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Abstract

Instruction reuse and memoization exploit the fact
that during a program run there are operations that exe-
cute more than once with the same operand values. By
saving previous occurrences of instructions (operands
and result) in dedicated, on-chip lookup tables, it is pos-
sible to avoid re-execution of these instructions. This
has been shown to be efficient in a naive model that
assumes single-cycle table lookup. We now extend the
analysis to consider the energy, area, and timing over-
heads of maintaining such tables.

We show that reuse opportunities abound in the
SPEC CPU2000 benchmark suite, and that by judi-
ciously selecting table configurations it is possible to
exploit these opportunities with a minimal penalty. En-
ergy consumption can be further reduced by employ-
ing confidence counters, which enable instructions that
have a history of failed memoizations to be filtered
out. We conclude by identifying those instructions that
profit most from memoization, and the conditions un-
der which it is beneficial.

1 Introduction

During program execution there are operations that
execute, more than once, with the same operand val-
ues. Several papers published in the late 90s proposed
exploiting this fact by saving previous occurrences of
instruction level operations (operands and result) in
dedicated, on-chip, lookup tables. It is then possible
to avoid execution of these instructions by matching
the current executing instruction’s operands with an
entry in the table.

The approach of Sohi and Sodani [16] is to reuse in-
structions (identifiable by the Program Counter) early
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in the pipeline by matching their operands or by estab-
lishing that their source registers haven’t been over-
written since the instruction’s last invocation. Their
technique is called Instruction Reuse.

Citron, Feitelson, and Rudolph [4] extend the idea
of Richardson [14] and perform the reuse test on the
operand values and operation, in parallel to instruction
execution. This enables different static instruction in-
stances to reuse each other’s results. This was coined
Instruction Memoization.

Molina, Gonzalez, and Tubella [11] combine both
approaches: a match is first attempted when indexed
by the PC and if that fails the operand values are used
as an index. A limited study (multiplication in four
applications) by Azam, Franzon, and Liu [1] suggests
memoization as a power saving method.

However, these models are naive and outdated.
They assume that the latency of the table lookup time
is a single cycle, that it can be performed in parallel
or ahead of computation without any timing or power
penalty, and that a successful lookup will enhance per-
formance. These and other shortcomings have been
reviewed by Citron and Feitelson [3].

Table 1 shows that the latencies of most instruc-
tions on the current generation of microprocessors are
growing in comparison to their predecessors. Instruc-
tion Memoization, or IM (this is the term we will use
throughout this study), has the potential to reduce
these latencies and enhance performance given a model
that is adapted to the deep pipelines, short cycles, and
tight energy budgets of present and future micropro-
cessors. The contributions of this study are fourfold:

1. Ratify that reuse opportunities still exist in CPU
intensive applications. Section 2 presents the reuse
rates for the SPEC CPU2000 suite compiled for
IBM’s Power4 [19] 64-bit architecture.

2. Explore the organization of the lookup tables in



Processor Clock IALU | IMUL IDIV FADD | FMUL FDIV

Rate 1 ¢t It 1 t |1t 1 t 1 t
Power3-1I [13] 450MHz || 1 1 5 1137 37|13 1|3 1|18 18
Power4 [20] 1.5GHz || 1 1 7 6|68 676 1|6 1 |30 30
Pentium III [6] 14GHz || 1 1| 4 1|5 56 |3 1|5 2 |38 38
Pentium 4 [7] 32GHz || .5 b5 |15 5|56 23|5 1 |7 2 |38 38
UltraSPARC 1I [17] 480MHz 1 1 5 5136 36 | 3 1 3 1 22 22
UltraSPARC III [18] 1.2GHz 1 1 6 5139 38 |4 1 4 1 20 17

Table 1. Latencies and throughputs of instructions on current and previous generations of microprocessors.

terms of reuse rate, access time, energy consump-
tion, and area. Section 3 performs this analysis
with 2% and full factorial designs.

3. Enhance the reuse process. Section 4 will show
how using multiple lookup tables (per instruction
class), trivial computation detection, and confi-
dence estimators can raise the reuse rate and re-
duce the miss penalty.

4. Determine which instructions benefit most from
IM. Section 5 compares the physical features of
various functional units to lookup tables that store
their results.

