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Abstract

Metrics ought to be objective, as they are the judge of pevémce. Workloads ought to be
representative, so that evaluations will lead to applieabbults. But sometimes metrics and
workloads collude to taint the performance evaluation @ss¢ leading to results of dubious
merit. We use a case study dealing with parallel job schaguib exemplify these issues.
An analysis of interactions among the metrics, the worldoaahd the systems being studied
reveals that such interactions may dominate the evaluagisults. Moreover, in some cases
factors that were originally thought to be minor and igndéeadre actually very important, and
may overshadow the differences between the different mgstdt is therefore recommended
that multiple workloads and metrics be used in performarveduation studies, and that the
causes of inconsistent results be studied thoroughly.
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1 Introduction

The goal of performance evaluation is often to compare miffesystem designs or implemen-
tations. The evaluation is expected to bring out perforreattferences that will allow for an
educated decision regarding what design to employ or whstesyto buy. It is assumed that
observed performance differences reflect important diffees between the systems.

However, performance differences may also be an artifattteoévaluation methodology. The
performance of a system is not only a function of the systesigdeand implementation. It may
also be effected by the workload to which the system is stdgedn addition, different metrics
measure different things. In this paper we focus on the ifieation and analysis of situations in
which workloads and metrics sway the results of performaveduation.

There are two main approaches to performance evaluati@lysas and simulation. Analysis
necessarily involves simplifications in the interest of neaatical tractability. Simulation is more
realistic, and in particular, can directly use recordinfyseal workloads. The problems we discuss
are more relevant to simulation, but we claim that this isandeficiency of simulation. Rather, it
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echos the fact that simulation may directly reflect compliaxasions, even if they are not known
or understood by the person performing the evaluation.

The domain used in this work is that of parallel job schedulifVorkloads in this field are
interesting due to the combination of being relatively dr{the size of typical workloads is tens
of thousands of jobs) and at the same time relatively com(pidss are characterized by attributes
including size, runtime, runtime estimate, and arrivald énese attributes may be correlated).
Naturally, the methodological concerns extend to otheralom

2 Experimental Design

We start by considering a simple question: what has more ¢inpa performance results, the
system being studied, or the methodology?

2.1 Factors and Levels

Experimental design is a useful technique to study the etiédifferent factors on a system’s
performance [9]. One first identifies the factors and thepidgl values (called “levels”), and
then designs a set of experiments that will determine thagivel importance of each factor. For
example, when studying process scheduling, factors thettdahe performance can be the use (or
lack of use) of time slicing, the average process lengthatheal rate, the order in which queued
processes are considered for scheduling, and so on.

We use this methodology with a twist: rather than studyirgydies that affect the system be-
havior, we studyfactors that affect the evaluation procedui®pecifically, we identify four main
factors, each with several levels.

The first factor is thenetric being used in the evaluation. The different metrics we a@®Brsi
are:

e Response time (the time from when a job is submitted unténninates), using either an
arithmetic average or a geometric average [1].

¢ Wait time, which is that part of the response time that is ugh&system.
¢ Slowdown, which is the response time normalized by the jabtsal running time.

e Bounded slowdown, in which the running time is used to noiredhe response time only
if it is higher than a certain threshold value [4]. This pretgevery short jobs from creating
very high values. Thresholds of 10, 60, and 600 seconds veee u

e Per-processor bounded slowdown, in which the bounded siawvds further normalized by
the number of processors used [12].

The second factor is tHead on the system. When systems are underloaded, their pericema
is typically very similar. Higher load conditions exposé&eliences in how systems react to load.
Load conditions considered were 50%, 65%, and 80% of thesysapacity, which are typical
in production systems [5, 11]. The different load conditiomere achieved by systematically
changing the interarrival times of the jobs. However, duduostiness in the workloads, this
led to some variations in the loads experienced in the astomallations.
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The third factor is thesystem The whole point of performance evaluation is to uncover per
formance differences between different systems, and oal igato compare the magnitude of
such differences with differences due to methodology. Wepared systems with three different
schedulers:

e Backfilling schedules jobs on dedicated partitions of pssoes, based on their order of
arrival. However, if fragmentation occurs and processoesleft idle, jobs from the back
of the queue are allowed to bypass jobs that precede themidprbthey fit). Two versions
were used: irconservativebackfilling jobs may backfill only if they will not cause dely
for any bypassed jobs, whereB&SYis more aggressive and allows backfilling provided
only the first queued job is not delayed [10]. Estimates oftimimes are used to determine
whether delays will occur; in real logs, the original estiesaprovided by users are used,
whereas in models the actual runtime is used as an estimate.

e Gang scheduling is a preemptive scheme in which jobs argressio rows of a scheduling
matrix, where columns represent the nodes of the system@amsl nepresent time slots.
The jobs in each row are scheduled in turn using coordinatetegt switching across all
the nodes. The packing of the matrix is based on a varianteoDibtributed Hierarchical
Control scheme [3], which uses a buddy system to allocategssors in blocks that are
powers of two.

