
Revisiting Instruction Level Reuse

Daniel Citron
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
citrond@us.ibm.com

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem
91904 Jerusalem, Israel

feit@cs.huji.ac.il

Abstract

The concept of instruction reuse states that execution of a
dynamic instruction instance that has been executed in the
past can be avoided. Data associated with each dynamic
instruction (register values, register names, ...) is stored in
on-chip dedicated lookup tables and before an instruction
is executed it is looked up in the table. If a “match” occurs
the result (which must be stored in the table as well) is ex-
tracted from the table, instruction execution is avoided, and
the instruction is passed directly to the commit buffer.

This paper revisits the concept by repeating and widen-
ing the scope of past simulations, in particular the work
of Sodani and Sohi on “Dynamic Instruction Reuse” and
our previous work (Citron, Feitelson, and Rudolph) on “In-
struction Memoization”. The former targets all instructions
for potential reuse while the latter focuses on long latency
instruction only (multiplication and division).

This paper will answer the obvious question: “How can
a single-cycle table lookup speedup a single-cycle execu-
tion?” In a nutshell the answer is simple: The lookup table
is used as an additional functional unit. An instruction that
would have met with a structural hazard is “executed” by
the LUT.

We will show that adding additional ALUs nullifies a
large percentage of the potential speedup. The flip side
of this insight is that instructions with multiple-cycle exe-
cute latencies almost always benefit from instruction reuse
techniques, the reduced execution latency always improves
performance.

1 Introduction

The idea of instruction reuse (IR) at a granularity of sin-
gle instructions has been introduced in the late 1990’s by
several concept papers but has never been thoroughly in-
vestigated in the literature. It has quickly been abandoned

by researchers for its superset of region reuse [3] and the
emerging field of value prediction [5, 4].

The premise of instruction reuse is simple: dynamic in-
stances of a static instruction are executed with the same
operand value(s) many times. If so why re-execute the in-
struction? Data associated with recently executed dynamic
instruction instances is stored in on-chip dedicated lookup
tables and before an instruction is executed it is looked up in
the table. If a “match” occurs the result (stored in the table
as well) is extracted from the table, instruction execution is
avoided, and the instruction is passed directly to the commit
buffer.

But can a reuse opportunity be detected and exploited
faster than just executing the instruction? It has been our
personal experience that most peer reviewers don’t believe
this possible or they refer to the concept papers as defini-
tive and dismiss further examination of the technique. Thus,
in this paper we will revisit the proposed techniques, rerun
past simulations and run new ones, and finally strive to set
the limits of this technique in the context of modern micro-
processors.

We will gradually show that several of the assumptions
made regarding lookup table access and invalidation, data
availability, and reusing results were optimistic. After ap-
plying a set of limitations to the reuse techniques many
reuse opportunities disappear due to data unavailability,
and others are eliminated by adding more Functional Units
(FUs).

The rest of this section will describe the processor envi-
ronment in which IR is to be used. Section 2 will describe
the suggested techniques. Section 3 will analyze several of
the assumptions made by the reuse techniques. Section 4
will rerun past simulations and run new ones, and section 5
will summarize and discuss the results.

1.1 Processor Environment

The datapath modeled is the one used in Simplescalar
[1], an architecturally detailed RISC instruction-level sim-

ulator based upon the MIPS ISA. It supports branch pre-
diction, speculative execution, multiple issue, and Out-Of-
Order execution: A maximum of � (issue width) instruc-
tions are executed per cycle. They are fetched in program
order, possibly executed out-of-order, and finally commit-
ted in order. It has five basic stages for all instructions:
Fetch, Decode, Issue, Execute, and Commit1. The issue
rate, number of units, cache sizes, instruction latencies, and
branch prediction techniques may vary within the above
framework.

The different “flavors” of instruction reuse aim to re-
duce the occupancy of the reused instructions in the various
stages of the pipeline, this is the source of their differences.
In the following section we will describe the various propos-
als and identify the stage(s) they strive to avoid or reduce.

2 Instruction Reuse

This paper revisits the technique called Instruction Reuse
(IR) introduced by Sodani and Sohi [8] and a subset
of it coined Instruction Memoization (IM) introduced by
Richardson [7] and further expanded on by Citron, Feitel-
son, and Rudolph [2] 2. A third hybrid technique named
Instruction Level Reuse was presented by Molina, Gonza-
lez, and Tubella [6].