2 Instruction Memoization and Reuse
Potential

This section will reconfirm the potential of IM by
measuring the reuse rate of an infinitely large lookup
table. A lookup table, which we will coin a MEMO-
TABLE, is a cache like structure that is composed of
a relatively large tag (opcode + operands) portion
and a relatively small data portion (result). Figure
1 shows a MEMO-TABLE designed to contain the op-
codes, operands, and results of IBM’s Power4 [19] 64-
bit instructions. The extensive use of FMADD (Float-
ing point Multiply ADD) instructions necessitates the
storage of three 64-bit operands in the table. The op-
code field is composed of 6 bits of the basic opcode
(OPC) and 10 bits of the extended opcode (XO). All
bits that aren’t used are zeroed when an instruction
is placed in the table. There is no need for a valid
bit, an illegal opcode loaded at boot-time will prevent
matching and reading invalid data.

The daunting problem of matching 207 bits is one
aspect that has been neglected by previous studies that
focused on two 32-bit operands. Widespread 64-bit
computing and enhanced instruction sets forces us to
deal with this problem head-on. Section 3 examines
the impact this has on performance, power, area and
access time.

Figure 1. A generic MEMO-TABLE capable of mem-
oizing all Power4 instructions.

2.1 Simulation M ethodology

The infrastructure for all our simulations is Aria
[12], an environment for PowerPC microarchitecture
exploration. The environment dynamically traces all
user and library code (system calls are executed but
not traced). Drivers can be written that collect and
analyze any subset of instruction types, data values,
memory references etc. Specifically, we built drivers
to collect memoization statistics for various instruction
types.

The data was collected from the SPEC CPU2000
suite using the MinneSPEC [10] input sets. Table 2
shows the exact inputs used and the number of in-
structions simulated. The C/C++ benchmarks were
compiled on a Power4 running AIX version 5.1 us-
ing the IBM compiler x1c v6.0 with the flags: -q64
-DSPEC_CPU2000_LP64 -05. The Fortran benchmarks
were compiled using the x1f v8.1 compiler with the
flags: -q64 -05.

2.2 Instruction Memoization Potential

In order to gauge the potential of instruction mem-
oization we performed an experiment that measures
the reuse rate of most instructions using an “infinite”
MEMO-TABLE (1 million entries with 64-way associa-
tivity, LRU replacement, and indexed using the XOR



Benchmark Input # anst.
164.gzip lgred - log 434M
175.vpr lgred - place 2000M
176.gcc lgred 2000M
181.mcf lgred 836M
186.crafty lgred 838M
197.parser lgred 2000M
252.eon lgred - cook 761M
253.perlbmk | lgred 1921M
254.gap lgred 772M
255.vortex lgred 1278M
256.bzip2 lgred - source | 1759M
300.twolf lgred 925M
168.wupwise | lgred 2000M
171.swim lgred 304M
172.mgrid lgred 94M
173.applu lgred 66M
177.mesa lgred 850M
178.galgel lgred 210M
179.art lgred 2000M
183.equake lgred 871M
187 facerec lgred 356M
188.ammp lgred 1207TM
189.lucas lgred 212M
191.fma3d lgred 540M
200.sixtrack | lgred 1329M
301.apsi lgred 25TM

Table 2. Benchmarks (CINT2000 top half,
CFP2000 bottom half), input sets, and instruc-
tions executed. The default inputs are the lgred
sets of MinneSPEC. Benchmarks were terminated
after 2 billion instructions.

of the lower bits of the operands and opcodes). The
instructions omitted are of two classes:

e Branches: Conditional branches in the Power
architecture determine their outcome on precom-
puted bits in condition registers. Memoizing the
instruction to obtain the next PC based on the
current PC and condition bits is exactly what the
Branch Prediction Unit does, there is no need to
duplicate this functionality.

e Loads/Stores: Memoization of memory refer-
ences based on the base address and offset requires
storing the effective address and implementing an
invalidation mechanism every time data is stored
to memory. This reduces the technique to just an-
other level in the memory hierarchy. Nevertheless,
the effective address calculation is memoized.
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Figure 2. Percent of all memoizable and success-
fully memoizable instructions when using a very
large MEMO-TABLE.

