
Motivation Research Using Labeling Functions
Idan Amit

idan.amit@mail.huji.ac.il
The Hebrew University

Jerusalem, Israel

Dror G. Feitelson
feit@cs.huji.ac.il

The Hebrew University
Jerusalem, Israel

ABSTRACT
Motivation is an important factor in software development. How-
ever, it is a subjective concept that is hard to quantify and study
empirically. In order to use the wealth of data available about real
software development projects in GitHub, we represent the moti-
vation of developers using labeling functions. These are validated
heuristics that need only be better than a guess, computable on
a dataset. We define four labeling functions for motivation based
on behavioral cues like working in diverse hours of the day. We
validated the functions by agreement with respect to a developers
survey, per person behavior, and temporal changes. We then ap-
ply them to 150 thousand developers working on GitHub projects.
Using the identification of motivated developers, we measure devel-
oper performance gaps. We show that motivated developers have
up to 70% longer activity period, produce up to 300% more commits,
and invest up to 44% more time per commit.

CCS CONCEPTS
• Applied computing → Psychology; • Computing method-
ologies →Machine learning.

KEYWORDS
methodology, weak supervision, software engineering, motivation

ACM Reference Format:
Idan Amit and Dror G. Feitelson. 2024. Motivation Research Using Labeling
Functions. In 28th International Conference on Evaluation and Assessment
in Software Engineering (EASE 2024), June 18–21, 2024, Salerno, Italy. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3661167.3661224

1 INTRODUCTION
Human aspects of software engineering are usually studied using
tools like experiments, case studies, interviews, and surveys. These
can be costly in money and effort to apply, limiting the data to only
a small number of samples. Machine learning on large datasets can
complement the research done using such methods and leverage
the data available in open-source code repositories. However, to
investigate a concept using such datasets one needs to identify it.
This is difficult to do when the concept is abstract and subjective,
such as motivation.

Machine learning copes with this problem by using labeled sam-
ples instead of a precise definition. A model that can predict the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1701-7/24/06.
https://doi.org/10.1145/3661167.3661224

labels of unseen samples demonstrates that it has captured the
concept that they represent. In supervised learning, one builds the
model using labeled train samples. But we do not have enough
labeled samples to build a robust model.

The solution we propose is to use labeling functions as models.
Labeling functions are heuristics for generating labels, correlated
with motivation, and validated to predict it better than a guess [50].
In our case the labeling functions use developers’ behaviors to pre-
dict whether they are motivated. Even a single labeling function is
helpful, but it might be biased. By using multiple labeling functions
that capture diverse perspectives of motivation, we increase our
confidence in results that reproduce for all of them.

Our labeling functions include refactoring (investing in design
improvement reflects motivation) and working diverse hours (a
developer that occasionally works in late hours is assumed to be
motivated). Using them we quantify the behavior of developers
with and without motivation, reproduce prior work regarding its
benefits [13, 33, 38], and predict future developer retention.

Our main contributions are the following:

• We provide a newmethodology, complementing surveys and
experiments, to investigate motivation.

• The method enables large scale, long term, quantitative, and
reproducible investigation of motivation in actual behavior
in a natural setting.

• We provide and validate four labeling functions for motiva-
tion, two new and two from prior work.

• We show that our labeling functions can be used to predict
churn in advance, allowing intervention.

• We show that motivation is correlated with more activity,
more output, and investing more time in each task.

2 THE VISION: LABELING FUNCTIONS AS A
RESEARCH FRAMEWORK

The current toolbox of motivation researchers contains experiments
[13], interviews, surveys [44], and case studies [52]. While these
methods allow control, the cost of each sample is high, and therefore
there is a validity threat due to the small datasets [58]. This small
dataset problem can be solved by mining software repositories,
leveraging the millions of activities performed by many thousands
of developers.

However, to apply supervised learning and investigate a concept
(such as motivation), we need to label the data and distinguish cases
where the concept applies from those where it does not. Usually,
one can obtain labels for the concept using manual human work
(e.g., asking all the developers about their motivation). Manual
labeling is limited in capacity, preventing leveraging the power of
big data.

https://orcid.org/0009-0007-7881-9090
https://orcid.org/0000-0002-2733-7709
https://doi.org/10.1145/3661167.3661224
https://doi.org/10.1145/3661167.3661224


EASE 2024, June 18–21, 2024, Salerno, Italy Idan Amit and Dror G. Feitelson

Labeling functions, providing predictions that need be only
slightly better than a guess [50], provide an alternative to man-
ually labeling the concept. The use of multiple labeling functions
allows us to raise our confidence in the labeling when all or most
of them agree. Given a good enough representation of the concept,
one can investigate it at scale. This can provide supporting evi-
dence for relations of interest (e.g., activity period is longer given
all motivation functions).

Labeling functions are especially beneficial in concepts that are
not well defined. The essence of the difficulty is motivation being
an internal, subjective, hard to measure concept. Literature surveys
— including one spanning 75 years of motivation research — found
that there is no canonical method to measure motivation, and the
suggested methods have limited agreement [44, 54].

Hence, we do not aim to provide a new definition of motivation
or measure our work with respect to an existing one. Instead, we
evaluate our functions with respect to answers about motivation,
specifically self-reporting on motivation and working hours [16].

2.1 Labeling Functions
A labeling function [19] is a validated computable weak classifier,
a heuristic that one can apply computationally to a dataset and get
predictions that are better than a guess.

The concept of weak learnability [37], learning slightly better
than a guess, was suggested as a way to relax the high requirements
of PAC learning [56]. Surprisingly, it was shown that the concepts
are equivalent, and one can boost weak learners to regular PAC
learners [50]. Since then boosting became an important learning
method [29, 50]. Weak classifiers were also found powerful in cop-
ing with the lack of labeled data. They were part of both theoretical
and practical work like co-training [19] and weakly-supervised
learning [9, 11, 23].

Labeling functions can be either learned from a dataset or just
a fixed rule. An example of such a rule is “people that participate
in popular projects tend to be motivated by recognition”. This
rule is not perfectly accurate, yet it encapsulates knowledge which
improves our prediction. Given a single labeling function, one can
use it as a proxy for the concept. For example, the labeling function
of retention in a project can be used to investigate the concept of
motivation. Of course, the same investigation can also be framed
as the investigation of retention as an object of interest on its own.

Behavioral cues [25] and even labeling functions have been used
previously in motivation research, though not formally. For exam-
ple, coming to work in a snowstorm is predictive of high satisfaction
[52]. In open-source the projects’ license openness level is predic-
tive of the developer ideology-based motivation [18].

Our goal in this paper is not to reach the best predictive power,
but to find relations between motivation and performance. For this
it is beneficial to have different and diverse functions capturing
different aspects of motivation. An increase of a behavior of interest,
given an increase in a motivation labeling function, is a hint of
the relation between them. If the result reproduces for several
different motivation labeling functions, it increases the likelihood
that motivation indeed increases this behavior.

3 MOTIVATION LABELING FUNCTIONS AND
THE INTUITION BEHIND THEM

We looked for motivation labeling functions that represent activi-
ties which are not mandatory and require some cost. We looked for
actions for which usually there is no external enforcement. For ex-
ample, writing tests requires extra investment, but in many projects
they are enforced by cultural norms or technological means. There-
fore, tests may not be a good labeling function for motivation. Yet,
the length of the commit message documenting development can
be a good labeling function, since colleagues and managers usually
are not aware of the message length and therefore do not enforce
it.

