Accelerating Multi-Media Processing by Implementing Memoing in

Multiplication and Division Units*

Daniel Citron Dror Feitelson

Department of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
E-mail:citron,feit@cs.huji.ac.il

Abstract

This paper proposes a technique that enables performing
multi-cycle (multiplication, division, square-root ...) com-
putations in a single cycle. The technique is based on the
notion of memoing: saving the input and output of previous
calculations and using the output if the input is encountered
again. This technique is especially suitable for Multi-Media
(MM) processing. In MM applications the local entropy of
the data tends to be low which results in repeated operations
on the same datum.

The inputs and outputs of assembly level operations are
stored in cache-like lookup tables and accessed in parallel
to the conventional computation. A successful lookup gives
the result of a multi-cycle computation in a single cycle, and
a failed lookup doesn’t necessitate a penalty in computation
time.

Results of simulations have shown that on the average,
for a modestly sized memo-table, about 40% of the floating
point multiplications and 50% of the floating point divisions,
in Multi-Media applications, can be avoided by using the
values within the memo-table, leading to an average com-
putational speedup of more than 20%.

1 Introduction

Many of the time-consuming machine instructions in Multi-
Media-based applications are repeatedly applied to the same
operands, and so they can be eliminated by recording the
results of these operations the first time they are performed
and replacing the operation with a table-lookup. Instruc-
tions such as multiplication, division, and square-root that
usually complete in multiple cycles can be made to complete
in a single cycle when certain conditions are met.

Many mathematical functions are computed in hardware
using iterative algorithms[1] that by their nature are time
consuming. Table 1 show the cycle times for floating point

*Funding for this work is provided in part by the Advanced Re-
search Projects Agency of the Department of Defense under the Ft.
Huachuca contract DABT63-95-C-0150, for work done at Lab for CS
at Massachusetts Institute of Technology and in part by the Israeli
Ministry of Science for work done at Hebrew University.

Larry Rudolph
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
E-mail:rudolph@lcs.mit.edu

multiplication and division on several processors. It is im-
portant to note that these numbers are the latencies for the
given instructions; the multiplication unit is pipelined itself,
which leads to a throughput of one cycle for consecutive
multiplication instructions. However, since none of these
processors pipeline their division units, their execution can
“throw a wrench” in the execution pipeline by introducing
structural and data hazards and by resulting in out-of-order
completion[1].

Multiplication | Division
Pentium Pro [2] 3 39
Alpha 21164 3] 1 31
MIPS R10000 [4] 2 10
PPC 60jc [5] 5 31
UltraSparc-I1[6] 3 22
PAS000 7] 5 31

Table 1: Cycle times of leading microprocessors

We propose to mitigate the effect of floating point di-
visions by reducing their frequency via a memoing[8] tech-
nique: The input (operands) and output (result) of partic-
ular instruction types are stored into a cache-like lookup
table. The table is accessed in parallel to the conventional
computation. A successful lookup gives the result of a multi-
cycle computation in a single cycle, and a failed lookup
doesn’t necessitate a penalty in computation time. Figure
1 shows a schematic layout of the idea. The operands are
forwarded in parallel both to a division unit and its adjacent
MEMO-TABLE.

This paper restricts its attention to Multi-Media due to
the low local entropy of values displayed in the data sets of
these applications and the nature of Multi-Media applica-
tions where computations are performed on local areas of
an image or signal.

The rest of this section will overview related work (1.1).
The next section describes the MEMO-TABLE. Section 3 sum-
marizes the experimental results that supporting the use of
memoing. Section 4 summarizes the results and suggests
some future directions.

1.1 Related Work

The concept of memoing was introduced by Michie[8]. The
idea is to save the inputs and results of side-effect-free func-
tions in a table and reuse the results for matching inputs.
Since then it has been used mainly in the context of declar-
ative languages like Prolog, Lisp, and ML [9, 10, 11].

Operand 1
Operand 2

YYO vy

DIVISION MEMO
UNIT TABLE

operation hit/missline

completed *

line V
L P

Result

4

Figure 1: A division unit using a MEMO-TABLE

In computer arithmetic “Look Up Tables” are used in di-
vision and square-root [12]. For instance high-radix SRT[13]
division uses a static table with predefined values to “guess”
the next bits of the quotient (in fact this table caused the in-
famous “Pentium fdiv bug”). Our work isn’t directly related
to computer arithmetic in the sense that we don’t propose
any new algorithms or techniques for accelerating arithmetic
computations. Where successful, our technique enables the
processor to bypass these computations altogether.

The idea of exploiting redundant computation was in-
troduced by Stevens [14] and further expanded by Flynn
and Oberman [15]. Their simulations were performed on
the SPEC, Perfect and NAS benchmarks [16, 17]. Our tests
revealed that other families of applications produce better
results, specifically Multi-Media with an emphasis on appli-
cations utilizing Image Processing.

Sodani and Sohi have introduced the concept of Dynamic
Instruction Reuse[18], where all instructions executed are
inserted into a table called the Reuse Buffer (RB). If the
address of the instruction being fetched matches the address
of an instruction in the RB and the operands stored match
the current operands, the instruction isn’t executed and the
values in the RB are used instead (except in the case of
memory stores). Our scheme differs in several ways. First,
we only record certain types of instructions, thus it is less
likely for multiple-cycle instructions to be bumped out of
the RB by single-cycle instructions. Second, we do not care
about the address of the instruction, rather the instruction
itself. Thus, if the compiler unrolls a loop, our scheme will
have more hits.

