
From Obfuscation to Comprehension

Eran Avidan Dror G. Feitelson

School of Computer Science and Engineering

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—Code obfuscation techniques are widely used in
industry to increase protection of source code and intellectual
property. The idea is that even if attackers gain hold of source
code, it will be hard for them to understand what it does and
how. Thus obfuscation techniques are specifically targeted at
human comprehension of code. We suggest that the ideas and
experience embedded in obfuscations can be used to learn about
comprehension. In particular, we survey known obfuscation
techniques and use them in an attempt to derive metrics for
code (in)comprehensibility. This leads to emphasis on issues such
as identifier naming, which are typically left on the sidelines
in discussions of code comprehension, and motivates increased
efforts to measure their effect.

I. INTRODUCTION

Software is often complicated and hard to understand.

Brooks divides the complexity of software into two: “essen-

tial” complexity which arises from the system’s requirements,

and “accidental” complexity related to how it is expressed [1].

The essential complexity reflects the hardness of the problem,

and cannot be abstracted away, as in complex legal require-

ments in an accounting application. But accidental complexity

can and should be reduced, e.g. by using design patterns,

refactoring, readability-enhancing transformations, and doc-

umentation. These improve the representation and make the

code more comprehensible and maintainable. Code complexity

metrics are also related to this, being used to identify code

segments which are overly complicated and may benefit from

additional work.

Obfuscation is the opposite activity: the purposeful degra-

dation of the code in order to prevent reverse engineering,

and thereby protect the intellectual effort invested in creating

the program in the first place. Over the years a large body

of knowledge on code obfuscation has been accumulated,

including the development of new obfuscation techniques,

their classification and description, and empirical work on their

effectiveness. Several code obfuscators for different languages

are available commercially or as open-source products.

Naturally, there are many connections between obfuscation,

code complexity, and program comprehension. For example,

code complexity metrics have been used to evaluate the

potency of obfuscation techniques, based on the premise that

more complex code is harder to decipher. But there has

been little interaction. Obfuscation has its own community,

publications, empirical studies, and even events such as The

International Obfuscated C Code Contest which has been

held annually since 1984. Thus it seems reasonable that

comprehension can learn from obfuscation, and that ideas

developed and evaluated for obfuscation research can be used

to advance our understanding of program comprehension.

To explore this possible connection, we start with a short

primer on obfuscation in Section II. Section III discusses

elements of comprehension and outlines ideas about how

comprehension can learn from obfuscation. Section IV then

lists specific insights about comprehension that are derived

from obfuscation, and suggests various code attributes that

should be studied and quantified.

II. CODE OBFUSCATION

Reverse engineering uses program analysis techniques, such

as discussed in Nielson et al. [14], in the process of extracting

knowledge and information embedded in the program. One

way of making a program more resilient to these techniques

is applying code obfuscation transformations to the code.

Collberg et al. [7] were the first to formally define obfus-

cation. Their definition was that obfuscation is a semantic-

preserving transformation function O which maps a program

P to O(P) such that O(P) must have the same observable

behavior. In practice, obfuscation transformations are applied

in order to make P harder for program analysis. They classi-

fied obfuscation transformations into four main classes: layout,

data, control-flow, and preventive.

Layout transformations change or remove useful informa-

tion from the source code without changing its behavior.

Specific types of layout obfuscations include identifiers re-

naming, changing of formatting, and comments removal [7].

Data transformations target data structures contained in the

program, and affect the storage, encoding, aggregation, or

ordering of the data. Specific examples are converting static

data to procedures, change of encoding, and array merging [7].

Control-flow obfuscations attempt to obscure the control flow

of the program. These are classified as affecting aggregation,

ordering, or computation of the flow of control, and many

of them rely on opaque variables or predicates. Examples

of control-flow obfuscations are dead code generation [3],

method merging [3], and class coalescing [17]. Preventive

obfuscations are transformations that are specifically targeted

at deobfuscation or static analysis techniques, with the goal of

making them more difficult to perform.

In order to evaluate the quality of an obfuscation transfor-

mation Collberg et al. suggested the potency, resilience, and

cost metrics [7]. Later, Low added the stealth measure [12].