We also wanted the functions to fit open-source development,
where many of the participants volunteer as a part-time hobby.
Thus, counting working days could be a labeling function for full
time employees, but it might underestimate the motivation of a
volunteer working on weekends.

We deliberately choose simple, one-variable binary functions.
We need a binary function to distinguish motivated from unmoti-
vated developers. Hence, we need to choose a cut-off value for the
continuous labeling functions. For simplicity, we uniformly use the
mean of each metric. In Section 6.1 we investigate the benefit of
using the raw metrics without a cut-off and show that there is no
major difference.

Last, we wanted the functions to be diverse and capture moti-
vation in different ways. By doing so we increase the robustness
of estimation and validity of relations. The labeling functions we
selected are retention in a project, working diverse hours, perform-
ing refactoring, and writing detailed commit messages. The first
two are based on prior work and the last two are new.

3.1 Retention
Out of a project’s developers in a given year, we define the retained
ones as those that continue in the next year. Given the prior work
supporting the relation between motivation and retention [12, 42,
49], we label retained developers to be motivated in the current
year and developers who did not continue as not motivated.

Argyle found modest correlation between job satisfaction and
retention, tending to be stronger among white collar workers. [12]

Note, though, that ending activity in a project due to reasons
not related to motivation poses a threat. Reasons to take a break
are personal in 78.3% of the cases, of which 36.2% are due to a life
event or a financial issue, unrelated to the developer’s desires or the
project [20]. To reduce external influence, we examine only active
projects, hence the reason for leaving the project is not project
termination.

Another problem is that retention is a binary function, so it lacks
the fidelity of a continuous function. For a developer working for
years in a project we can only claim a similar level of motivation in
the first years, and lower motivation in the last year. Continuous
labeling functions do not have this limitation and allow us to better
quantify the motivation level. Another limitation of retention as
a labeling function is that we can know it only in retrospect. In
research we can indeed use past data for investigation, but this
labeling function cannot help estimating the current motivation.



Motivation Research Using Labeling Functions EASE 2024, June 18–21, 2024, Salerno, Italy

Other than the developer, retention is influenced by the project
characteristics. The retention in large projects is 65% of the retention
in medium ones and only 18% of that in single person projects.
Retention in new projects is 25% higher than in old ones. The
retention in projects belonging to companies is 79% that in projects
owned by other organizations. Retention in extraordinarily popular
projects is 21% of that in projects of low popularity. All these effects
are not surprising, as they are associatedwith feelings of community
and ownership, known motivators — and thus retention [14, 38, 45].

Nevertheless, such influences of the project characteristics might
lead to systematic biases of the labeling function. To cope with this,
we first identify these biases. We use control variables to verify that
a behavior is not due to the control. We verify that the function is
predictive despite the biases, and we use several functions to have
diversity and reduce the impact of each specific bias.

3.2 Refactoring
While quitting a project can be a strong indication of lack of mo-
tivation, it is a binary indicator that usually happens only once.
We wanted the other functions to allow continuous monitoring of
motivation and its levels. Therefore, we base them on recurring
activities and measure the level of activity.

Refactoring is improvement of the design of code while keeping
the same functionality [26]. Since refactoring does not add func-
tionality, its value is not always seen from an external point of view
(e.g., of the developers’ managers or customers). Investing in refac-
toring therefore reflects motivation on the part of the developer. As
far as we know, we are the first to use refactoring as an indication
of motivation. However, it is known that improvement activities in
other contexts are hard and require motivation [39].

We identify refactoring activity using a linguistic-analysis-based
classifier applied to the commit messages documenting the change
done [6, 21]. In order not to be dependent on the number of commits,
we use the refactoring probability, namely the ratio of refactoring
commits to total commits [4].

In some of the use cases we need a binary function instead of a
continuous one. We turned all our activity-based labeling functions
into binary ones by comparing each developer’s activity to themean
activity in our survey dataset (See Section 5.1). For refactoring this
cut-off is at 20% refactoring probability, which is the 69𝑡ℎ percentile
of cases in GitHub. This threshold is chosen for its simplicity, and
we show in Sections 5.2 and 6.1 that the influence of the specific
threshold is limited.

Refactoring is also influenced by the project characteristics. The
refactoring probability in old projects is 37% higher than in new
ones. In large projects (with many developers), the refactoring
probability is 13% higher than in a single person project, and 37%
higher than in small ones. In extraordinarily popular projects, the
refactoring rate is 60% higher than in low popularity projects. We
use control variables to avoid false impact attribution.

3.3 Diverse Working Hours
A motivated worker might start working earlier or stay later when
needed. The correlation between motivation and overtime [16] also
supports this metric.

Using the commits’ timestamp, we identified each developer’s
working hours in a whole calendar year. We used the number of
distinct hours of the day in which commits were performed as our
metric. Hence the maximal value is 24 hours, and a single sleepless
working day should be enough to reach it. On the other hand, a
person working 9 to 5 will have the value of 8. We did not use the
sum of working hours since an unmotivated full-time employee
will probably still work more hours than a week-end motivated
hobbyist. The cut-off value for binarization (the mean) is working
at least 18 hours, reached at the 71𝑠𝑡 percentile.

The longer the period a person contributes to a project, the more
likely the person is to contribute in diverse hours, regardless of
motivation. This is supported by the Pearson correlation between
activity days and distinct hours, which is 0.59. The threat due to
this correlation increases since activity days also have 0.19 corre-
lation with retention. However, diverse hours have a higher 0.26
correlation with retention, so at least part of it is not due to activity
days.

Moreover, the activity in a specific hour of the day, per developer,
year, and project, is due to a single commit in 43% of the hours,
and at most two in 59%. Hence, the contribution in these hours is
very sensitive and a single commit might change the number of
distinct hours. Indeed, a single sleepless night is enough to reach
24 distinct hours. However, deciding to devote your sleepless night
to programming might be a strong indicator of motivation.

3.4 Long Commit Messages
Commit messages are used to document the change done when
committing code. The content of the message might contain the
change, the reason to perform it, administrative details, etc. [21]. As
far as we know, we are the first to use message length as an indicator
for motivation. Yet, documentation is considered to be a tedious
task and requires motivation [51]. We use the average length of the
messages as indication to the motivation and investment in writing
them. The cut-off value for high average message length is above
84 characters, reached at the 59𝑡ℎ percentile.

Note that messages can be very long. The 99𝑡ℎ percentile is 1,204
characters and there are also messages of millions of characters.
These are probably the result of mechanisms that automatically gen-
erate very long messages. In “Squash commits” the work in several
commits is aggregated into one and their messages are combined.
Some tools automatically add the “git diff”, the summary of the
modifications to the code. 9% of the messages above 10k characters
mention squash, compared to only 0.1% in shorter messages; diff is
mentioned in 37% compared to 1.2%. In such cases the long message
is not an indication of motivation and investing effort in writing it.
One could take it further and claim this is an indication of lack of
motivation to remove a “git log polluting” too long message.

Also, the average message length in single-developer projects is
47 characters, compared to the almost 3 times more (140 characters)
in others. This is probably since single developers write messages
for ‘future me’ while in larger projects the community needs and
enforces this documentation. In twins experiment, comparing the
same developer in a single developer project and larger ones, the
average length is shorter in the single developer project in 59% of
the cases.