2 Accelerating Computations Using MEMO-TABLES

This section describes how the MEMO-TABLES accelerates
multi-cycle operations. A stand-alone MEMO-TABLE is first
presented and followed by a description of how a MEMO-
TABLE can work in tandem with a Computation Unit (CU).

The section ends with showing how an enhanced CU can be
incorporated into an execution pipeline and a small discus-
sion of the cycle time and die size of a MEMO-TABLE.

2.1 The MEMO-TABLE

A MEMO-TABLE is a cache-like Look Up Table (LUT), that
receives an index into the table and returns the value in that
position. The likeness to a cache is due to the fact that the
values in the LUT change over time with the most recently
used values present in the MEMO-TABLE.

Just like in a conventional cache when a value is for-
warded to the MEMO-TABLE, a subset of its bits are used to
form an index into the LUT. The remaining bits (or some
subset of them) are compared to a tag that is sitting in
the indexed entry. If they match, we say that we have a
“hit” and the value sitting in the entry is returned. If they
do not match, we say that we have a “miss” and no value
is returned. Other cache-like properties like overwriting an
entry that has returned a miss and having an input value
compared to more than one entry (using associative sets) are
used in the design of MEMO-TABLES. Specifically we suggest
MEMO-TABLES of 32 entries and 4-way associativity.

Unlike a conventional cache where each line contains
more than one word and relatively small associated tag, the
MEMO-TABLE contains a large tag and just the one word re-
sult in each line. To emphasize this distinction, we shall use
entry instead of the traditional line. In most cases the tag
will be larger than the value stored (the entry) due to the
fact that our input values are the two operands of a binary
function while the output value is its unary result.

We have studied two variations. First, it is not necessary
to enter the full floating point value of the operands into a
MEMO-TABLE. Since floating point computations are com-
puted separately on the mantissa and exponent, one alter-
native is to just store the mantissa of the operands. Second,
it isn’t necessary to store all instances. Trivial operations
like multiplying by 1 or 0 and dividing by 1 or dividing 0
need not be computed at all, the MEMO-TABLE can detect
them and forward the result immediately.

2.2 MEMO-TABLES in the Computation Units

The execution stage (EX) of the CPU pipeline is performed
by various units. The opcode of the instruction defines
which execution will be used, such as the integer ALU, the
integer multiplier, the floating point adder etc. Instructions
that execute in more than one cycle stay in the EX stage
until the computation is completed.

A MEMO-TABLE is added to each computation unit that
takes multiple cycles to complete. The Instruction Decode
(ID) stage forwards the operands to the appropriate com-
putation unit and in parallel, to the corresponding MEMO-
TABLE. If there is a hit in the MEMO-TABLE, its value is
forwarded to the next pipeline stage (the write back (WB)
stage), the computation unit is aborted and signals it is free
to receive the next set of operands. If there is a miss from
the MEMO-TABLE, the computation is allowed to complete,
the result obtained forwarded to WB stage and in parallel
entered into the MEMO-TABLE.

The MEMO-TABLE does not increase latency along the
critical path: The calculation and the lookup are performed
in parallel. Updating the MEMO-TABLE with the new result
in the case of a miss is also done in parallel with the for-
warding of it to the WB stage. Thus on the next cycle a
new lookup/computation can be performed.

In the cases where a CU computes a commutative op-
eration (addition, multiplication) the lookup in the MEMO-
TABLE must compare the operands both in the order as spec-
ified in the instruction and in their reverse order. Although
this waste of space could be avoided by, say, first sorting
the operands, this extra computation would introduce extra
latency.

2.3 The MEMO-TABLE in the pipeline

The use of MEMO-TABLES in the CUs that implement the
EX stage of the pipeline can greatly accelerate the speed in
which multi-cycle instructions complete, and thus reduce the
number of occurrences of out-of-order completions. Unfortu-
nately, a compiler or run-time scheduler sometimes expects
an instruction to complete in multiple cycles. Since with
our technique it may complete much sooner than expected,
there 1s no instruction that uses the same CU that is ready
to be issued. This problem is compounded in multiplication
units which are themselves pipelined in order to achieve high
throughput. New compiler design and run-time scheduling
is beyond the scope of this work.

In the case where a processor implements several in-
stances of the same CU, having a MEMO-TABLE adjacent to
each CU could degrade performance. Recurring calculations
might be dispatched to different CUs and thus be calculated
more than once and reside in more than one MEMO-TABLE.
The solution is to create a larger multi-ported MEMO-TABLE
that will be shared by the above CUs enabling one CU to
take advantage of work performed by another.

It is possible to extend this concept and use MEMO-
TABLES not only in tandem with computation hardware but
as CUs themselves. Instead of having, for instance, two
floating point dividers, only one will be integrated and the
second will be an interface to a multi-ported MEMO-TABLE
in the division unit. In the case where two fp divisions are
issued together, the second one is issued to the MEMO-TABLE
interface. In the case of a miss it will be stalled until the
divider 1s free and then issued to it. Since a MEMO-TABLE
is much smaller than a divider that incorporates the high-
radix SRT [13] technique, it is possible for VLIW and super-
scalar processors to increase their issue rate by using MEMO-
TABLES.