Figure 2 shows the percent of dynamic instructions
looked up (out of all executed instructions, including
branches) and the fraction of successful lookups for
all 26 applications in the SPEC CPU2000 benchmark.
Nearly 75% of all dynamic instructions can be success-
fully memoized for the CINT2000 suite and 65% for
the CFP2000 suite. The weighted harmonic mean is
used for all averages in this study. It was chosen for its
mathematical properties that are best suited for rates.
A study by Yi and Lilja [21] using 7 CPU2000 bench-
marks and different metrics concludes that the bench-
marks have significant amounts of redundant computa-
tions. Our study ratifies these conclusions on the whole
suite.

3 MEMO-TABLE Structural Factors

The factors that influence the reuse rate, access
time, energy consumption, and area are numerous:
size, associativity, indexing, number of ports, etc. A
full factorial design would entail hundreds of simula-



tions. In order to reduce this to a manageable size we
will first perform a 2* factorial design using four factors
(section 3.1) and then perform a full two-factor design
(section 3.2) on the influential factors.

Factor Low Level | High Level

size 32 entries 1024 entries
associativity direct-map | 8-way

indexing mode PC operands + opcode
replacement mode | random Least Recently Used

Table 3. MEMO-TABLE factors and levels used in
the 2% factorial design.

3.1 2k Factorial Design

A 2% Factorial Design [9] is used to determine the
effect of k factors, each of which has two levels. When
a factor has a continuity of levels two extremes are
chosen. The technique computes the allocation of vari-
ation contributed to each factor separately and in com-
bination with others. The factors and levels we chose
are described in table 3. The metrics measured are:

1. Reuse rates for the CINT and CFP benchmarks
measured by dividing the number of successful
memoizations by the number of memoizable in-
structions executed (and then taking the weighted
harmonic mean).

2. Energy of an access (nJ).
3. Access time (ns).

4. Total area (mm?).

Metric Allocation of Variation (%)

S| A | M R

Reuse Rate (CINT) | 87 | 2 | 9 0
Reuse Rate (CFP) 9% | 2 | 2 0
Energy 35 | 57| 0 0
Access Time 54 | 42 | 2 0
Area 86 | 13| 0 0

Table 4. Allocation of variation of the 2* fac-
torial design (Size, Associativity, Mapping, Re-
placement).

One anomaly that arises is the use of the replace-
ment method as a factor in conjunction with a direct
mapped table. We chose to keep this level of asso-
ciativity due to its influence on the access time and

energy results. Access time and energy are calculated
using CACTI 3.0 [15] modified to accommodate the
large tag size' and to distinguish between different in-
dexing and replacement modes. One read port, one
write port and a technology of 90nm (forecast for next
generation technology) are configured. The raw results
are in table 5 and the allocation of variation is summed
in table 4. From both we can conclude:

1. The size of the MEMO-TABLE is the dominant fac-
tor for all metrics except energy. A table with less
entries is power efficient, fast, and small, yet it re-
duces the reuse rate. Further exploration is needed
to determine the optimal table size.

2. The associativity of a MEMO-TABLE has a very
small effect on the reuse rate yet a large effect on
time, energy, and area. Smaller degrees of associa-
tivity should be explored.

3. Using the program counter as the index yields poor
reuse rates yet hardly effects time, energy, or area.
The reduced reuse rate is a result of: (i) all dy-
namic instances of an instruction are mapped to
the same set, reuse is limited to the size of the set;
(ii) dynamic instructions of different static instruc-
tions (with the same opcode) can’t use each others
results. Less than half the successful lookups can
be attributed to the same static instruction.

4. The replacement method has hardly any effect on
any of the metrics.

5. When assuming a clock rate of 2GHz (minimum
estimate for future IBM Power implementations)
even the fastest configurations take more than one
cycle to complete a lookup. This must be: a) min-
imized. b) compared against the latency of mem-
oized instructions.

After fixing the mapping (operands) and replacement
(random) modes, the next step in our study is to per-
form a full two-factor factorial design using size and
associativity.

3.2 Full Two-Factor Factorial Design

In this set of experiments we vary the size of the
MEMO-TABLE from 32 to 1024 entries and the degree
of associativity from direct-mapped to 16-way and 64-
way (which represents fully associative in our model).
Indexing is performed using the operands and opcodes
and random replacement is implemented. Figure 3
shows the reuse rates?, energy, access time, and area

ITwo 64-bit operands were simulated, three operand tables
are discussed in section 4.1.
2Just the CINT suite, the CFP suite displays similar behavior.