EASE 2024, June 18–21, 2024, Salerno, Italy Idan Amit and Dror G. Feitelson

4 METHODOLOGY
4.1 Analysis
The goal of our methodology is to validate that we represent mo-
tivation well and capture the relations between motivation and
developer performance. We start by using 4 labeling functions, to
reduce the influence of a specific function’s artifacts. As ground
truth we use developers self-reporting on two motivation questions.
We verify that the functions weakly predict them. Once being weak
classifiers is established, we validate the functions on a large scale,
with respect to each other, using the following methods:

• We measure monotonicity with respect to retention.
• We validate agreement at the developer level using twin
experiments, showing that a higher value in one function
tends to agree with higher values in the others.

• We validate temporal agreement, that an improvement in
one function is predictive of improvements in the others, as
expected when measuring improvement in the same concept.

• We use control variables to verify that the relations are not
due to co-founding, both with a single control and with all
in a supervised model.

Once we validate the representation of motivation, we investi-
gate its relation to developer performance. We measure activity in
project, output, and process motivation [55], each with two met-
rics. We evaluate the relation between each of the metrics and the
functions. Other than predictive analysis, we used co-change and
twin analysis and the control variables. The redundancy in the
representation, and investigation in the population level, developer
level, and temporal level, reduce the threat of misidentification.

We use the following control variables. Age groups, divided into
projects before GitHub creation (before 2008), the oldest 25% (before
2014), the youngest 25% (since 2017), and the middle 50% [7]. Devel-
opers were grouped into ‘Single’, ‘Small’ (at most 10), ‘Medium’ (at
most 100) and ‘Large’. Popularity groups were divided into ‘Low’
(lowest 25%, at most 8 stars), ‘Medium’ (next 50%, at most 422 stars),
‘High’ (next 20%, at most 5027) and ‘Extraordinary’ for the top 5%.
Projects belonging to a company were identified by manually label-
ing the 100 users with most projects. For programming languages,
we control for: Python, JavaScript, Java, C++, PHP, and ‘other’.

4.2 Motivation Survey Dataset
As a first validation of the labeling functions, we wanted to compare
them to answers regarding motivation. We used a survey by Amit
and Feitelson asking various questions regarding motivation [8]. To
match the answers with the actual behavior the survey also asked
for the GitHub profile and projects.

The survey included 66 questions about motivation and software
development, covering 11 motivators as learning, recognition, etc.
Our goal here is to establish first the ability to measure motivation
and its influence in general. Therefore, we use only a few relevant
questions here and leave labeling functions for motivators (e.g.,
people in popular projects report high recognition motivation) to
future work.

The questions used in the labeling functions validation are:
• I regularly have a high level of motivation to contribute to
the repository (based on [46])

• How many hours a week do you work on the repository
(average)?

• I’m being paid for my work in this repository
The survey was conducted from December 2019 to March 2021.

It obtained 1,724 responses, 521 of them finished the survey. The
participants provided the names of 484 projects and 303 personal
GitHub profiles.

After a year, a follow-up survey was sent to the participants that
provided their emails in the original survey. In the follow up survey,
124 out of the 341 participants answered (36.3%).

4.3 GitHub Dataset
GitHub is a platform for source control and code development
projects, used by millions of users. Our dataset is based on the Big-
Query GitHub schema, which includes the commit history of select
projects. We start with all projects with 50 or more commits during
2021. We excluded forks, redundant projects, and non-software
projects [7], ending with 18,958 projects.

Many of the developers contributing to a project make only
occasional, sporadic contributions, sometimes a single commit. For
example, they may fix a bug found while working with the project
or add a small functionality for self-use. These developers do not
represent well the typical motivations of involved developers. Our
focus is on the developers who make significant contributions to
the project and are in some way invested in it. We choose to use
the threshold of 12 commits per year, an average of one commit per
month, as a lower bar for involvement [7]. While this omits 62% of
the developers, they are responsible for only 6% of the commits.

To reduce the threat of bots [31], we also filtered out developers
with 1,000+ commits per year, 0.04% of the developers. Note that
since we started with projects active during 2021 and examined
their history, none of the developers stopped working on a project
because the project was terminated.

5 VALIDATION OF LABELING FUNCTIONS
5.1 Labeling Functions Validation by the Survey
In this section we validate the labeling functions by comparison
to answers in the survey regarding motivation. We asked survey
respondents for their GitHub profile, which allows us to match
their actual behavior with their answers.

We perform the validation in a supervised learningmanner, using
a classifier to predict a concept. The ‘Concept’ column in Table 1
is the question for which we try to predict a high answer. We
used both the motivation question and the working hours question.
‘Classifier’ is the waywe predict the concept — by using a high value
in either a labeling function, or in the other motivation question
(That is, we used the motivation question to predict the working
hour question and vice versa). Also, we compared high answers to
motivation questions in the original and the follow-up surveys of
the same developer contributing to the same project.

It is generally accepted that motivated workers work longer
hours [16]. This result may be tainted by mixing data about paid de-
velopers with data about volunteers, both common in open-source
projects. We checked this by separating the groups using the survey
question about payment. For unpaid workers the reported average
working hours were 10.8 (high motivation) and 4.5 (low), while for



Motivation Research Using Labeling Functions EASE 2024, June 18–21, 2024, Salerno, Italy

Table 1: Validation of labeling functions using survey answers

Concept Classifier Cases Accuracy Accuracy Lift Precision Precision Lift
Retention 28 0.57 0.19 0.85 0.13
High Refactoring 28 0.54 0.15 0.83 0.11

Motivation Answer High Hours 28 0.68 0.27 0.88 0.17
Long Messages 28 0.43 0.04 0.78 0.04
Working Hours Answer 245 0.65 0.30 0.70 0.35

Motivation Answer Follow-Up Motivation Answer 46 0.72 0.47 0.63 0.45
Retention 21 0.52 0.05 0.56 0.06
High Refactoring 21 0.57 0.15 0.60 0.15

Working Hours Answer High Hours 21 0.52 0.05 0.55 0.04
Long Messages 21 0.52 0.07 0.60 0.15
Motivation Answer 245 0.65 0.30 0.56 0.35

Working Hours Answer Follow-Up Working Hours Answer 47 0.81 0.53 0.65 1.04

paid workers they were 27.9 (high) and 25.8 (low). Therefore in
Table 1 we used only the behavior of unpaid developers to compare
to the working hours question. In the rest of the analysis we do not
do this filtering and use all developers.

‘Cases’ is the number of developers whose data was used in each
row. When comparing questions, we have nearly 250 cases, and
when comparing to the follow-up we have nearly 50 cases. How-
ever, when comparing answers to actual behavior the numbers are
lower, since this requires a combination that occurs for only a small
fraction of the survey respondents: they need to both provide their
profile, and we need to have their project in our dataset. Note that
we reached these numbers from a relatively big survey completed
by 521 people with partial replies from 1,724 (a big drop due to
not contributing to GitHub). Hence, it will be hard to enlarge this
dataset significantly. Instead, to increase validity, we analyze in the
next sections the full GitHub dataset, having years of activity in
18,958 projects by 151,775 developers.

The analysis is in the supervised framework, and we present ac-
curacy, precision, and their lifts. The lift, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑟𝑜𝑏

𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑟𝑜𝑏

(and likewise for precision with respect to positive rate), measures
how much larger the result is relative to the base probability. Note
that all labeling functions have positive accuracy lift and precision
lift with respect to both questions, thereby validating them.

As expected, comparing with questions leads to higher perfor-
mance than comparing with labeling functions; In particular, com-
paring with the same question in the follow-up survey leads to
the highest scores. This provides a benchmark with which to com-
pare the results for the labeling functions. While the performance
achieved by the labeling functions is lower, it is not too low, and it
is sufficient for the requirement from weak classifiers that can be
applied at scale.