2.4 Cycle time & Die size

The cycle time of a MEMO-TABLE lookup i1s comparable to
that of a cache lookup. An 8K cache with a line size of
32 bytes contains 256 entries, first level on-chip caches are
reaching sizes of up to 64K[4, 5]. Our experiments show that
just a 32 entry MEMO-TABLE is sufficient and so addressing
an entry should take less time than in a conventional cache.
However, the size of a tag in a cache is smaller than the size
of a MEMO-TABLE tag. While a cache’s tag can be up to
64 bits a MEMO-TABLE tag is composed of 2 double precision
numbers, 128 bits. But due to the fact that the MEMO-TABLE
comparator performs its operand comparisons in parallel, we
assume that a MEMO-TABLE lookup should take one cycle,
on par with most on-chip caches.

The size of a MEMO-TABLE can be compared to the size of
a conventional cache. A 32 entry MEMO-TABLE holds 32x3 =
96 double precision values which is 96 x 8 = 768 bytes.
With second-level caches being integrated on-chip[3], adding
several MEMO-TABLES should be possible without draining
resources meant for other units.

The size of a MEMO-TABLE is even smaller than the size
of some computation units. For instance the SRT divisor on

the Pentium has a 2048 entry lookup table (although only
1066 of them are used), each entry can be any of 5 values so
the lookup table alone takes up one KiloByte.

3 Experiments and Results

To verify the usefulness of the MEMO-TABLE technique, we
performed a series of experiments with an architecturally
detailed simulator: Shade [19] a SPARC (versions 8 & 9)
instruction level simulator. Shade receives as input a binary
executable and executes it natively on a SPARC compatible
processor. Statistics are collected by breaking on specific in-
structions and storing register values in software simulated
MEMO-TABLES. Statistics of all multiplication (both integer
and fp) and division instructions were collected. In addition
the frequency breakdown of all instructions in the bench-
marks were collected.

The two indicators that measure the success of the MEMO-
TABLE technique are:

Hit Ratio The hit ratio of a MEMO-TABLE will show how
many multiple cycle operations were avoided. A higher
hit ratio implies that less instances of multiple cycle
operations are performed. This ratio is measured by
the simulations in Section 3.1 and the results are shown
in Section 3.2.

Speedup The end goal of using MEMO-TABLES is to accel-
erate processing; if the enhancement has no impact on
performance, the extra complexity of adding it isn’t
worth the effort. Section 3.3 measures the speedup of
applications using MEMO-TABLES.

Naturally, the hit-ratio and speedup depend on the specific
design of the MEMO-TABLE. The larger the LUT, the better
the expected hit-ratio & speedup.

3.1 Simulations & Traces

The hit ratio is a function of the size of the MEMO-TABLE,
its associativity, and the number of bits stored (full value
or mantissa in fp numbers). We have simulated MEMO-
TABLE with as its size varying from 8 to 8K entries and
the spectrum of associativity from direct mapped to 8-way
associativity. We have also ran the benchmarks through an
“infinitely” large fully associative MEMO-TABLE for compar-
ison.

The floating point MEMO-TABLES are simulated both with
the whole value and with only the mantissa. Integer operands
are hashed by by performing an exclusive or (XOR) on the
n least significant bits of the two operands (where n is the
number of sets in the MEMO-TABLE). For floating point op-
erations, the n most significant bits of the mantissas of both
operands are XORed in order to receive an index into the
MEMO-TABLE.

ADM Air Pollution, fluid dynamics

QCD Lattice gauge, quantum chromodynamics
MDG Liquid water simulation, molecular dynamics
TRACK | Missile tracking, signal processing

OCEAN | Ocean simulation, 2-D fluid dynamics

ARC2D Supersonic reentry, 2-D fluid dynamics

FLO52 Transonic flow, 2-D fluid dynamics

TRFD 2-electron transform integrals, molecular dynamics
SPEC77 | Weather simulation, fluid dynamics

Table 2: Description of the Perfect Benchmark applications

tomcatv | Vectorized mesh generation
swim Shallow water equations

su2cor Monte-Carlo method
hydro2d | Navier Stokes equations
mgrid 3d potential field

applu Partial differential equations
turb3d Turbulence modeling

apsi Weather prediction
fpppp Gaussian series of quantum chemistry
waveb Maxwell’s equation

Table 3: Description of the SPEC CFP95 applications

The simulated system consists of MEMO-TABLES adja-
cent to the integer multiplier, fp multiplier and fp divider.
The traces were taken from three sources: The first two
are the Perfect Benchmarks and SPEC CFP95 benchmarks
(the floating point component of the SPEC CPU95 suite)
[16, 17] These applications are described in tables 2 and
3. The third is the Khoros development environment [20]
that consists of a suite of Image Processing (IP) and Digital
Signal Processing (DSP) applications. These applications
showed much higher hit ratios than the other applications,
thus our targeting of Multi-Media applications. The specific
applications are described in table 4. Each application was
run on 8 to 14 inputs.