Configuration Results Configuration Results
S A M R | cint | cfp nJ ns | mm?® S A M R | cint | cfp nJ ns | mm?
32 1 pc rnd| 5.1 72 (1034|065 |0053| 1K 1 pc rnd| 366 | 37.0| 047 | 1.00 | 0.583
32 1 pc Iru 5.1 7210340650054 || 1K 1 pc Iru |366 | 370 | 047 | 1.00 | 0.587
32 1 ops rnd | 139 | 114 | 035 | 0.69 | 0.054 || IK 1 ops rnd | 558 | 43.5 | 0.51 | 1.04 | 0.679
32 1 ops Ilru [ 139|114 | 035 | 0.69 | 0.054 || IK 1 ops Iru | 558 | 43.5 | 0.51 | 1.04 | 0.683
32 8 pc rnd| 84| 94| 057|106 | 0245 || 1K 8 pc rnd | 47.0 | 45.0 | 0.98 | 1.36 | 0.909
32 8 pc  Iru 89| 9.8 057 |1.10 | 0.248 || IK 8 pc lru | 49.0 | 47.0 | 1.01 | 1.36 | 0.917
32 8 ops rnd | 151 | 139 [ 0.58 | 1.06 | 0.253 || IK 8 ops rnd | 64.4 | 50.4 | 1.02 | 1.40 | 0.919
32 8 ops Iru | 154 | 144 | 0.58 | 1.06 | 0.255 || LK 8 ops Iru | 66.4 | 52.0 | 1.04 | 1.40 | 0.929

Table 5. Configurations and results of 2¥ factorial design. S- size, A - associativity, M- mapping, R -

replacement method.

(Z-axis) as a function of size (Y-axis) and associativity
(X-axis).

A surprising result is that fully-associative tables
are faster and consume less energy than corresponding
(same number of entries) set-associative tables. This
is due to the CAM (Contents Addressable Memory)
based design of a fully-associative cache in the CACTI
model. For small MEMO-TABLES the overhead of tag
decode, routing, and comparison out-weights the added
delay and energy of the large CAM cells. However,
the almost negligible effect that associativity has on
the reuse rate indicates that a direct-mapped MEMO-
TABLE is a much better choice.

Assuming a clock rate of 2GHz it would be wise
to choose a configuration that minimizes the num-
ber of cycles it takes to access the MEMO-TABLE. A
512-entry, direct-mapped MEMO-TABLE has an access
time of just under 2-cycles (0.94 ns), a reuse rate of
47.7% (37.9% for CFP), an energy consumption of 0.41
nJoules, and a total area of 0.40 mm?. In section 4
we will show several techniques to reduce the MEMO-
TABLE’s size yet retain its reuse rate.

3.3 Instruction Reuse

The large overhead attributed to the tag compari-
son, the fact that a fully-associative MEMO-TABLE is
feasible, and the latency of a MEMO-TABLE lookup,
leads us to re-examine the Instruction Reuse (IR)
scheme of Sohi and Sodani (see [16] for full details).
IR has three versions:

Sy The PC is used to index the Reuse Buffer (RB),
the operand values are used to verify reuse. This
is similar to the configurations in section 3.1 where
mapping is performed by the PC. The difference
is that the PC must match and the opcodes are
omitted.

S, An entry is mapped by the PC and stores only the
operand’s register names, which reduces the tag
size. Every time a register is overwritten the cor-
responding entries are invalidated. Reuse is veri-
fied by a PC match and valid bit. However, the
scheme implies a CAM based design necessary for
the invalidations.

Sn+d In order to overcome frequent invalidations, con-
suming instructions are linked to their producers.
An entry is valid if its producer is in the table
and is the last producer of the register value (an
auxiliary table maps each architected register to
the RB entry which has its latest result). Thus,
a lookup can be composed of up to 3 table reads
(instruction and two producers) and two accesses
to the auxiliary table.

Two possible optimizations are using time stamps to
test if an operand register was overwritten (this sim-
plifies the RB structure), and not invalidating a reg-
ister that has been overwritten with its current value
(reduces the invalidation rate). Table 6 lists all con-
figurations compared and figure 4 displays the results
using 1024-entry, 4-way tables and 128-entry, direct-
mapped tables.

Although the Snts scheme has better physical met-
rics than IM, and even assuming the reuse rate of
the Snsv scheme, the diminished reuse rate makes it
unattractive for future microprocessor enhancements.