IR focuses on reusing a dynamic instance of an instruc-
tion identified by its address, the Program Counter (PC)
value. On the other hand IM focuses on computation reuse,
the operands and operation of the instruction identify it and
confirm or deny reuse. ILR proposes to match an instruc-
tion by both. In this section we will present the techniques
and published results of each of the three techniques. We
will start with the simplest IM, continue to IR, and conclude
with ILR which integrates both approaches.

2.1 Instruction Memoization (IM)

The main theme in Instruction Memoization (IM) is to
perform the lookup in parallel to the execution of th instruc-
tion. In the case where the lookup is successful (a “hit”) the
execution is terminated and the result read from the result
cache ([7]) or Memo-Table ([2]), we will use the generic
name LookUp Table (LUT) for all future references. If
the lookup fails (a “miss”) the execution completes and the
LUT is updated with the result. Both [7] and [2] add trivial
operation detection. Operations such as: ��� � , ����� , ���	� , ...
are detected and the result is either a constant (�
� ����
 ���)

1This classic design may seem outdated in modern processors with
pipeline depths of 7 and more (much more in some cases) stages. However,
those processors just split up the existing stages and functionally behave
the same.

2The former two authors are collaborating on this paper.

DIVISION

UNIT

operation

completed

line

Operand 2

Operand 1

TRIVIAL

TEST

Opcode

trivial/nontrivial line

hit/miss lineMUX

Result

LOOKUP

TABLE

Figure 1. Layout of a LUT and a Trivial Test
Unit (TTU) adjacent to a Division Unit.

or obtained from the operands (����� � �). Figure 1 shows
a LUT adjacent to a division unit.

Instructions are mapped into the LUT by taking a sub-
set of their operand values bits and using them as an index
into the LUT. Each entry contains the operands, operation,
and result. The model of execution used implies that the
lookup is performed in the Execute stage of the pipeline,
when a Functional Unit (FU) and the operands are ready
the instruction is issued to the FU. The authors of the mem-
oization techniques limited themselves to instructions with
long latencies, however if the LUT is designed to produce
the result in a single cycle any instruction that has a latency
of more than one cycle is a candidate for reuse. The basic
datapath model can be seen in figure 2. The main limitation
of this technique is that its scope is limited in instruction
type reused.

As the authors of this paper we are in the position to
disregard the results published as they were obtained us-
ing outdated simulation techniques inferior to Simplescalar.
Results using Simplescalar were obtained after publication
and are the basis of the results we will publish here.

Decode Issue

Start lookup in parallel

CommitExecuteFetch

Lookup
Table

to instruction execution

Figure 2. Datapath Integrated with Instruction
Memoization (IM).

2.2 Instruction Reuse (IR)

Instruction Reuse (IR) strives to reuse all instructions,
they are presented at decode time to a table called the Reuse
Buffer (RB). After execution the RB is updated with the cur-
rent instruction’s result. Three reuse schemes are presented:���

Each entry contains the PC, operand values, and result
of an instruction. The PC is used to index the LUT,
and if the operands match an entry the result is used.���

Each entry contains the PC, operand register names and
the result. If the current instruction’s PC and operand
register names match the result is used. If a register
is written into, all entries using that register are invali-
dated. Hence, in practice a PC match for a valid entry
suffices for reuse.� �����

In addition to the information in the previous scheme
each operand name has a link to its source instruction
(if it’s in the RB). By building these links, instructions
may be kept in the RB even after their registers are
written upon if their source instruction is in the RB.

In addition to the above fields all schemes contain an ad-
dress and memory valid bit fields used by load instructions.
Any store to memory must scan the RB and invalidate any
entries with the same address.

The first scheme raises the question: “If the operands are
known why perform a lookup?” Most instructions have an
execution latency of one cycle. The second scheme is aimed
at solving this problem by comparing the register names of
the fetched instruction to instructions in the RB. If the reg-
ister names match and the registers’ contents haven’t been
altered since storage in the RB, the result can be obtained
from the RB as early as the fetch stage. This is a signifi-
cant gain, unfortunately only the last appearance of an in-
struction can be used. Previous invocations with different
operand values will have been invalidated.

