer workloads: distributions of size and distri-
butions of popularity.

Size-related examples are shown in Fig. 3. On the top
is data about files from Unix file systems: the survey con-
ducted in October 1993 by Irlam, representing about 12 mil-
lion files from over a thousand file systems, and a local file
system (Hebrew University computer science) with over 18
million files sampled in June 2005. These two datasets are
amazingly similar both in terms of their general shapes and
in terms of the specific values assumed by our metrics. Thus
it is possible that this data is indeed representative and sta-
ble. However, it is desirable to collect data from additional
contemporary installations in order to verify this.

On the bottom is data on Unix process runtimes: a
dataset used in simulations by Harchol-Balter and Downey
[11], with about 185,000 processes that arrived over 8 hours
(from 9AM to 5PM) to a server at CMU in November 1994,
and a dataset of nearly 450,000 Unix processes from a de-
partmental server at Hebrew University computer science,
covering about a month during October-November 20053.

These two datasets are quite different from each other.
One noticeable difference is that in the 1994 data 34% of
the processes were tabulated as requiring 0 time; in the

3One process was removed from this dataset, as it was tabulated to
have run for 341 hours, which seems extremely unlikely; the next highest
runtime is 29 hours.
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Figure 3. Examples of the joint ratio,N1/2, W1/2,
and median-median distance metrics for size data.

2005 data this doubled to 66%. The reason for this is prob-
ably the limited resolution of 0.01 seconds used by the last-
comm command that was used to collect the data (and in
fact, this is the best possible with a 100Hz operating system
clock). As processor speeds increase, this resolution be-
comes less and less adequate for tabulating short processes.
As a side-effect, this limitation also taints two of the 2005
metrics. The median-median distance is measured relative

HU−CS user files (2.8M files)
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Figure 4. File size data for user home directories vs.
system files, from the Hebrew University data set.

to the 0.005 seconds used to represent all the processes that
are tabulated as taking 0 time; this is not necessarily the true
value for the (unknown) real median. And theW1/2 metric
should be interpreted as saying that half the processes use
at most0.3% of the CPU time, because this fraction is actu-
ally attributed to 66.5% of the processes, not to only half of
them.

Regardless of these qualifications, the newer dataset is
much more extreme than the previous one. However, it is
risky to jump to conclusions based on this change, because
both data sets are from a single installation. We can only say
that it is necessary to collect additional data from multiple
installations in order to learn more about the distributionof
process runtimes.

Interesting observations can be made by applying the
metrics to subsets of the data, rather than looking at the
whole dataset monolithically. For example, the HU-CS file
sizes data shown above is actually the composition of two
distinct data sets: user files and system files. Fig. 4 shows
the distributions and metrics for each group independently.
This shows that the distribution of user files is much more
extreme (in terms of its mass-count disparity) than the dis-
tribution of system files; for example, the joint ratio for user
files is 7/93, whereas for system files it is only 12/88. To-
gether with theN1/2 andW1/2 metrics this enables us to
quantify and describe the difference between the distribu-
tions of the two subsets. The metric values shown above for
the complete dataset are essentially an average of the two
subsets.
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Figure 5. Examples of the joint ratio,N1/2, W1/2,
and median-median distance metrics for popularity
data.

Examples of datasets relating to popularity are shown in
Fig. 5. The top graphs show the popularity of different files
in HTTP logs: the SDSC HTTP log collected by Polterock
et al. in August 1995, with some 28 thousand requests from
one day, and data from the 1998 World Cup website col-
lected by Arlitt [2]; the full dataset contains over 1.3 billion
requests spanning 3 months; here we show 16.7 million re-
quests from one day.

Popularity in web traces is measured by the number of
requests for the same file4. The count distributions show
how many files were requestedx times, while the mass dis-
tributions show how many requests were directed at these
files. Obviously, these data display a strong mass-count dis-
parity. The World Cup data is much more extreme than the
SDSC data, indicating that the SDSC requests were more
evenly spread, whereas the traffic to the world cup site was
much more focused on a select set of documents. This dis-
tinction is probably more related to the very different types
of installations and not to the progress in time from 1995 to
1998.