4 Improving the Reuse Rate

The results obtained in the previous section, 47.7%
(CINT) and 37.9% (CFP), are moderate at best. In
this section we will suggest several techniques for en-
hancing the reuse rate and examine their influence on
time, energy, and area.
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Figure 3. Reuse rate, access time, energy, and table area as a function of a MEMO-TABLES size and associa-

tivity.

Name | Configuration

M MEMO-TABLE described in section 3.2
Sv S, scheme described in [16]"

Sn Sn scheme of [16], built with CAM cells
Snts Sy scheme using time stamps

Snsv Sy scheme, same value doesn’t invalidate
Sn+d | Spta scheme of [16]

Table 6. Instruction Reuse Configurations.
LSimilar to MEMO-TABLE mapped by PC.
2Inc0rp0rates Snts and Snsv techniques.

41 Multi MEMO-TABLES

In the previous experiments all memoized instruc-
tions have been “lumped” together into one table. This
is unnecessary and even contradictory to the design
of the processor’s datapath where instructions are dis-

patched to different queues and/or reservation stations
prior to execution. Using this logic we split the MEMO-
TABLE into 3 distinct tables: Integer operations, FP
operations, and Effective Address (EA) calculation. In
order to further enhance reuse chances we mapped the
FP MEMO-TABLE using a mix of bits from the expo-
nent and mantissa.

The reuse rates for three 512-entry tables and three
128-entry tables are shown in figure 5. In addition, the
combined reuse rate is shown (number of total suc-
cesses divided by number of total accesses). From
a performance perspective it is clearly beneficial to
split the global MEMO-TABLE. The combined, Inte-
ger, and EA reuse rates all improve. However, the size
of the MEMO-TABLES is now trebled. The reuse rate
of three smaller MEMO-TABLES used to approximate
one larger MEMO-TABLE falls slightly lower than the
monolithic approach. Nevertheless, the size of the three
512 MEMO-TABLES is less than half the size of a 32KB
on-chip cache, no extra energy is being expended, and
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Figure 4. Reuse rates (CINT), access time, energy, and table area of different memoization and reuse schemes.
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Figure 5. Reuse rates when the global MEMO-
TABLE is split into Integer, Float, and EA cal-
culation tables. MEMO-TABLE sizes are 512 and
128 entries (direct-mapped).

the same number of access is being made.

This technique can be further fostered by split-
ting the Integer MEMO-TABLE into short and long
latency instructions (IMUL and IDIV) and by split-
ting the FP MEMO-TABLE into FADD/FSUB, FMUL,
FDIV/FSQRT, FMADD, and all other FP instruc-
tions. The rationale is to cluster operations with simi-
lar latencies into the same MEMO-TABLE.

Figure 6 shows the reuse rates for this 8-way split
(the majority of the MEMO-TABLES store FP calcula-

[J Global [ ALU B eEaA BrFvuL B FDIVISQRT
[ combined L1 imuL/iDIvV I FADD [ FMADD [ FSIMP

60
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40
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20
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Reuse Rate
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Figure 6. Reuse rates when the global MEMO-
TABLE is split into 8 distinct tables. MEMO-
TABLE sizes are 512 and 128 entries (direct-
mapped). Only CFP results are shown.

tions so only the CFP results are shown). The results
are mixed, the combined reuse rate is the same as for
one 512-entry global MEMO-TABLE, and it surpasses
three 128-entry MEMO-TABLES (figure 5). However,
this is achieved with twice the area.

Reasons to implement such a configuration would
be for chip locality: moving the MEMO-TABLE closer
to the Functional Unit (FU) it serves can reduce wire
delay. This also enables building MEMO-TABLES with
different characteristics: A SQRT table needs only one
operand while a FMADD table needs three.
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Figure 8. Comparison of the number of success-
fully memoized instructions of 512-entry MEMO-
TABLES and 128-entry MEMO-TABLES with triv-
ial operation detection.

4.2 Trivial Operations

Trivial operation detection has been used in the past
as a memoization filter. Both Richardson [14] and Cit-
ron et al. [4] have used it in their works. Operations
are defined as trivial when they can be matched against
constant values (0,1,-1) and their results are straight-
forward from the operands (¢ + 0 = a, a x 1 = a,
a/l = a, ...). The premise is that instead of storing
these operations they will be detected by dedicated cir-
cuitry before or in parallel to a MEMO-TABLE lookup.
In fact, the trivial operation detection can be viewed
as an extra degree of associativity.