The third scheme is targeted at exploiting dependent in-
structions fetched together, these instructions are called de-
pendence chains. If dependence can be determined it is

enough to detect reuse of the first instruction in the chain,
the linked instructions can be reused as well. This is aimed
at avoiding the high rate of invalidation that is inherent in
scheme

���
.

Decode Issue CommitExecute

Sn+d, Sn schemes

Fetch

RB
Lookup

Entries mapped by PC

Lookup using Sv schemeLookup using

Figure 3. Datapath Integrated with Instruction
Reuse (IR).

Figure 3 shows a datapath integrated with IR. The idea
behind the technique is to “skip” the issue and execute
stage and send the reusable instruction straight to the com-
mit buffer. The technique was validated by simulation on
Simplescalar [1] an instruction level MIPS based simula-
tor. Twelve integer benchmarks were simulated, 5 from
SPECINT 92 (gcc, compress, eqntott, espresso, xlisp), 5
from SPECINT95 (go, m88ksim, vortex, ijpeg, perl), Yacr2,
and Mpeg. The microarchitecture simulated is shown in ta-
ble 1.

The results published in [8] are summarized (harmonic
means) in table 2 which show the percent of reuse and per-
cent of speedup for all three techniques with three sizes of
fully associative tables.

Scheme 32 entries 128 entries 1024 entries
Reuse Spdp Reuse Spdp Reuse Spdp���

2.2 3.7 8.5 7.0 25.7 14.9���
3.1 4.3 9.5 5.7 12.5 7.5� ����
2.6 3.8 10.4 7.2 20.6 10.5

Table 2. Percentage of reuse and percentage
of speedup with table sizes of 32, 128, and
1024 entries. All tables are fully associative.

The table shows a correlation between percentage of
reuse and speedup. However, the tables are assumed to be
fully associative, Additional data supplied by the authors
shows that for scheme

���
a 4-way associative table per-

forms similarly to a fully associative table.

2.3 Instruction Level Reuse (ILR)

Different instructions that perform the same operation
are defined as quasi-common subexpressions. These cannot

L1 Instruction Cache 16-KBs, 32-Byte blocks, direct-mapped
L1 Data Cache 16-KBs, 32-Byte blocks, 2-way associative
Memory Latencies (cycles) L1 hit - 1, L1 miss - 6
Branch Prediction 2048-entry bimodal predictor
Registers 32 General Purpose, 32 Floating Point
Function Units 4 IALU, 1 IMULT

4 FADD unit, 1 FMULT, 2 MMU
Instruction Latencies Integer multiplication: 3,1
& Throughputs Integer division: 20,19

All other integer instructions: 1,1
Floating point multiplication: 4,1
Floating point division: 12,12
Floating point Sqrt: 24,24
All other floating point instructions: 2,1

Pipeline attributes 4-instructions fetched, decoded, issued,
and committed per cycle; 32 instructions in instruction queue,
out-of-order execution, in-order retirement

Table 1. Microarchitecture of simulated processor.

be detected by the previous approach (IR). Molina, Gon-
zalez and Tubella [6] conceived an elaborate scheme that
links different instructions (with the same opcode) that once
produced the same result, their LUT (named the Redundant
Computation Buffer (RCB)) is accessed by the PC and its
entries contain links to other producing instructions. As
with IR all instructions are stored3. They show that this
method results in higher reuse rates and speedups over the!�"

scheme of IR.
Nevertheless, they published that a hybrid scheme that

uses both the PC and operand values as indices into the
RCB yields better results than any of their other schemes.
In the Fetch stage the PC is used to index the table and the
operands are ready to be read and compared in the Issue
stage, if the lookup is unsuccessful the operand values are
used to index the RCB in the Issue stage and comparison
takes place in the Execute stage. Figure 4 shows the pro-
posed datapath. This scheme will be the representative ILR
scheme.

Decode Issue CommitExecuteFetch

PC as index RCB
Lookup

or begin lookup using
Compare operands

operand values

complete lookup in Execute stage

Begin lookup using

Figure 4. Datapath Integrated with Instruction
Level Reuse (ILR).

3The loads are stored in a dedicated table.

The technique was tested using 7 benchmarks from the
SPEC CINT95 suite (compress, go, gcc, li, m88ksim, perl,
vortex) and 4 benchmarks from the SPEC CFP95 suite (ap-
plu, mgrid, swim, turb3d). The benchmarks were com-
piled for the Alpha version of Simplescalar and run on the
same microarchitecture used by [8] (listed in table 1). Each
benchmark was run for 125M instructions after its initial-
ization stage4.