The bottom two plots in Fig. 5 show data regarding lo-
cality of reference from two SPEC benchmarks: gcc and
mesa. Memory address traces from the execution of these
and other applications indicate that some data structures and
variables are much more popular than others; this is part of
the effect of temporal locality. Our metrics indicate that
this indeed leads to very strong mass-count disparity. But
even more striking is the wide diversity of results. With
data from only 7 different benchmarks, the observed joint
ratios ranged from 1/99 to 8/92, and the observed median-
median distances ranged from a factor of 2,700 to a fac-
tor of 1,200,000. Moreover, the distributions tended to dis-
play various special features that are not captured by the
metrics, such as the modal structure apparent in the mesa
benchmark.

It is expected that analogous plots can be drawn for mea-
surements of additional quantities, such as function-level
application profiles: most functions are called a small num-
ber of times, and most calls are to a small subset of the
functions. However, at present we do not have such data
available.

As with the size data, interesting observations can be
made by applying the metrics to subsets of the data. For ex-
ample, the world cup 1998 log actually contains data about
requests fielded over nearly 3 months. The top plot in Fig.
6 shows the popularity data of this whole data set. The sec-
ond plot shows the data limited to the initial portion of the
log: more than 70 million requests, all during the month of
May, well before the games started. The bottom two plots
show data for June 30, one of the most intensive days in
the middle of the tournament. This shows that the results
for the complete dataset are an average between the results
for the pre-games period, which is less extreme, and the
peak period, which is much more extreme. Interestingly,
the metric that best brings out the difference is the median-
median distance, which grows from a factor of about 1700
before or between games to about 17,000 during peak ac-
tivity. This indicates that during the games the requests
were much more focused on a relatively small set of pages

4We include both successful requests (status 2XX) and consistency re-
quests (status 304, meaning no change).



WC’98 HTTP all (1.3B req.)

requests per object
1 10 100 1000 10      4 10      5 10      6 10      7 10      8

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
objects
requests joint

ratio
6/94

W1/2=0.16

N1/2=0.34

m−m dist.
x8500

May 1−31 (70.7M req.)

requests per object
1 10 100 1000 10      4 10      5 10      6 10      7

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

joint
ratio
9/91

W1/2=0.17

N1/2=1.14

m−m dist.
x1700

June 30 14:00−15:00 (1.3M req.)

requests per object
1 10 100 1000 10      4 10      5

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

joint
ratio
8/92

W1/2=0.58

N1/2=0.9

m−m dist.
x1800

June 30 17:00−18:00 (7.7M req.)

requests per object
1 10 100 1000 10      4 10      5 10      6

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

joint
ratio
4/96

W1/2=0.1

N1/2=0.48

m−m dist.
x17000

Figure 6. Popularity of files on the WC’98 server,
for different durations.

— probably the ones relating to the games being played at
that time. Note this difference is even observed on a short
timescale of a few hours, as witnessed by the bottom two
plots. Thus it can serve to characterize the well-known phe-
nomenon of “flash crowds” [1].

Naturally, mass-count disparity plots can be drawn for
other types of data that are unrelated to computer work-
loads. For example, Fig. 7 shows data regarding downloads
of open-source projects from the SourceForge repository5,

5We only used projects that had at least one download, and ignored the
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Figure 7. Mass-count disparity in the popularity of
open-source projects on SourceForge, and words in
Shakespeare’s plays.

and word-frequency data from Shakespeare’s plays. It is
well-known that the word frequency distribution is highly
skewed: most words appear very few times in any given
corpus, but some words (e.g. “the”, “and”, “in”) appear lots
of times [21, 20]. And indeed, this leads to significant mass-
count disparity. Other obvious candidates for such plots are
the distribution of wealth, which was the topic studied by
Pareto, Lorenz, and Gini, or the distribution of city sizes.