The final factor is thevorkload. Seven different workloads were used, of which four were
models and three were traces. Models are essentially esgisg®ns of the workload using statis-
tical distributions [6]. This has many benefits and can bel usanalysis in addition to simulation.
However, models are always a simplification of reality, asohg the wrong statistical model can
yield misleading results [7]. It is therefore sometimesuad) that more reliable results are ob-
tained by simulations that are driven directly by a trace theords the actual workload that was
observed on a real production system. This has the benefitlfding all the complexities of the
real workload, even if they are unknown to the person periogrthe evaluation

The models used were those proposed by Feitelson, Jann,dypand Lublin. The real work-
loads are from three IBM SP2 systems, installed at KTH, Chd,3DSC. Additional information,
including software for the models and data for the logs, &lable from the Parallel Workloads
Archive at URLhttp://www.cs.huji.ac.il/labs/parallel/workload/.

We used a full factorial design, in which all combinationstce different levels were measured
by simulation. Thus, for example, we ran a simulation of emwative backfilling using the Lublin
workload model at a load level of 0.50, and measured all tetnicse Overall there were 60 such
simulations, for a total of 600 results (there should havent®3 simulations, but the combination
of the Downey model and gang scheduling was problematicoesirbelow).

2.2 Analysis of Variation

Analysis of variation (ANOVA) is a statistical techniqueadsto assess the relative importance of
different factors [9]. First, the average all results is computed. Then the differences between
specific groups of results and this global average are atédto different factors and interactions.
For example, if factor has two levels; anda,, and the results of experiments using levelead

to a higher average than the experiments using leyeghen we say that the difference between
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| factors | contribution]

A (metric) 80.43%
B (load) 1.66%
C (scheduler 3.18%
D (workload) 3.06%
AB 0.12%
AC 3.32%
AD 6.38%
BC 0.05%
BD 0.16%
CD 0.98%
ABC 0.05%
ABD 0.08%
ACD 0.45%
BCD 0.03%
ABCD 0.05%

Table 1:Results of analysis of variation (ANOVA).

these two averages (which is part of the overall differenceattributed to factord. Likewise,
interactions measure how combinations of multiple factdrspecific levels effect the outcome.
For example, given two factord and B, if the experiments using the combination 4fat level
a, and B at levelb, lead to very low results on average, we attribute this dmnato the AB
interaction.

The results from the simulations described above were aedlysing Design-Expert 6 soft-
ware from Stat-Ease, Inchitp://www.statease.com/dx6descr.html). A logarithmic transform
(base 10) was applied first, to reduce the range of values.

2.3 Results

The results of the analysis, showing the contribution ohdactor and interaction to the variation,
are given in Table 1.

The most striking result is obviously that over 80% of theiataon' has been assigned to
the metrics factor (designated A). However, this is not ladittmeaningful. Some metrics, like
response time or wait time, are indeed very high on average.they stay high regardless of the
other factors. Others, like variants of bounded slowdowsa jisherently lower. Thus this finding
just means we should not mix metrics and compare them to el without making sure that
they are in the same units.

The contribution of load (designated B) is surprisingly lo@iven that performance deteri-
orates as load increases, we would expect a larger effea. eXplanation is probably that the
highest load level, that of 80%, is still a moderate load, dods not push the systems to their

1The ANOVA methodology uses the square of deviations frongthbal average, so that deviations that are above
and below it do not cancel out. This tends to inflate the largasies and diminish the smallest ones.
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Figure 1: Results for all 10 metrics when comparing the three scheslulsing an average of all
workloads and loads (excluding the Downey workload for \whgang scheduling results are not
available).

limit.

The scheduler (designated C) has some net effect, whicligygng. It means that one of the
compared schedulers is in general better than the othermday different combinations of the
other factors. This is the sort of results we are actuallkilog for in performance evaluation.