vspatial Statistical spatial feature extraction

vcost Surface arc length from a given pixel.
vslope Slope and aspect images from elevation data.
vsqrt Square root of each pixel.

vdiff Differentiation using two NXxN weighted ops.
vdetilt Best-fit plane subtracted from the image.
vgauss Generates Gaussian distributions.
venhance Local transformation (mean & variance).

vgef Fdge detection.

vwarp Polynomial geometric transformation (warp).
vrect2pol Conversion of rectangular to polar data.
vmpp 2-D information from COMPLEX images.
vbrf Band-reject filtering in the frequency domain.
vbpf Band-pass filtering in the frequency domain.
vsurf Surface parameters (normal and angle).
vkmeans Kmeans clustering algorithm.
vgpwl Two dimensional piecewise linear image.
venhpatch | Stretches contrast based on a local histogram.
Table 4: Description of MM applications
3.2 Results

The basic configuration of a MEMO-TABLE that we have cho-
sen is one with 32 entries arranged in 8 rows with set associa-
tivity of 4. Floating point numbers are stored fully. Tables
5 and 6 show the results of the general scientific benchmarks
and Table 7 shows the results of the Multi-Media applica-
tions. We compare the results of using an “infinitely” large
fully associative MEMO-TABLE to the results of using a much
smaller 32 entry 4-way associative MEMO-TABLE. All suites
show a large potential for data reuse but only the MM suite
can scale down to a size and associativity that are practical.
The numbers exclude all trivial operations.

The low hit ratios on the Perfect and SPEC suites may be
explained by the work of Franklin and Sohi [21]. A register
instance is defined as each time a datum is written into a
register. Reads to that register use that register instance.
Franklin and Sohi show that for the SPEC [16] benchmarks,

a large number of register instances are used only once and

the average use being about 2. Most of the register instances
are replaced with a new datum within 30-40 instructions.

On the other hand, the much higher hit ratios of MM
applications can be understood by considering the entropy
of the data values of the images. Table 8 describes the input
images along with some of their characteristics (size, type,
number of bands), their entropies and the averages of the hit
ratios for the applications that used the image as an input.
The lower the entropy, the higher the hit-ratio.

The entropy of an image is related to the amount of
information it contains. An image can be described using
fewer bits when its entropy is lower. The entropy of an image
is calculated by the following equation:

E= —E£=1Pk *log, (pk)

Where L is the number of possible values of each pixel and
pr 1s the probability of the value appearing in the image.
This probability is calculated by the histogram of the image.
Thus, an image in which each pixel represents a level of
grey between 0 to 255 and the values are evenly distributed
throughout the image will have an entropy of:

—Y32%1/256 * log,(1/256) = L3725 1/256 + —8 = 8

In most cases the distribution is not evenly distributed,
yielding an entropy of less than 8. When looking at small
images or at windows of an image (16x16 and 8x8 pixels
per window) most values have a probability (px) of O so the
entropies are even smaller. Thus the number of different
pixel values in a small area is low, this leads to our belief
that the same calculations are being performed over again.

Figure 2 shows the relationship between hit-ratio and
entropy [22]. Specifically, the hit-ratios of floating point di-
vision and multiplication are plotted against a parameter
of the entropies of 8x8 windows and of whole images. Al-
though the actual points are all over the graphs, we have
also drawn a best-fit line (nonlinear least squares fitting us-
ing the Marquardt-Levenberg Algorithm) to show that, on
average, for each bit of entropy a 5% decrease in the hit-
ratio is observed. In other words the lower the entropies
the higher the hit ratios, this indicates that the same cal-
culations are being performed over and over in a localized
area.

Storing only the mantissas of floating point numbers
raises the hit ratios, albeit not by much (Table 10). On
the other hand, in order to store only mantissas, the MEMO-
TABLE has to be capable of computing the results’ expo-
nent and normalize the results’ mantissa if necessary. This
tradeoff between simplicity of design and enhanced hit-ratio
has to be made when implementing a MEMO-TABLE. In all
our subsequent experiments, the full floating point value is
stored in the MEMO-TABLE.

In our experiments, we differentiate between “trivial”
and “non-trivial” operations. Although entering trivial op-
erations into the MEMO-TABLE might raise the hit ratio,
these operations can complete in a few cycles anyhow. On
the other hand, more calculations are being entered into the
MEMO-TABLE which can lower the hit-ratio. Table 9 shows
examples of both these behaviors. Trivial operations usually
have shorter latencies so not entering them into the MEMO-
TABLE enables non-trivial computations with long latencies
to reside longer in the MEMO-TABLE and have a better chance
of being reused.

