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Abstract

Fair allocation has been studied intensively in both economics and computer science. This
subject has aroused renewed interest with the advent of virtualization and cloud computing.
Prior work has typically focused on mechanisms for fair sharing of a single resource. We
consider a variant where each user is entitled to a certain fraction of the system’s resources, and
has a fixed usage profile describing how much he would want from each resource. We provide a
new definition for the simultaneous fair allocation of multiple continuously-divisible resources
that we call bottleneck-based fairness (BBF). Roughly speaking, an allocation of resources is
considered fair if every user either gets all the resources he wishes for, or else gets at least his
entitlement on some bottleneck resource, and therefore cannot complain about not receiving
more. We show that BBF has several desirable properties such as providing an incentive for
sharing, and also promotes high overall utilization of resources; we also compare BBF carefully
to another notion of fairness proposed recently, dominant resource fairness.

Our main technical result is that a fair allocation can be found for every combination of
user requests and entitlements. The allocation profile of each user is proportionate to the user’s
profile of requests. The main problem is that the bottleneck resources are not known in advance,
and indeed one can find instances that allow different solutions with different sets of bottlenecks.
Therefore known techniques such as linear programming do not seem to work. Our proof uses
tools from the theory of ordinary differential equations, showing the existence of a sequence
of points that converge upon a solution. It is constructive and provides a practical method to
compute the allocations numerically.

1 Introduction

Fair allocation has been widely studied both in economics and computer science (See [2, 8, 16] for a sample
of the wide-ranging work in this area.) Generally speaking, the notion of fairness may pertain to mechanisms
like bargaining and their relationship to ethical issues (e.g. [15]). We assume fairness to mean that each user
has a certain level of resources to which he is entitled, and take an allocation to be fair if each user indeed
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gets at least this level. But how exactly should the entitlements be interpreted? Specifically, what does it
mean that a user is “entitled to 20% of the system”? Is this a guarantee for 20% of the CPU cycles? Or
maybe 20% of each and every resource? And what should we do if the user requires, say, only 3% of the
CPU, but over 70% of the network bandwidth? Reserving 20% of the CPU will cause obvious waste, while
curbing the network usage would be unreasonable if no other user can take up the slack.

Our goal in this paper is to define a notion of fair allocation that applies when multiple, continuously-
divisible resources are to be allocated. In a nutshell, we observe that allocations need only focus on con-
tended resources. Our scheme, which we call bottleneck-based fairness (BBF), therefore requires that each
user receives his entitlement on at least one bottleneck resource. We claim that the user can then not justify
complaining about not getting more. We then show that a BBF allocation is guaranteed to exist.

2 Context and Previous Work

This work concerns mostly a collaborative environment. The different users may represent, e.g., different
activities of one organization or even a set of computational systems that are all owned by the same entity.
Another possible scenario is an installation put together by a group of mutually trusting partners. In this
context a user’s entitlement may represent that user’s share in the investment that created the installation and
the shared resources.

Simple and direct approaches for scheduling according to entitlements include lottery scheduling [14]
and economic models [13], where each process’s relative share of the resources is expressed by its share
of lottery tickets or capital. Another popular approach is based on virtual time [4, 11]. The idea is that
time is simply counted at a different rate for different processes, based on their relative allocations. In
networking research the most common approach is max-min fairness, where the goal is to maximize the
minimal allocation to any user [12]. Using weights this can be adjusted to support diverse entitlements.

The main drawback of the approaches above is that they focus on one resource—the CPU or the band-
width of a link—irrespective of contention. This may be inappropriate when the goal is to achieve a pre-
defined allocation of the resources. For example, by trying to promote an I/O-bound process (because it
deserves more of the CPU than it is using), we might turn the disk into a bottleneck, and inadvertently allow
the internal scheduling of the disk controller to dictate the use of the whole system.