The workload (designated D) turns out to have a similar eti@the scheduler. As in the case
of metrics, this is not necessarily bad. Some workloads na&g flonger jobs on average, leading
to longer response times. Again, this just means that esbliained with one workload should
not be compared directly with results obtained using a diffeworkload: only results from the
same workload on different systems are comparable.

The real problems exposed by the analysis are the intenactir example, the AC interaction
indicates that some metrics favor one scheduler, whilerottetrics favor another scheduler. Thus
the selection of metric might determine the outcome of tlauation in terms of which scheduler
seems to be better! The AD interaction indicates that theea@ ieven stronger interaction between
the metric and the workload, and this interaction may swantpite effect of the scheduler by
itself.

3 The Double Interactions

We start with explaining the interactions between metiegkloads, and schedulers. Load did not
have any strong interactions, meaning that there were ersydesigns or metrics that consistently
worked better under high or low loads.

3.1 Interaction of Metrics with Schedulers

In retrospect, the fact that metrics interact with schedus@ould not be too surprising. Different

schedulers are designed with different objectives in mitfdsuccessful, they should therefore

satisfy these diverse objective, among which are diverdenqmeance goals. Oftentimes, satisfying

one goal comes at the expense of another. Therefore métaicare fashioned after specific goals
will tend to give higher ranks to schedulers that includeséhgoals among their stated objectives,
and lower ranks to schedulers that do not.
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Figure 2:Performance results based on select metrics, comparduefdifferent workloads. Each
bar is the average of the two backfill schedulers and all loads

In our testcase, a detailed study of the results revealghbaen metrics may be divided into
two groups. One group includes the response-related raetasponse time with either arithmetic
or geometric averaging, and waiting time. These metricsav@rage, show gang scheduling to
be similar to EASY backfilling (first three charts in Figure IJhe other group, including the
seven slowdown-based metrics, show gang scheduling togbdisantly better than backfilling
(following seven charts). This distinction can be expldimg the fact that gang scheduling is
preemptive, with the goal of preventing short jobs from wgin queue until long ones terminate.
Thus, while it should also reduce the average response itisteguld reduce the response time of
short jobs by much more. And this is precisely what is meashyethe slowdown metrics.

3.2 Interaction of Metrics with Workloads

The interaction of metrics and workloads, like the intei@tiof metrics and schedulers, can be
benign. For example, if one workload is characterized b jthiat are on average longer than
those in another workload, their response times will alstobger on average. In other words,
metrics that are naturally linked with a certain workloadttee will cause interactions.

A more problematic case is when no such direct link is presaamd especially if the metrics
interact in conflicting ways with different workloads. Anample is provided by the relative
performance obtained by different workloads accordinght different metrics (Figure 2). For
example, the KTH workload has the highest slowdown by farttelFeitelson and Lublin models
have much higher bounded slowdowns; the CTC and SDSC watkloave higher response times
than the Downey model (for both arithmetic and geometricayi@g), but lower slowdowns (with
and without a bound).

The problem with these results is not that we cannot rank lwads, as this is not our goal
anyway and is rather meaningless. The problem is that teeréarge effect that is due to the inter-
action of the metric and the workload. Thus when we use skwenrkload/metric combinations,
we might end up measuring these effects and not the systecteff
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Figure 3: Distributions of job sizes in the different workloads. Daey's model generates larger
jobs than the others. The steps are due to the discretentesvafiues, and preferences for powers
of two.

3.3 Interaction of Scheduler with Workload

Interactions of the scheduler with the workload are acyualther important, as they may uncover
vulnerabilities of the system. For example, if a certainesttier cannot handle a certain work-
load, this has two implications: first, this scheduler sdodt be used in systems whose workload
resembles the specific problematic workload. Second, tfiigmation can be used to better un-
derstand the behavior of the scheduler and to improve it.

An example of this type occurred in the simulation of gangesitiiing using the Downey
workload. These simulations did not complete successfBlhecifically, the simulations for high
loads became very backlogged and stretched the simulatedsth much that the measured load
was much lower than the input load.