5.2 Labeling Functions Validation by
Monotonicity

Correlation between two binary variables (e.g. high distinct hours
and retention) is indicative of agreement, since the probability of
accidental agreement decreases with the number of samples and
level of agreement. We use retention as a proxy for motivation
and compare the continuous labeling function to it. Retention has

Pearson correlation of 0.26 with hours, 0.006 with message length,
and 0.005 with refactoring probability. The first value is medium-
low and the last two are almost zero.

Monotonicity [35, 53] adds to correlation by requiring a step
by step increase and not only a general increase in both variables
together. This is since even when there is some correlation between
the variables, the probability of having an increase in every step by
mere chance is low.

Figure 1: Retention in next year given distinct hours worked
in the current one.

Figure 1 presents a “text-book graph” of the monotonicity of
working hours and retention probability. The probability of reten-
tion also increases with average message length, but only in the
lower part and then it is rather flat.

With refactoring there is no positive monotonicity. The differ-
ences in retention between deciles are small, sometimes decreasing,
and inconsistent.

Hence, we see monotonicity of retention with respect to diverse
working hours, partially with message length, but not with refac-
toring.

5.3 Labeling Functions Validation by Twins
Experiments

In Figure 1 we show correlation between working hours and reten-
tion, in the population. Twin experiments allow us to investigate
the correlation at the individual person level.



EASE 2024, June 18–21, 2024, Salerno, Italy Idan Amit and Dror G. Feitelson

When a person is motivated in a project, it might be due to the
person, the project, or the interaction between them. The ability to
factor out possible influencing variables, by equating them, helps
focusing on the other variables. A popular method for that in psy-
chology is “twin experiments” [57]. Identical twins have the same
genetic background, so a difference in their behavior is attributed
to another variable (e.g., being raised differently). This idea was
used in software to profile malware of the same developer [11], and
to investigate software quality [5, 7].

We analyze the results of two types of twin experiments, where
the twins differ in their retention. In the first one we observe the
same developer in the same year in two projects. We choose pairs
of projects such that in one the developer continued and in the
other the developer left. This setting factors out the developer, yet
the projects are different.

In the second type we observe the same developer in the same
project in two consecutive years: the developer’s last year in the
project, and the one before it. Here we factor out the developer and
the project, but not completely, because people and projects change
over time.

Table 2: Validation of labeling functions by same developer
twins experiments, using function agreement with retention
being more than 0.5

Refactor Distinct Msg.
Twins Type Devs. Pairs Prob. Hours Length
Same year, differ-
ent proj.

7,856 1,314,536 0.95 0.59 0.56

Same proj., con-
secutive years

42,087 51,549 0.58 0.68 0.49

Table 2 presents the twin experiments results. The columns
show the probability that the labeling function is at least as good
in the continuing case (indicating retention and implying higher
motivation). Taking no influence as the null hypothesis, we expect
a probability of 50%. Note that the probability is always higher,
other than for message length in consecutive years, which is close
to 50% from below. The very high probability of 95% for refactoring
in the same year is due to developers not doing refactoring in both
cases. When we ignore cases where both are zero the probability is
58%. The probability of equality was small in all other cases.

We also analyzed the twin experiments subject to the control
variables. In the ‘Same year’ case controlling for company, number
of developers, popularity, and programming language lead to the
same behavior as without controlling. In the ‘Consecutive years’
case we got the same behavior when controlling for age, number
of developers, and popularity. We sometimes got better message
length when controlling a company and a programming language.
Overall, this shows that the results are rather robust to the controls.

We also compared advantages in one continuous labeling func-
tion given advantage in another. In the first analysis we used twins
which were the same developer, in the same year, in different
projects, regardless of retention. For example, we check the prob-
ability of higher distinct hours in project A relative to project B,
given a higher refactoring probability in project A relative to project

B. In all cases there was a positive lift. Using controls, there was a
positive lift in 200 out of 210 cases. In a similar way, we analyzed the
same developer, in the same project, in consecutive years regardless
of retention. All cases had a positive precision lift too. 118 out of
126 controls had positive lift.

5.4 Labeling Functions Validation by
Co-Change

If a person becomes more motivated, we expect an improvement in
all our labeling functions. However, we cannot measure the person’s
motivation directly but only using our labeling functions. If all the
labeling functions reflect the person’s motivation, an increase in
one function is expected to correlate with an increase in the other
functions. In co-change analysis [5, 7], we check this expected
correlation between the labeling functions, omitting the person’s
motivation which is hidden from us.

We compare the change of two metrics on the same developer
in the same project in two consecutive years. We use an improve-
ment in one metric as a classifier predicting an improvement in the
other concept and measure the precision and precision lift. Metric
improvement is defined as an increase of our continuous labeling
functions.

Table 3 presents the results of the co-change analysis. ‘Classifier’
is the metric that improved. ‘Concept’ is the metric that we checked
its probability of improvement given an improvement in the clas-
sifier. In each cell we present the precision and in parenthesis the
precision lift. Note that precision lift is a symmetric function and
stays the same when replacing the classifier with the concept. The
diagonal is empty since it represents the comparison of a metric
with itself.

Table 3: Validation of labeling functions using co-change
precision (precision lift in parenthesis)

Classifier
Predicted concept Messages Refactoring Hours
Messages 0.20 (0.16) 0.46 (0.04)
Refactoring 0.65 (0.16) 0.45 (0.02)
Hours 0.58 (0.04) 0.18 (0.02)

In all cases the precision lift is positive, indicating an increased
probability of improvement in one metric, given an improvement
in the other. Using controls, out of the 186 control cases, only in 18
cases there was a negative lift. Hence, the co-change analysis also
shows high robustness with respect to controls.

5.5 Labeling Functions Reliability
We would like our functions to be reliable, returning similar results
when measuring the same entity again. However, we cannot mea-
sure the same labeling function on the same developer twice at the
same time.

As a second best, we compare the value of the labeling functions
for the same developer, in the same project, in consecutive years
[7]. Consecutive years are not the same time yet not too far from it.
Given the value in one year and the consecutive year, we compute
two metrics. Self-Pearson is the Pearson correlation of the pairs



Motivation Research Using Labeling Functions EASE 2024, June 18–21, 2024, Salerno, Italy

of metrics for all developers in all projects. Hence, it measures the
relative change in the developer ranking as time goes by. Relative
difference is the average of the difference between the metric values
in the consecutive years, divided by the value in the first year. This
metric ignores the rest of the population and measures the average
difference between two measurements. Hours had self Pearson of
0.59, and average relative difference of 5%. Refactoring had self
Pearson of 0.63, and average relative difference of -13%. Message
length had self Pearson of 0.11, rather low, and average relative
difference of 15%. Note that averagemessage length is very sensitive
and even a single long message can change it dramatically.

6 RESULTS
Given the labeling functions for motivation, we now turn to seeing
how they can be used with the GitHub dataset.

6.1 Predicting Retention
The first use is to predict the retention using the other labeling
functions. Early prediction of abandonment is important because it
allows intervention and possibly avoiding churn. Table 4 presents
retention probabilities given the labeling functions. The ‘Classifier’
column is a labeling function. The ‘Retention’ column is the preci-
sion of predicting the retention concept, given that the classifier
is high. In the ‘Two Years Retention’, we extend the co-change
analysis and the classifier is an improvement in the metric from
one year of a developer in a project to the next year; the column
shows the retention rate in the next year.