5. Mass-Count Disparity of Distributions

The above examples show the mass-count plots for em-
pirical data, and extract the metrics from these plots. But
given a mathematical expression for a distribution, it may
also be possible to compute the metrics analytically.

For example, consider the exponential distribution. The
count distribution is simply the well-known CDF,Fc(x) =
1 − e−x/θ. The mass distribution can be easily calculated
as

Fm(x) =

∫ x

0

x′

θ
e−x′/θdx′

∫

∞

0

x′

θ
e−x′/θdx′

= 1 −
x + θ

θ
e−x/θ

Given these equations, we can calculate the different met-
rics. For example, the joint ratio occurs at thex value for

80597 that had 0 downloads (about2

3
of the listed projects). The data is

from May 2005.
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Figure 8. Mass-count plots and metrics for the expo-
nential and normal distributions, which are not heavy-
tailed. The exponential distribution has meanθ =
100. The normal distribution has meanµ = 100 and
standard deviationσ = 50, so it is a bell shape situ-
ated just to the right ofx = 0. Note the use of a linear
scale for this plot.

which the sum of the two distributions is 1. Forθ = 1
this happens atx = 1.15. Using this value, we find that
Fc(1.15) = 0.683. The joint ratio for the exponential dis-
tribution is therefore 32/68, indicating a rather low mass-
count disparity. An even lower metric value is obtained for
the normal distribution, as illustrated in Fig. 8.

Naturally, mass-count disparity does exist in distribu-
tions that have a heavier tail. For example, Fig. 9 shows data
for the lognormal distribution, which has a long tail, mean-
ing that it decays subexponentially [9]. Both the shown dis-
tributions haveµ = 4.6 = ln(100), and indeed for both the
median of the count distribution is near 100. The difference
is in the dispersion, as expressed by theσ parameter. The
bigger the dispersion, the heavier the tail, and the stronger
the mass-count disparity.

With the Pareto distribution, the mass-count disparity de-
pends on the tail index. The Pareto count distribution is

Fc(x) = 1 −

(

k

x

)a

wherek is the minimal value possible (that is, the distribu-
tion is defined forx ≥ k), anda is the tail index. The mass
distribution is
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Figure 9. Mass-count plots and metrics for the long-
tailed lognormal distribution.

Fm(x) =

∫ x

0

x′
aka

x′a+1
dx′

∫

∞

0

aka

x′a+1
dx′

= 1 −

(

k

x

)a−1

The integrals only converge for the case whena > 1; if a
is smaller, the tail is so heavy that the mean is undefined.
This is reflected in the shape of the plots (Fig. 10). Whena
is small, a significant part of the mass occurs in the few top
samples, and we get very high mass-count disparity. When
a = 1, the mass distribution is a straight line. Whena is
larger (the case described by the equations) the metric val-
ues are rather moderate. In particular, the values fora = 1.5
are rather similar to those of the exponential distribution
shown in Fig. 8. However, the shapes of the two distribu-
tions are quite different, and of course their tails are also
quite different.

The reason that the Pareto distribution may not exhibit
a high mass-count disparity when using our metrics is that
the metrics do not focus on the tail, but rather on the rela-
tionship between the tail and the body of the distribution.
The vast majority of reports regarding heavy tails in the lit-
erature are indeed limited to the tails of the observed dis-
tributions, and do not claim that the complete distribution
is well described by a power law (i.e. that the distribution
is Pareto). For example, both the Unix file sizes data from
1993 and the Unix process runtimes data from 1994 have
heavy tails, and indeed the right-hand sides of their mass-
count disparity plots (Fig. 3) have the concave shape of the
plots for the Pareto distribution witha > 1. However, they
are not well-modeled by a Pareto distribution. The reason
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Figure 10. Mass-count plots and metrics for the heavy-tailed Pareto distribution.

is that these datasets have many more small items than a
Pareto distribution does, and these are needed in order to
lead to a significant mass-count disparity. A possible way
to construct a distribution with such a power-law tail that
does exhibit significant mass-count disparity is thereforeto
combine two distributions — for example, an exponential
body and a Pareto tail.