In order to avoid such problems, it has recently been suggested that fair-share scheduling be done in two
steps [1, 5]: first, identify the resource that is the system bottleneck, and then enforce the desired relative
allocations on this resource. This approach is in line with basic results in performance evaluation, as it
is well known that the bottleneck device constrains system performance (this is, after all, the definition of
a bottleneck) [9]. An important manifestation of this result is that, in a queueing network, most of the
clients will always be concentrated in the queue of the bottleneck device. This implies that scheduling the
bottleneck device is the only important activity, and moreover, that judicious scheduling can be used to
control relative resource allocations. The fair usage of the bottleneck resource induces some level of usage
of other resources as well, but this need not be controlled, because there is sufficient capacity on those
resources for all contending processes.

The question is what to do if two or more resources become bottlenecks. This may easily happen
when different processes predominantly use distinct resources. For example, consider a situation where one
process makes heavy use of the CPU, a second is I/O-bound, while a third process uses both CPU and I/O,
making both bottlenecks.

There have been a number of approaches suggested for fairly allocating multiple resources. Most rel-
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evant to our work is the recently proposed notion of dominant resource fairness (DRF) [7]. DRF does not
explicitly consider bottlenecks, but rather focuses on each user’s maximal usage of any single resource. We
describe this in more detail and compare it with our definition in Section 4.

3 Bottleneck Based Fairness with Multiple Bottlenecks

Consider a setting with N users and m resources (e.g. CPU and network and disk bandwidth). Without
loss of generality we assume that there is exactly one unit available of each resource. We assume that each
user i is entitled to a fixed percentage ei of the full capacity, and hence of each resource, where

∑

i ei = 1.
Alternatively, the actual number of users may be M � N , where all these M users are treated equally (so
each user’s entitlement is 1

M
). However, there are only N types of users, of which Mei are of type i. It is

not hard to verify that there is no loss of generality in handling all users of the same type equally. In this
case we are led to the problem formulation as described next.

Each user i requests a fraction rij of resource j. Obviously the interesting situation is when for each i
there exists a j such that rij > ei, and for every j,

∑

i rij > 1. Our goal is to find a set of allocations that
allow us to exploit complementary usage profiles to achieve high utilization, but at the same time respect
the different entitlements. By respecting the entitlements, the allocations can be claimed to be fair.

An important attribute of our user model is that the request profile of each user is fixed. Thus the
allocation to user i is characterized by a single factor xi, rather than a separate factor xij for each resource j.
The fraction allocated to i of each resource j will be xirij . This model reflects a situation where each user
is engaged in a specific type of activity with a well-defined resource usage profile. For example, a user may
be serving requests from clients over the Internet. Each request requires a certain amount of computation,
a certain amount of network activity, and a certain amount of disk activity. If the rate of requests grows, all
of these grow by the same factor. But if one resource is constrained, limiting the rate of serving requests,
this induces a similar limit in the usage of all other resources. This is essentially the “knee model” of Etsion
et al. [6], where I/O activity is shown to be linearly proportional to CPU allocation up to some maximal
usage level. It also corresponds to the task model of Ghodsi et al. [7] when all tasks belonging to a user have
identical resource requirements (which is indeed the specific model they use in their proofs). Note, however,
that this is indeed a limiting assumption. Specifically, it excludes usage patterns where one resource is used
to compensate for lack of another resource, as happens, for example, in paging, or when using compression
to reduce bandwidth.

All the above leads to the following problem definition. We want to find x1, . . . , xN with 0 ≤ xi ≤ 1.
Here xi is the fraction of user i’s request which will be granted. Feasibility of these xi’s means that our total
consumption of each resource is at most one:

∀j :
∑

i

xirij ≤ 1. (1)

Those resources j for which equality holds in (1) are the bottleneck resources. These are important for our
fairness condition, which we call the “No Justified Complaints Condition”. The idea is that a user cannot
justify complaining about his allocation if either he gets all he asked for, or else he gets his entitlement
on some bottleneck, so giving him more would come at the expense of other users who have their own
entitlements. This is formally expressed as:

∀i : [xi = 1] ∨ [∃j∗ : (
∑

k xkrkj∗ = 1) ∧ (xirij∗ ≥ ei)]. (2)
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In the sequel, we call this requirement bottleneck based fairness (BBF).
Note that it may happen that a user receives less than his entitlement on other resources, including other

bottleneck resources, where the entitlement would seem to indicate that a larger allocation is mandated.
This is where the fixed request profile assumption comes in. Recall that the factor xi is common to all
resources. Thus, giving a user a higher allocation on any resource implies that his allocation must grow on
all resources. The original bottleneck resource j∗ thus constrains all allocations, even on other bottleneck
resources or resources that are not themselves contended.