Potency quantifies the degree to which an obfuscation makes

it harder for a human to understand the code. In other

words, it reflects how much O(P) is more obscure than

P . Though this ideally relies on human cognitive abilities,

some known software complexity metrics (such as Halstead’s

program metrics or McCabe’s cyclomatic complexity) can

also be applied to O(P) to show that it is more complex

than P . Resilience measures how well a transformation holds

up against an automatic deobfuscator. For example, most

formatting transformations can be trivially undone by a source

code beautifier, so they are not resilient. Execution cost is the

execution time and space penalty of O(P) compared to P ,

and Stealth is the degree to which the code resulting from an

obfuscating transformation differs from the original code.

III. ELEMENTS OF COMPREHENSION

Programming languages are different from natural lan-

guages in that a syntactically legal piece of code can have

only one meaning: the meaning understood by the compiler,

and reflected in the code’s execution. Nevertheless, it may still

be hard for a human to comprehend the code and understand

what it does at the conceptual level, especially if the code is

complex or obfuscated.

Rather than trying to formally define comprehension, we

suggest a list of elements that may influence comprehension.

These will be used later in connection to obfuscations. The

elements we identify are readability, design, flow complexity,

and transparency.

Readability is a local property of the code. Readable code

has reasonably short lines, consistent indentation, and mean-

ingful names of variables and functions. Buse and Weimer [2]

have shown how to produce a metric for software readability

based on judgments of human annotators. This metric exhibits

significant correlation with more conventional metrics of soft-

ware quality, such as defect reports and code churn. More

abstract models of readability have also been proposed [15].

In design we refer mainly to modularity, namely the decision

how to structure the code and assign responsibilities to differ-

ent modules. This reflects issues such as information hiding,

module cohesion, and reduced coupling between independent

modules. Modular code is expected to be easier to comprehend

because modules can be studied in isolation.

Flow complexity reflects the dynamic side of the design —

how the modules communicate with each other at run-time.

A prime example is fan-in and fan-out, namely the pattern

that modules call each other [10]. It also includes local code

complexity metrics such as McCabe’s cyclomatic complexity

(MCC) [13] or the use of gotos [9].

Transparency refers to the degree that the code directly

reflects the algorithmic ideas it is supposed to implement.

In transparent code, the mapping from concepts to code is

direct and self-evident, and as a result the code is easier

to comprehend. In contrast, opaque code is code where the

underlying concepts are hidden behind myriad details making

the code harder to comprehend. For example, in advocating for

structured programming Dijstra writes [9] “we should do [...]

our utmost to shorten the conceptual gap between the static

program and the dynamic process, to make the correspondence

between the program (spread out in text space) and the process

(spread out in time) as trivial as possible.”

Obfuscations make code harder to understand by impairing

these elements. We argue that the study of code comprehension

can benefit from insights derived in the context of code

obfuscation. For example, Ceccato et al. [4] showed that com-

prehension tasks on code obfuscated with identifier renaming

require, on average, twice more time than on code obfus-

cated with opaque predicates. This suggests that appropriate

identifier names have a higher impact on comprehension than

maintaining a simple control flow. Consequently it motivates

new directions in complexity metrics: instead of focusing on

easily measured static code properties, it is necessary to also

measure how well variable names reflect the code’s semantics.

In the next section we suggest initial ideas along this line.

IV. OBFUSCATION-BASED INSIGHTS ABOUT

COMPREHENSION

We will now list a few insights regarding comprehension

inspired by specific obfuscation transformations. Despite the

origin from explicit obfuscations, each one of them could surly

occur also as a result of bad practice, a developer error, or just

the cumulative uncoordinated work of multiple people during

evolution. The insights are expressed as measurable code

attributes, so they readily translate into complexity metrics,

where higher values indicate harder to comprehend code.

These metrics can usually be normalized to the range [0,1]

by dividing by their maximal possible value. They can be

measured in various contexts, e.g. a class, method, or any other

level of hierarchy in the program.