6. Limitations

Mass-count disparity plots are very useful for visualiz-
ing the effect of mass-count disparity which occurs in many
real-life datasets, and our metrics enable this effect to be
easily quantified. However, there are some limitations to
their applicability.

The main limitation occurs when the distributions in
question are modal. For example, if the distribution hap-
pens to have a discrete mode exactly at thex value that sat-
isfies the condition for the joint ratio (Fc(x) = 1−Fm(x)),
the two CDFs will have a discontinuity and the condition
will actually not be satisfied. A possible solution would be
to use the values just to the right or just to the left of the
mode, but then the two ratios do not coincide.

An example is provided by packet sizes data from a
trans-Pacific Internet link. Considering the first 10,000
packets in this trace, nearly two thirds of them had a size
of 1500 bytes (which was also the maximal size observed).
As a result all our metrics are meaningless. At best, we can
replace the joint ratio by saying that the smaller 46% of the
packets contain 8.4% of the bytes, while the remaining 64%
of the packets account for 91.6% of the bytes.

Note, however, that modal distributions do not always
have such a strong detrimental effect. If we consider the
first 1,000,000 packets in the above trace, the results are
somewhat less extreme: only 40.3% of the packets have
a size of 1500 bytes, so the medians do not share a com-
mon value, and theW1/2 and median-median distance are
defined. Still, the joint ratio is not, as the smaller 59.7% of
packet contain 15.7% of bytes, while the top 40.3% of pack-
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Figure 11. Mass-count plots for highly modal packet
size data from samplepoint A of a trans-Pacific T1
line in the WIDE backbone, starting on Friday,
September 1, 2000, at 13:59. Note the use of a lin-
ear scale.

ets account for 84.3% of bytes. Interestingly, more recent
data (e.g. from 2005) is even less modal, and consequently
all of our metrics are well defined.

Another potential problem occurs when using the
median-median distance to characterize short-lived effects,
such as flash crowds on the Internet. The problem is that
the mass distribution then depends on the window of ob-
servation: the longer we observe the effect, the higher the
mass associated with the large items from the tail of the dis-
tribution. As a result the median-median distance becomes
larger as the observation window becomes longer. But if
it becomes too long, and extends beyond the duration of
the effect, the count distribution starts to catch up and the
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Figure 12. Mass-count plots and metrics for the HTTP WC’98 data, with different ranges around the “flash” of activity
related to the semi-finals in the evening of July 7, 1998.

median-median distance is reduced again.
The above is demonstrated in Fig. 12, using data from

the 1998 world cup web site. The first semi-final game oc-
curred in the evening hours of July 7, 1998, and there was
no other peak of activity in the two days that preceded it.
As the figure shows, the joint ratio is very stable at between
3/97 and 6/94 for all observation windows. TheN1/2 and
W1/2 metrics are also rather stable provided the observation
window is not too short (e.g. 10 minutes). But the median-
median distance is very sensitive to the observation window.
Note, however, that this sensitivity can also be exploited to
identify such effects.

Finally, another potential limitation is that mass-count
disparity plots require data about the complete distribution.
In some cases it is much easier to obtain data about the
unique large-scale items from the tail of the distribution
than about the abundant items from the body of the distri-
bution. In particular, it may be difficult to assess how many
small items there are, which is crucial for a correct rendition
of the count distribution. For example, when studying data
about flows in the Internet, one would need to tabulate all
the short flows at wire speed, which could be very difficult
[8]. Another (non-computer related) example is the distri-
bution of wealth, where data is typically tabulated using a
rather coarse classification into income brackets.