Showing that a fair allocation according to this definition exists turns out to be surprisingly nontrivial.
As far as we know, all obvious approaches (e.g., Linear Programming) seem to fail. We prove the existence
of fair allocations in Section 5.

4 Properties of Bottleneck Based Fairness

In this section, we discuss properties of BBF, and compare it to DRF.1 A user’s dominant resource is the one
where the user requires the largest fraction, i.e. argmaxj rij . Given the fixed request profile assumption, in
any allocation the user’s maximal usage of any resource will be his usage of the dominant resource. DRF
fairness is then defined as equalizing these maximal usage levels across users, or more generally, making
them proportional to the entitlements [7].

An important difference between DRF and BBF is that DRF allocations can be found using an incremen-
tal algorithm [7]. Finding BBF allocations is harder, because we do not know in advance which resources
will be the bottlenecks. But interestingly, the trajectory argument used in the proof that a BBF allocation
exists is actually somewhat similar to the way that allocations are constructed for DRF.

4.1 Defining Fairness

BBF and DRF both define a notion of fairness across multiple resources. At a very basic level, the notion
of fairness depends on perception of utility. In the context of allocating resources on computer systems, the
utility is typically unknown. Consequently the notion of fairness is ill-defined.

To better understand the difference between utility and allocation, we recount an example used by Yaari
and Bar-Hillel [15]. Jones and Smith are to share a certain number of grapefruit and avocados to obtain
certain vitamins they need. They have different physiological abilities to extract these vitamins from the
different fruit. The overwhelming majority (82%) of people polled agreed that the most fair division is one
that gives them equal shares of extracted vitamins, despite being quite far from being equal numbers of actual
fruit. Thus respondents clearly favored equal utility as the criterion for fairness. But such considerations
would be impossible if you do not know their specific ability to extract vitamins, and that they actually only
eat fruit for their vitamins.

When allocating resources we do not know the real utility of these resources for the users. We are
therefore forced to just count the amount of resources being allocated. The difference between definitions
of fairness is in how this counting is done. A simple counting rule is asset fairness [7] , where the fractions
of all resources used are summed up. Thus the total allocation to user i is

∑

j xirij , and these allocations
should be equalized across users. In DRF, only the largest fraction is considered. To be fair, all users should
receive the same fractions of their respective dominant resources. In BBF we take a system-wide view, and

1In the full paper, we briefly extend the comparison two other approaches, asset fairness [7] and competitive equilibrium from
equal incomes (CEEI) [10].
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only count the usage of bottleneck resources. Thus a user may receive more than his entitlement of non-
bottleneck resources, but this is considered immaterial because there is no contention for those resources.

Interestingly, Ghodsi et al. prove that under DRF each user will actually be constrained by some resource
that is a bottleneck [7]. However, their fairness criterion does not depend on this bottleneck, while ours does.
As a result DRF may constrain the allocations of a non-bottleneck resource, and use this as an argument for
being fair to the user. There seems to be no criterion by which to say that either DRF or BBF is fairer
than the other. It may well be that a user derives much benefit from using the non-bottleneck resource, and
therefore cutting him back on other resources is perfectly justified. But given that we do not know that this
is the case, we suggest that it is safer to focus exclusively on the bottleneck resources.

To further support the focus on bottlenecks, we note that Yaari and Bar-Hillel extended the Jones and
Smith example to a situation where Smith’s ability to extract vitamins from fruit is extremely low. In this
scenario, a large number of respondents no longer tolerated his inefficiency, and broke from the goal of
achieving equal utility. An additional consideration that was not checked in the study was contention for
limited resources. We conjecture that if a minimal level of vitamin was given as a requirement, especially
if there were many potential beneficiaries rather than just two, respondents would be even less tolerant of
inefficiency, and opt for fair division of the resources (or fruit).