In order receive the best results, trivial operations should
be detected before being forwarded to a MEMO-TABLE and

application 82 entries “infinite”
int mult | fp mult | fp dov || ont mule | fp mult | fp div
ADM .98 13 .15 .99 41 .56
QCD .02 .00 .00 .07 .04 .00
MDG - .00 .02 - .04 .03
TRACK .98 A7 .09 .99 .46 .89
OCEAN .15 .03 .03 .99 .30 .99
ARC2D 94 .15 .23 .99 .45 .26
FLO52 .86 .02 .06 97 11 .20
TRFD .60 .18 .85 .99 .59 .99
SPECT7 .06 .28 .01 97 .37 .15
[average | 57 | a1 [16 [.70 [.31 [.45 |

Table 5: Hit ratios for the Perfect benchmarks, LUT has 32 entries in sets of 4, or is infinitely large and associative (a -’

indicates operations that don’t appear in this application).

application 82 entries “infinite”
int mult | fp mult | fp dov || ont mule | fp mult | fp div
tomcatv .14 .01 .00 .99 .16 .00
swim - .16 .00 - .93 74
su2cor .26 - - .99 - -
hydro2d .15 .75 .78 .98 97 97
mgrid .83 .00 - .99 .01 -
applu o7 25 25 99 66 64
turb3d .80 .16 .03 .99 .86 .99
apsi .95 .16 13 .99 .39 57
foppp 53 29 15 99 55 62
waveb - .05 .02 - 11 .16
[average | 58 | .20 [.17 [99 [.52 [.59]

Table 6: Hit ratios for the SPEC CFP95 benchmarks, LUT has 32 entries in sets of 4, or is infinitely large and associative.

application 82 entries “infinite”
int mult | fp mult | fp div || int mult | fp mult | fp div
vdiff (sobel) .49 .54 - .96 .99 -
vcost .99 .34 .44 .99 .81 .93
vgauss - .50 .79 - 87 .95
vspatial .61 .62 .94 .92 .99 .99
vslope .34 .15 .25 .99 .60 .83
vgef .37 .33 - .99 .99 -
vdetilt - .23 - - 46 -
vwarp 27 57 .38 .99 .63 .68
venhance - 57 12 - .96 AT
vrect2pol - .42 .61 - 97 .80
vmpp - 41 .56 - .89 .98
vbrf 72 .01 .05 .99 .64 .88
vbpf 72 .54 52 .99 52 .80
vsurf .48 .25 .33 .93 .65 .83
vgpwl - .50 .58 - .99 .99
venhpatch .99 .68 - .99 .99 -
vkmeans - .39 .58 - .99 97
|| average | .59 | .39 | .47 || .95 | .82 | .85 ||

Table 7: Hit ratios for Multi-Media applications, LUT has 32 entries in sets of 4, or is infinitely large and associative.

their results returned immediately. Table 9 shows that inte-
grating this technique within a MEMO-TABLE gives the high-
est hit-ratios. We decided to focus on non-trivial operations
as it 1sn’t clear what speedup is obtained by not performing
trivial operations. So except for the experimental results in
Table 9, all the experiments cached only non-trivial opera-
tions.

The final two experiments performed test the attributes
of the LUT itself, its size and associativity. Figure 3 shows
the average hit-ratios (min-max results shown by the verti-
cal lines at each LUT size) of the MM applications when the
size of the LUT ranges from 8 to 8192 entries, and its asso-

ciativity is 4. Figure 4 shows the average hit-ratio (min-max
results shown by the vertical lines at each set size) when the
associativity ranges from direct mapped to 8way associa-
tivity. In both these experiments five sample Multi-Media
applications were used (vcost, venhance, vgpwl, vspatial &
vsurf).

Figure 3 shows that it is possible to use different size
MEMO-TABLES for different Computing Units. While for a
fp division unit a size 8 MEMO-TABLE may be sufficient, a
MEMO-TABLE adjacent to a fp multiplier must be of size 32
at least. This shows that repeating division operations are
performed closer together and aren’t “bumped” out of the

image characteristics entropy window size hit ratios

size type bands | full | 16x16 | 8X8 | tmul | fmul | fdiv
mandrill 256X256 BYTE 1 7.34 6.03 5.10 31 .30 .29
nature 256X256 BYTE 1 7.38 5.64 4.72 31 .34 .35
Muppetl 240x 256 BYTE 1 7.04 4.78 4.16 31 .45 .50
guya 128x128 BYTE 1 6.99 4.77 3.91 .36 .76 .37
star 158158 BYTE 1 5.93 5.22 4.62 .96 .32 .33
chroms 64 xX64 BYTE 1 4.82 4.04 3.29 .58 .43 .40
airportl 256X256 BYTE 1 4.47 3.15 2.56 31 .46 .45
lablabel 243x486 | INTEGER 1 3.37 0.93 0.84 .93 .66 .75
fractal 450 x 409 BYTE 1 1.42 0.78 0.58 .88 .61 .82
head 228x256 FLOAT 1 - - - .39 .29 .33
spine 228x256 FLOAT 1 - - - .39 27 .32
lenna.rgb 480%x512 BYTE 3 7.75 6.84 6.25 .19 .35 .58
mandril.rgb | 480x512 BYTE 3 7.75 6.22 5.64 .36 .36 52
lizard.rgh 512X 768 BYTE 3 7.60 5.66 5.17 .32 .40 .60

Table 8: Description of the images used in IP applications.