The choice of microarchitecture and CINT95 bench-
marks probably wasn’t incidental as they match the mi-
croarchitecture and CINT95 benchmarks used by [8]. They
compare their scheme to IM and the

! "
scheme of IR. Each

scheme uses the same amount of storage which translates
into a different number of entries5: For both IR and ILR
there are 256 instruction entries, each entry holds a history
of the last 4 instances of the instruction. The IM LUT has
1024 entries in sets of 4 (256 sets). Table 3 summarizes
the results published in [6] (reuse rates and speedups) and
shows that while IM has the highest reuse rate it has the
lowest speedup.

It clearly should have a high reuse rate, the LUT can
contain many copies of frequently reused instructions and
quasi-common subexpressions can be detected immediately
and without any additional infrastructure. Both IR and ILR
can only hold a limited number of entries per instruction,
detecting quasi-common subexpressions is impossible using
IR and is limited using ILR.

The reason why IM has a poor speedup, according to the
authors, is due to the latency of a lookup. A lookup can be
initiated only when the operands are ready (they are used to

4This number isn’t disclosed and it isn’t clear if it is per benchmark or
a general number. The datasets themselves aren’t disclosed either.

5The following numbers are deduced from the paper, clear cut numbers
aren’t given.

index an entry). This causes the reuse test (comparing the
stored operands to the current operands) to be performed
in the Execute stage, instructions with a single cycle of ex-
ecute latency (single-cycle instructions) can’t benefit from
this scheme, only instructions with a multiple cycle execute
latency (multi-cycle instructions) can. IR and ILR use the
PC early in the pipeline to index the LUT and thus have
the stored operands at hand when the current operands are
made available, the reuse test can be performed in the Issue
stage. A successful lookup “skips” the Execute stage. The
next section will analyze the feasibility of this approach.

Scheme 32KB storage 200KB storage
Reuse Spdp Reuse Spdp

IM 28 1.04 32 1.04
IR 18 1.06 26 1.08
ILR 24 1.07 32 1.09

Table 3. Percentage of reuse and speedup
with table storage sizes of 32KB and 200KB.

3 Reuse Assumptions

In this section we will examine some of the assumptions
made by the authors, and decide if they are reasonable. The
valid assumptions (and some dubious ones) will be inte-
grated into a simulation framework and tested for validity
in the next section. The following is a list of the most criti-
cal assumptions:

Non Load Entry Invalidation The #�$ and #�$�%�& schemes
of IR assume that an entry is invalidated when any
of its source registers are overwritten. However, un-
committed instructions in the pipeline write to physi-
cal registers, thus it is possible that an instruction is
marked valid and reused when it should have been exe-
cuted with different operand values. Furthermore, even
if mapping between logical to physical registers is ob-
tained in time, the invalidation would have to scan ev-
ery entry in the table as it is indexed by the PC. It is
hard to believe that this can be performed in a single
cycle6.

Conclusion: These two schemes aren’t significantly
better that the #�' scheme, and given the aforemen-
tioned problems we consider them impractical.

Load Entry Invalidation Every load would have to scan
the table and invalidate entries. Using the effective ad-
dress as an index just reduces the table to another level
of cache in the hierarchy.

6A CAM design where each entry contains built in comparison circuitry
might do the trick if it weren’t limited in size and speed.

Conclusion: We will simulate load instructions as-
suming invalidations are practical.

Lookup Time It is assumed that ((the associativity or
history depth of the LUT) sets of operands can be ex-
tracted and compared to in a single cycle. IM assumes
that the index can be constructed in the same cycle as
well. IR and ILR use the PC so the index is ready at
the start of the cycle.

Conclusion: In order to meet these constraints we will
assume unpretentious table sizes and associativity.

Lookup Stage IM performs lookup in the Execute stage in
parallel to execution. IR talks about lookup in the De-
code stage, this is impossible as operands aren’t ready
at that stage. ILR assumes lookup in the Issue stage.
This is tricky as even in the Issue7 stage operands
might not be available. They might be being bypassed
to the FU, enabling an instruction to begin execution
in the next cycle without the actual operands being in
existence.