Table 4: Labeling functions’ predictions of retention

Retention Two Years Two Years
Classifier Retention Lift Retention Lift
None 71 -0.058 75 -0.073
High Refactoring 75 0.003 81 -0.001
Long Messages 77 0.025 81 0.009
High Hours 90 0.196 86 0.061
All 90 0.204 86 0.063
Positive Rate 75 0.0 81 0.0

The baseline for each analysis is the positive rate, the probability
of retention. In both cases, when none of the labeling functions
is high, the retention rate is lower, and when all are high it is the
highest. The lift of high hours is almost as high as for all labeling
functions together. Long messages have 2.5% lift in retention and
the lift in the other cases is close to zero.

To learn if the predictive power is due to the labeling functions
or the controls, we compared the performance of models built on
the functions, the controls, and both. Aiming for precision, logistic
regression models reached precision of 91% and recall of 21% on
both the labeling functions alone and when adding the controls.
Using the controls alone it reached precision of 90% yet with recall
of only 7%, hence the labeling functions have better predictive
power, above the contribution from the controls.

We also investigated if the prediction can be improved by using
the raw metrics and not the labeling functions (e.g., knowing of
24 distinct hours and not just a Boolean value). Logistic regression

had a precision of 89% (2 percentage points less) yet recall of 37%
(16 percentage points higher), higher Jaccard, and higher mutual
information. This indicates that their use might be beneficial in
some settings yet without a dramatic change.

Note that logistic regression is a low-capacity model and our
dataset is large, reducing the threat of over-fitting. We also checked
high-capacity models such as random forests, boosting, and neu-
ral networks to build models of higher representation ability and
performance. They had lower performance, indicating that repre-
sentation power is not the limiting constraint.

We used the ‘Two Years Retention’ to try to predict retention in
the second year. Our co-change analysis (Section 5.4) used a single
metric. We now apply the full power of supervised learning to
predict changes. We allow more inputs and provide the functions in
one year, the year afterwards, the difference (to ease representation),
and controls. On this dataset we can apply any supervised learning
classifier, learning complex and powerful representations. We were
able to reach precision of 92% with recall of 33%, higher than the
precision of 86% when all metrics improve. Hence, the application
of the more powerful method is beneficial, yet since the baseline
result is high it is not dramatic.

6.2 Developer Performance by Labeling
Functions

We next use the labeling functions to estimate the relation between
motivation and various metrics of developer performance. Table 5
has a ‘Metric’ column and a ‘Description’ column, explaining the
metrics. There is an additional column per labeling function. The
cell intersecting a labeling function column and a metric row repre-
sents 𝐴𝑣𝑔 (𝑚𝑒𝑡𝑟𝑖𝑐 | 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛=𝐻𝑖𝑔ℎ)

𝐴𝑣𝑔 (𝑚𝑒𝑡𝑟𝑖𝑐 | 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛=𝐿𝑜𝑤 ) , where 1.0 means similar averages.
Note that the labeling functions are weak classifiers, labeling some
motivated people as unmotivated and vice versa. Therefore the
results are not accurate yet indicate the nature of the relations with
motivation.

The first four rows match the labeling functions with each other.
When a column labeling function is high, the average of the other
labeling functions raw metrics is expected to be high, if they all
capture motivation. This indeed happens in all cases, except the
disagreement between hours and message length, providing an
additional validation of the functions.

We are interested in three performance aspects: activity, output,
and process motivation. We measure each aspect with two metrics
to reduce the influence of a single metric’s artifacts. Activity is
measured by activity days, and, to better fit work by both full-time
employees and volunteers, activity period. Output is measured by
commits and files as units of work. Commits and other output units
in software engineering are not of a single size (e.g., a commit
might represent different amounts of work). However, commits are
a common way to measure output [1]. We did not used issues or
pull requests, which are not available in our dataset, yet measuring
by either commits, issues, or pull requests tend to agree [7].

Developers might be driven by output motivation (wanting to
produce more) or process motivation (produce better) [55]. Correc-
tive commit probability is influenced by both the existence of bugs
and their detection effectiveness. Process motivation might lead
to investing more in detection effectiveness (e.g., by writing tests)



EASE 2024, June 18–21, 2024, Salerno, Italy Idan Amit and Dror G. Feitelson

Table 5: Developer performance by labeling functions

Metric Description R
et
en

.
H
ou

rs
M
sg
s.

R
ef
ac
t.

Retention Probability of continuing in
the next year

1.29 1.05 1.01

Commit
Hours

Number of distinct hours of
the day during a year

1.25 1.85 0.99 1.04

Message
Length

Average number of charac-
ters in a commit message

1.13 0.91 5.75 2.41

Refactor
Prob.

Attempt to improve the soft-
ware [6, 7]

1.04 1.12 2.02 6.70

Activity
Period

Days between the first and
last commits in a year

1.70 1.41 1.11 1.01

Activity
Days

Number of distinct days in
which a commit was made

2.09 4.06 0.79 1.03

Commits The number of commits,
modifications of the code

2.08 4.03 0.80 1.03

Files
Edited

Number of Files modified
(or created)

1.62 2.99 0.84 0.99

Commit
Duration

Average gross duration of a
commit [3, 5, 7]

1.07 1.26 1.44 1.19

Corrective
Commit
Prob.

The ratio of bug fixing com-
mits, Measures bug fixing
effort [7]

1.08 1.03 1.98 1.57

which can lead to finding more bugs. Core developers abandon-
ing the project (possibly lacking motivation) reduce effectiveness
[7]. Similarly, commit duration is influenced by productivity and
process, e.g., writing tests increase commit duration by 18% [3].

We expect that motivation will lead to higher involvement, as
reflected by a longer activity period, more distinct activity days,
more commits, and more files edited [55]. Our results indicate that
in general this indeed happens. Activity period is longer for all
functions. The increase in activity days is higher than the one of
activity period in all cases other than messages where it is even
lower than one. The ratios for commits are almost identical to those
of activity days. However, since commit duration is longer, more
time was invested to perform these commits. The ratios of files
edited are lower than for commits but follow a similar pattern.

When we look at the table with respect to the labeling functions,
metrics are always higher for retention and hours. For refactoring
it holds other than the 0.99 for files edited. Long messages have
a significant drop to 0.79 in activity days. Part of this is due to
confounding variables like the tendency to short messages and long
activity periods in projects of few developers. When controlling by
developer group, the activity period is higher given long messages.
Commits and files edited also have a drop yet per active day they
improve.

The results can also be used to address cases where motivation
can be hypothesized to have opposite effects [55]. For example, it
may be claimed that motivation compensates for the tedious effort
of fixing bugs, and therefore motivated individuals will perform

more bug fixing. Alternatively, motivated individuals might ap-
ply more attention to their work, increasing quality, and therefore
will have less bugs and require less bug fixes. The results indicate
that the first hypothesis dominates: using all four labeling func-
tions, higher motivation seems to go with higher corrective commit
probability.

The same goes for commit duration, which is longer for all func-
tions. One could expect a decrease due to output motivation and
higher productivity. An increase can be explained by process moti-
vation, higher attention and standards. Hence, our results better fit
process motivation, aiming to produce better, than they fit output
motivation, aiming to produce more [55].

As an additional validation, we compare the metrics in same-year
twins experiments, comparing a project in which the developer
continued to one abandoned. Commits are higher in the continued
project in 65% of the twins pairs, files edited in 56%, activity period
in 74%, activity days in 65%, and commit duration is higher in 55%
(at random 50% is expected). Opposed to the table, CCP is lower in
86%. Results hold when controlled by any of our control variables.

Co-change analysis showed the improvements in the labeling
functions lead to higher metric values for all the metrics. These
results are the same as in the table.