fp division in 8x8 windows

084 * actual points ~ +
+ best fit line ------—-
0.6 - + .
+ .
+ *\
0.4 + o,
o
+
0.2 T T T T T T 1
0 1 2 3 4 5 6 7
fp multiplication in 8x8 windows
0.8
+
064 T
T
0.4 * Ty
T~
ag . ‘*\—\\\
0.2 T T T T T T 1
0 1 2 3 4 5 6 7

fp division in the whole image

0.8 4 *
e +
0.6 - +,
\\\\\\\ Lo+
+ \\\\\\
0.4 o + . T
N +
+
0.2 T T T T T T T 1

0 1 2 3 4 5 6 7 8
fp multiplication in the whole image

0.8
+
. +
0.6 *“\1\\
+\\‘*\\\\ .
0.4 - * e
+ bl
0.2 T T T T T T T 1

Figure 2: Hit Ratios (vertical axis) of fp division and multiplication as a parameter of Entropy (horizontal axis) in 8x8

windows and whole images

suite fp mult fp div
full | mant | full | mant
Perfect 11 11 .16 A7
Multi-Media | .39 43 AT .50

Table 10: Comparison of storing only mantissa’s or the
whole floating point number (averages of 32 entry 4-way
associative MEMO-TABLES).

MEMO-TABLE as often as fp multiplication operations. The
figures show as well that performance improves up to about
1024 entries. More entries hardly improves the hit ratio as
can be seen by the curve that flattens out in the above inter-
val. Many more entries are needed for further improvements
as shown using “infinite” sized MEMO-TABLES.

Figure 4 shows that both for fp division and multiplica-
tion a set size of over 4 hardly improves the hit ratio. In

fact, a set size of 2 suffices for division. These results shows
that a MEMO-TABLE with 16 entries and an associativity of
2 gives results almost as good as a 32/4 MEMO-TABLE. In fp
multiplication a 32/4 is the minimum required. It would be
simpler to let the MEMO-TABLE be direct-mapped and save
on the space taken by a set of comparators but Figure 4
shows that conflict misses lower the hit ratio in both MEMO-
TABLES. The conflicts are caused by the hashing scheme,
in some applications (vsqrt, vcost, vgauss) nearly identical
values are entered into the MEMO-TABLE alternately causing
a conflict miss on every lookup. A set size of 2 avoids this
problem.

3.3 Speedup

Amdahl’s law [1] states that the speedup obtained by using
an enhancement depends on two factors:

application int mult fp mult fp dwv

tru hit ratios tru hit ratios tru hit ratios

% all | non | intgr % all | non | intgr % all | non | intgr
vdiff .34 .48 .49 67 .62 .63 .54 .81 - - - -
vcost .66 .62 .99 .99 .20 .30 .34 .43 .00 .44 .44 .44
vgauss - - - - .23 .39 .50 .60 .00 .23 .23 .23
vspatial .61 71 .61 87 .06 57 .62 .65 .00 94 94 94
vslope .53 .54 .34 .70 .44 22 .15 .50 .15 .28 .25 .30
vgef .34 .43 .37 .58 .23 41 .33 .48 - - - -
vdetilt - - - - .04 .26 .23 27 - - - -
venhance - - - - .15 52 57 57 .00 12 12 12

[[average || .50 || .55 | .56 | .76 || .25 || .41 | .41 | .54 || .03 || .40 | .40 | .40 |

Table 9: Hit ratios for several Multi-Media applications, LUT has 32 entries in sets of 4. This table shows:

trv the ratio between trivial operations and all operations

all the hit ratio when all operations (trivial and non-trivial) are stored in a MEMO-TABLE

non the hit ratio when ony non-trivial operations are stored in a MEMO-TABLE

intgr the hit ratio when checking for trivial ops is integrated into the MEMO-TABLE, and only
non-trivial operations are stored in the MEMO-TABLE(trivial operations are counted as “hits”)

FP Division
0901 _ T
0.70 S
2 |
ko
X 050 — |
=
0.30 - -
0.10 — - o B
T T T T T T T T T N
23 24 25 26 27 28 29 210 213 infinite
Number of LUT Entries
FP Multiplication
0.90 -
0.70
2
ko
@ 0.50
=
0.30
0.10
T T T T T T T T T N
23 24 25 26 27 28 29 210 213 infinite

Number of LUT Entries

Figure 3: Hit ratios of floating point division and multiplication in MM applications as a function of the LUT size (set size

is 4).

1. The fraction of computation time in the original ma-

chine that can use the enhancement.

This is called

Fraction Enhanced (FE), it is always smaller than 1.

. The improvement gained if onlythe enhancement mode

could be used. This is called the Speedup Enhanced(SE),

it is always greater that 1.

The new execution time when using the enhancement is:

Thew =Toa* ((1— FE)+ FE/SE).
Taking fp division as an example, SFE is equal to:

dc
(1 — hr)dc + hr

FP Division

0.90 —

0.70

0.50

Hit Ratio

0.30

0.10

1 2 4 8

FP Multiplication

0.90

0.70

0.50

0.30

0.10

1 2 4 8

Set Associativity Size

Figure 4: Hit ratios of MM applications

as a function of the LUT associativity (LUT size is 32 entries).