The reason for this appears to be the distribution of jobssiZzBowney’s model employs a
log-uniform distribution (actually, this is the distribab of the average parallelism of the jobs, as
this model is designed for moldable jobs rather than fodrigmes). The other models and the
logs have distributions that start with more small jobs aadeha bit of a tail (Figure 3), leading
to much smaller sizes throughout the distribution. App#yethe packing algorithm used in the
simulation of gang scheduling was unable to deal effegtivath the log-uniform distribution,
leading to high fragmentation: processors were left idleabse allocations were in powers of
2, and for large jobs, this causes significant waste. Thisdeghturation at relatively low loads,
starting from about 60%. The other distributions did notseathis problem, and the workloads
were packed successfully even at loads of 80%.



number response time | bound. slodwn. T=1(
job class| of jobs' EASY | cons | EASY | cons
Jann model
short 214715 8015.42| 6403.52| 142.99 109.16
long 118585| 52654.77| 65173.01 1.85 2.32
all 333300/ 23900.09| 27313.15 92.77 71.15
CTC workload
short 48020| 3784.75| 4632.44 22.85 45.39
long 30480| 33866.62| 37762.92 1.47 1.65
all 78500| 15464.95 17496.77 14.55 28.41

* the numbers may differ slightly for the two schedulers afediint
jobs may remain in the queue at the end of the simulation.

Table 2: Simulation results for different job classes. EASY backiglis better in all cases for the
CTC workload, and for long jobs in the Jann workload. Resshitswn are for load of 0.8.

4 The Triple Interaction of Metrics, Schedulers,
and Workloads

A more difficult situation occurs when three factors are lmed in the interaction. An example
is provided by the comparison of the conservative and EASXiding schemes. It turns out
that, at least for some workloads, the response time metwvar$ EASY backfilling, whereas the
(bounded) slowdown metric favored conservative backglliRarticularly worrying is the fact that
the Jann and CTC workloads, which are statistically verylamithe Jann model specifically tries
to emulate the CTC workload), produce different resulte:3ann model interacts with the metric,
and produces opposite results for the two metrics, whiléXh€ workload favors EASY for both
metrics (Table 2). This is therefore actually a triple iat#ron (denoted ACD in Table 1). The
following analysis is based on reference [2].

4.1 Producing Conflicting Results

First, we try to understand the mechanism that causes tfezatit metrics to produce conflicting
results. Slowdown is known to be very sensitive to short j@ssthe job runtime appears in the
denominator of the formula; thus short jobs that are deldgedven moderate times lead to high
slowdown values. The effect of backfilling is also relateddb duration, as short jobs have a
better chance to fit into a hole in the schedule. Thus talmgathort jobs separately may lead to
important insights.

Table 2 shows the results, defining short jobs as those shibee one hour. For the CTC
workload, both metrics favor EASY backfilling for each clasdividually, and also for both of
them together. But in the Jann workload we indeed see a eliféerthat depends on job class. For
jobs that are longer than 1 hour, both metrics favor EASY. Buthe shorter jobs both metrics
favor conservative backfilling.

Given that for each job class both metrics agree, how dosstalhn into conflicting results



170000 —

160000 - J:l O Eeasy
B cons
80000
] -
kS 70000
& 60000
3
8 50000
2 40000
[e)
T 30000
20000 |
0
short long short long short long
Jann CTC CTC accurate
> 0.4 —
(%))
<
L 0.3
E
= 0.2
3
I 0.1
o]
ke B —_— —
9 0 1
short long short long short long
Jann CTC CTC accurate

Figure 4:Amount of backfilling (top) and increased backfilling with X relative to conservative
(bottom). A value of 0.1 means that EASY did 10% more bachkflli

when the whole workload is considered? The answer is thahgee are dominated by the higher
values. For response times the high values come from thejddrsg whereas when we calculate
the average slowdown the high values come from the short jblhgs the average response time
is similar to the response time for long jobs, which favorsS¥Awhereas the average slowdown
is similar to the slowdown of short jobs, which favors consére.

4.2 Underlying Performance Differences

For both workloads, the response times and slowdowns ofjgunder the EASY scheduler are
substantially lower than under conservative schedulirge difference in the results is due to the
short jobs, that fare better under conservative in the Jawklead, but not in the CTC workload.
To try and understand why this happens, we need to underbtamdhe scheduler interacts with
the workload.

Figure 4 shows the amount of backfilling achieved by the twweSalers. Surprisingly, it turns
out that the better performance for short jobs in the Jamswative combination is not the result
of more backfilling. On the contrary, the main differencevien the workloads is that under
Jann/conservative there is less backfillindasfg jobs. This result is most likely the consequence
of a seemingly minor difference between the workloads: #u¢ that the CTC workload includes



user estimates of runtime that are used in the backfillinggss, whereas the Jann model does not.
Simulations based on the Jann model therefore use the aghiimhe as an estimate. This leads to
much less backfilling under the conservative scheme, bedzakfill jobs must fit into the smaller
space that is left available by the tighter estimates.