Name reuse [5]. [Impair: Transparency]

The idea of this obfuscation is to reuse the same identifier as

many times as possible, so that one cannot know what it refers

to just from the name. We will focus on reuse in a specific

class where an identifier can denote several local variables,

fields, and methods at the same time. As a result, when one

tries to understand what the variable means, it is necessary

to take the context into consideration as well as the way the

identifier is used.

Definition: Let C be some class in the program, and ID the

set with all identifiers in C. ID can be partitioned into the set

of all local variable names L, the set of all class field names

F , and the set with all method names M , all in reference

to C. We shall define two different sets of pairs as follows.

(1) LF : Local variables and fields with the same name, also

known as shadowing fields with variables. (2) MM : Methods

with the same name, also known as method overloading. More

formally: LF = {(li, fj) | li ∈ L, fj ∈ F, li = fj}, MM =
{(mi,mj) | mi,mj ∈ M,mi = mj , i < j}.

LF is known to be confusing and discouraged by some

code quality management platforms, such as SonarQube [16].

Even so, there is no known metric that measure the level of

LF in a class. We suggest the Shadowed Field Metric:

SFM = |LF |

Scale: 0 ≤ SFM ≤ |F |, where |F | means that all the fields

are shadowed by local variables in at least one class method,

and 0 that none of them are.

Another metric that could reflect on possible confusion

would count all the names reuse except method overloading.

Definition: Let P the set of all possible identifier pairs and

EQ the set of all the pairs with equal names. More formally:

P = {(idi, idj) | idi, idj ∈ ID, i < j, (idi, idj) /∈ MM},

EQ = {(idi, idj) | (idi, idj) ∈ P, idi = idj}. Then, our

Name Reuse Metric will be:

NRM = |EQ|

Scale: 0 ≤ NRM ≤ |P |, where |P | is when all identifiers are

the same, and 0 is when every element has its unique identifier.

Using similar names. [Impair: Readability]

A variant of the above is to use very similar names, e.g.

long meaningless strings that differ in a single character, such

as iiiiiiij and iiiiiiiij. This may create confusion, making it hard

to tell apart different variables, methods, or any other pairs of

elements in the program. In order to evaluate the similarity of

two strings we use the edit distance: the minimum number of

insertions, deletions, and substitutions required to transform

one string into the other.

Definition: Let ID be a set of all identifiers, and edij the

edit distance between idi and idj where idi, idj ∈ ID. We

define simij as the measure of similarity between idi and idj :

simij =
max(|idi|, |idj |)− edij

max(|idi|, |idj |)

Given this, the metric will be the number of identifier pairs

which have a high similarity:

SIMM = | {(i, j) | i < j, simij > a} |

Scale: 0 ≤ SIMM ≤ (n2 − n)/2, where 0 is when no pair

of names have a similarity larger than a, and (n2 − n)/2 is

when every pair of names have a similarity of at least a, where

0 ≤ a ≤ 1 is the threshold used.

Random naming [7]. [Impair: Transparency, Readability]

This obfuscation renames all identifiers randomly, and re-

sults in the loss of meaningful names. Validating that names

make sense and reflect their meaning is complicated. Deis-

senboeck and Pizka [8] identified the importance of proper

naming, and created a formal model with naming rules for

better more comprehensible code. These rules check consis-

tency, conciseness, and composition of each element name. We

suggest using these rules to generate three different metrics

that evaluate the code by the validity of its identifier naming.

Let C denote the set of all relevant concepts within a

certain scope, N all the used names, and R the relation of

names to concepts, R ⊆ N × C. Consistency is the proper

relation between names and concepts, and is measured by

checking for homonyms and synonyms. A name is a homonym

if it has more than one meaning. Different names with

the same meaning are considered synonyms. More formally

[8], a name n ∈ N is a homonym iff |Cn| > 1 where

Cn = {c ∈ C | (n, c) ∈ R}. Names n,m are synonyms iff

Cn ∩ Cm 6= ∅.