7 RELATEDWORK
Demarco and Lister [24], and also Frangos [27], claim that the
important software problems are human and not technological. So
there has been intensive investigation of motivation in software
engineering [17, 28, 40].

Our work, and specifically the labeling functions, were designed
to align with psychological motivation theories. Commits, refac-
toring, and hours are aligned with McClelland’s [45] affiliation
and achievement, and in certain contexts authority. Vroom’s Ex-
pectancy Theory [59] predicts higher outcome from refactoring
and documentation for motivated developers planning to stay. All
our functions are aligned with ownership (e.g., Motivation-Hygiene
Theory [34], others [14, 38]) and more motivators.

Open-source development is the collaborative development of
software that is free to use and further modify [48]. It is common
to develop open source software as a volunteer, which means that
salary is not a motivator [41]. Therefore, the motivation of open
source developers was investigated as a specific domain, in an effort
to uncover other motivators [22, 60].

Ownership and autonomy are important motivators [14, 38]. We
saw in Section 3.1 that retention is significantly higher in smaller
projects, in which ownership and autonomy are high. Recogni-
tion [30] is another motivator. Recognition is stronger in popular
projects that have lower retention. This is aligned with external
motivators like recognition being weaker than internal ones like
ownership [2].

Touré-Tillery and Fishbach distinguish between output moti-
vation (producing more) and process motivation (producing well)
[55]. We saw that commit duration increases, by all labeling func-
tions, indicating process motivation — giving more attention to
each commit instead of trying to finish them faster. They also claim
that motivation is demonstrated in choice, speed, and performance.



Motivation Research Using Labeling Functions EASE 2024, June 18–21, 2024, Salerno, Italy

8 THREATS TO VALIDITY AND LIMITATIONS
We discussed the limitations and biases of each labeling function
when presenting it.

We base our work on machine learning frameworks [10, 47, 50].
However, the application of these frameworks to motivation and
software engineering is new and therefore there are no benchmarks
or other labeling functions to which we can compare. Instead, we
validated the functions in many ways to reduce the risk of error.

Studying motivation poses a challenge since motivation is an
internal abstract concept.

For example, survey answers might have reliability problems
due to ego defenses [15], subjectivity, different personal scales, etc.
Comparison of self-rating to those of a related person (e.g., super-
visor, co-worker, or a spouse) showed only moderate correlation
[12, 36, 43]. Therefore, we also independently evaluated the actual
behavior working at GitHub on 151,775 developers.

The number of survey answers that were matched with the
behavior in GitHub is low. Note that this is despite the survey
itself being completed by 521 developers. Hence, there was a low
probability of being able to match a person. This led to threats of
both response bias [32] and incorrect statistical estimation problems
[58]. Since the survey is already large it seems it will be hard to do
a larger survey. Cooperation with companies, which have behavior
information and might agree to conduct surveys is a possible option.

Motivation might be due to many motivators, like enjoyment,
self-use, community, etc. We did not consider all these motiva-
tors and possible relations between them but only the outcome as
motivation. For example, it is possible that people motivated by
self-use will contribute only a single modification that helps them
and therefore retention is irrelevant to their motivation. The survey
we used included questions on 11 motivators and in future work we
can apply the same methodology and validate labeling functions
for specific motivators, getting a finer-grained picture of people’s
motivations.

A hard to notice threat is due to the motivation level. All the de-
velopers that we analyze contributed at GitHub hence are somewhat
motivated in the first place. Hence, instead of comparing motivated
and unmotivated people, we might have compared motivated and
highly motivated people. This might turn out to be a benefit since
members of organizations, and communities also have minimal
motivation, as in our scenario.

9 CONCLUSIONS
GitHub contains years of data on thousands of developers in their
natural every-day software development. We suggest four labeling
functions based on behavioral cues [25] which enable using this
data to study motivation and its effects in software development.

We first validated that the labeling functions are weak classifiers
by predicting developers’ answers to two motivation questions
from a survey. We then checked agreement between the functions,
monotonicity, agreement per person using twin experiments, and
temporal agreement using co-change. We used control variables,
alone and combined in a supervised learning model, to verify that
the labeling functions add predictive power beyond these variables.

Our results reproduce prior work on the positive impact of moti-
vation: the activity period is up to 70% longer, up to 44% higher time

investment in commit, and up to 300% more commits. We also built
models for developer retention. A high precision retention model
can be used to identify dedicated developers on which a project
can rely. A high recall model can be used to identify developers
lacking motivation (those not identified by the model), allowing
intervention that might increase it.

Our application of the methodology to motivation is just one
example. Additional labeling functions can be used to obtain even
better characterizations. Specifically, our survey included questions
about 11 motivators, for which labeling functions can be built al-
lowing a drill down into motivation details.

More importantly, the same methodology can be used for study-
ing other concepts, especially when one cannot obtain a precise
labeling of the concept due to its ambiguity, the cost of label-
ing, or noise. Using our methodology facilitates quantified, repro-
ducible, long-term investigation, based on large-scale data from
real projects.

EXPERIMENTAL MATERIALS
The replication package (DOI 10.5281/zenodo.10519880) can be
found at https://zenodo.org/records/10519880. Most up-to-date ver-
sion is available at https://github.com/evidencebp/motivation-labeling-
functions.

ACKNOWLEDGMENTS
We thank David Amit, Daniel Shir, Assa Bentzur, Yaniv Mama,
Yinnon Meshi, Aviad Baron, and Gil Shabtai for the discussions and
their insights.

REFERENCES
[1] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. 2008. What’s a

Typical Commit? A Characterization of Open Source Software Repositories. In
2008 16th IEEE International Conference on Program Comprehension. 182–191.
https://doi.org/10.1109/ICPC.2008.24

[2] Teresa M. Amabile, Karl G. Hill, Beth A. Hennessey, and Elizabeth M. Tighe. 1994.
The work preference inventory: Assessing intrinsic and extrinsic motivational
orientations. Journal of Personality and Social Psychology 66, 5 (1994), 950–967.
https://doi.org/10.1037/0022-3514.66.5.950

[3] Idan Amit. 2020. Software development task effort estimation. U.S. patent applica-
tion #US20220122025A1. https://patents.google.com/patent/US20220122025A1/

[4] Idan Amit. 2021. End to End Software Engineering Research. arXiv preprint
arXiv:2112.11858 (2021). arXiv:2112.11858 [cs.SE]

[5] Idan Amit, Nili Ben Ezra, and Dror G. Feitelson. 2021. Follow Your Nose –
Which Code Smells are Worth Chasing? arXiv preprint arXiv:2103.01861 (2021).
arXiv:2103.01861 [cs.SE]

[6] Idan Amit and Dror G. Feitelson. 2019. Which Refactoring Reduces Bug Rate?.
In Proceedings of the Fifteenth International Conference on Predictive Models and
Data Analytics in Software Engineering (Recife, Brazil) (PROMISE’19). Association
for Computing Machinery, New York, NY, USA, 12–15. https://doi.org/10.1145/
3345629.3345631

[7] Idan Amit and Dror G. Feitelson. 2021. Corrective commit probability: a measure
of the effort invested in bug fixing. Software Quality Journal 29, 4 (Aug 2021),
817–861. https://doi.org/10.1007/s11219-021-09564-z

[8] Idan Amit and Dror G. Feitelson. 2024. A Large Scale Survey of Motivation in
SoftwareDevelopment andAnalysis of its Validity. arXiv preprint arXiv:2404.08303
(2024). arXiv:2404.08303 [cs.SE]

[9] IdanAmit, Eyal Firstenberg, JonathanAllon, and YaronNeuman. 2020. Identifying
changes in use of user credentials. US Patent 10,686,829.