Conclusion: IR and ILR performs lookup in the Is-
sue stage, IM in the Execute stage. We will simulate
operand availability in the Issue stage.

How Execution Time is Reduced Successful IM reduces
the latency of long latency instructions to one cycle. IR
assumes that a successful reuse test avoids the Execute
stage, this is the main assumption we shall investigate.
It seems like the LUT is used as an additional unit to
“execute” instructions. It isn’t clear if the reuse test
is counted as an instruction issued nor the number of
accesses to the LUT allowed per cycle.

Conclusion: In our simulations we will limit the num-
ber of ports to the LUT and count a LUT access as an
issue.

4 Simulations

This section will first recreate the previous tests per-
formed by [6] (section 4.1), limit some liberal assumptions
(sections 4.2 and 4.3), and finally test different LUT layouts
for the various techniques (section 4.4).

4.1 Basic Simulation

We will try to recreate the tests performed by [8] and
[6] in the face of several limitations: We don’t have access
to all the benchmarks (SPEC92), we don’t posses an Alpha

7Instructions occupy the Issue stage until their operands and executing
FU are to be ready in the next cycle. The operands are routed to the FU in
the next cycle.

Benchmarks The 11 used by [6]:
compress, go, gcc, li, m88ksim, perl,
vortex, applu, mgrid, swim, turb3d.

Compiler gcc 2.6.3 for the PISA version of Simplescalar.
Optimization -O3 -finline-functions -funroll-loops.
Inputs Reference inputs for each benchmark.
Inst. Count The first billion instructions per benchmark.
Microarch. The parameters used by [8] and

[6] (listed in table 1).
Memory A 512-MB, direct mapped, 18 cycle miss latency

unified L2 cache. Page faults and context
switches aren’t simulated.

LUT size IM - 1024 entries, 256 sets of 4;
IR,ILR - 256 entries, each with a depth of 4

Reuse Stage IM - Execute stage; IR, ILR - Issue stage
Misc. Access to the LUTs aren’t limited and a LUT

lookup isn’t counted as an instruction issue.

Table 4. Base simulation characteristics.

)*))*))*))*))*))*))*))*)

+++
+++
++

,*,,*,,*,,*,,*,,*,,*,,*,,*,,*,

-*--*--*--*--*--*--*--*--*--*-

...
..
///
//
0*00*00*00*00*00*00*00*00*0

1*11*11*11*11*11*11*11*11*1

2*22*22*22*22*22*2
3*33*33*33*33*33*3

444
444
4
555
555
5

666
666
666
66

777
777
777
77

8*88*88*88*88*88*88*88*8

9*99*99*99*99*99*99*99*9

:*::*::*::*::*::*::*::*::*::*:

;*;;*;;*;;*;;*;;*;;*;;*;;*;;*;
<<<=
==

>>>
>>
???
??

@@@
@@@
@@@

AAA
AAA
AAA

BBB
BBB
BBB
B

CCC
CCC
CCC
C

ap
plu

co
mpr

es
s

gc
c go

m88
ks

im
li

0.10

mgr
id

R
eu

se

pe
rl

sw
im

tur
bo

3d

vo
rte

x

0.30

Hmean

0.50

IM ILR IR

R
at

e

DDEEFFFG
GG

HI JK LLLM
MM

NO PPQQ RRR
R
SSS
S

ap
plu

co
mpr

es
s

gc
c go

m88
ks

im
li

mgr
id

1.15

pe
rl

sw
im

tur
bo

3d

vo
rte

x Hmean

Sp
ee

du
p

1.02

1.05

1.10

Figure 5. Reuse rates and speedups of basic
case.

machine, we don’t know the exact inputs and number of
instructions used by [6], and it isn’t fully clear what size
tables and associativity [6] used. Other missing pieces of
information are the size of the L2 cache, and the latency
of a main memory access, TLB size and page fault latency,
and the frequency of context switches. The characteristics
of the base simulation are listed in table 4.

Figure 5 displays the reuse rates and speedups for the
three techniques. ILR has a slightly lower reuse rate that
IM due to several instructions occupying more than one en-
try, thus shrinking the table. IR has the lowest reuse rate
due to its inflexibility in placing instructions and the in-

ability to reuse operations created by different instructions.
IM clearly performs the poorest, yielding no speedup for
benchmarks with no multi-cycle instructions. There is no
advantage in reusing single-cycle instructions in the Exe-
cute stage. The results are fairly consistent with the work of
[6]. We should point out that IM is severely handicapped,
all single-cycle instructions stored in the LUT contribute no
speedup and replace multi-cycle instructions that may be
reused effectively.