Definition: Let all distinct identifier names be given indices

from 1 to |N |. Let hoi = |Ci| be the number of concepts

that idi reflects, and syi be the number of synonyms for idi
including itself. Our Consistent Identifiers Metric will be:

COIM =

|N |∑

i=1

(hoi · syi)

Scale: |N | ≤ COIM ≤ |N |2|C|, where |N | is when all

the names are consistent, and |N |2|C| is when all the names

are synonyms and each one of them reflects all |C| different

concepts. This metric does not only reflect the amount of

inconsistent identifiers, it also roughly evaluates the level of

inconsistency, by using the multiplication. When one encoun-

ters some identifier idi, one should take into consideration its

synonyms as well as all of their possible homonyms.

Conciseness “requires an identifier to have exactly the

same name as the concept it stands for” [8]. The way of

implementing this is debatable, but it would surly require

the use of some domain specific dictionary, together with not

having synonyms or homonyms.

Definition: Let |N | be the number of distinct identifier

names, and csi the conciseness of identifier i, such that

csi ∈ {0, 1}. Our Concise Identifiers Metric will be:

CSIM = |N | −

|N |∑

i=1

csi

Scale: 0 ≤ CSIM ≤ |N |, where |N | is when all the names

are concise, and 0 is when none of them are.

Deissenboeck and Pizka [8] use the head modifier schema

to evaluate the validity of non-atomic names composition,

where the concept identified by a compound identifier must

be a specialization of the concept identified by its head. For

example, the identifier LinkedHashMap is a specialization of

the concept HashMap which in turn is a specialization of the

concept Map. We propose a metric that would evaluate the

number of identifiers that are validly composed. This metric is,

off course, intended for identifiers of concepts or objects, that

could be composed by the above schema. A different schema

may be needed for action-related identifiers such as method

and function names.

Definition: Let |N | be the number of distinct identifier

names, and M the set of distinct non-atomic identifier names.

Let vci reflect the validity of identifier i’s composition, such

that vci ∈ {0, 1}; if idi is atomic (idi /∈ M) then necessarily

vci = 1. The Identifier Composition Validity Metric will be:

ICVM = |N | −

|N |∑

i=1

vci

Scale: 0 ≤ ICVM ≤ |M |, where 0 is when all the non-atomic

names have a valid composition, and |M | is when none of

them do.

Objectification [3]. [Impair: Transparency, Design]

This simple obfuscation takes a class and changes all of its

field types to “object”. An “object” type rather than an explicit

one has higher potency. We suggest counting the number of

such declarations.

Definition: Let T be the set of all variable definitions, and

Obj the set of all variables defined with type “object”. Then,

our Object Metric will be:

OBJM = |Obj|

Scale: 0 ≤ OBJM ≤ |T |, where |T | is when all the variables

are defined as “object”, and 0 is when none of them are.

Dead code [3]. [Impair: Transparency, Design, Flow com-

plexity]

Dead code insertion is an obfuscation that adds code that is

never executed, but is hard to identify as such. For instance,

using an opaque predicate (e.g. a hard to understand “if” that

actually always evaluates to “false”) one can add a block of

irrelevant code. But this can also happen in the course of

code evolution, e.g. when a function falls out of use. Not all

dead code can be detected and eliminated, but Christodorescu

and Jha [6] for example proposed a detection tool which can

identify several kinds of dead-code segments with acceptable

performance. Dead code is known to degrade the efficiency

of a program [11], but apparently has not been suggested

as a metric for quality and specifically an impediment to

comprehension. We suggest that locating and quantifying the

relative amount of dead code can be used as a metric.

Definition: Let DLOC be the lines of code which are

considered dead and LOC the total lines of code in the

program. Then, our Dead Code Metric will be:

DCM =
DLOC

LOC

Scale: 0 ≤ DCM ≤ 1, where 1 is when all the code is

unreachable, and 0 is when there is no dead code.

Redundant operands [7]. [Impair: Transparency, Readabil-

ity]

This obfuscation uses algebraic laws to add redundant

operands to arithmetic expressions. It increases program

length, but the complexity (or number of redirections) of

an expression has much more impact than its length. We

suggest starting with a simple metric that counts the number

of complex expressions, where an expression’s complexity is

measured by its operator count.