In fact, Ghodsi et al. also mention bottleneck fairness in their description of DRF, but only as a secondary
criterion. They define bottleneck fairness only when all users have the same dominant resource, essentially
reducing the scope to the single bottleneck case. Our work is the first to extend this with a meaningful
definition of fairness for multiple bottlenecks, and when the dominant resources are different.

4.2 Game-Theoretic Considerations

Ghodsi et al. [7] show that DRF has four desirable attributes, under the assumption that all tasks belonging
to a user have identical resource requirements (in which case their model reduces to ours). We now show
that BBF also has two of them, and explain the tradeoff regarding the other two.

The first requirement is what Ghodsi et al. call sharing incentive: each user i should be better off than
he would be if he could work with only his entitlement ei of each resource. Due to the fixed request
profile assumption, if user i gets a fraction ei of each resource, much of this capacity may remain unused.
Indeed, user i is no better off from his point of view than if he got a fraction z of his requests, where
z = ei/maxj{rij}. In a BBF allocation user i gets a fraction xi of his requests, where xirij ≥ ei for some
bottleneck resource j. Thus xi ≥ z, which means that BBF provides an incentive for sharing resources, and
thus allows the system to exploit situations where users have complementary requirements.

Another attribute is Pareto efficiency. This means that increasing the allocation to one user must come
at the expense of another. This follows immediately from doing allocations based on bottlenecks.

The two properties that are more problematic are strategyproofness and envy-freedom. Being strate-
gyproof means that users won’t benefit from lying about their resource needs. Being envy free means that
users don’t prefer another user’s allocation. DRF achieves these properties by virtue of having a unique
solution, as it only depends on the dominant resources. As we show in Section 5.4 BBF may allow multiple
solutions. This provides flexibility in the sense that secondary objectives may be used to select among the
options. But it may also be susceptible to manipulations by users who try to influence the decision in their
favor. But note that the effect is limited to the choice among alternative fair allocations.
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4.3 Utilization Considerations

We now turn to a discussion of how fairness definitions may affect system utilization. First, we observe that
if all users have the same dominant resource, DRF and BBF are equivalent. This follows since the common
dominant resource is the only bottleneck. Thus the resulting utilization is the same. But in other cases there
may be differences. In fact, one may easily find examples where BBF leads to higher overall utilization than
DRF, and counterexamples where the opposite is true.

However, the following claim indicates that BBF may actually have an edge over DRF. Assume that
every user has at least one resource that he can use to capacity (i.e. for every user i there is a resource j
such that rij = 1). Consider those problems that have a full-utilization solution, meaning that we can find
x1, . . . xN such that xi ≥ ei and, for every resource j, we have

∑

xirij = 1. We claim that all such cases
are BBF solutions, but there exist such cases where the DRF solution exhibits very low utilization.

These assumptions are not as restrictive as they may seem. The requirement that each user has a resource
he can use to capacity just means that users are greedy and want lots of power. Moreover, every DRF and
BBF solution must be such that xi ≥ ei (in the case of BBF, this is because xi = 1 or xirij ≥ ei for some j
and rij ≤ 1). Since, in a full-utilization solution, all resources are bottlenecks, and each user has a resource
where xirij ≥ ei (namely, the resource j such that rij = 1), it is easy to see that a full-utilization solution
satisfies BBF. But consider the following specific example where DRF does badly. Assume Kn users want
resource 1 at full capacity. An additional n users want only a very small ε of resource 1, and 1/n of all the
other resources. DRF will seek to give each user ∼ 1/Kn of it’s dominant resource, so these last n users
will get ∼ 1/K of what they want. But BBF can opt to give the last n users their full request, at very small
cost to the others. With small K (e.g. K = 2), DRF gives a third of the population just half of what they
could get without really benefiting the others. With small n (e.g. n = 1) it reduces the utilization of all
resources except the first to 1/K .

This example in itself does not prove that BBF is superior to DRF. It might be the case that other
examples will show large utilization differences in the other direction. We are currently attempting to achieve
a more complete characterization of the relative utilization implications of BBF and DRF.