4.2 Operand Availability

In this section we will enforce the limitations on the as-
sumptions we listed in section 3. Limiting the number of
accesses to the LUT to two lookups and two updates per
cycle hardly affects the results. Given the microarchitec-
ture, an ILP (Instruction Level Parallelism) higher than two
is hardly achieved. For the aforementioned reason count-
ing a reuse test as an instruction issue doesn’t change the
speedups noticeably.

However, when testing for operand availability8 in the
Issue stage the results change dramatically: Less than 20%
of the instructions have both operands available at the Issue
stage (table 5 shows the per benchmark breakdown). In this
case the reuse test is performed in the Execute stage, reduc-
ing the IR and ILR schemes to IM with a weakened reuse
rate.

The results should have been obvious from the start, an
instruction is issued to a FU if its dependencies (operand
values) are to be ready during the next cycle and the execut-
ing FU is free the next cycle. Given the generous number

8Operand availability is defined as having both operands ready during
any cycle preceding the first cycle of the Execute stage.

Benchmark % Benchmark %
applu 12 mgrid 28
compress 26 perl 7
gcc 15 swim 21
go 18 turb3d 29
li 6 vortex 20
m88ksim 25 Hmean 19

Table 5. Percentage of instructions that have
both operands available during the Issue
stage.

TU VW X*XY*Y Z*ZZ*ZZ*Z[*[[*[[*[\\\
\
]]]
] ^*^^*^_*__*_`*``*`a*aa*a bbbccc

ddee

gc
c go li

mgr
id

pe
rl

sw
im

tur
bo

3d

vo
rte

x

1.02

Hmean
m88

ks
im

Sp
ee

du
p

co
mpr

es
s

IM ILR IR

1.05

1.10

1.15

ap
plu

Figure 6. Speedups when operand availability
during Issue stage is tested.

of IALUs (4) and MMUs (2) in the simulated microarchi-
tecture the limiting factor is the number of data hazards not
structural hazards. Figure 6 shows the new speedups. As
expected hardly any benefit is gained by the IR and ILR
over IM in this case.

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8

O
pe

ra
nd

 A
va

ila
bi

lit
y

Structural Hazard Ratio

Figure 7. Operand availability as a factor of
structural hazard ratio.

The availability of operands in the Issue stage is directly
related to the number of FUs. Reducing their number re-
sults in more structural hazards per issue attempt, we shall
call this the structural hazard ratio. Reducing the number
of ALUs and FADD units to 2 and allowing just one mem-
ory access per cycle raises the rate of availability, the LUT
is being used as an FU for instructions that encountered a
structural hazard.

On a 16 issue machine, with a 256 instruction queue,

perfect memory, and oracle branch prediction, we varied the
number of FUs from 1 to 16 per type. Figure 7 shows the
linear relation between structural hazard ratio and operand
availability. These results might bring us to reconsider thef�g

and
f�g�h�i

schemes of [8], nevertheless we believe them
to be impractical due to the reason listed in section 3.

4.3 Lookup Time

A fast lookup time is critical to the success of any reuse
technique. Can operand values stored in a LUT be retrieved
and compared to the instruction’s operands in a single cy-
cle? IR and ILR use the PC as an index enabling a lookup
to commence at the beginning of a cycle. IM (and ILR if a
PC based lookup has missed) must first construct an index
from the operands and then access the LUT.

jk l*lm*m n*no*o p*pq

rrss

t*tt*tu*uu*u v*vw xxyy z*zz*zz*z{{{

ap
plu gc

c go li
mgr

id
pe

rl
sw

im
tur

bo
3d

vo
rte

x

1.02

Hmean
m88

ks
im

Sp
ee

du
p

co
mpr

es
s

IM ILR IR

1.10

1.15

1.05

Figure 8. Speedup when IM and operand
based ILR lookup is two cycles.