Figure 7 shows the reuse rate of the three major
MEewmo-TABLES (Integer, Float, EA) with and without
trivial operation detection (in this case a trivial oper-
ation detection is considered a successful lookup). At
first glance its results are impressive: for both suites all
MEMO-TABLES display an enhanced reuse rate. More-
over, a second, closer, look at the column labels shows

that we are comparing 512-entry MEMO-TABLES to
128-entry MEMO-TABLES. By using trivial operation
detection we have quartered the size of the MEMO-
TABLES, and improved the reuse rate. Figure 8 com-
pares the raw number of accesses to MEMO-TABLES in
both cases (average number of access per benchmark).
When using the smaller tables the number of misses is
larger: only non-trivial operations are memoized, but
there are less accesses which saves energy (in addition
to the smaller table sizes).

Nevertheless, trivial operation detection isn’t free.
Our calculations show that a 0,1,-1 detector for two 64-
bit operands has an energy consumption of 0.00051nJ
and an area of 0.0023mm?. These are inconsequen-
tial when compared to the 0.35nJ and 0.12mm? of a
direct-mapped, 128-entry MEMO-TABLE. However, it
has an access time of 0.21ns. Accessing it in parallel
to the MEMO-TABLE hides this latency yet burns en-
ergy. A sequential lookup (first trivial operation then
MEMO-TABLE) results in an access time of 0.96ns (0.21
+ 0.75) which is comparable to a 512-entry, direct-
mapped MEMO-TABLE (0.94ns) and is just under two
clock cycles for a 2GHz clock.

Yi and Lilja [22] suggest detecting trivial operations
earlier in the pipeline by testing the first operand to
arrive, this can solve the delay problem and should be
considered in a detailed pipeline model.

B unconfident 1 MT misses [ MT hits
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Figure 9. Comparison of the number of success-
fully memoized instructions of 128-entry MEMO-
TABLES, with and without confidence filtering.
Trivial operations aren’t counted.

4.3 Confidence Counters

Although trivial operation detection reduces the
number of MEMO-TABLE accesses the number of misses
is still high. Some benchmarks just aren’t amenable to
memoization (171.swim and 171.mgrid for instance).
A well known technique for filtering these wasteful



MEMO-TABLE accesses is the use of confidence coun-
ters. They are usually used for branch [8] and value
prediction [2].

In our model every instruction fetched is mapped to
a Confidence Table (CT) which contains a n-bit satu-
rating counter per entry. When a dynamic instruction
instance hits (or is trivial) the counter is decreased,
when it misses it is increased. After n misses a static
instruction is marked as non-memoizable (although it
can still be tested for triviality) and this data is passed
on with it to the MEMO-TABLES. After a predeter-
mined number of cycles the CT is flushed in order to
give “mis-memoizing” instructions a second chance.

Figure 9 displays the numbers of MEMO-TABLE hits
and misses when a 5-bit saturating confidence counter
is used per entry (trivial ops aren’t counted so we can
directly compare MEMO-TABLE misses). The CT con-
tains 1024 entries and is flushed every 131072 cycles
and the MEMO-TABLES are direct-mapped with 128
entries and trivial op detection. The results are impres-
sive, the CT manages to filter out many unsuccessful
instructions while raising the number the memoized in-
structions. The “price” is a table that has an energy
consumption of 0.011nJ, an area of 0.087mm?, and an
access time of 0.24ns. The energy savings are huge, ev-
ery aborted lookup saves 0.35 — 0.011 = 0.339nJ and
the CT can be accessed way before memoization, hid-
ing the CT’s latency. The only complexity is linking
the results of the MEMO-TABLE lookups to the CT,
this has to be explored in a detailed datapath design.

The CT can be further reduced to 256 entries and
4 bits per counter, while retaining a better reuse rate
than not using confidence counters. This shaves off
several picoseconds from the access time (0.24ns —
0.21ns = 30ps).

5. “Look It Up” or “Do the Math”?

Finally after exploring the range of MEMO-TABLE
attributes we must compare the memoization paradigm
to the basic computations themselves. Table 7 lists the
characteristics of several 64-bit functional units® and
the reuse* (rr), trivial operation (¢r), and confidence
(cr) rates (instructions that haven’t failed memoiza-
tion) of the 128-entry MEMO-TABLES servicing them.