5 Existence of a Fair Allocation

In this section, we prove that an allocation satisfying (1) and (2) always exists. Note, that (2) deals separately
with the case where xi = 1 and user i’s request is respected in full, and where xi < 1 and we need to at
least give i his entitlement on some bottleneck resource. Consider the following simplification of (2), that
leaves out the first disjunct:

∀i ∃j∗ : (
∑

k xkrkj∗ = 1) ∧ (xirij∗ ≥ ei). (2′)

We claim that, given a problem X , we can convert it to a problem X ′ such that an allocation (x1, . . . , xn)
for X satisfies (1) and (2) iff (x1, . . . , xn) satisfies (1) and (2′) for X ′. To convert X to X ′, we simply add N
new dummy resources r′1, . . . , r

′
N such that r′ij = 1 if j = i and 0 otherwise. In light of this, the following

theorem establishes that there always exists a solution that satisfies BBF.

Theorem 1. Given
• entitlements e1, . . . , eN such that ei ≥ 0 for i = 1, . . . , N and e1 + · · · + eN = 1, and

• resource requirements rij such that 0 ≤ rij ≤ 1 and r1j + · · · + rNj ≥ 1 for i = 1, . . . , N and
j = 1, . . . ,m,
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there exists an allocation x1, . . . , xN , where 0 ≤ xi ≤ 1 for i = 1, . . . , N , such that (1) and (2′) hold.

5.1 A Few Simplifying Assumptions

Before proving the theorem, we make three simplifying assumptions, all without loss of generality. Clearly,
a resource for which this does not hold can be eliminated from the problem without creating any change.

In addition, we can and will assume that maxj rij ≥ ei, for each user i. Otherwise, we give user i
everything he asked for, remove his requests, renormalize the entitlements of the remaining users so that
they still sum to 1, renormalize the remaining capacity of the different resources so that it is still 1, and
renormalize the remaining requests by the same factors. Again, it’s not hard to see that this can be done
without changing the problem and the possible outcomes.

Also, say that resource j is dominated if the inequality x1r1j + · · · + xNrNj ≤ 1 is a consequence
of all other inequalities {x1r1s + · · · + xNrNs ≤ 1|s 6= j}. Clearly, the existence of such an inequality
can be efficiently detected by standard linear programming methods. Again, dominated resources can be
eliminated from the problem without any change.

We turn to prove the existence of a solution x1 . . . xN satisfying Theorem 1 under these simplifying
assumptions. As mentioned, this is done without loss of generality, and a solution that is found under the
simplifying assumptions can be easily turned into a solution for the original formulation of the problem.

5.2 Proof Structure

We first establish some notation. The set of all feasible solutions is the polytope D ⊆ (R+)N , where

D = { (x1, . . . , xN ) : 0 ≤ xi ≤ 1, ∀i and x1r1j + · · · + xNrNj ≤ 1, ∀j }.

For x = (x1, . . . , xN ) ∈ D, the set of bottleneck resources is

J(x) = {j : 1 ≤ j ≤ m, x1r1j + · · · + xNrNj = 1}.

The solution x that we seek must clearly reside on the boundary of D, for J(x) is empty when x is in D’s
interior. So, paraphrasing (2’), our goal is to find an allocation x = (x1, . . . , xN ), such that

∀i ∃j∗ ∈ J(x) : xirij∗ ≥ ei. (3)

This is exactly the source of our difficulty. Given the set of bottleneck resources, the problem of finding
x is just a linear program. Specifically, given an arbitrary subset I ⊆ {1, . . . ,m}, the following decision
problem is an LP: Is there an x ∈ D for which J(x) = I such that condition (3) holds?