[10] Idan Amit, Eyal Firstenberg, and Yinnon Meshi. 2017. Framework for semi-
supervised learning when no labeled data is given. U.S. patent #US11468358B2.
https://patents.google.com/patent/US11468358B2

[11] Idan Amit, John Matherly, William Hewlett, Zhi Xu, Yinnon Meshi, and Yigal
Weinberger. 2019. Machine Learning in Cyber-Security - Problems, Challenges
and Data Sets. arXiv preprint arXiv:1812.07858 (2019). arXiv:1812.07858 [cs.LG]

https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1037/0022-3514.66.5.950
https://patents.google.com/patent/US20220122025A1/
https://arxiv.org/abs/2112.11858
https://arxiv.org/abs/2103.01861
https://doi.org/10.1145/3345629.3345631
https://doi.org/10.1145/3345629.3345631
https://doi.org/10.1007/s11219-021-09564-z
https://arxiv.org/abs/2404.08303
https://patents.google.com/patent/US11468358B2
https://arxiv.org/abs/1812.07858


EASE 2024, June 18–21, 2024, Salerno, Italy Idan Amit and Dror G. Feitelson

[12] M. Argyle. 1989. Do happy workers work harder? The effect of job satisfaction
on job performance. In How harmful is happiness? Consequences of enjoying life
or not, Ruut Veenhoven (Ed.). Universitaire Pers, Rotterdam, The Netherlands.

[13] Dan Ariely, Emir Kamenica, and Dražen Prelec. 2008. Man’s search for meaning:
The case of Legos. Journal of Economic Behavior & Organization 67, 3-4 (2008),
671–677. https://doi.org/10.1016/j.jebo.2008.01.004

[14] Nathan Baddoo and Tracy Hall. 2002. Motivators of Software Process Improve-
ment: an analysis of practitioners’ views. Journal of Systems and Software 62, 2
(2002), 85 – 96. https://doi.org/10.1016/S0164-1212(01)00125-X

[15] Nigel Bassett-Jones and Geoffrey C. Lloyd. 2005. Does Herzberg’s motivation
theory have staying power? Journal of Management Development 24 (12 2005),
929–943. https://doi.org/10.1108/02621710510627064

[16] Debby GJ Beckers, Dimitri van der Linden, Peter GW Smulders, Michiel AJ
Kompier, Marc JPM van Veldhoven, and Nico W van Yperen. 2004. Working
overtime hours: relations with fatigue, work motivation, and the quality of work.
Journal of Occupational and Environmental Medicine (2004), 1282–1289.

[17] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp.
2008. Motivation in Software Engineering: A systematic literature review. Infor-
mation & Software Technology 50, 9-10 (2008), 860–878. https://doi.org/10.1016/j.
infsof.2007.09.004

[18] Sharon Belenzon and Mark A Schankerman. 2008. Motivation and sorting in
open source software innovation. Available at SSRN 1311136 (2008).

[19] Avrim Blum and TomMitchell. 1998. Combining Labeled and Unlabeled Data with
Co-training. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory (Madison, Wisconsin, USA) (COLT’ 98). ACM, New York, NY,
USA, 92–100. https://doi.org/10.1145/279943.279962

[20] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile, and
Igor Steinmacher. 2021. Will You Come Back to Contribute? Investigating the
Inactivity of OSS Core Developers in GitHub. arXiv:2103.04656 [cs.SE]

[21] Leshem Choshen and Idan Amit. 2021. ComSum: Commit Messages Sum-
marization and Meaning Preservation. arXiv preprint arXiv:2108.10763 (2021).
arXiv:2108.10763 [cs.CL]

[22] Andrea Bonaccorsi Cristina and Cristina Rossi. 2004. Altruistic individuals, selfish
firms? The structure of motivation in Open Source software. First Monday 9
(2004), 9. https://doi.org/10.5210/fm.v9i1.1113

[23] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and Gary R
Bradski. 2006. Self-supervised monocular road detection in desert terrain.. In
Robotics: science and systems, Vol. 38. Philadelphia.

[24] Tom DeMarco and Tim Lister. 2013. Peopleware: productive projects and teams.
Addison-Wesley.

[25] Giel Dik and Henk Aarts. 2007. Behavioral cues to others’ motivation and goal
pursuits: The perception of effort facilitates goal inference and contagion. Journal
of Experimental Social Psychology 43, 5 (2007), 727–737. https://doi.org/10.1016/
j.jesp.2006.09.002

[26] M. Fowler. 2018. Refactoring: Improving the Design of Existing Code. Pearson
Education. https://books.google.de/books?id=2H1_DwAAQBAJ

[27] S. A. Frangos. 1997. Motivated Humans for Reliable Software Products. In
Reliability, Quality and Safety of Software-Intensive Systems, Dimitris Gritzalis
(Ed.). Springer US, Boston, MA, 83–91. https://doi.org/10.1007/978-0-387-35097-
4_7

[28] C. França, F. Q. B. da Silva, and H. Sharp. 2020. Motivation and Satisfaction of
Software Engineers. IEEE Transactions on Software Engineering 46, 2 (Feb 2020),
118–140. https://doi.org/10.1109/TSE.2018.2842201

[29] Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 1
(1997), 119–139. https://doi.org/10.1006/jcss.1997.1504

[30] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gregorio Rob-
les, Christoph Treude, Igor Steinmacher, and Anita Sarma. 2021. The Shift-
ing Sands of Motivation: Revisiting What Drives Contributors in Open Source.
arXiv:2101.10291 [cs.SE]

[31] Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens. 2021. A
ground-truth dataset and classification model for detecting bots in GitHub issue
and PR comments. Journal of Systems and Software 175 (May 2021), 110911.
https://doi.org/10.1016/j.jss.2021.110911

[32] Walter R Gove and Michael R Geerken. 1977. Response bias in surveys of mental
health: An empirical investigation. American journal of Sociology 82, 6 (1977),
1289–1317.

[33] Adam Grant. 2008. The Significance of Task Significance: Job Performance
Effects, Relational Mechanisms, and Boundary Conditions. The Journal of Applied
Psychology 93 (Feb 2008), 108–24. https://doi.org/10.1037/0021-9010.93.1.108

[34] F. Herzberg, B. Mausner, and B. B. Snyderman. 1959. Motivation to Work. Wiley,
New York.

[35] Austin Bradford Hill. 1965. The environment and disease: association or causa-
tion?

[36] Timothy A. Judge, Edwin A. Locke, Cathy C. Durham, and Avraham N. Kluger.
1998. Dispositional effects on job and life satisfaction: The role of core evaluations.
Journal of Applied Psychology 83 (1998), 17–34. https://pdfs.semanticscholar.org/
9912/e58168ca993de3fa8105bd1c64fd63f7ddb3.pdf

[37] Michael Kearns. 1988. Learning Boolean formulae or finite automata is as hard
as factoring. Technical Report TR-14-88 Harvard University Aikem Computation
Laboratory (1988).

[38] Chak Fu Lam and Suzanne T. Gurland. 2008. Self-determined work motivation
predicts job outcomes, but what predicts self-determined work motivation?
Journal of Research in Personality 42, 4 (2008), 1109–1115. https://doi.org/10.
1016/j.jrp.2008.02.002

[39] BA Lameijer, J Antony, A Chakraborty, RJMM Does, and JA Garza-Reyes. 2021.
The role of organisational motivation and coordination in continuous improve-
ment implementations: an empirical research of process improvement project
success. Total Quality Management & Business Excellence 32, 13-14 (2021), 1633–
1649.