A 1024 entry LUT containing 25 bytes per entry (3
double words and an opcode) is smaller than a 32KB L1
cache available on most microprocessors, thus a single cy-
cle lookup assumption is within reason. Nevertheless, we
can’t overlook the influence of a two cycle lookup time upon
IM and ILR operand indexed lookups. Figure 8 shows the
speedups when this is simulated. Both IM and ILR show
diminished speedups, with IM suffering the greatest per-
formance loss. A two-cycle lookup time limits IM reuse
to multiplication and division instructions only, further cur-
tailing its scope.

4.4 Unleashing the Reuse Techniques

The preceding section showed the futility of blindly try-
ing to reuse all instructions. This section will evaluate
the true potential behind reuse by differentiating between
single-cycle and multi-cycle reuse. As mentioned in section
4.1 the IM reuse rate is limited by single-cycle instructions
that pollute the LUT. Their reuse doesn’t improve speedup
and they replace reusable multi-cycle instructions.

Each of the three schemes will be enhanced by splitting
the LUT into several smaller LUTs for Floating Point (FP)

instructions, loads, multi-cycle integer instructions (multi-
plication and division) and all other single-cycle instruc-
tions (we will forgo this last LUT for IM, which can’t bene-
fit from it under any circumstances). Each table will contain
256 entries, securing a single-cycle lookup. We will further
enhance ILR by having the multi-cycle tables be indexed by
operand values and the single-cycle tables indexed by PC.

Figure 9 shows the reuse rates and speedups for this con-
figuration. Operand availability in the Issue stage is tested
and enforced. All schemes benefit from an increased reuse
rate, particularly IM which now stores only instructions that
may reduce execution time. It even outperforms IR even
though it has a 0% reuse rate for the four applications that
don’t execute multi-cycle instructions (go, li, m88ksim, vor-
tex). The speedups show that ILR has a slight edge over IM
due to the little reuse obtained from single-cycle instruc-
tions.

|*||*||*|}*}}*}}*}

~*~

�*�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
���
���
�

���
���
���
���
���
���
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*�

�*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*��*�

�*��*��*��*��*��*��*��*��*��*�

�*��*��*��*��*��*��*��*��*��*�

���
���
���
���
���

���
���
���
���
���

�*��*��*��*��*��*��*��*��*��*��*�

�*��*��*��*��*��*��*��*��*��*��*�R
at

e

ap
plu

co
mpr

es
s

gc
c go

m88
ks

im
li

mgr
id

0.10

pe
rl

R
eu

se

sw
im

tur
bo

3d

vo
rte

x

0.30

0.50

0.70

0.90

Hmean

IM ILR IR

���
���
���
���

�*��*��*��*��*��*��*��*��*���� �� �� ���
���
���
���
��

���
���
���
���
��

�*��*��*��*��*��*�
�*��*��*��*��*��*�

�*��*�
ap

plu

co
mpr

es
s

gc
c go

m88
ks

im
li

mgr
id

Sp
ee

du
p

pe
rl

sw
im

tur
bo

3d

vo
rte

x Hmean

1.02

1.05

1.10

1.15

1.25

Figure 9. Reuse rates and speedups when in-
structions are stored in different LUTs.

4.4.1 Full SPEC95 Simulations

The benchmarks used in our experiments were selected in
order to reproduce the simulations of [6], who in turn tried
to reproduce the simulations of [8]. However, these appli-
cations don’t represent a full suite. Table 6 summarizes the

reuse rates and speedups of all three techniques when the
complete SPEC95 suite was simulated using the features
listed in section 4.4.

Scheme CINT95 CFP95 CPU95
Reuse Spdp Reuse Spdp Reuse Spdp

IM 60 1.00 47 1.10 51 1.05
ILR 55 1.01 49 1.11 54 1.06
IM 38 1.01 28 1.04 34 1.03

Table 6. Percentage of reuse and speedup for
SPEC CINT95, CFP95, and CPU95 (INT and FP
combined).

The results clearly show that FP intensive applications
can benefit from instruction reuse as opposed to integer
applications which hardly display any speedup. The high
reuse rate of IM for CINT95 is due to the benchmarks com-
press, gcc, perl, the rest of them hardly execute any multi-
cycle instructions.

5 Summary and Conclusions

This paper revisits the technique of reusing instruction
results proposed by several authors (including us) in the late
1990’s. The various techniques proposed (Instruction Mem-
oization (IM) by [2], Instruction Reuse (IR) by [8], and In-
struction Level Reuse (ILR) by [6]) are reviewed in section
2 and analyzed in section 3. This detail is necessary in or-
der to understand the various schemes and understand their
strengths and limitations.