app hit ratio 13 cycles 39 cycles
FE SE Speedup FE SE Speedup
venhance 12 .036 1.12 1.00 101 1.13 1.01
vbrf .05 .062 1.05 1.00 .180 1.05 1.01
vsqrt .54 017 1.99 1.01 .049 2.11 1.03
vslope .25 .074 1.30 1.02 .204 1.32 1.05
vbpf .52 .089 1.92 1.04 226 2.02 1.13
vkmeans .58 .094 2.15 1.05 237 2.30 1.15
vspatial .94 101 7.55 1.10 252 | 11.89 1.30
vgauss .79 .150 3.69 1.12 .346 4.34 1.36
vgpwl .58 .208 2.15 1.13 .440 2.29 1.33
[average | .48 [.092 [2.85] 1.056 [[.226] 3.16 | 1.15 |

Table 11: Speedup of applications when fp division is memoized (division takes 13 or 39 machine cycles).

app hit ratio 3 cycles 5 cycles
FE SE Speedup FE SE Speedup
venhance 57 .061 1.61 1.02 101 1.84 1.05
vbrf .01 .021 1.00 1.00 .052 1.01 1.00
vsqrt .39 .015 1.36 1.01 .025 1.45 1.01
vslope .15 111 1.11 1.01 147 1.14 1.02
vbpf .54 .026 1.56 1.01 .038 1.76 1.02
vkmeans .39 101 1.35 1.03 133 1.45 1.04
vspatial .62 .050 1.70 1.02 .071 1.98 1.04
vgauss .50 125 1.50 1.04 172 1.67 1.07
vgpwl .50 .071 1.50 1.02 .083 1.67 1.03
[average | .28 [.0567] 1.40] 1.02 [.091 [1.55] 1.03 |

Table 12: Speedup of applications when fp multiplication is

memoized (multiplication latency is 3 or 5 machine cycles).

where dc is the number of machine cycles it takes to per-
form a division and hr is the hit ratio in the MEMO-TABLE.
FFE is equal to the number of cycles used by division in-
structions divided by the cycle count of the application. In
order to compute the total cycle count of an application vs.
the number of cycles of multiplication and division instruc-
tions the simulator was enhanced to incorporate a memory
hierarchy of two caches and take into account annulled in-
structions in the pipeline. Thus the indicator of speedup
is total cycle count executed by all instructions. Enhance-
ments like multiple issue and pipelining aren’t taken into
consideration at this point. This enables us to bypass the
problem of compiler changes that have to be made in order
to take advantage of MEMO-TABLES and focus on the number
of superfluous cycles avoided.

Table 11 shows the MEMO-TABLE hit ratio, Speedup En-
hanced, Fraction Enhanced and Speedup for the nine MM
applications that use a fdiv MEMO-TABLE (32 entries in sets
of 4). It is assumed that each division instruction takes 13
machine cycles or 39 machine cycles. A look at table 1 shows
that no modern microprocessors even comes close to com-
pleting a double precision division instruction in less that 13
cycles and that on at least one processor it takes more that
39 cycles. The table shows an average speedup of between
5% to 15%.

Table 12 shows the same information for applications
using a fmul MEMO-TABLE (32 entries in sets of 4). It is as-
sumed that each multiplication instruction has a latency of
3 or 5 machine cycles. It is possible that some of the cycles
avoided by using a MEMO-TABLE would be avoided in any
case due to a pipelined multiplication unit. In our simu-

app 3(fmul), 13(fdiv) cycles || 5(fmul), 39(fdiv) cycles

FE SE Speedup FE SE Speedup
venhance 097 1.42 1.03 201 1.49 1.07
vbrf .083 1.03 1.00 232 1.04 1.01
vsqrt .032 1.69 1.01 074 1.88 1.04
vslope 185 1.19 1.03 351 1.24 1.07
vbpf 115 1.83 1.06 .264 1.98 1.15
vkmeans 195 1.73 1.09 370 1.99 1.23
vspatial 151 5.61 1.14 323 9.71 1.41
vgauss 275 2.70 1.21 518 3.45 1.58
vgpwl 279 1.98 1.16 523 2.19 1.39

[average [.156 [2.13 [1.08 [.317 [2.77 [1.22 |

Table 13: Speedup of applications when fp multiplication and division are memoized (latencies are 3 and 13 or 5 and 39

machine cycles).

lations we didn’t take into account the possibility that se-
quential multiplication instructions will be pipelined, which
will cause a throughput of one cycle for each instruction.
So it is possible that the speedup figures for fp multiplica-
tion are somewhat biased in our favor. But as mentioned
above we focus on total cycles per application. Future work
will take into account multiple units, pipelined units and
multiple MEMO-TABLES. A look at table 1 shows that these
latencies are consistent with most modern microprocessors.
The table shows an average speedup of between 2% to 3%.

The fact that memoizing division gives better speedups
than memoizing multiplication is due to the long latencies
of division instructions and the benefit of avoiding some of
them. This shows that future work should be integrating
MEMO-TABLES into other long latency functions such as sqrt,
log and the trigonometric functions.

Table 13 shows the speedups when both fdiv and fmul are
memoized on two type of processors. The first has very fast
floating point units that complete fp multiplication and divi-
sion in 3 and 13 cycles respectively. The second is slower and
completes fp multiplication and division in 5 and 39 cycles
respectively. The table shows an average speedup of between
8% to 22%. Even taken at its face value a 8% speedup is
comparable with the speedups attained by enhancing branch
prediction and cache & TLB hit ratios [23, 24, 25].