[40] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. 2015. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software 107 (2015), 15 – 37. https://doi.org/10.1016/j.jss.2015.04.084

[41] Josh Lerner and Jean Tirole. 2002. Some Simple Economics of Open-Source.
Journal of Industrial Economics 50 (02 2002), 197–234. http://www.people.hbs.
edu/jlerner/simple.pdf

[42] Brenda L. Mak andHy Sockel. 2001. A confirmatory factor analysis of IS employee
motivation and retention. Information & Management 38, 5 (2001), 265–276.
https://doi.org/10.1016/S0378-7206(00)00055-0

[43] Christina Maslach, Susan Jackson, andMichael Leiter. 1997. TheMaslach Burnout
Inventory Manual. Evaluating Stress: A Book of Resources 3 (01 1997), 191–218.

[44] John D Mayer, Michael A Faber, and Xiaoyan Xu. 2007. Seventy-five years of
motivation measures (1930–2005): A descriptive analysis. Motivation and Emotion
31 (2007), 83–103.

[45] D. C. McClelland. 1961. The Achieving Society. Van Nostrand, Princeton, NJ.
[46] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips, C. Winter,

A. Knight, E. Smith, and M. Jorde. 2019. What Predicts Software Developers’
Productivity? IEEE Transactions on Software Engineering (2019), 1–1. https:
//doi.org/10.1109/TSE.2019.2900308

[47] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-
pher Ré. 2016. Data Programming: Creating Large Training Sets, Quickly. In
Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 3567–
3575. http://papers.nips.cc/paper/6523-data-programming-creating-large-
training-sets-quickly.pdf

[48] Eric S. Raymond. 1999. The Cathedral and the Bazaar (1st ed.). O’Reilly &
Associates, Inc., Sebastopol, CA, USA.

[49] Bishal Sainju, Chris Hartwell, and John Edwards. 2021. Job satisfaction and
employee turnover determinants in Fortune 50 companies: Insights from em-
ployee reviews from Indeed.com. Decision Support Systems 148 (2021), 113582.
https://doi.org/10.1016/j.dss.2021.113582

[50] Robert E Schapire. 1990. The strength of weak learnability. Machine learning 5, 2
(1990), 197–227.

[51] Yulia Shmerlin, Irit Hadar, Doron Kliger, and Hayim Makabee. 2015. To Docu-
ment or Not to Document? An Exploratory Study on Developers’ Motivation
to Document Code. In Advanced Information Systems Engineering Workshops,
Anne Persson and Janis Stirna (Eds.). Springer International Publishing, Cham,
100–106.

[52] Frank J Smith. 1977. Work attitudes as predictors of attendance on a specific day.
Journal of applied psychology 62, 1 (1977), 16.

[53] Sonja A Swanson, Matthew Miller, James M Robins, and Miguel A Hernán. 2015.
Definition and evaluation of the monotonicity condition for preference-based
instruments. Epidemiology (Cambridge, Mass.) 26, 3 (2015), 414.

[54] Kristi Toode, Pirkko Routasalo, and Tarja Suominen. 2011. Work motivation of
nurses: A literature review. International Journal of Nursing Studies 48, 2 (2011),
246–257. https://doi.org/10.1016/j.ijnurstu.2010.09.013

[55] Maferima Touré-Tillery andAyelet Fishbach. 2014. How toMeasureMotivation: A
Guide for the Experimental Social Psychologist. Social and Personality Psychology
Compass 8 (07 2014). https://doi.org/10.1111/spc3.12110

[56] Leslie G Valiant. 1984. A theory of the learnable. Commun. ACM 27, 11 (1984),
1134–1142.

[57] Steven G Vandenberg. 1966. Contributions of twin research to psychology.
Psychological Bulletin 66, 5 (1966), 327.

[58] V. Vapnik and A. Chervonenkis. 1971. On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities. Theory of Probabil-
ity & Its Applications 16, 2 (1971), 264–280. https://doi.org/10.1137/1116025
arXiv:https://doi.org/10.1137/1116025

[59] Victor. H. Vroom. 1964. Work and Motivation. Wiley, New York.
[60] Yunwen Ye and Kouichi Kishida. 2003. Toward an Understanding of the Motiva-

tion Open Source Software Developers. In Proceedings of the 25th International
Conference on Software Engineering (Portland, Oregon) (ICSE ’03). IEEE Computer
Society, Washington, DC, USA, 419–429. http://dl.acm.org/citation.cfm?id=
776816.776867

https://doi.org/10.1016/j.jebo.2008.01.004
https://doi.org/10.1016/S0164-1212(01)00125-X
https://doi.org/10.1108/02621710510627064
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1145/279943.279962
https://arxiv.org/abs/2103.04656
https://arxiv.org/abs/2108.10763
https://doi.org/10.5210/fm.v9i1.1113
https://doi.org/10.1016/j.jesp.2006.09.002
https://doi.org/10.1016/j.jesp.2006.09.002
https://books.google.de/books?id=2H1_DwAAQBAJ
https://doi.org/10.1007/978-0-387-35097-4_7
https://doi.org/10.1007/978-0-387-35097-4_7
https://doi.org/10.1109/TSE.2018.2842201
https://doi.org/10.1006/jcss.1997.1504
https://arxiv.org/abs/2101.10291
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1037/0021-9010.93.1.108
https://pdfs.semanticscholar.org/9912/e58168ca993de3fa8105bd1c64fd63f7ddb3.pdf
https://pdfs.semanticscholar.org/9912/e58168ca993de3fa8105bd1c64fd63f7ddb3.pdf
https://doi.org/10.1016/j.jrp.2008.02.002
https://doi.org/10.1016/j.jrp.2008.02.002
https://doi.org/10.1016/j.jss.2015.04.084
http://www.people.hbs.edu/jlerner/simple.pdf
http://www.people.hbs.edu/jlerner/simple.pdf
https://doi.org/10.1016/S0378-7206(00)00055-0
https://doi.org/10.1109/TSE.2019.2900308
https://doi.org/10.1109/TSE.2019.2900308
http://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets-quickly.pdf
http://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets-quickly.pdf
https://doi.org/10.1016/j.dss.2021.113582
https://doi.org/10.1016/j.ijnurstu.2010.09.013
https://doi.org/10.1111/spc3.12110
https://doi.org/10.1137/1116025
https://arxiv.org/abs/https://doi.org/10.1137/1116025
http://dl.acm.org/citation.cfm?id=776816.776867
http://dl.acm.org/citation.cfm?id=776816.776867

	Abstract
	1 Introduction
	2 The Vision: Labeling Functions as a Research Framework
	2.1 Labeling Functions

	3 Motivation Labeling Functions and the Intuition Behind Them
	3.1 Retention
	3.2 Refactoring
	3.3 Diverse Working Hours
	3.4 Long Commit Messages

	4 Methodology
	4.1 Analysis
	4.2 Motivation Survey Dataset
	4.3 GitHub Dataset

	5 Validation of Labeling Functions
	5.1 Labeling Functions Validation by the Survey
	5.2 Labeling Functions Validation by Monotonicity
	5.3 Labeling Functions Validation by Twins Experiments
	5.4 Labeling Functions Validation by Co-Change
	5.5 Labeling Functions Reliability

	6 Results
	6.1 Predicting Retention
	6.2 Developer Performance by Labeling Functions

	7 Related Work
	8 Threats to Validity and Limitations
	9 Conclusions
	Acknowledgments
	References