How can we overcome the difficulty involved in satisfying condition (3) without prior knowledge of the
set J(x)? As a first step, we approximate the polytope D by a subset Q ⊆ D that is convex and has a
smooth boundary. Intuitively, Q “rounds off” the corners of D (see below for further discussion). Such a set
Q is defined by infinitely many linear inequalities: For every hyperplane H that is tangent to Q we write a
linear inequality that states that x must reside “below” H . It would seem that this only complicates matters,
replacing the finitely defined D by Q. However, the problematic condition (3) takes on a much nicer form
when applied to Q, and becomes a very simple relation involving the contact point of H and Q, the normal
to H , and the vector e (see Equation (7) below). Moreover, using standard tools from the theory of ordinary
differential equations, we can find a point on the boundary of Q where this relation holds.
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To find the solution, we do not consider a single smooth Q, but rather a whole parametric family Qt.
This family has the properties that (a) the sets Qt grow as the parameter t increases; (b) they are all contained
in D; and (c) as t → ∞ the sets Qt converge to D. For every t > 0, we find a point x

(t) on the boundary
of Qt such that x

(t) satisfies the analogue of condition (3). As t → ∞, the points x
(t) tend to the boundary

of D. We argue that there always exists a convergent subsequence of the points x
(t), and show that the

limit point of this subsequence solves our original problem. In the language of the description below, Q t is
defined as the set of those x ∈ D for which f(x) ≤ t.

The procedure above hinges on our ability to define the appropriate points x
(t) that satisfy the required

condition. This is based on considering the tangent to the surface of Qt. Note that the only essential
difference between D and Q is that the latter is defined by an infinite family of defining linear inequalities,
namely, one for each hyperplane H that is tangent to Q. Keeping this perspective in mind, let us apply
the original problem definition to a point x ∈ Q. If x lies in the interior of Q, then none of Q’s defining
inequalities holds with equality. Thus, as before, (x) is empty for any x in the interior of the domain Q.
We therefore consider x that lies on the boundary of Q. In this case, the set J(x) is a singleton, the only
member of which is the inequality corresponding to the hyperplane H that is tangent to Q and touches it
at the point x. The equation of the tangent hyperplane H can be written as

∑

νixi = 1, where the vector
(ν1, . . . , νn) is normal to H . Now condition (3) becomes

∀i νixi ≥ ei. (4)

When we sum over all i this becomes
∑

νixi ≥
∑

ei = 1. But x lies on H , so that
∑

νixi = 1. It follows
that all inequalities in Eq. (4) hold with equality. But we also have, from the definition of the bottlenecks,
that

∑

rijxi = 1. Thus, the normal is simply defined by the requirements vectors. Moreover, we can use
this as a condition on the gradients of the surfaces of Qt for successive t’s, and follow a trajectory that leads
to a solution on the boundary of D. This is then the desired constructive proof: it both shows that a solution
exists, and provides a mechanism for finding it. In the next subsection we formalize this argument.

5.3 Proof of Theorem 1

Construction 1. To every allocation x in the interior of the domain D, we assign a value

f(x) = −
m
∑

j=1

log

(

1 −
N
∑

k=1

xkrkj

)

. (5)

Remark 1. The function f is positive in the interior of D, diverging to infinity as x tends to the boundary
of D.

Remark 2. Clearly, there are other choices of f that satisfy these desired properties. This choice seems like
the simplest one for our purposes.

Definition 1. To every number t > 0, there corresponds a level set of f , namely,

Γt = {x ∈ D : f(x) = t},

Remark 3. This is an (N − 1)-dimensional hypersurface. (Fig. 1 illustrates this for N = 2.)

Definition 2. To every point x ∈ D, there corresponds a unique unit vector ν(x) = (ν1(x), . . . , νN (x)),
normal to the level set of f at x.
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Figure 1: Illustration of level-sets of f
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The unit normal ν(x) is proportional to the gradient of f at x, implying that

νi(x) = c̃
∂f

∂xi

(x) = c̃

m
∑

j=1

rij

1 −
∑N

k=1 xkrkj

, ∀i = 1, . . . , N, (6)

where the normalization constant c̃ is chosen so as to guarantee that ν is a unit vector, that is, ν 2
1 +· · ·+ν2

N =
1.

Construction 2. We now construct a vector-valued function

x(t) = (x1(t), . . . , xN (t)), t ≥ 0,

satisfying the following properties:

1. x(t) lies on the level set Γt for all t ≥ 0 (and, in particular, remains in D).