7. Conclusions

Mass-count disparity is a basic characteristic of skewed
distributions, such as many of those that characterize com-
puter workloads. In fact, it may be argued that this charac-
teristic is the most important attribute of such distributions,

more so than the exact mathematical properties of the tail of
the distribution. This reflects that fact that mass-count dis-
parity characterizes the complete distribution, and in partic-
ular, the relationship between the tail and the body of the
distribution. In contrast, metrics such as the tail index only
characterize the tail, and are oblivious to the relationship
between the tail and the body. In particular, we found that
the Pareto distribution (witha > 1) actually has a relatively
low mass-count disparity. To create a distribution with a
heavy (power-law) tail and a high mass-count disparity, one
needs many more small items.

We have proposed a set of metrics that together quan-
tify salient features of mass-count disparity, based on a
comparison of the mass distribution and the count distri-
bution. Applying these metrics to computer workload data
shows that significant mass-count disparity indeed exists.
But more importantly, these metrics allow for fine distinc-
tions between related workloads. For example, they seem
to indicate that workloads are becoming more skewed with
time, and that the distributions of popularity on different
web servers can be quite different. However, not all metrics
have the same power:

• The N1/2 and W1/2 metrics are the least discrimi-
nating. They tend to be extremely small in all the
skewed workloads we have examined. Therefore they
can serve as an initial metric: if they are more than
a few percentage points, the data is not really highly
skewed.

• The joint ratio is more discriminatory, and values rang-
ing from close to 20/80 down to 2/98 have been ob-
served. It has the advantage of being quite robust de-



spite changes in the amount of data being considered
or its resolution.

• The median-median distance is the most variable,
ranging from a factor of a few dozen up to a factor
of hundreds of thousands. Such large factors indi-
cate that typical units of mass indeed tend to belong
to items that are considerably bigger than the typical
items. However, this metric is susceptible to depen-
dence on the size of the dataset being analyzed.

Further research is needed to verify the trends shown
here, and to discover additional findings. This first requires
the collection of additional datasets from various computer
systems. Given enough data from different installations will
enable meta-studies that can identify invariants and trends
that are generally representative.
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Birkhäuser, 1998.

[10] M. Harchol-Balter, “Task assignment with unknown dura-
tion”. J. ACM49(2), pp. 260–288, Mar 2002.

[11] M. Harchol-Balter and A. B. Downey, “Exploiting process
lifetime distributions for dynamic load balancing”. ACM
Trans. Comput. Syst.15(3), pp. 253–285, Aug 1997.

[12] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal, “Size-based scheduling to improve web
performance”. ACM Trans. Comput. Syst.21(2), pp. 207–
233, May 2003.

[13] G. Irlam, “Unix file size survey - 1993”. URL
http://www.base.com/gordoni/ufs93.html.

[14] A. M. Law and W. D. Kelton,Simulation Modeling and
Analysis. McGraw Hill, 3rd ed., 2000.

[15] W. E. Leland and T. J. Ott, “Load-balancing heuristics and
process behavior”. In SIGMETRICS Conf. Measurement &
Modeling of Comput. Syst., pp. 54–69, 1986.

[16] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo,
H. M. Levy, and S. S. Parekh, “An analysis of database
workload performance on simultaneous multithreaded pro-
cessors”. In 25th Ann. Intl. Symp. Computer Architecture
Conf. Proc., pp. 39–50, Jun 1998.

[17] M. O. Lorenz, “Methods of measuring the concentration of
wealth”. Pub. Am. Stat. Assoc.9(70), pp. 209–219, Jun 1905.

[18] “MAWI working group traffic archive”. URL
http://mawi.wide.ad.jp/mawi/, 2005.

[19] M. Mitzenmacher, “A brief history of generative models for
power law and lognormal distributions”. Internet Math.1(2),
pp. 226–251, 2003.

[20] H. S. Sichel, “On a distribution law for word frequencies”.
J. Am. Stat. Assoc.70(351), pp. 542–547, Sep 1975.

[21] G. K. Zipf, Human Behavior and the Principle of Least Ef-
fort. Addison-Wesley, 1949.