Section 4 displays the results of four tests only: (i) a
reenactment of the original simulation performed by [6]
which compared all three techniques; (ii) The same test
with limiting factors, the main one being testing for operand
availability in the Issue stage;(iii) Assuming a lookup time
of two cycles for instructions that are mapped using their
operands; (iv) A test of an enhanced configuration where
single-cycle and multi-cycle instructions are stored sepa-
rately; These tests lead to the following conclusions:

Reenactment It is very hard to reenact a simulation based
on a published paper. In our case we were limited by
the unavailability of an Alpha machine and by several
key parameters that were missing such as benchmark
inputs and lengths and a full memory hierarchy de-
scription.

Reuse Rates Indexing a LUT using operand values is far
superior to using the PC. Instances of the same in-
struction can be distributed equally through the LUT
and different instructions (with the same opcode) can
supply results for one other (quasi-common subexpres-
sions). In this the IM technique is superior.

Lookup Stage A lookup can be performed only when both
the instruction’s operands are ready. To assume that
they will be readable sometime during the Issue stage
is mostly a false assumption. Only in 19% is this true,
the operands are 81% of the time ready only during
the first cycle of the Execute stage. Adding more FUs
reduces this percentage even more. It is our conclu-
sion that single-cycle reuse is useless, why try to reuse
an instruction with a varying degree of success when
adding a FU can execute it with a 100% success rate?

Lookup Time A single-cycle lookup time in the Execute
stage is crucial for the success of reuse techniques. A
longer lookup time during this critical path limits reuse
to multiplication and division instructions

Different Schemes The final test shows that when splitting
the instructions into several LUTs according to latency
and type (integer, FP), all three schemes are similar.
There is no virtually no difference between IM to ILR,
and IR performs poorly due to its inferior indexing
scheme.

FP Memoization When implementing IM on FP intensive
benchmarks (CFP95) an average speedup of 1.10 is
achieved. We believe that integrating IM in the FP unit
of a processor can greatly accelerate FP intensive ap-
plication.

Power Considerations At the time of the original papers
publication power consumption wasn’t an issue. To-
day it is clear that any innovation must be evaluated
in this context, doubly so a technique such as reuse
which can result in many LUT accesses and not much
improvement, in cases of poor value locality.

In a nutshell we must conclude that reuse at the instruc-
tion level is limited to instructions with multiple cycle la-
tencies in the Execute stage and isn’t viable as a general,
“across the board”, enhancement.

References

[1] D. Burger and T. Austin, “The Simplescalar Tool Set,
Version 2.0”, Technical Report TR-CS-97-1342, Uni-
versity of Wisconsin-Madison, June 1997.

[2] D. Citron, D. Feitelson and L. Rudolph, “Accelerat-
ing Multi-Media Processing by Implementing Memo-
ing in Multiplication and Division Units”, Proc. of the
8th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pp. 252–261,
October 1998.

[3] D. Connors and W. Hwu, “Compiler-Directed Dy-
namic Computation Reuse: Rationale and Initial Re-
sults”,Proc. of 32nd Int. Symp. on Microarchitecture,
pp. 158–169, November 1999.

[4] F. Gabbay and A. Mendelson, “Speculative Execu-
tion based on Value Prediction”, EE Department TR
#1080, Technion - Israel Institute of Technology,
November 1996.

[5] M. Lipasti, C. Wilkerson and J. Shen, “Value Locality
and Load Value Prediction”, Proc. of the 7th Int. Conf.
on Architectural Support for Programming Languages
and Operating Systems, pp. 138–147, October 1996.

[6] C. Molina, A. González, and J. Tubella, “Dynamic Re-
moval of Redundant Computations”, Proc. of the ACM
Int. Conf on Supercomputing, June 1999.

[7] S. Richardson, “Exploiting Trivial and Redundant
Computation”, Proc. of the 11th Symp. on Computer
Arithmetic, pp. 220–227, July 1993.

[8] A. Sodani and G. Sohi, “Dynamic Instruction Reuse”,
Proc. of the 24th Int. Symp. on Computer Architecture,
pp. 194–205, June 1997.