2. For all t > 0, there exists a t-dependent normalization factor c(t), such that for every i = 1, . . . , N ,

xi(t) νi(x(t)) = c̃ c(t)ei. (7)

Remark 4. Note that since f(x(0)) = 0 it follows that x(0) = 0, that is, the vector-valued function x(t)
“starts” at the origin.

Remark 5. Substituting (6) into (7) and summing over the index i determines c̃ c(t). After simple algebraic
manipulations, we get

m
∑

j=1

xi(t)rij − (
∑N

k=1 xk(t)rkj)ei

1 −
∑N

k=1 xk(t)rkj

= 0, ∀i = 1, . . . , N, ∀t > 0. (8)

Intuitively, x(t) is a “trajectory” that takes us from the origin x = 0 to a point on the boundary of D as
t grows from 0 to ∞2.

2In networking, allocations to flows traversing multiple links are also viewed as using multiple resources, where again the
constraints stem from links that become bottlenecks. In this context max-min fairness can be characterized based on a geometrical
representation that is very similar to ours [12]. However, the requirements from all the resources (links) are equal, making the
search for a solution easier. Specifically, it is often possible to move in a straight line from the origin to the boundary, in a direction
based on the desired relative allocations, rather than using a more complicated trajectory as we do.
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The formal proof now follows from the following sequence of three lemmas, proved below. First, we
show that a trajectory with the required properties exists (Lemma 4). Given such a trajectory, we show
that a subsequence of this trajectory converges to a point on the boundary of D (Lemma 2). Finally, this
accumulation point is shown to be a solution to our allocation problem (Lemma 3).

It is convenient to delay the question of whether there indeed exists a trajectory x(t) satisfying the
required properties, and consider convergence first.

Lemma 2. Let 0 < t1 < t2 < · · · be a sequence tending to infinity. Let x(t) be a vector-valued function as
defined in Construction 2. Then, the sequence x(ti) has a subsequence that converges to an allocation x

∗

on the boundary of D.

Proof. Consider what happens as t → ∞. Since x(t) ∈ Γt, it follows that x(t) approaches the boundary
of D. However, the function x(t) may not tend to a limit as t → ∞. Nevertheless, since D is a compact
domain, x(t) has a convergent subsequence. That is, there exists an allocation x

∗ = (x∗
1, . . . , x

∗
N ) on the

boundary of D and a subsequence tn1
< tn2

< . . . such that

lim
k→∞

x(tnk
) = x

∗.

The next lemma shows that this accumulation point is a solution to the fair allocation problem.

Lemma 3. An allocation x
∗ as resulting from Lemma 2 is a fair allocation according to our definition.

Proof. Since x
∗ is on the boundary of D, it has a non-empty set J(x∗) of bottleneck resources such that

x∗
1r1j + · · · + x∗

NrNj = 1 ∀j ∈ J(x∗) 6= ∅.

We then rewrite (8) by splitting the resources j into bottleneck resources and non-bottleneck resources, and
setting t = tn:

∑

j 6∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1 −
∑N

k=1 xk(tn)rkj

+
∑

j∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1 −
∑N

k=1 xk(tn)rkj

= 0. (9)

The two summations behave very differently as n → ∞. For a non-bottleneck resource j,
∑N

k=1 x∗
krkj < 1,

so the summation over the non-bottleneck resources tends to a limit obtained by letting x(tn) → x
∗ term-

by-term:

lim
n→∞

∑

j 6∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1 −
∑N

k=1 xk(tn)rkj

=
∑

j 6∈J(x∗)

x∗
i rij − (

∑N
k=1 x∗

krkj)ei

1 −
∑N

k=1 x∗
krkj

. (10)

For a bottleneck resource j, the denominator 1 −
∑N

k=1 xkrkj tends to zero as x → x∗, so the limit exists
only if the numerator vanishes as well. But if it were the case that, for a given user i,

x∗
i rij < ei for all j ∈ J(x∗),

then
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lim
n→∞

∑

j∈J(x∗)

xi(tn)rij − (
∑N

k=1 xk(tn)rkj)ei

1 −
∑N

k=1 xk(tn)rkj

= −∞.

This is a contradiction to the fact that, by (9), the limit should be the negative of the right-hand side of (10).
Hence we conclude that x

∗ has the property that for all users i, there exists a bottleneck resource j such that
x∗

i rij ≥ ei. Thus, x
∗ is a fair allocation.