4 Conclusions

This paper investigates a technique to reduce the average
CPI of multiplication and division instructions by using the
concept of memoing. Previous computations are stored in
look up tables and access in parallel to computing an oper-
ation. If the result of a computation already resides in the
table, it is obtained in a single cycle as opposed to the mul-
tiple cycles needed to perform multiplication and division.
The technique is based on the temporal locality of the
data used in computations. Unfortunately not all applica-
tions show such locality. A suite of “general” benchmarks
tested have shown poor hit ratios on the MEMO-TABLES. But
applications that do display this locality benefit from the
memoing. [mage Processing & Digital Signal Processing
that are used in Multi-Media applications show high hit ra-
tios and are clearly candidates for enhanced execution using
MEMO-TABLES. Our tests show that an average of 59% of the
integer multiplications, 43% of the floating-point multiplica-
tions and 50% of the floating-point divisions in MM appli-
cations can be performed in a single cycle using small look
up tables. These hit ratios lead to an average speedup of up
to 22% in Multi-Media applications using MEMO-TABLES.

A 32 entry, 4-way associative MEMO-TABLE is comparable
in size to 1KB of on-chip cache, and no machine cycles are
lost in the case of an unsuccessful lookup. Thus MEMO-
TABLES can be implemented in general purpose processors
and not only in dedicated MM processors.

Future work will be to extend the MEMO-TABLE technique
to sqrt, log, trigonometric and other mathematical functions
based on the success and promise of this work. Another
avenue of research is to quantify the benefits of using several
MEMO-TABLES instead of duplicating functional units.

It might be said that we are “throwing hardware” at the
problem and that is indeed so. The scales of integration
mentioned above enable putting in the excess of 7 million
transistors on chip. A large amount of these transistors are
dedicated to on-chip caches which are becoming larger and
larger. The R10000 and PPC 604e both have 64K of on-
chip cache with the Alpha 21164 having 112K of cache in
two levels on-chip. This large amount of hardware is used
to bridge the growing gap between levels of the memory
hierarchy. A fraction of this transistor space can be diverted
to the MEMO-TABLES and enable the bridging of the gap
between the cycle times of different instructions.

References

[1] Hennessy J. L. and Patterson D. A., “Computer Archi-
tecture: A Quantitative Approach,” Morgan Kaufmann
Publishers, San Mateo CA, 1990.

[2] http://www.intel.com /design/

[3] http://www.digital.com /info

[4] http://www.sgi.com/MIPS/products/r10k

[5] http://www.mot.com/SPS/PowerPC/products

[6] http://www.sun.com /microelectronics/datasheets

[7] http://www.hp.com/wsg/strategies

[8] Michie D., “Memo Functions and Machine Learning,”
Nature 218, pp 19-22, 1968.

[9] L. Sterling and E. Shapiro, “The Art of Prolog, 2nd
Ed.”, MIT Press Cambridge MA, 1992.

[10] Abelson, H. and Sussman, G.J. Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge,
Mass. 1985.

[11] R. Milner, M. Tofte, R. Harper, and D. MacQueen,

The Definition of Standard ML (Revised) MIT Press,
Cambridge, Mass. 1997.

[12]

[13]

[14]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

P. Soderquist and M. Leeser, “An area/performance
comparison of subtractive and multiplicative di-
vide/square root implementations,” Proc. 12th IEEE
Symp. Computer Arithmetic, pp. 132-139, July 1995.

Atkins, D.E. “Higher-radix division using estimates of
the divisor and partial reminders,” IEFE Trans. on
Computers C-17:10, 925-934,1968.

S. Richardson, “Exploiting Trivial and Redundant
Computation”, Proc. of the 11th Symp. on Computer
Arithmetic, pp. 220-227, July 1993.

S. Oberman, M. Flynn, “Reducing Division Latency
with Reciprocal Caches”, Reliable Computing, Vol 2,
no. 2, pages 147153, April 1996.

Price W.J. |, “A Benchmark Tutorial,” ITFEF Micro, pp.
28-43, October 1989.

http://www.netlib.org/benchweb

A. Sodani, G. Sohi, “Dynamic Instruction Reuse”,
Proc. of the 24th Int. Symp. on Computer Architecture,
June 1997.

Cmelik R. and Keppel D., Shade: A Fast Instruction-
Set Simulator for Fzecution Profiling, Sun Microsys-
tems Laboratories.

D. Argiro and C. Gage, “Khoros User’s Manual,” U. of
New Mexico, 1991.

M. Franklin and G.Sohi, “Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-
Grain Parallel Processors,” Proc. of Micro 25, pp 236—
245, 1992.

A. K. Jalin, “Pundamentals of Digital Image Process-
ing,” Prentice Hall, Englewood Cliffs NJ, 1989.

T.Yeh and Y. Patt, ” A Comparison of Dynamic Branch
Predictors that Use Two Levels of Branch History,”
Proc. of the 20th Int. Symp. on Computer Architecture,
pp 191-201, 1993.

N. Jouppi, ”Cache Write Policies and Performances,”
Proc. of the 20th Int. Symp. on Computer Architecture,
pp 191-201, 1993.

J. Chen, A. Borg, N. Jouppi, “A Simulation Based
Study of TLB Performance,” Proc. of the 18th Int.
Symp. on Computer Architecture, pp 114-123, 1991.