Definition: Let n be the number of all arithmetic expres-

sions. Let exi be expression i, and let opi be the collection

of operators in exi. If a is the threshold on operators which

makes an expression complex, then our Complex Expression

Metric will be:

CEM = | {exi | a < |opi|} |

Scale: 0 ≤ CEM ≤ n, where 0 is when none of the

expressions has more the a operators, and n is when all of

them do.

The combination of arithmetic and logic in the same expres-

sion seems to make an expression even more complicated than

simply adding operators. Thus, we also suggest quantifying the

appearances of such combinations.

Definition: Let AR be the set of all arithmetical operators,

and LO the set of all logical operators. We count the number

of expressions which combine arithmetic and logic operators,

so our Arithmetic Logic Metric will be:

ALM = | {exi | LO ∩ opi 6= ∅, AR ∩ opi 6= ∅} |

Scale: 0 ≤ ALM ≤ n, where 0 is when none of the

expressions combine arithmetic and logic, and n is when all

of them do.

V. CONCLUSIONS

Comprehension and obfuscation are two sides of the same

coin. Thus techniques developed for code obfuscation can

help to identify impediments for code comprehension. And

once identified, they can be used to derive new code metrics.

However, significant work remains to fill in the details (e.g.

select threshold values) and assess the practical usefulness of

these metrics. An especially interesting question we plan to

address is whether these things indeed occur in real code, and

to what degree.

Acknowledgments This research was supported by the IS-

RAEL SCIENCE FOUNDATION (grant no. 407/13).

REFERENCES

[1] F. P. Brooks, Jr., “No silver bullet: Essence and accidents of software
engineering”. Computer 20(4), pp. 10–19, Apr 1987.

[2] R. P. L. Buse and W. R. Weimer, “A metric for software readability”. In
Intl. Symp. Softw. Testing & Analysis, pp. 121–130, Jul 2008.

[3] M. Ceccato, A. Capiluppi, P. Falcarin, and C. Boldyreff, “A large study
on the effect of code obfuscation on the quality of Java code”. Empirical

Softw. Eng. 2015.
[4] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and

P. Tonella, “A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques”. Empirical Softw. Eng.

19(4), pp. 1040–1074, 2014.
[5] J.-T. Chan and W. Yang, “Advanced obfuscation techniques for Java

bytecode”. J. Syst. Softw. 71(1), pp. 1–10, 2004.
[6] M. Christodorescu and S. Jha, “Static analysis of executables to detect

malicious patterns”. In 12th USENIX Security Symp., pp. 169–186, 2003.
[7] C. Collberg, C. Thomborson, and D. Low, A taxonomy of obfuscating

transformations. Tech. rep., Dept. Computer Science, University of
Auckland, New Zealand, 1997.

[8] F. Deissenboeck and M. Pizka, “Concise and consistent naming”. Softw.

Quality J. 14(3), pp. 261–282, 2006.
[9] E. W. Dijkstra, “Go To statement considered harmful”. Comm. ACM

11(3), pp. 147–148, Mar 1968.
[10] S. Henry and D. Kafura, “Software structure metrics based on informa-

tion flow”. IEEE Trans. Softw. Eng. SE-7(5), pp. 510–518, Sep 1981.
[11] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimination”.

In Prog. Lang. Design & Implementation, pp. 147–158, ACM, 1994.
[12] D. Low, “Java control flow obfuscation”. MSc Thesis, University of

Auckland, Jun 1998.
[13] T. McCabe, “A complexity measure”. IEEE Trans. Softw. Eng. SE-2(4),

pp. 308–320, Dec 1976.
[14] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program

Analysis. Springer, 1999.
[15] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software

readability”. In 8th Working Conf. Mining Softw. Repositories, pp. 73–
82, May 2011.

[16] SonarSource, “SonarQube”. 2013.
URL http://www.sonarqube.org/

[17] M. Sosonkin, G. Naumovich, and N. Memon, “Obfuscation of design
intent in object-oriented applications”. In Proc. 3rd ACM workshop on

Digital Rights Mgmt., pp. 142–153, 2003.