It remains to show that the trajectory x(t) is indeed well-defined for all system parameters ei and rij .
This is handled by the following lemma.

Lemma 4. There exists a function x(t) with the properties specified in Construction 2.

Proof. To prove this we show that we can find points satisfying property 1 that also satisfy property 2. Since
x(t) ∈ Γt, we have f(x(t)) = t, that is,

−
m
∑

j=1

log

(

1 −
N
∑

k=1

xk(t)rkj

)

= t. (11)

By (7),
m
∑

j=1

xi(t)rij

1 −
∑N

k=1 xk(t)rkj

= c(t)ei, ∀i = 1, . . . , N. (12)

Differentiating both equations with respect to t, we obtain a linear system of equations for the derivative
dx/dt. Differentiating (11), we get

∑N
k=1

dxk

dt
rkj

1 −
∑N

k=1 xk(t)rkj

= 1.

Differentiating (12), we get

m
∑

j=1

dxi

dt
rij

1 −
∑N

k=1 xkrkj

+

m
∑

j=1

xirij

∑N
k=1

dxk

dt
rkj

(1 −
∑N

k=1 xkrkj)2
=

dc

dt
ei. (13)

Observe that, without loss of generality, we can set dc/dt = 1, compute the resulting vector of derivatives
dx/dt, and then multiply it by a constant for the normalization condition to hold. Thus, it remains only to
show that (13) has a unique solution when dc/dt = 1. To do so, we define an x-dependent matrix with
entries

bij =
rij

1 −
∑N

k=1 xkrkj

, i = 1, . . . , N, j = 1, . . . ,m .

These entries are non-negative for x ∈ D. We now rewrite (13) in a more compact form,

m
∑

k=1

dxk

dt





m
∑

j=1

bijδik +
N
∑

j=1

xibijbkj



 = ei.

The term inside the brackets is the (k, i) entry of a symmetric positive-definite N ×N matrix, which imme-
diately implies that there exists a unique solution dx/dt. Since the dependence of dx/dt on x is continuous,
the existence and uniqueness of x(t) follows from the Fundamental Theorem of Ordinary Differential Equa-
tions [3]. (More precisely, the fundamental theorem of ODEs guarantees only the existence and uniqueness
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of a solution for some small t; global existence follows from the boundedness of the domain D.)
This completes the proof of Theorem 1.
We note that our proof that a fair allocation exists is almost constructive. The trajectories x(t) can easily

be computed numerically using standard ODE integrators (for example, Matlab’s ode45 function). If x(t)
is found to tend to a limit for large t, then this limit is a fair allocation. The only reservation is that numerical
integration only provides approximate solutions (however, with a controllable error), and can only be carried
out over a finite t interval.

5.4 Uniqueness of the Solution

Generally speaking the solution to the problem is not unique. In the following example the solution set
is a whole interval. Namely, take N = 3 and m = 2, with r1 = (1, 1), r2 = (0, 1), r3 = (1, 0), and
e = (0.5, 0.3, 0.2). All points on the interval x = (z, 1 − z, 1 − z) with 0.5 ≤ z ≤ 0.7 are solutions in all
of which both resources are bottlenecks.

We next consider an example with N = m > 2. The requirements are rii = 0 for all i and rij = 1
when i 6= j. All ei = 1/N . For every N − 1 ≥ t ≥ 1 we select an arbitrary set of t users and let the
corresponding xi be 1/n. For all other N − t users we let xi = N−t+1

N(N−t) . It is easily verified that in this case
there are exponentially many solutions.

6 Open Questions

The solution concept we develop here has many properties which are desirable as well in an environment
where different users compete for resources. However, we still do not know much about possible manipula-
tions in this context and how they affect the outcome.

The suggested approach is off-line and requires full data about requirements to be available in order to
compute a solution. While we have shown how to compute a solution numerically, a remaining challenge
is to develop a polynomial time algorithm. Another interesting question is how to formulate an on-line
algorithm that schedules tasks in a way that will lead to the desired allocations.
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