To confirm this hypothesis, we re-ran the CTC simulationaisutg the actual runtimes rather
than the original user estimates to control the backfillifdne results, also shown in Figure 4,
confirm the conjecture. Moreover, in these runs the perfaoeaf short jobs was better under
conservative than under EASY (as in the Jann workload)cathg that the disparity in backfilling
long jobs is determinative for the performance of short jobs

But how does the reduced backfilling lohg jobs under conservative translate into better per-
formance forshortjobs? The answer is that in both workloads, many long jobsear@al. They
are therefore prime candidates for backfilling. The questibwhether backfilling will actually
occur depends on the scheduler. EASY will backfill provideel job does not delay the first job
in the queue. The conservative scheduler is stricter, amanes that no previously queued job be
delayed. Given that the jobs in question are long, thereigrafieant danger that they delay some
job even if they do not delay the first queued job. Short jolas #ine thus delayed will suffer from
high slowdown values. Thus by achieving less backfill fogéajobs, conservative avoids delays
for short jobs, resulting in better slowdown scores.

4.3 Discussion

To summarize, our analysis exposed the following triplernattion:

e The Jann and CTC workloads differ (among other things) in tha CTC workload is a
real trace including user estimates of runtime, whereagdaha model does not include this
detail.

e Due to using accurate estimates for the Jann model, the matise scheduler achieved
less backfilling of long jobs that use few processors. Thisbgiously detrimental to the
performance of these long jobs, but turned out to be benkfaishort jobs that don’t get
delayed by the long jobs.

¢ As response time is dominated by long jobs, the responsentietec showed that EASY is
better than conservative for the Jann workload. The slowdmetric, on the other hand, is
dominated by short jobs, so it showed conservative to betbett

As real workloads have inaccurate runtime estimates [18gems that in this particular case the
CTC results should be favored over the Jann results, leadisug unequivocal preference of EASY
over conservative. However, this hinges on the very high memof long serial jobs, which is
unique to the CTC machine and Jann workload (which is basét)l due to its history: it replaced
a large mainframe, and inherited the mainframe’s worklddtls the results may actually not be
representative.

The results of the analysis are interesting also becausehaf ivdidn't find. Specifically,
seemingly important features of the workload turned outdaibimportant. An example is the
details of the runtime distribution in the two models. The@Workload is bounded at about 18
hours (an administrative issue), whereas the Jann worklasd tail that extends beyond 30 hours.
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The CTC workload hardly has any jobs shorter than 30 secqmdbably due to the fact that the
measurement includes the time to start up the required gseseon all the nodes, and to report
their termination. In the Jann model, by contradistinctmver 10% of the jobs are shorter than 30
seconds, and many jobs only run for a fraction of a second.adewrerunning the simulations on
a truncated version of this workload, in which all jobs skothan 30 seconds or longer than 18
hours were removed, did not change the results much.

Another major difference between the workloads is that andhginal CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jelspaead evenly between each two
consecutive powers of two. Previous work has shown thatréeion of jobs that are powers of
two is important for performance, as it is easier to pack pevtg¢wo jobs [8]. However, in our
case this seemed not to make a qualitative difference. Itolvasked by running the simulations
on a modified version of the Jann workload in which the size¥08b of the jobs were rounded up
to the next power of two.

5 Conclusions

An unstated assumption of performance evaluation is tleafrtbasured results are largely due to
the systems begin studied. Another part of the variatiosssiaed to be related in the predictable
way to the load conditions. Our simulations and analysigcete that this is not necessarily the
case: both the metrics and the workloads being used may Havgeeeffect on the results, as well
as interactions between these factors.

The reason for this is that real systems and real workloadsa#iner complex. When evaluating
their performance, all sorts of unexpected interactiorminand all sorts of problems that were
thought to be marginal actually play a larger role than etgubc Great care must be taken to
understand such interactions, and to avoid them when thapamise the validity of the results.

In term of practical advice, our results indicate that it ésidable to use all relevant metrics
and all available workloads for performance comparisond,ret settle for just one combination.
If conflicting results are observed, this is an indicatioatth detailed study is needed in order
to determine which results deserve to be given more weiglhis §an start by comparing the
workloads, and trying to identify the differences betwelkem. These differences can then be
inspected for possible interactions with the various rastibased on a thorough understanding of
the domain. However, suspect interactions must be checkedully, as complex systems tend to
breed unexpected and counter-intuitive effects.
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