It is assumed that the MEMO-TABLE lookup is per-
formed in parallel to computation and squashes it upon

3The data pertaining to the Power4 processor is labeled IBM
Confidential at the time this study was compiled. We are working
on obtaining publication clearance.The data is from other open
sources.

4The number of succesful memoizations divided by the total
number of instructions executed.

success. All instructions access the CT and memoized
instructions update it as well. To measure the use-
fulness of memoization we defined two equations not
unlike the Average Memory Acess Time (AMAT).

ACT Average Computation Time The average time
(in cycles) to compute an operation:
ACT =rrMTy + trTOy + [1 — (rr + tr)|FU,

ACE Average Computation Energy The average en-
ergy (nJoules) expended when computing an op-
eration. The MEMO-TABLE lookup and update
energy are distinct measures (MTjg.e, MTyp.e):
ACE = TO. + (er — tr)MTig.e + [cr — (rr +
tr)|(MTyp.e + FU.) + (1 — cr)FU, + (1 + ¢r)CTe

Figure 10 shows the ACT and ACE of the afore listed
units compared to the latencies and energies without
memoization (the CFP2000 suite is used). The ACT
and ACE both show that it is counterproductive to
memoize integer addition instructions, it incurs both
performance and energy penalties. All other units
display moderate performance gains and great energy
gains. The gains are proportional to the units latency,
the longer the latency the higher the performance po-
tential. The problem is that long latency instructions
usually have a low frequency of execution. This must
be overcome in future work.

6. Observations and Conclusions

First we will list several key observations noticed
during this study and then we will define a basis for
future instruction memoization exploration.

e Reuse opportunities are rampant in SPEC
CPU2000. 65-75% of all dynamic instructions
have been executed with the same operands pre-
viously.

e Mapping the MEMO-TABLES using the operand
values utilizes the full table and enables dynamic
instruction instances of different static instruc-
tions to use each others results.

e The associativity of a MEMO-TABLE profoundly
affects its access time, energy, and size yet hardly
enhances its reuse rate. Direct-mapped is the way
to go.

e Directing instructions to several MEMO-TABLES
based on instruction classes is more cost effective
than a single monolithic table.

e Trivial operation detection can quarter a MEMO-
TABLE’s size while increasing its reuse rate.

e Confidence counters filter out many un-
memoizable instructions without reducing
the number of successful MEMO-TABLE lookups.



Func. Unit Features CFP Rates

Unit latency | energy area confidence | reuse trivial
IADD 1 0.05 0.01 284 21.4 29.6
IMUL 7 0.34 0.10 4.4 3.8 9.2
IDIV 68 2.53 0.10 19.7 14.8 75.7
FADD 6 0.12 0.28 215 14.2 33.4
FMUL 6 0.34 0.69 14.4 6.4 32.9
FMADD 6 0.41 0.69 17.7 6.9 19.4
FDIV 30 1.75 0.72 12.9 8.5 38.8
MEMO-TABLE 2 0.35 0.12 || 128-entry, 1-way, update 0.17nJ
TO detector 1 | 0.00051 | 0.0023

CT 0 0.011 0.087 || 1024-entry, 5-bit counter

Table 7. Characteristics of 64-bit functional units

e A comparison between direct computation to com-
putation + memoization shows that it is useless to
memoize single-cycle instructions.

e Memoization of long latency instructions shows a
potential for performance improvement, and due
to the use of confidence counters memoization re-
sults in energy savings for most units.

This study is the first step in proving that instruc-
tion memoization is a viable performance improving
technique for modern microprocessors. We have shown
that it is possible to obtain high reuse rates combined
with low energy penalties and area overhead. Nonethe-
less, there is still plenty of work ahead, in light of our
observations we must perform the following:

1. Choose pipeline stages in which the confidence and
trivial operation tests will be performed, and then
link their results to the MEMO-TABLES.

2. Supply operands to the MEMO-TABLES early
enough to be useful.

3. Integrate dependent instructions into one memo-
ization unit that can be reused together (similar to
the S;+q4 scheme and the Dynamic Computation
Reuse scheme of Connors and Hwu [5]).

4. Test the effect of compiler scheduling on memoized
instructions.

The bottom line: Fast clock rates are increasing
the latency of many complex instructions. Instruction
Memoization can reduce these latencies and reduce en-
ergy consumption to boot.
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